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SPECTRAL THEORY OF COMMUTATIVE HIGHER ORDER
DIFFERENCE OPERATORS WITH UNBOUNDED

COEFFICIENTS

BOAZ OKOTH OKELLO1∗, FREDRICK OLUOCH NYAMWALA2 AND DAVID OTIENO
AMBOGO3

Abstract. We have established the necessary and sufficient conditions for
any two even higher order symmetric difference maps to generate commuting
minimal difference operators. We have done this through construction of ap-
propriate comparison algebras of the self-adjoint operator extensions of the
minimal operators generated and application of asymptotic summation. The
results show that if the first difference on the coefficients tends to zero when-
ever the coefficients are allowed to be unbounded and that the difference maps
considered have the same order, then they generate minimal operators that
commute and the corresponding self-adjoint operators commute too. We have
further shown that the self-adjoint operator extensions of the respective mini-
mal operators can be expressed as the composite of the independent self-adjoint
operator extensions if the generated minimal difference operators have closed
ranges. Finally, we have shown that the spectra of these self-adjoint opera-
tor extensions are the whole of the real line if the coefficients are unbounded.
These results therefore, extend the existing results in the continuous case to
discrete setting.

1. Introduction

We consider two symmetric higher order difference functions L1 and L2 defined
by

L1y(t) =
n∑
k=0

(−1)k∆k(pk∆
ky(t− k)), L2y(t) =

m∑
j=0

(−1)j∆j(qj∆
jy(t− j)),

(1.1)
on `2(N). Here, pk = pk(t), qj = qj(t), t ∈ N, k = 0, 1, 2, ..., n and j = 0, 1, 2, ...,m,
are real valued functions which are assumed to have second forward difference
with the assumption that ∆(pk(t)), ∆(qj(t)) → 0 as t → ∞. The operator ∆ is
a forward difference operator defined by ∆f(t) = f(t + 1) − f(t) for all t ∈ N.
The difference maps L1 and L2 are ordinarily defined on weighted Hilbert spaces
`2
w(N) or `2

w(Z) where w = w(t) > 0 is a weight function. In this case, the inner
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products for any {y1(t)}∞t=t0 and {y2(t)}∞t=t0 in `2
w(N) are defined by

〈y1(t), y2(t)〉 =
∞∑
t=t0

y1(t)w(t)y2(t)

where t0 is some initial integral value. In this paper, we have studied the solutions
of the equations

L1(L2y(t)) = zy(t), L2(L1y(t)) = zy(t), (1.2)

where z ∈ C is the spectral parameter. In particular, we have been interested
in cases where in (1.2) above, L1 commutes with L2. In order to simplify the
computations, we have assumed that w(t) = 1, for all t ∈ N or t ∈ Z. Thus the
analysis can be done on `2(N) which is isomorphic to `2

w(N) when w(t) = 1. The
deficiency indices and the spectral results in the two spaces are similar if w(t) = 1
for all t ∈ N. The interest in this case is the necessary and sufficient conditions for
the commutativity of the minimal and maximal difference operators generated by
L1 and L2 and if so, the required conditions for the self-adjoint operator extension
H generated by L2L1 to be expressed as H2H1. Here, H1 and H2 are the self-
adjoint operator extensions of minimal difference operators generated by L1 and
L2 respectively. The solutions of (1.2) have been obtained by constructing the
Hamiltonian systems of (1.2), construction of the equivalent first order systems
and the appropriate maximal and minimal operators generated by L1 and L2

on `2(N). Thus by constructing appropriate comparison algebras and applying
asymptotic summation, we have established the existence of self-adjoint operator
extension of the minimal operator generated by L1 and L2 as well as that of the
composite L = L1L2. Moreover, using the same approach, we have determined
the necessary and sufficient conditions for these self-adjoint operator extensions
to commute. Finally, we have also determined the location of the absolutely
continuous spectrum and the spectral multiplicity of the respective self-adjoint
operator extensions.

This research is motivated by the invent of researches in electric-electronics
where a system is organized as a chain of subsystems where the output of one
subsystem is the input of the subsequent subsystem. It is worth noting that main
applications of differential equations arise naturally in electrodynamics, quantum
mechanics and other branches of engineering. In engineering, this occurs in con-
trol theory and in particular, in electrical engineering. When the cascade of a
system is connected in form of subsystems, the engineering ingenuity requires
that the order of the subsystems can be changed without interfering with the
quality and properties of the final product, output. The conditions necessary and
sufficient for this achievement is the concept behind the theory of commutativity
in Mathematics and Control theory for engineers. In the sequel, we formulate the
first order systems and construct maximal and minimal operators generated by
Lr, r = 1, 2.

