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SYMMETRIC OPERATOR EXTENSIONS OF COMPOSITES OF
HIGHER ORDER DIFFERENCE OPERATORS

BOAZ OKOTH OKELLO1∗ , FREDRICK OLUOCH NYAMWALA2 AND DAVID OTIENO
AMBOGO3

Abstract. In this paper we have considered two higher order difference op-
erators generated by two higher order difference functions on the Hilbert space
of square summable sequences. By allowing the leading coefficients to be un-
bounded and the other coefficients as constant functions, we have shown that
the composites of two higher order difference operators are symmetric if the
leading coefficients are scalar multiple of each other and the common divisor of
their orders is 1. Using examples, we have shown that these conditions of sym-
metry cannot be weakened. Furthermore, we have shown that the deficiency
index of the composite is equal to the sum of the deficiency indices of the in-
dividual operators and that the spectra of the self-adjoint operator extensions
is the whole of the real line.

1. Introduction

Consider the even higher order symmetric difference equations of 2nth-order and
2mth-order given by the following

L1y(t) =
n∑

k=0

(−1)k∆k(pk(t) ▽k y(t))

=
n∑

k=0

(−1)k∆k(pk(t)∆ky(t− k)) (1.1)

and

L2y(t) =
m∑
j=0

(−1)j∆j(qj(t) ▽j y(t))

=
m∑
j=0

(−1)j∆j(qj(t)∆
jy(t− j)) (1.2)
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both defined on H = ℓ2(N). Here, y = y(t), pk = pk(t), qj = qj(t), t ∈ N,
k = 0, 1, 2, ..., n and j = 0, 1, 2, ...,m. The operator ∆ is a forward difference
operator defined by ∆f(t) = f(t + 1) − f(t), ∀t ∈ N. The spectral theory of
difference operators generated by L1(y) and L2(y) have been analysed indepen-
dently by different authors under various growth and decay conditions. For an
overview of these results see [3, 4]. Recently, the attention has been shifted to the
composites of the continuous counterparts of equations (1.1) and (1.2) in the
case of unbounded coefficients. Two of the authors [8] deduced that the operators
commute if they are of the same order and the absolutely continuous spectrum of
their self-adjoint extensions is the whole real line. This was done by constructing
the appropriate comparison algebras of the corresponding self-adjoint operator
extensions and application of asymptotic integration under suitable decay and
growth conditions. For the commutativity of the composites of differential equa-
tions, counterparts of (1.1) and (1.2), see the papers by Amitsur [1], Mironov
[6, 7] and the references cited therein. Such like analysis are not available for the
composites of (1.1) and (1.2).
However, it is a well known fact that results for symmetric differential operators
are normally comparable to those of their discrete counterparts under similar
growth and decay conditions. For such treaties see [4]. Therefore, in this study
we have analysed the symmetries of the composites of (1.1) and (1.2), the exis-
tence of the symmetric extensions of their composites in addition to the spectral
theory of these composites under some suitable decay and growth conditions.
This research is motivated by the researches in electromagnetism, electrodynam-
ics, fluid mechanics, quantum physics and many branches of engineering which
arises from the applications of differential and difference equations. Some of
these equations lead to systems that are used for modeling and analysis of real
engineering problems. For example in systems and control theory which is an
interdisciplinary branch of electric-electronic engineering, a lot of difference and
differential equations are used.
Our main interest is under what conditions shall L1 commute with L2 and whether
the composite L1L2 has self-adjoint operator extensions. Our results show that
L1 commutes with L2 if they are of the same order, the leading coefficients are
scalar multiple of each other and the other coefficients are constant functions.
Using Cayley-transforms and von-Neumann theorems, we have derived the sym-
metric and self-adjoint operator extensions of the minimal operator associated
with (generated by) the composite of L1 and L2. In the case of second order
symmetric difference operators, we have shown that the deficiency index of the
composite is equal to the sum of deficiency indices of the individual operators.
The analysis of the first order systems of the composites of (1.1) and (1.2) and
the existence of their self-adjoint extensions are done using asymptotic summation
which is anchored on Levinson’s Benzaid-Lutz theorem as stated below

Theorem 1.1. (Levinson’s Benzaid-Lutz Theorem [5])
Let Λ(t, z) = diag{λ1(t, z), ..., λ2s(t, z)} for t ≥ t0. Assume

(i )λi(t, z) ̸= 0 for all 1 ≤ i ≤ 2s and t ≥ t0
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(ii) R(t, z) is a 2s× 2s matrix defined for all t ≥ t0,
satisfying Σ∞

t=0| 1
λi(t,z)

|∥R(t, z)∥ <∞, for all i = 1, 2, ..., 2s

(iii) Λ(t, z) satisfies the following uniform dichotomy condition. For any pair
of indices i and j, such that i ̸= j, assume there exists δ with 0 < δ < 1

such that |λi(t, z)| ≥ δ for all t ≥ t0. Then, either | λi(t)
λj(t)

| ≥ 1 or | λi(t)
λj(t)

| ≤ 1

for a large t.

Then the linear system

Y (t+ 1, z) = [Λ(t, z) +R(t, z)]Y (t, z) (1.3)

has a fundamental matrix satisfying,

Y (t, z) = [I + o(1)]
t−1∏
l=t0

Λ(l, z) as t→ ∞.

Explicitly for the eigensolutions, we have

yk(t, z) = (ek(t, z) + rkk(t, z))
t−1∏
0

(λk(l, z)) , (1.4)

where, ek(t, z) is the normalized eigenvector and rkk(t, z) → 0 as t→ ∞.

This paper is organised as follows: 1. Introduction, 2. Symmetries and exten-
sions of the composites and 3. Composites of order Two and Four.