In order to solve the equations Lry = zy, r = 1, 2, we need to convert the
equations into their first order systems. To do that, we require quasi-differences
[4, 21]. These are the discretised version of quasi-derivatives as given in [15] in
equation (1.2). These are given by
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xi(t) = ∆i−1y(t− i), un(t) = pn(t)∆ny(t− n),

uk(t) =
n∑
l=k

(−1)l−k(pl(t)∆
ly(t− l)).

for L1. The quasi-differences for L2 is done in a similar way and hence using the
2s, s = n,m, vector valued function, Y (t, z) = [x(t, z), u(t, z)]tr, where x(t, z) =
[x1(t, z), ..., xs(t, z)]

tr and u(t, z) = [u1(t, z), ..., us(t, z)]
tr, we obtain the required

first order system given by

∆

[
x(t, z)
u(t, z)

]
=

[
A B
C −A∗

] [
x(t+ 1, z)
u(t, z)

]
(1.3)

Here A, B and C are s× s matrices with non-zero entries as

Al,l+1 = 1, Bs,s = h−1
s , Cl,l = hl−1, l = j, k = 1, . . . , s.

h0 = h0(t)− z, h = pk, qj. In a more precise way, we can introduce a symplectic
matrix J and write the above first order form in its Hamiltonian system

J∆

[
x(t, z)
u(t, z)

]
=

[
−C A∗

A B

] [
x(t+ 1, z)
u(t, z)

]
, J =

[
0 −Is
Is 0

]
(1.4)

This leads to an equivalent first order of the form

J∆Y (t, z)− PKY (t, z) = F (t),

where K is a partial shift operator defined by

K([x(t, z), u(t, z)]tr) = [x(t+ 1, z), u(t, z)]tr

,

P =

[
−C A∗

A B

]
, F (t) 2s− vectorfunction

with F (t) = [f(t), 0, ..., 0]tr, f(t) ∈ `2(N).
The first order form can be written as[

x(t+ 1, z)
u(t+ 1, z)

]
= S(t, z)

[
x(t, z)
u(t, z)

]
. (1.5)

where S(t, z) has the block form of

S(t, z) =

[
E EB
CE I − A∗ + CEB

]
and E = (I − A)−1.

In order to properly define the maximal and minimal difference operators gener-
ated by Lr in (1.1), we need some regularity conditions just like in the continuous
case. The space `2(N) is described as follows using the regularity conditions.

`2(N) = {y(t) : y(t) = {y(t)}∞t=0 ⊂ C
∞∑
t=0

K(Y ∗(t))(KY (t)) <∞

}
.
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Similarly, there exists an integral domain I1, I1 ⊂ N such that∑
t∈I1

K(Y ∗(t))(KY (t)) > 0,

`2(I1) ⊂ `2(N) and

`2(I1) =

{
y(t) ∈ `2(N) :

∑
t∈I1

K(Y ∗(t))(KY (t)) > 0

}
.

By doing so, the scalar products are therefore defined by

〈y(t), y1(t)〉 =
∑
t∈I1

y(t)y1(t).

In addition, for any vector F (t), we need

J∆Y (t, z)− PKY (t, z) = F (t), with ‖Y (t, z)‖ = 0, if, F (t) = 0.

This is the condition that is missing in [21] which makes the definition of maximal
operators in her work just mere difference relations and not properly defined
maximal operators.
Next we define maximal and the minimal difference operators generated by Lr.
Define a map L∗r via its domain D(L∗r) given by

D(L∗r) =
{
y(t) ∈ `2(I1) : there exists f(t) ∈ `2(I1) such that

J∆Y (t)− PKY (t) = F (t)}
and

L∗ry(t) = f(t) if and only if J∆Y (t)− PKY (t) = F (t).

Lry(t) = L∗ry(t), ∀y(t) ∈ D(L∗r).

Then D(L∗r) is the largest possible domain in which L∗r can be defined. L∗r is the
maximal difference operator generated by Lr on `2(N). L∗r is symmetric, closed
and densely defined. A restriction of L∗r to a smaller domain D(Lr0) defined by

D(Lr0) = {y(t) ∈ D(L∗r) : there exists n ∈ N
such that y(0) = y(t) = 0 for all t ≥ n+ 1} .

L∗ry(t) = Lr0y(t), ∀y(t) ∈ D(Lr0),

results into a pre-minimal difference operator generated by Lr. Here, Lr0 is
densely defined, symmetric but not necessarily closed. Since in our analysis we
require closed linear operators and because densely defined operators are closable,
we will take the closure of pre-minimal operator Lr0 to be our minimal operator.
This will be denoted by Lr. In order to have properly defined operators, we
impose some boundary conditions at the left regular end point [6, 21]. Define two
s× s matrices (α1, α2) with α1α

∗
1 + α2α

∗
2 = I and α1α

∗
2 = α2α

∗
1 so that

(α1, α2)

[
x(0)
u(0)

]
= 0. (1.6)

In most cases, the left regular end point is taken as t0 for t0 > 1 and t0 ∈ N. The
results of Remling [19] can then be used to extrapolate the deficiency results to
t0 = 0.
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Let z be spectral parameter with Imz > 0. We now define the pair (N+, N−)
as the deficiency indices of Lr, if N+ = dimNL∗

r−z̄ and N− = dimNL∗
r−z, where

NL∗
r−z̄ and NL∗−z are taken as the null spaces of L∗r− z̄I and L∗r−zI respectively.

If N− = N+ = 0, then Lr is self-adjoint. On the other hand if N− = N+ 6= 0
then by von Neumann theorems [20], Lr has self-adjoint operator extension Hr

defined by;

D(Hr) = D(Lr)+̇ {y + Vry y ∈ N (L∗r − zI)} , Hry = Lry = Lry, ∀y ∈ D(Lr).
(1.7)

Vr is a uniquely determined isometric mapping such that Vr : N (L∗r − zI) →
N (L∗r + zI). In the case of non-limit point, added boundary conditions are
imposed at infinity in order to obtain the basis of the set of solutions of (Lr −
zI)y = 0 that are uniformly square summable.

The analysis of the first order systems of (1.1) and the existence of Hr are
done using asymptotic summation which is anchored on the discretized version
of Levinson’s Theorem as stated below.

Theorem 1.1. (Levinson’s-Benzaid-Lutz Theorem [7])
Let Λ(t, z) = diag{λ1(t, z), ..., λ2s(t, z)} for t ≥ t0. Assume

(i )λi(t, z) 6= 0 for all 1 ≤ i ≤ 2s and t ≥ t0
(ii) R(t, z) is a 2s× 2s matrix defined for all t ≥ t0,

satisfying Σ∞t=0| 1
λi(t,z)

|‖R(t, z)‖ <∞, for all i = 1, 2, ..., 2s

(iii) Λ(t, z) satisfies the following uniform dichotomy condition. For any pair
of indices i and j, such that i 6= j, assume there exists δ with 0 < δ < 1

such that |λi(t, z)| ≥ δ for all t ≥ t0. Then, either | λi(t)
λj(t)
| ≥ 1 or | λi(t)

λj(t)
| ≤ 1

for a large t.

Then the linear system

Y (t+ 1, z) = [Λ(t, z) +R(t, z)]Y (t, z) (1.8)

has a fundamental matrix satisfying,

Y (t, z) = [I + o(1)]
t−1∏
l=t0

Λ(l, z) as t→∞.

Explicitly for the eigensolutions, we have

yk(t, z) = (ek(t, z) + rk(t, z))
t−1∏

0

(λk(l, z)) . (1.9)

Here, ek(t, z) is the normalized eigenvector and rk(t, z)→ 0 as t→∞.
Asymptotic summation by now is a straight forward method where we com-
pute the eigenvalues of the matrix S(t, z), establishing the uniform dichotomy
condition and finally transforming (1.5) into the almost diagonal system de-
pending on the decay conditions of the coefficients. This shall require com-
putation of eigenvalues of S(t, z), the corresponding eigenvectors and some di-
agonalizations. Thus for the eigenvalues, we need the characteristic polyno-
mial P(t, λ, z) = det[S(t, z) − I2n]. If we multiply P(t, λ, z) by (−1)shsλ

−s,
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hs = pn, qm, s = n,m, we obtain the fourier polynomial

F(t, γ, z) = (−1)shsλ
−sP(t, λ, z) =

s∑
l=0

hlγ
l, (1.10)

where γ = (1 − λ)(1 − λ−1). The appropriate eigenvectors can be evaluated di-
rectly from the quasi-differences by replacing ∆ by (λ− 1) and y(t− l) by λ−l.

The matrix T (t, z) = [v1, . . . , vs] is now used to diagonalise equation (1.5). We
make the transformation χ(t, z) = T (t, z)Y (t, z) which results into

χ(t+ 1, z) = T−1(t+ 1, z)S(t, z)T (t, z)χ(t, z)

= [Λ(t, z) + R(t, z)]χ(t, z)

where,

R(t, z) = −T−1(t+ 1, z)∆T (t, z)Λ(t, z) (1.11)

and

Λ(t, z) = diag (λl(t, z)) , l = j, k = 1, . . . , s.