2. Symmetries and Extensions of the Composites

In this section, we give the necessary and sufficient conditions for the com-
posites of the symmetric difference operators generated by (1.1) and (1.2) to
be symmetric and have symmetric self-adjoint operator extensions. Suppose in
(1.1) and (1.2), n = m, qm(t) = αpn(t) with α ̸= 0, a real constant and all other
coefficients are constant valued functions, then L1 commutes with L2 and their
composites are symmetric as shown below.

Theorem 2.1. Suppose that L1y(t) and L2y(t) are symmetric difference equa-
tions given in (1.1) and (1.2) respectively with pn, qm ̸= 0, qm(t) is a con-
stant multiple of pn(t), then L1 commutes with L2 if the common divisor of m
and n is 1 and all the other coefficients are constants or when the rank of L1

and L2 is 2, m = n, qm is a constant multiple of pn while all other coefficients
qj, j = 0, 1, 2, ...,m−1 and pk, k = 0, 1, 2, ..., n−1 are all constants. In particular,

L1(L2y(t)) = L2(L1y(t))

=
n∑

k=0

(−1)k
m∑
j=0

(−1)j{∆k(pk∆j(qj∆
j+ky(t− j − k)))} (2.1)

Proof. In the proof, we shall write L1 and L2 to imply L1y(t) and L2y(t) respec-
tively. L1 and L2 are of orders 2n and 2m respectively and since by assumption
the common divisors of m and n is 1, it implies that the common divisors of
their order is 2. By the results of Mironov [6, 7] and those of Amitsur [1], the
dimension of the space of common eigenfunctions of L1 and L2 is 2 and hence
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L1 and L2 commute. On the other hand, if we assume m = n and all other
coefficients apart from pn and qm are constants, then by expanding L1(L2y(t))
and L2(L1y(t)) using the definition of ∆ or ∆ as forward or backward difference
operators and comparing all the terms of these expansions, it suffices to check
the equality on the coefficients of the terms y(t+2n−1) which is similar to those
of the term y(t − 2n + 1) albeit with some shift in the independent coefficients
as a result of successive applications of shift operators since ∆ = E − I where E
is a forward shift, E(t) = t+ 1 and I is the appropriate identity. Here we always
note that qm(t) = αpn(t) for all t ∈ N. The coefficients of the term y(t+ 2n− 1)
for both composites are given by
(−1)n{qn−1pn(t+n− 1) +α[pn−1pn(t+n− 1) + pn(t)pn(t+n− 1) + 2(pn(t+n−
1))2 + pn(t+ n− 1)pn(t+ n)]},
where qn−1 and pn−1 are constants as per the assumptions made. Now by mathe-
matical induction, it follows that the composite can be written as claimed in the
theorem. □

We now demonstrate using examples that the results of Theorem 2.1 are true
and that some of the conditions given in Theorem 2.1 cannot be weakened.

Example 2.2. This example verifies the results of Theorem 2.1. We assume that
all the conditions as outlined in Theorem 2.1 are satisfied and consider second
order difference equations of the form:

L1(y) = −∆(p(t)∆y(t− 1)) + β1y(t)

L2(y) = −∆(αp(t)∆y(t− 1)) + β2y(t)

where α, β1 and β2 are real valued constants, α ̸= 0.

By expansion and comparing the coefficients of the leading terms in the com-
posites L1(L2y) and L2(L1y), we have that for the term y(t+ 2), the coefficients
are given as αp(t+ 1)p(t+ 2) for L1(L2y(t)) and αp(t+ 1)p(t+ 2) for L2(L1y(t)).
The term y(t+1) has the coefficients given as −β2p(t+1)−α[β1p(t+1)+p(t)p(t+
1) + 2{p(t + 1)p(t + 1)} + p(t + 1)p(t + 2)] for both composites. For the term
y(t), the coefficients of the two composites are given by β1β2 + β2(p(t)p(t+ 1)) +
α[2{p(t)p(t)}+2{p(t)p(t+1)}+2{p(t+1)p(t+1)}+β1(p(t)p(t+1))] while for the
term y(t−1), we have, −β2p(t)−α[β1p(t)+p(t)p(t−1)+2{p(t)p(t)}+p(t+1)p(t)] as
the coefficients and for the term y(t−2) the coefficients are given by; αp(t)p(t−1)
in both composites. These clearly show that L1(L2y) is equal to L2(L1y)

Example 2.3. In this example, we confirm that some of the conditions imposed
on the arbitrary leading coefficients in Theorem 2.1 are necessary. Assume that
n = m = 2 with p2 = p, q2 = q, p1 = q1 = 0 ∀t ∈ N and let p0 = r1, q0 =
r2 where ri, i = 1, 2 are non-zero constants. By expansion of the composites
L1(L2y(t)) and L2(L1y(t)), the coefficients of y(t± l), l = 0, 1, 2, 3, 4 shows some
symmetry with the coefficients of y(t + l) matching those of y(t − l) with some
kind of a shift which is as a result of successive application of shift operator,
Ef(t) = f(t+ 1). Note that the forward difference operator ∆ can be re-written
as ∆ = E − I where I is the identity operator. On checking the coefficients of
y(t+4) for the composites, we obtain either p(t+2)q(t+4) or q(t+2)p(t+4) and
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for y(t−4) either the coefficients are p(t)q(t−2) or q(t)p(t−2). The coefficients of
the term y(t+3) are given by −[2p(t+1)q(t+3)+4p(t+2)q(t+3)+2p(t+2)q(t+4)]
or −[2q(t+1)p(t+3)+4q(t+2)p(t+3)+2q(t+2)p(t+4)]. The coefficients of the
other middle terms, that is, y(t± l), l = 0, 1, 2 have similar patterns showing that
L1 commutes with L2 if and only if q(t) = αp(t) for some non-zero constant α
and for all t ∈ N. This confirms the requirement in Theorem 2.1 that the leading
coefficients must be constant multiple of each other.