Here, R(t, z) consists of terms in `2(N) and `1(N). The correction terms as a
result of the first transformation are given by Rkk(t, z), k = 1, 2. In (1.11),
∆T (t, z) = T (t + 1, z) − T (t, z). The second diagonalisation is done by use of
the eigenvectors of the matrix [Λ(t) + R(t, z)]. Using the results of Behncke and
Hinton [2], a matrix of the form [I +B(t, z)] with

Bkk(t, z) = 0, Bkj(t, z) = (λj − λk)−1Rkj,

k 6= j, k, j = 1, . . . , s., t ≥ t0,

will be required for the second diagonalisation. The second diagonalisation results
into correction terms added to the diagonals given by (Λ2)kk = diag((RB)kk).
The second diagonalisation is thus done using the transformation

ψ(t, z) = [I +B(t, z)]χ(t, z)

and which results into a system of the form

ψ(t+ 1) = {[Λ(t, z) + Λ2(t, z)] + [I +B(t+ 1, z)]−1R(t)[I +B(t, z)]}ψ(t, z)

where (Λ2) = diag(RB)kk.
One therefore obtains Levinson-Benzaid-Lutz (LBL) form of

ψ(t+ 1, z) = [Λ(t, z) +R(t, z)]ψ(t, z)

to which we apply Theorem 1.1 to obtain the solutions of the form

Y (t, z) = T (t, z)[I +B(t, z)][E(t, z) + ◦(Is)]
t−1∏
t0

Λ(t, z)
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if we apply backward transformations. Note that the matrices T (t, z)[I +B(t, z)]
shall be bounded and the asymptotics of the eigensolutions shall depend on the
matrix

∏t−1
t0

Λ(t, z). Explicitly, we have

yk(t, z) = ρk(t, z)[ek(t, z) + rkk(t, z)]
t−1∏
t0

λk(t, z)

where ρk(t, z) is a bounded function given by (T (t, z)[I +B(t, z)])kk, ek(t, z) is a
normalised eigenvector vector while rkk(t, z) ∈ `1(N) and tends to zero as t→∞.
The spectral results of Hr are now obtained via the M -matrix [12, 19, 21]. In
higher dimensions, the M -matrix is equivalent to the classical Titmarsh-Weyl
m-function. In order to construct the M -matrix associated with the first order
system, we let

Ωr(t, z) =

[
Ωr1(t, z)
Ωr2(t, z)

]
be the set of square summable solutions satisfying boundary conditions (1.6) at
t0 = 0 with α1 = Is, the identity matrix of order s, and α2 = 0s. Then applying
boundary conditions at the left regular endpoint at t0, we have

Mr(t0, z) = Ωr2(t0, z)Ω
−1
r1

(t0, z).

Here, Ωr1(t0, z) is the Vandermonde’s matrix for the eigenvalues of square sum-
mable solutions and it is easy to show that Ω−1

r1
(t0, z) exists and Mr(t0, z) is

continuous and bounded. The Mr(t0, z) is the Herglotz function. This implies
that the spectrum is not singular continuous apart from at the isolated poles and
hence the density of spectral measure of Hr is absolutely continuous. In order to
determine the continuity of Mr(t0, z), we compute the scalar product of square
summable solutions with z = z0 + iη, z0, η ∈ R, η > 0, small, while taking limits
as η → 0+ as given below

lim
η→0+
〈yl(t0, z), yl(t0, 0)〉.

The M -matrix can then be shown to be bounded absolutely since the above limit
exists boundedly and this allows one to represent the resolvent of any arbitrary
self-adjoint operator extension Hr of Lr using Green’s function as

(H−1
r − zI)y(t) =

∞∑
0

Gr(t, t1, z)y(t1),∀y(t) ∈ H,

where the Green function Gr(t, t1, z) is defined by:

Gr(t, t1, z) =

{
χr(t, z)R(Φ)∗r(s, z̄) : 0 ≤ s ≤ t− 1
Φr(t, z)R(χr)

∗(s, z̄) : t ≤ s <∞

}
.

Φr(t, z) are the fundamental solutions of the first order systems and χr(t, z) are
the s × 2s matrices consisting of those solutions satisfying boundary conditions
α(α1, α2) with α1 = In and α2 = 0 at the regular point t = 0 or t0 and are
z-uniformly square summable as t→∞.
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The rank of the M -matrix is therefore the spectral multiplicity of the absolutely
continuous spectrum of Hr and this loosely translates to the number of solutions
that lose their square summability as η → 0+. For our results in Section 2,
we apply the concept of Greens function in order to construct the appropriate
isometric isomorphisms corresponding to Hr and comparison algebras. This is
the discretised version of Hr and Wr in Theorem 2.1 of [15]. This is constructed
as follows:

H−1
r y(t) =

∞∑
0

Gr(t, t1)y(t1), y(t) ∈ `2(I1).

and the corresponding isometric isomorphism operator Wr by:

Wr = H
− 1

2n
r =

∞∑
0

(−1)

(
1

2n
l

)
(I −H−1

r )l, r = 1, 2, n = m. (1.12)