Remark 2.4. We point out that if m ̸= n, qm(t) and pn(t) are not constants, then
even if qm(t) is a constant multiple of pn(t), L1 and L2 are not commutative as
shown in the next example.

Example 2.5. In this example we show that if the orders of the difference equa-
tions in (1.1) and (1.2) are not equal, then even if the leading coefficients are
scalar multiple of each other, the results in Theorem 2.1 will not hold. For simplic-
ity, we consider the following order two and four symmetric difference equations
with leading coefficients as scalar multiple of the other given by

L1(y) = ∆2(p(t)∆2y(t− 2))

and

L2(y) = −∆(αp(t)∆y(t− 1)).

By expansion and comparing the coefficients of the leading terms of their com-
posites, we have for the term y(t+ 2) as α{p(t)p(t+ 2)+ 3p(t+ 1)p(t+ 2)+ 2p(t+
1)p(t+ 3)} for L1(L2y) and
α{2p(t+ 1)p(t+ 2) + 3[p(t+ 2)]2 + p(t+ 2)p(t+ 3)} for L2(L1y) which shows that
L1(L2y) is not equal to L2(L1y).

Now suppose that L1 and L2 are minimal difference operators generated by L1

and L2 on ℓ2(N) respectively, by the results of G. Ren and Y. Shi [12], they had
shown that the respective maximal difference operators risk being multi-valued
and not densely defined. In order to rescue such a scenario, G. Ren and Y. Shi
[13, 14] had reverted to using subspace theory to analyse the deficiency indices and
spectrum of such difference equations with the only option of reverting to operator
theory approach if and only if the respective maximal difference operators are
densely defined and single-valued. This situation can be navigated by working on
a subspace of ℓ2(N) since as outlined in [13] and eventually applied by Behncke
and Nyamwala [4], there exists a finite interval I1 ⊂ N such that for any non-
trivial solution y(t) of (1.1) and (1.2), one has∑

t∈I1

Ry∗(t)Ry(t) > 0.

Here, Ry(t) is a partial shift operator for which if y(t) = [y1(t), y2(t), ..., y2n(t)]tr,
then Ry(yt) = [y1(t + 1), ..., yn(t + 1), yn+1(t), ..., y2n(t)]tr. Now the deficiency
indices and spectral results obtained in ℓ2(I1) can then easily be extrapolated to
ℓ2(N) using Remling’s results [10] which were later validated in the discrete setting
by Y. Shi [16]. With these clarifications, we therefore show that the operators
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generated by the composites of L1L2 are symmetric and have symmetric operator
extensions when the conditions outlined in Theorem 2.1 are satisfied.

Theorem 2.6. Assume that all the conditions of Theorem 2.1 are satisfied, then
the minimal operator generated by (2.1) is symmetric and has symmetric operator
extensions.

Proof. Suppose all the conditions of Theorem 2.1 are satisfied, then L1 commutes
with L2, and therefore, for all y(t), y1(t) ∈ ℓ2(N), we have

⟨L1L2y(t), y1(t)⟩ = ⟨L2y(t),L1y1(t)⟩ = ⟨y(t),L2L1y1(t)⟩
= ⟨y(t),L1L2y(t)⟩ = ⟨(L1L2)

∗y(t), y1(t)⟩.

This implies that D(L1L2) ⊆ D(L1L2)
∗, and hence the composites L1L2 and

L2L1 are symmetric. We now construct the respective minimal and maximal
symmetric operators generated by the composite L1L2y(t).
In line with the quasi-differences given by Y. Shi [16], we construct the quasi-
differences for the composites L1L2y as follows:

xj(t) = qj(t)∆
j−1y(t− j) 1 ≤ j ≤ m

xm+1(t) = qm(t)∆m(y(t−m)) (2.2)

xm+k(t) = −∆(qm(t)∆my(t−m)) − pn−k(t)(qn−k(t)∆n−ky(t− n+ k))

2 ≤ k ≤ n

xn+m+r(t) = −(∆(xn+m+r−1(t)) + pn−r(t)xm+n−r(t)) 2 ≤ r ≤ n+m− 1

In order to apply the quasi-differences above to convert L1L2y(t) into its first or-
der form, we define the vector valued functions Y (t) = [x1(t), x2(t), ...x2(n+m)(t)]

tr.
Just like in the case of non-composites given in [16] and applied in [3], we also
use symplectic matrix defined by:

J =

[
0n+m −In+m

In+m 0n+m

]
.

It follows that

J∆Y (t) = P (t)RY (t),

where P (t) is a 2(n+m) × 2(n+m) matrix that can be written in a block form

P (t) =

[
A B
C −A∗

]
with A,B,C as (n+m) × (n+m) matrices with non-zero entries given by

Ak,k+1 = 1 Bn+m,n+m = (pnqm)−1

Ck,k =
∑n

k=1

∑m
j=1(pk−1qj−1 + pn−1qm−1).

Always note that by construction, n = m, pn and qm are scalar multiple of each
other with the other coefficients as constants. pn(t), qm(t) ̸= 0 for all t ∈ N. R as
mentioned earlier is a partial shift operator and in this case,

RY (t) = [x1(t+ 1), x2(t+ 1), ...xn+m(t+ 1), xn+m+1(t), ...x2(n+m)(t)]
tr



SYMMETRIC OPERATOR EXTENSIONS 105

. Thus for the Hilbert space ℓ2(N), the space is now defined by

ℓ2(N) = {y(t) : y(t) = {y(t)}∞t=0 ⊂ C and
∞∑
t=0

R(y∗(t))(Ry(t)) <∞}.

As before, there exists a finite interval I1 ⊂ N such that∑
t∈I1

Ry∗(t)Ry(t) > 0,

so that we define ℓ2(I1) as a subspace of ℓ2(N) by

ℓ2(I1) = {y(t) ∈ ℓ2(N) :
∑
t∈I1

Ry∗(t)Ry(t) > 0}.

The scalar product is defined in the usual way. Therefore, one defines the maximal
difference operator L∗ on ℓ2(I1), the subspace of ℓ2(N) generated by (2.1) by its
domain given by

D(L∗) =
{
y ∈ ℓ2(I1) : there exists f ∈ ℓ2(I1) such that

J∆y(t) − P (t)Ry(t) = f(t)} ,
 L∗y = f if and only if J∆y(t) − P (t)Ry(t) = f(t).

The pre-minimal operator generated by (2.1) is now defined by

D(L′) = {y ∈ D(L∗) : there exists n ∈ N such that

y(0) = y(t) = 0 ∀t ≥ n+ 1} ,
L∗y = L′y.

Here, L′ is densely defined, symmetric but not necessarily closed. Since densely
defined symmetric operators defined on Hilbert spaces are closable, if L′ is not
closed, then we can take its closure which now gives the minimal operator gen-
erated by L1L2 on ℓ2(N). This we now denote by L. The minimal symmetric
operator L is densely defined symmetric operator, and therefore, has symmetric
operator extensions, see the results in ([15], chapter 13). In order to have properly
defined operators, we impose some boundary conditions at the left regular end
point [4, 16]. We therefore define two s×s matrices (α1, α2) with α1α

∗
1+α2α

∗
2 = I

and α1α
∗
2 = α2α

∗
1 so that

(α1, α2)

[
x(0)
u(0)

]
= 0. (2.3)

Usually, the left regular end point is taken at t0 for t0 > 1 and t0 ∈ N. The
results of Remling [10] can then be used to extrapolate the deficiency results
to t0 = 0. Thus, to construct the symmetric operator extension, we note that
the operator L has an isometric Cayley-transform VL because L is linear and
densely defined symmetric operator on ℓ2(N). Hence, for any z ∈ C such that
Imz > 0, we have VL = (L − zI)(L − z̄I) with D(VL) = R(L − z̄I) so that
VL(L− z̄I)y = (L− zI)y for all y ∈ D(L). Thus one can also define the inverse
Cayley-transform by (zI−z̄VL)(I−VL)−1 with its domain as R(I−VL). Therefore,
the extension of VL to an everywhere defined bounded operator on ℓ2(N) denoted
by V ỹ = 0 for all ỹ ∈ D(VL)⊥ is a partial isometry with D(V ) = R(L− z̄I) and
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R(V ) = R(L− zI). Hence, the Cayley-transform L → V is a bijective mapping
of the densely defined closed linear operators on ℓ2(N) onto the set of partial
isometries V on ℓ2(N). The inverse Cayley-transform L̃ = (zI−z̄V )(I−V )−1 is the
required symmetric operator extension of L. In this case, D(L) ⊆ D(L̃) ⊆ D(L∗),
where Ly = L̃y = L∗y, for all y ∈ D(L) with ⟨L̃y, y⟩ = ⟨y, L̃y⟩. □

The minimal difference operators generated by L1 and L2 can be constructed in
a similar fashion [3, 4, 16]. Their symmetric operator extensions can be described
via similar argument. It would be interesting if the operator extension of L can
be expressed as composite of symmetric extension of L1 and L2.

In our subsequent results which are on the existence of the self-adjoint operator
extension of the minimal operator generated by L1L2 and the absolutely contin-
uous spectrum of the self-adjoint extension, we shall assume the following growth
conditions on the coefficients of L1 and L2.

pkqj = o(p2n · p0q0)
1
2n , k = 1, 2, ..., n− 1, j = 1, 2, ...,m− 1, n = m. (2.4)

Theorem 2.7. Assume that the coefficients of L1 and L2 in (1.1) and (1.2)
satisfy (2.4) in addition to the conditions in Theorem 2.1, then the deficiency
index of the minimal difference operator generated by L1L2 on ℓ2(N) is (l, l),
where 2n ≤ l ≤ 4n and the absolutely continuous spectrum of the self-adjoint
operator extension is non-empty if |pn|

−1
n is not absolutely summable and has

spectral multiplicity equal to the number of pairs of eigenvalues with magnitude
one.

Proof. In this case we use the simplifications in Theorem 2.6 which gives the
first order form of L1L2y(t), that is, J∆Y (t) = P (t)RY (t). We now introduce
a spectral parameter z, z ∈ R. The operator L generated by L1L2 on ℓ2(N) is
symmetric by the results of Theorem 2.6 and therefore, its spectrum σ(L), is a
subset of R. We now solve the equation L1L2y(t) = zy(t), z ∈ R, or (L−zI)y = 0.
We shall absorb z into p0q0, that is, p0q0 will be interpreted as p0q0−z. Therefore,
using techniques of Shi [16], this first order can be expressed as

Y (t+ 1, z) = S(t, z)Y (t, z) (2.5)

where,

S(t, z) =

(
E EB
CE I − A∗ + CEB

)
E = (I2n − A)−1.

The characteristic polynomial of the 2n × 2n matrix S(t, z) in (2.5) can be
computed explicitly. This is determined by P(t, λ, z) = det(S(t, z) − λ.I2n).
Multiplying P(t, λ, z) by pnqn

λ2n in order to obtain a simpler version and assuming
that (1 − λ)(1 − λ−1) = γ, we obtain a Fourier polynomial F(γ, t, z) given by

F(γ, t, z) =
pnqn
λ2n

P(t, λ, z) =
n∑

k=0

n∑
j=0

(pkγ
k)(qjγ

j) =
n∑

k,j=0

pkqjγ
k+j.
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From our construction, note that qn = αpn for some constant α ̸= 0. Similarly,
pn−1, pn−2, ..., p0 and qn−1, qn−2, ..., q0 are real valued constants. Suppose |pn(t)| ↗
∞ as t → ∞ and the other coefficients are such that pkqj = o(p2n · p0q0)