Let σ(Hr), σac(Hr, l), σ(H) and σac(H, l) denote the spectrum of Hr, absolutely
continuous spectrum of Hr with spectral multiplicity of l, spectrum of H and
absolutely continuous spectrum of H with spectral multiplicity of l respectively.
Our results shows that if ∆(h(t))→ 0 as t→∞, h(t) = pk(t), qj(t) and n = m,
then L1 and L2 generate minimal difference operators L1 and L2 respectively that
commute. In the case of unbounded coefficients with the conditions hl−1 · hl+1 =
o(h2

l ), hl = pk, qj, the self-adjoint operator extensions H1 and H2 corresponding
to minimal operators generated by L1 and L2 commute also. The self-adjoint
operator extension of minimal operator generated by L1L2, H, can be expressed
as a composite of H1 and H2. The absolutely continuous spectrum of H1, H2 and
H is the whole of R with absolutely continuous spectrum of H having spectral
multiplicity similar to the sum of that of H1 and H2. This paper therefore is the
discretised version of [15]. However, we have included detailed analysis of the
spectral properties of the composite operators with robust examples.

The remaining part of this paper is organized as follows: 1 Introduction, 2
Commutativity of Generated Operators, 3 Spectral Analysis of L1, L2 and L
with unbounded coefficients.

2. Commutativity of Generated Operators

The results of this section are the discretised version of the results in [15], espe-
cially the proof of Theorem 2.2 follows closely from that of Theorem 2.1 in [15].
For any real valued function h(t), we shall define the commutator [∆, h(t)] to be
the relation

[∆, h(t)]y(t) = ∆(h(t)y(t))− h(t)(∆y(t)), ∀t ∈ N
The commutator vanishes identically to zero if and only if ∆(h(t))→ 0 as t→∞.
It is therefore true like in the continuous case, that in the discrete case we replace
“derivative” with ∆ to obtain our commutator. For h(t) ∈ C∞0 (N), there are
many examples that satisfy this condition. For example, constant functions,
almost constant functions, that is, the functions of the form h(t) = c + g(t)
such that g(t) → 0 as t → ∞. However, there exists also unbounded functions
that satisfy the condition. For example, take h(t) = ln t, t ∈ N, it follows that
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∆h(t) = ln(1 + 1
t
) → 0 as t → ∞. These show that there exist non-trivial

functions that satisfy the commutator condition. Therefore, we work with the
following decay conditions:

pn, qm > 0, ∆h→ 0, as t→∞, h = pk, qj, k, j = 1, 2, ...max(n,m).
(2.1)

and

∆hl
hl
∈ `2(I1), (

∆hl
hl

)2,
∆2hl
hl
∈ `1(I1), hl = pl, ql, l = k, j. (2.2)

In the theorem below, we have shown that at limiting point, the spectrum
of Hr, the self-adjoint operator extension in (1.7), has no singular continuous
spectrum and the absolutely continuous spectrum agree with that of constant
coefficient limiting operators.

Theorem 2.1. Consider the minimal difference operators L1 and L2 generated
by L1 and L2 in (1.1) respectively and assume (2.1) and (2.2) are satisfied.
Then, L1 and L2 are at limit points at infinity if the boundary conditions defined
by matrices αr (1.6) at t0 = 0 are satisfied. The corresponding self-adjoint
operator extension Hr has no singular continuous spectrum, σsc(Hr) = ∅. The
absolutely continuous spectra of the self-adjoint operator extensions agree with
those of constant coefficient limiting operators. In particular, the spectral measure
µ for Hr belongs to absolutely continuous spectra having multiplicities equal to
half the number of roots of the corresponding characteristic polynomials with unit
magnitude.

Proof. The proof follows closely from that of Theorem 4.7 of Behncke and Nyamwala
[3] with some modification in line with the formulation of L1 and L2. Here, we
define L1 and L2 on the Hilbert space `2

w(I1) ∼= `2(I1), w = w(t) = 1, for all
t ∈ N. Each of the difference equations is converted into their first order sys-
tem. The respective propagator form (1.5) can be computed explicitly and the
associated eigenvalues determined. Uniform dichotomy condition can then be
established uniformly for those eigenvalues λ(t, z) of unit magnitude since the
other eigenvalues shall satisfy uniform dichotomy condition irrespective of the
value of spectral parameter z [3]. Thereafter, the transforming matrix T (t, z)
can be determined from the eigenvectors and the first order system diagonalized
repeatedly to obtain Levinson-Benzaid-Lutz (LBL) form as explained in Section
1. The assumptions in (2.2) imply that two diagonalizations will bring the first
order form into the required Levinson-Benzaid-Lutz form (1.8). Application
of the discretized version of Levinson’s Theorem now gives the form of solu-
tions (1.9) that are required for analysis. We consider the zeros of F(t, γ, z)
in (1.10). The roots of the polynomial in (1.10) will be considered within a
set K = {z ∈ C | z − z0 |< ε} with relevant spectral parameters which can be
adjusted until P(λ, t, z) has distinct roots. Suppose the roots of the character-