1
2n as

assumed in (2.4), then the γ−roots of the Fourier polynomial are approximately

γ ≈ |p0q0
αp2n

|
1
2n sign arg(−p0q0

αp2n
) (2.6)

Here, γ = γ(t, z) are analytical functions of t and z. One needs to show that the
γ − roots of F(γ, t, z) are given by the relation in (2.6). In order to see this,
consider a polynomial of the form F(t, z, γ) = αp2nγ

2n + pn−1qm−1γ
2n−1 + ... +

p1qm−1γ+p1qm−1γ
2m−1...+p1q1γ+p0q0. By application of Kummer-Liouville trans-

forms and scaling the coefficients, one can easily transform the Fourier polynomial
F(t, z, γ, ) into a polynomial of the form P (γ) = a2nγ

2n+a2−1γ
2n−1+ ...+a1γ+a0

such that |a0|, |a2n| = 1, ai = pkqj, (k, j = 1 . . . , 2n) and ai, (1 ≤ i ≤ 2n− 1) are
bounded. This can be achieved because we have the freedom of choice of α. It fol-
lows that by taking C = max{ai : i = 0, 1, ..., 2n}, there exists a positive constant
M , M > C + 1 such that magnitude of all the γ − roots are bounded between
M−1 and M . In so doing, the roots of F(t, z, γ) shall all be bounded within a
certain interval. Once the γ−roots have been obtained for the Kummer-Liouville
transformed polynomial, the γ−roots of the original polynomial F(γ, t, z) can be
obtained via backward transformation that involves the coefficients. It remains
therefore to show that any γ− root given by (2.6) is asymptotically equal to the
γ− roots of F(t, z, γ). It suffices therefore to show that if the particular γ− root
is substituted into the polynomial, then all the middle terms tend to zero as
t → ∞. We only do this for the term pn.qn−1γ

2n−1
k since the others are done in

a similar way. It is worth noting that even though in the polynomial F(γ, t, z),
when expanded, apart from the leading term, will have some coefficients with pn.
In these cases, pn will be of power one. Thus comparatively, we have pn = o(p2n)
and this can easily be seen in the case of power coefficients since in the limit sense
t = o(t2) as t→ ∞.
In order to transform (2.5) into Levinson’s Benzaid-Lutz (LBL) form (1.3), we
will need two diagonalisations. The appropriate eigenvectors can be evaluated
directly from the quasi-differences by replacing ∆ by (λ− 1) and y(t−k) by λ−k.
Thus from (2.2) we have,

xj(t) = qj(t)(λ− 1)j−1λ−j 1 ≤ j ≤ m

xm+1(t) = qm(t)(λ− 1)mλ−m

xm+k(t) = −(λ− 1)(qm(t)(λ− 1)mλ−m) − pn−k(t)(qn−k(t)(λ− 1)n−kλ−(n+k))

2 ≤ k ≤ n

xn+m+r(t) = −((λ− 1)(xn+m+r−1(t)) + pn−r(t)xm+n−r(t)) 2 ≤ r ≤ n+m− 1

The matrix T (t, z) formed with the eigenvectors as columns will diagonalise S(t, z)
[9]. Thus one transforms the system by χ(t, z) = T (t, z)Y (t, z) which results into
a system of the form,
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χ(t+ 1, z) = T−1(t+ 1, z)S(t, z)T (t, z)χ(t, z)

= [Λ(t, z) + R(t, z)]χ(t, z)

where,

R(t, z) = −T−1(t+ 1, z)∆T (t, z)Λ(t, z) (2.7)

Here, R(t, z) consists of ℓ1 and ℓ2 terms. The correction terms as a result of
the first transformation are given by Rkk(t, z), k = 1, 2. In (2.7), ∆T (t, z) =
T (t+1, z)−T (t, z). The second diagonalisation is done by use of the eigenvectors
of the matrix [Λ(t) +R(t, z)]. By applying the results of Behncke and Hinton [2],
we shall require a matrix of the form [I +B(t, z)] having

Bkk(t, z) = 0, Bkj(t, z) = (λj − λk)−1Rkj,

k ̸= j, k, j = 1, . . . , s.

The second diagonalisation will thus result into correction terms added to the
diagonals given by (Λ2)kk = diag((RB)kk). Thus the second diagonalisation is
done using the transformation

ψ(t, z) = [I +B(t, z)]χ(t, z)

which results into a system of the form

ψ(t+ 1) = {[Λ(t, z) + Λ2(t, z)] + [I +B(t+ 1, z)]−1R(t)[I +B(t, z)]}ψ(t, z)

in which (Λ2) = diag(RB)kk.
One therefore obtains LBL form (1.3) to which we apply Theorem 1.1 to obtain
the solutions of the form

yk(t, z) = (ek(t, z) + rkk(t, z))
t−1∏
l=t0

λk(l, z)

The asymptotics and summability of yk(t, z) will depend on
∏t−1

l=t0
λk(l, z). These

are analysed off the real axis based on the magnitude of the corresponding eigen-
values since all the γ − roots are such that |γ| ≈ | p0q0

αp2n(t)
| 1
2n and as t → ∞, it

implies that |γr| < 2 ∀ r = 1, 2, ..., 2n and thus we have 2n pairs of eigenvalues
with absolute value almost equal to 1. Thus by application of LBL theorem,
the dichotomy condition can only be established off the real axis. Therefore, the
number of roots that will have a magnitude greater than 1 off the real axis will
be half the roots while the others will have a magnitude less than 1. Now let
z = z0 + iη, z0, η ∈ R, η > 0 and small, then, for |λr+(t, z) + λ−1

r−(t, z)| < 2 as

t→ ∞, which is the required uniform dichotomy condition, it follows that if |pn|
−1
n

is absolutely summable since by construction, α, p0, q0 are constants, then all the
associated eigenfunctions are z-uniformly square summable and defL = (4n, 4n)