istic polynomial Pr(λ, t, z) are λ1, λ2, λ3, ..., λ2l, λ̃2l+1, λ̃2l+2 + ... + λ̃2s, s = n,m,

l ≤ s. Here λl = λl(t, z), λ̃l = λ̃l(t, z) where | λk |6= 1, k = 1, 2, ..., 2l, | λ̃k |= 1,
k = 2l + 1, ..., 2s, then by the results of Behncke [1] and Behncke and Nyamwala
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[3], the dichotomy condition is only required for those characteristic roots (eigen-

values of S(t, z) with magnitude 1, that is λ̃k(t, z)). Using complex analysis, we

represent these eigenvalues by λ̃k(t, z) = exp(iβk) for some angle βk. It follows

that λ̃k(t, z) = exp(−iβk) will also be a root. Then off the real axis and taking
z = z0 + iε, ε > 0, z0, ε ∈ R, ε > 0 is small, we have,

λ̃k(z0 + iε) + λ̃k(z0 + iε) = 2 cos βk k = l + 1, ..., (s− l).

Thus

λ̃k(z0 + iε) = λ̃k(z0) +
iε

∂λkPr(λ, t, z)
.

It is the correction term iε(∂λkPr(λ, t, z))−1 which will lead to either λ̃k(z0 + iε)
having magnitude greater than 1 or less than 1 off the real axis. The number of
roots with magnitude almost one at limiting point but with magnitude greater
than 1 off the real axis will be half the roots λ̃l(t, z) while the others will have
magnitude less than 1 off the real axis. This is the required uniform dichotomy
condition on the eigenvalues of Pr(λ, t, z). The roots λl(t, z) that off the real
axis have magnitude greater than 1 lead to eigensolutions that lose their square
summability as ε→ 0+ and hence contributes to absolutely continuous spectrum.
The spectral multiplicity can thus be analysed via the M-matrix.
The Titchmarsh-Weyl functions for the minimal difference operators L1 and
L2 are the respective M-matrices Mr(z) = Mr, r = 1, 2 and which are Borel-
transforms of the spectral measures µr, r = 1, 2. The density of the absolutely
continuous spectrum of each Hr is given by

(
1

π
) lim
ε→0+

Mr(µr + iε) = (
1

π
)Mr(µ+) = %(µr).

The spectrum is absolutely continuous if Mr(µr + iε) has finite limits Mr(µr+).
The eigenvalues of Hr correspond to the poles of Mr. The Mr(z) are determined
off the real axis and can be constructed from the eigenfunctions of Hr that are
square summable. In this case, note that the deficiency indices for L1 and L2 are
(n, n) and (m,m) respectively at the limiting point with α−boundary conditions
also imposed as t → ∞. Application of von-Neumann theorems now show that
L1 and L2 have self-adjoint operator extensions that are described by D(Hr) in
(1.7).
Assume that

Vr(t, z) =

(
Vr1(t, z)
Vr2(t, z)

)
,

it follows that

Vr(t0, z) =
(
Y
)
r

(t0)

(
Is

Mt0(z)

)
satisfy boundary conditions at t0 and also at infinity. The boundary conditions
are those given in (1.6) and hence(

Mt0

)
r

(z) = Vr2(t0, z)V
−1
r1

(t0, z)
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In this case, Vr1(t0, z) are the Vandermonde matrices for eigenvalues of the square
summable solutions. V −1

r1
(t0, z) exists boundedly and hence (Mt0)r(z) are contin-

uous for all z within the region of consideration. The continuous spectrum for Hr

is not singular continuous spectrum but absolutely continuous spectrum. The left
end regular point t0 can then be extended to t0 = 0 using the results of Remling
[19]. �

Suppose that pk(t) and qj(t) are almost constant coefficients and m = n, then
as shown in the next result, the set of commutators generated by the self-adjoint
operator extensions of L1 and L2 contain the compact operators on `2(N), that
is, K(`2(N)) ⊆ W n

1 [H1, H2]W n
2 , where K(`2(N)) is the set of compact operators

defined on `2(N). Finally, we show that H1 and H2 commute.

Theorem 2.2. Let L1 and L2 be the minimal difference operators generated by
L1 and L2 respectively in (1.1). Assume (2.1) and (2.2) are satisfied in addition
to the following conditions

m = n, pk(t)→ ck, qj(t)→ dj,

where, ck and dj are constants. Then:

(i). At limiting point, the deficiency indices of L1 and L2 are (n, n). L1 and
L2 have self-adjoint operator extensions; H1 and H2, respectively.