(limit circle case). On the other hand if |pn|
−1
n is not absolutely summable,

then half of the associated eigenfunctions will lose their square summability
and defL = (2n, 2n) (limit point case). The minimal operator generated by
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(L1L2− z)y(t) = 0 has a self-adjoint operator extension H by application of von-
Neumann theorems ([17], Theorem 8.11 and 8.12) which can be described via its
domain D(H)as follows

D(H) = D(L) ∔N(L∗ − z) ∔N(L∗ + z) or (2.8)

D(H) = D(L) ∔ {y + V y : y ∈ N(L∗ − z)}
The roots that off the real axis have magnitude greater than 1 lead to the eigen-
solutions that lose their square summability as η → 0+ and hence contributes to
the continuous spectrum. The spectral multiplicity can thus be analysed via the
M-matrix.

The M-matrix of L is the Borel-transform of the spectral measure µ. The density
of the absolutely continuous spectrum of H is given by

(
1

π
) lim
ϵ→0+

M(µ+ iϵ) = (
1

π
)M(µ+) = ϱ(µ).

The spectrum is absolutely continuous if M has finite limits M(µ+). The eigen-
values of H will correspond to the poles of M . The M-matrix M(z) is determined
off the real axis and can be constructed from the eigenfunctions of H that are
square summable.

Assume that V (t, z) =

(
V1(t, z)
V2(t, z)

)
is the set of square summable eigenfunctions

of L with Dirichlet boundary conditions given in (2.3) with

α̃1α̃
∗
1 + α̃2α̃

∗
2 = In+m, α̃1α̃

∗
2 − α̃2α̃

∗
1 = 0.

Then the square summable eigenfunctions are given by
(
Yt0

)
(t)

(
In+m

Mt0(z)

)
.

and one can therefore show that(
Mt0(z)

)
= V2(t0, z)V −1

1 (t0, z).

V −1
1 (t0, z) exists boundedly because V1(t0, z) is the Vandemonde’s matrix. (Mt0)(z)

is continuous for all z within the region of consideration and the spectrum is dis-
crete at most, otherwise, we have σac(H) = R if pn(t) < 0 and if pn(t) > 0,
σac(H) ⊆ [c̄,∞) where c̄ = lim sup p0q0

αpn(t)
, in both cases the spectral multiplicity

is 2n.
□

3. Composites of order Two and Four Operators

In this section we determine the deficiency indices and spectral multiplicities
of composites of order two and four operators that are generated by (2.1) as
a justification of the claim in Theorem 2.7. Assume that L1 and L2 are com-
mutative so that the corresponding difference expression is given by (2.1). In
order to obtain the comparative analysis of the deficiency indices and spectral
results of the associated difference operators, we solve the equations (L1y) = zy,
(L2y) = zy and L1(L2y) = zy as illustrated in the following examples.
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Example 3.1. We consider second order difference equations of the form:

L1(y) = −∆p(t)∆y(t− 1) + b0y(t)

L2(y) = −∆αp(t)∆y(t− 1) + c0y(t)

where α is a real-valued constant, α ̸= 0. In this example we have that p(t) ↗ ∞.
We compute the deficiency indices of the minimal operator generated by the
composite of the above difference equations.

The composite L1L2y(t) is given by,

L1L2y(t) = △2(αp2 △2 y(t− 2)) −△p(b0 + c0) △ y(t− 1) + b0c0y(t)(3.1)

Reducing (3.1) to first order, obtaining its characteristic polynomial and as-

suming that (1 − λ)(1 − λ−1) = γ then scaling by αp2

γ2 we obtain the Fourier

polynomial

F(γ, t) = αp2γ2 + (c0p+ αb0p)γ + b0c0 (3.2)

Solving (3.2) above explicitly, we obtain,

γ1 = −(
c0 + αb0

2αp
) +

1

2αp
(c0 − αb0) =

−b0
p

γ2 = −(
c0 + αb0

2αp
) − 1

2αp
(c0 − αb0) =

−c0
αp

Since (1 − λ)(1 − λ−1) = γ, substituting and solving for λ we have that,

λ1/2 = λ2 + (
−b0
p

− 2)λ+ 1

= λ2 − (
b0
p

+ 2)λ+ 1

and

λ3/4 = λ2 + (
−c0
αp

− 2)λ+ 1

= λ2 − (
c0
αp

+ 2)λ+ 1

Which results to

λ1 ≈ 1+ | b0
P

|
1
2 +

b0
2p

+
b0
8p

| b0
P

|2 − b20
128p2

| b0
P

|2 +O(p−3)

λ2 ≈ 1− | b0
P

|
1
2 +

b0
2p

− b0
8p

| b0
P

|2 +
b20

128p2
| b0
P

|2 +O(p−3)

λ3 ≈ 1+ | c0
αP

|
1
2 +

c0
2αp

+
c0

8αp
| c0
αP

|2 − c20
128αp2

| c0
αP

|2 +O(p−3)

λ4 ≈ 1− | c0
αP

|
1
2 +

c0
2αp

− c0
8αp

| c0
αP

|2 +
c20

128αp2
| c0
αP

|2 +O(p−3)
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By replacing ∆ by (λ−1) and y(t−k) by λ−k in the quasi-differences and normal-
izing the first component through multiplication by λ, we obtain the eigenvectors
given as:

vk = {1, (λk − 1)λ−1
k , (cop+ αb0p)(λk − 1)3λ−1

k , αp2(λk − 1)2λ−1
k }tr

Approximating the eigenvectors using the leading terms only, we obtain the eigen-
vectors of the form:

v1 = [1, (
b0
p

)
1
2 + (

b0
p

), (
c2ob

3
0

p
)
1
2 + (

b50
p

)
1
2 , αpb0 + α(

b30
p

)
1
2 ]tr

v2 = [1, (
b0
p

)
1
2 − (

b0
p

), (
c2ob

3
0

p
)
1
2 − (

b50
p

)
1
2 , αpb0 − α(

b30
p

)
1
2 ]tr

v3 = [1, (
c0
p

)
1
2 + (

c0
p

), (
b2oc

3
0

p
)
1
2 + (

c50
p

)
1
2 , αpb0 − α(

b30
p

)
1
2 ]tr

v4 = [1, (
c0
p

)
1
2 − (

c0
p

), (
b2oc

3
0

p
)
1
2 − (

c50
p

)
1
2 , αpb0 + α(

b30
p

)
1
2 ]tr

Thus the matrix of transformation T (t, λ, z) is given by:
1 1 1 1

O(p
−1
2 ) O(p

−1
2 ) O(p

−1
2 ) O(p

−1
2 )

O(p
−1
2 ) O(p

−1
2 ) O(p

−1
2 ) O(p

−1
2 )

O(p) O(p) O(p) O(p)


As t → ∞, the absolute value of λk tends to 1 and by application of Levinson’s
Benzaid-Lutz theorem, the dichotomy conditions can only be established off the
real axis. |λ1|, |λ3| > 1 while |λ2|, |λ4| < 1 as t → ∞ which is the required
dichotomy condition. Performing the first diagonalisation as outlined Theorem
2.7, equation (2.7) results to

R(t, z) =


O(∆p) O(∆p) O(∆p) O(∆p)

O(p
1
2 ∆p) O(p

1
2 ∆p) O(p

1
2 ∆p) O(p

1
2 ∆p)

O(p
1
2 ∆p) O(p

1
2 ∆p) O(p

1
2 ∆p) O(p

1
2 ∆p)

O(p−1∆p) O(p−1∆p) O(p−1∆p) O(p−1∆p)


The correction terms of are of the form:

Rk,k(t, z) = {O(p
−1
2 ) +O(∆p), O(p

−1
2 ) +O(p

1
2 ∆p),

O(p
−1
2 ) +O(p

1
2 ∆p), O(p

−1
2 ) +O(p−1∆p)}

Therefore, since p is unbounded, ∆p→ 0 as t→ ∞ so that the correction terms
after the first diagonalisation are bounded and the off diagonal terms given by
{O(∆p), O(p

1
2 ∆p) and O(p−1∆p)} are ℓ2 terms. After the second diagonalisa-

tion, the correction terms are of the form:

RBk,k(t, z) = {O(p
−1
2 ) +O(∆p) +O(p(∆p)2), O(p

−1
2 ) +O(p

1
2 ∆p) +O(p

3
2 (∆p)2),

O(p
−1
2 ) +O(p

1
2 ∆p) +O(p

3
2 (∆p)2), O(p

−1
2 ) +O(p−1∆p) +O((∆p)2))}

in which both (∆p) → 0 and (∆p)2 → 0 as t→ ∞ so that the correction terms can

remain bounded. The off diagonal terms {O(p(∆p)2), O(p
3
2 (∆p)2) and O((∆p)2)}
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are ℓ1 terms. Thus with two diagonalisations, (2.5) is converted into LBL form
and an explicit computation shows that

lim
η→0

⟨yk(t, z), yk(t, z)⟩ ≈
t−1∏
l=t0

λk(l, z)

hence if |O(p)
−1
2 | is absolutely summable, then all the four solutions are square

summable and defL = (4, 4), thus a limit circle case and the spectrum is discrete.

Conversely, if |O(p)
−1
2 | is not absolutely summable, then y1(t) and y3(t) lose their

square summability as η → 0+ and we have that defL = (2, 2), a limit point case.
We now compute the M-matrix using the eigenvectors associated with λ2(t, z) and
λ4(t, z) whose eigensolutions remain square summable. Their eigensolutions are
of the form:

yk(t, z) = ρk(t, z)[ek(t, z) + ◦(1)]
t−1∏
l=t0

λk(l)

where ρk(t, z) are the diagonal terms of T (t, z)[I + B(t, z)] which are bounded.
For z = z0 + iη, η > 0, small and z0 ∈ R, then from the relation

ImM(t, z) = lim
η→0+

⟨F (t, z), F (t, z)⟩,

it follows that y2(t) remains square summable and hence by Euler’s formula:

ln
t−1∏
l=t0

|λ2(l)|2 ≈ −2η
t−1∑
t0

1

|αpn(l)| 12
≈ −2η

∫ t−1

t0

|αpn(l)|−
1
2dl.

The one for y4(t) follows in a similar fashion. These eigenfunctions y1(t) and
y3(t) that lose their square summability contribute to the absolutely continuous
spectrum. We note that the leading term associated with spectral parameter z is
given by |p0qo−z

αpn
| 12 so that as pn(t) ↗ ∞ and c < z < ∞ where c = lim sup(p0q0

αpn
).

hence, the absolutely continuous spectrum is a subset of [c,∞) and of spectral
multiplicity 2.

Finally, we compute the deficiency indices of a minimal difference operator gen-
erated by the composites of order four difference equations.

Example 3.2. In this example we consider the fourth order difference equations
of the form:

L1(y) = ∆2(tϵ∆2y(t− 2)) + c1y(t)

L2(y) = ∆2(αtϵ∆2y(t− 2)) + c2y(t)

where α is a real-valued constant, α ̸= 0 and ϵ > 0.