(ii). The set of commutators W n
1 [H1, H2]W n

2 contains the set of compact oper-
ators defined on `2(N).

(iii). The self-adjoint operator extensions H1 and H2 commutes.

Proof. The proof of this theorem is the discretised version of the proof of Theo-
rem 2.1 of [15] and some steps have been included for completeness.
(i) Follows immediately from Theorem 2.1.
(ii) In order to construct the set of compact operators from the set of commutators
W n

1 [H1, H2]W n
2 with W1 and W2 as defined in (1.12), we apply the techniques

of comparison algebras as constructed by H. O. Cordes [9] and applied in the
work of S. T. Melo [14] to construct self-adjoint operator extensions with com-
mon domain and show that the set of commutators contain the set of compact
operators on H = `2(N). Note that the operators W n

r HrW
n
r are bounded in H.

The boundedness properties of these operators are required since the theory of
comparison algebras are embedded in the theory of C∗-algebras.

Let {Hr,N, µ} be a comparison triple for each self-adjoint operator extension
Hr. It is this triple that we use to construct the Hr-comparison algebras. The
comparison algebras are actually C∗-algebras. Here, µ is the counting measure
in N. Similarly, let C∞0 (N) be the class of all bounded complex-valued func-
tions which includes also constant functions. This implies that any function
h(t) ∈ C∞0 (N) can be thought of as h(t) = h0(t) + c such that h0(t) ∈ C∞0 (N) and
c ∈ C. In our case, the function h(t) represents pk(t) and qj(t), k, j = 0, 1, . . . , n.
On the other hand, assume that W is the class of all linear symmetric difference
operators of order 2n generated by Lr such that Lr, L

∗
r, Hr and those gener-

ated by complex conjugates of Lr all having compact support are contained in
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W . The interest in this case is the algebra generated by classes of operators
of the form T = W n

1 HrW
n
2 together with the classes of multiplication opera-

tors Ty(t) = h(t)y(t) in addition to the commutators of two generating opera-
tors [W n

1 HrW
n
2 , h(t)Hr]. Thus the required Hr-comparison algebras are obtained

by norm-closing the algebra generated by the function h(t) and the operator
W n

1 HrW
n
2 for all functions h(t) ∈ C∞0 (N) and W n

1 HrW
n
2 ∈ W having compact

support. This results into minimal comparison algebra of Hr which we will denote
by C. The comparison algebra is a non-unital C∗-algebra since N is non-compact.
It can be made unital by adjoining {e} to it, e is the identity element. Every
minimal algebra, that is, every comparison algebra of self-adjoint operator Hr

contain the entire ideal of compact operators K(H) defined on H [9]. We now
show that every element in K(H) is in the set of commutator and that the com-
mutator set is non-empty. Suppose that f(t) ∈ C∞0 (N), h(t) = pk(t), qj(t) with
h(t) not vanishing to zero identically as t→∞, then one can consider the opera-

tor defined by h(t)Wr = h(t)H
− 1

2n
r . This operator is compact and is in the set of

commutator since in general any operator of the form ∆ generates an operator of

the form H
− 1

2n
r and [h(t),∆] is in the set of commutator if and only if ∆h(t)→ 0

as t→∞ and this is one of the assumptions made. Thus h(t)Wr 6= 0. It follows,
therefore, by construction that HrW

n
2 = W n

1 Hr and they are defined on the space
Hr(C∞0 (N)). Moreover, there exists compact operators C1 and C2 defined on H
such that W n

1 C1W
n
2 = W n

1 C2W
n
2 .

We now show that the operator H1W
n
1 commutes with H2W

n
2 . First note that

by Gelfand-Naimark theorem, the H1-comparison algebra is isomorphic to H2-
comparison algebra and since W1 and W2 are isometric isomorphisms constructed
from the same underlying manifold, they are commutative since isometries of the
same manifold form abelian group under composition. Secondly, by construction,
the operators HrW

n
2 and W n

1 Hr are commutative and since they are compact,
there exists a compact operator C0 such that HrW

2n
2 −W n

1 HrW
n
2 = C0W

n
2 , where

C0 = HrW
n
2 −W n

1 Hr and this implies that for any function y(t) ∈ D(W−n
r ), we

have HrW
n
2 y(t) = W n

1 Hry(t) + C0y(t) so that W n
1 Hr with domain D(W−n

r ) has
a continuous extension (W n

r Hr)
∗∗ which is a linear continuous operator in H.