The composite of the above equations as given by:

L1L2y = ∆4(αt2ϵ∆4y(t− 4)) − ∆2(b0t
ϵ + c0t

ϵ)∆2y(t− 2) + b0c0y(t) (3.3)
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and the quasi-differences of (3.3) above are given as:

x1(t) = y(t− 1) x3 = ∆2y(t− 3)

x2 = ∆y(t− 2) x4 = ∆3y(t− 4)

u1(t) = −∆(c2t
ϵ + αc1t

ϵ)∆2y(t− 2) − ∆3αt2ϵ∆4y(t− 4)

u2(t) = (c2t
ϵ + αc1t

ϵ)∆2y(t− 2) + ∆2αt2ϵ∆4y(t− 4)

u3(t) = −∆αt2ϵ∆4y(t− 4) u4(t) = αt2ϵ∆4y(t− 4)

Reducing (3.3) to first order system using the above quasi-differences, obtaining
the characteristic polynomial and thereafter performing the right scaling and
taking (1 − λ)(1 − λ−1) = γ, we obtain the fourier polynomial given by:

F(γ, t) = αt2ϵγ4 + (c2t
ϵ + αc1t

ϵ)γ2 + c1c2 (3.4)

solving the zeros of (3.4) we have that:

γ1 ≈ i | c1
tϵ

|2

γ2 ≈ −i | c1
tϵ

|2

γ3 ≈ i | c2
tϵ

|2

γ4 ≈ −i | c2
tϵ

|2

and since(1 − λ)(1 − λ−1) = γ it implies that:

λ1/2 = 1 − i

2
| c1
tϵ

|
1
2 ±{ c1

4tϵ
− i | c1

tϵ
|
1
2}

1
2

λ3/4 = 1 +
i

2
| c1
tϵ

|
1
2 ±{ c1

4tϵ
+ i | c1

tϵ
|
1
2}

1
2

λ5/6 = 1 − i

2
| c2
tϵ

|
1
2 ±{ c2

4tϵ
− i | c2

tϵ
|
1
2}

1
2

λ7/8 = 1 +
i

2
| c2
tϵ

|
1
2 ±{ c2

4tϵ
+ i | c2

tϵ
|
1
2}

1
2
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Which results to:

λ1 ≈ 1 − i

2
| c1
tϵ

|
1
2 +

i√
2
| c1
tϵ

|
1
4 +

i

8
√

2
| c1
tϵ

|
3
4 +O(t

−5
4
ϵ)

λ2 ≈ 1 − i

2
| c1
tϵ

|
1
2 − i√

2
| c1
tϵ

|
1
4 − i

8
√

2
| c1
tϵ

|
3
4 +O(t

−5
4
ϵ)

λ3 ≈ 1 +
i

2
| c1
tϵ

|
1
2 − i√

2
| c1
tϵ

|
1
4 +

i

8
√

2
| c1
tϵ

|
3
4 +O(t

−5
4
ϵ)

λ4 ≈ 1 +
i

2
| c1
tϵ

|
1
2 +

i√
2
| c1
tϵ

|
1
4 − i

8
√

2
| c1
tϵ

|
3
4 +O(t

−5
4
ϵ)

λ5 ≈ 1 − i

2
| c2
tϵ

|
1
2 +

i√
2
| c2
tϵ

|
1
4 +

i

8
√

2
| c2
tϵ

|
3
4 +O(t

−5
4
ϵ)

λ6 ≈ 1 − i

2
| c2
tϵ

|
1
2 − i√

2
| c2
tϵ

|
1
4 − i

8
√

2
| c2
tϵ

|
3
4 +O(t

−5
4
ϵ)

λ7 ≈ 1 +
i

2
| c2
tϵ

|
1
2 − i√

2
| c2
tϵ

|
1
4 +

i

8
√

2
| c2
tϵ

|
3
4 +O(t

−5
4
ϵ)

λ8 ≈ 1 +
i

2
| c2
tϵ

|
1
2 +

i√
2
| c2
tϵ

|
1
4 − i

8
√

2
| c2
tϵ

|
3
4 +O(t

−5
4
ϵ)

By obtaining the transforming matrix as outlined in example 3.1 above and per-
forming the two diagonalisations to convert (2.5) into LBL form and by mathe-
matical induction, we have that:

lim
η→0

⟨yk(t, z), yk(t, z)⟩ ≈
t−1∏
l=t0

λk(l, z)

hence if |O(tϵ)
−1
4 | is absolutely summable, then all the eight solutions are square

summable and defL = (8, 8), thus a limit circle case and the spectrum is discrete.

Conversely, if |O(tϵ)
−1
4 | is not absolutely summable, then y1(t) and y4(t), y5(t) and

y8(t) lose their square summability as η → 0+ and we have that defL = (4, 4),
a limit point case. The M-matrix can then be computed using the eigenvectors
associated with λ2(t, z), λ3(t, z), λ6(t, z) and λ7(t, z) whose eigensolutions remain
square summable. Their eigensolutions are of the form:

yk(t, z) = ρk(t, z)[ek(t, z) + ◦(1)]
t−1∏
l=t0

λk(l)

where ρk(t, z) are the diagonal terms of T (t, z)[I + B(t, z)] which are bounded.
Again for z = z0 + iη, η > 0, small and z0 ∈ R, and from the relation

ImM(t, z) = lim
η→0+

⟨F (t, z), F (t, z)⟩,

it follows that y2(t) remains square summable and hence by Euler’s formula:

ln
t−1∏
l=t0

|λ2(l)|2 ≈ −2η
t−1∑
t0

1

|tϵ(l)| 14
≈ −2η

∫ t−1

t0

|tϵ(l)|−
1
4dl.
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The one for y3(t), y6(t), and y7(t) are done in a similar fashion. These eigenfunc-
tions y1(t), y4(t), y5(t) and y8(t) that lose their square summability contribute
to the absolutely continuous spectrum. The leading term associated with spec-
tral parameter z is given by | c−z

tϵ
| 14 so that as tϵ ↗ ∞ and q < z < ∞ where

q = lim sup( c
tϵ

). Hence, the absolutely continuous spectrum is a subset of [q,∞)
and of spectral multiplicity 4.
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