Similarly, HrW
n
2 = (W n

1 Hr)
∗∗ + C0. Computing the adjoints of both sides of the

last relation, we get (HrW
n
2 )∗ = H∗rW

n
2 +C∗0 which implies that (HrW

n
2 )∗−H∗rW n

2

and HrW
n
2 − (W n

1 Hr)
∗∗ are compact. Using similar arguments, there exists a

compact operator C1 such that C1 = W n
1 [H1, H2]W n

2 . This is because the operator
W n

1 [H1, H2]W n
2 is bounded in H. Applying the fact that HrW

n
2 − (W n

1 Hr)
∗∗ is

compact, for y(t) ∈ HrC∞0 (N), we obtain

H1W
n
1 H2W

n
2 y(t) = (W n

1 H1)∗∗H2W
n
2 y(t) + C0y(t)

= C0y(t) +W n
1 H1H2W

n
2 y(t)

= C1y(t) +W n
2 H2H1W

n
1 y(t) + C2y(t)

= C3y(t) + (W n
2 H2)∗∗H1W

n
1 y(t)

= H2W
n
2 H1W

n
1 y(t) + C4y(t),
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for some C2, C3, C4 compact operators in H. This implies that the set of com-
mutator W n

1 [H1, H2]W n
2 contains the set of compact operators on H and it is

non-empty.
(iii) We apply Zagorodnyuk results [23] to prove that H1 and H2 commute.

From the construction of the commutator sets W n
1 [H1, H2]W n

2 in (ii) above,
it follows that H1W

n
1 commutes with H2W

n
2 and hence we need to show that

D(H1) = D(H2) so that H1 commutes with H2. From the assumptions in (2.1)
and the comparison algebra C constructed in (ii), it follows that H1 and H2

have common domain, that is, D(H1) = D(H2) and since Hr, r = 1, 2 is self-

adjoint, D(Hr) is densely defined, D(Hr) = H = `2(N). It is also true that
Hr(D(Hr)) ⊆ D(Hr) and the restriction of H2 to (H1 − iI)D(H1) or H1 to
(H2 − iI)D(H2) is not only essentially self-adjoint but also self-adjoint. Because
n = m by assumption, the symplectic matrix J in (1.4) results into JHr = HrJ .
By the results of [23], it follows that H1 commutes with H2 and so are their re-
spective minimal and maximal difference operators.

This implies that the commutator algebra generated by Hr contains the set of
compact operators in H and that the operators H1 and H2 commute and so are
the respective minimal difference operators. �

The example below verifies the results of Theorem 2.2. This result gives the
necessary and sufficient conditions on the coefficients of difference operators of
the same order to commute. The condition that ∆(h(t)) → 0 as t → 0 is neces-
sary and cannot be omitted as the example also shows.

Example 2.3. As an immediate example, consider the operators generated by
difference equations

L1y(t) = −∆(p(t)∆y(t− 1)), L2y(t) = −∆(q(t)∆y(t− 1)),

∆p(t), ∆q(t)→ 0 as t→∞.

It is easy to check that L1(L2y(t)) − L2(L1y(t)) → 0 as t → ∞ and hence
the minimal operators generated by L1 and L2 as well as their respective self-
adjoint operator extensions are commutative. Similarly, assume that p(t) and
q(t) are almost constant coefficients, then commutativity shall be achieved. On
the other hand, if we assume for simplicity, that p(t) = 1 for all t ∈ N and
q(t) = cos πt

2
, then ∆q(t) shall be 1 or −1 depending on whether t is odd or even.

A simple computation shows that L1y(t) does not commute with L2y(t). Hence
the condition that ∆h(t)→ 0 as t→∞ in (2.1) is necessary.

In the remaining Section, we will assume that (2.1) and (2.2) hold and in
addition, we will also assume that n = m. We now develop a similar analysis to
that of L1y(t) and L2y(t) in Section 1 and so far in Section 2 for the composite
function L1(L2y(t)). Thus we now consider the composite of L1 and L2, denoted
by L defined on `2(N). The difference equation for n = m is a 4nth order
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symmetric difference equation given by

Ly = L1(L2y) = L2(L1y) (2.3)

=
n∑
k=0

(−1)k

{
m∑
j=0

(−1)j∆k(pk∆
k+j(qj∆

jy(t− j)))

}

=
m∑
j=0

(−1)j

{
n∑
k=0

(−1)k∆j(qj∆
j+k(pk∆

ky(t− k)))

}
,

defined on `2(N) with
∑n

k=0(
∑m

j=0(pkqj)) > 0. The interest in this analysis is
to develop structural properties of the minimal operator generated in the Hamil-
tonian form as well as the first order form of L1(L2y) = zy for some spectral
parameter z. The coefficients pk and qj are assumed to satisfy similar growth and
decay conditions that have been set in (2.1) and (2.2) so that at the end, we de-
termine all the necessary and sufficient conditions for H = H1H2 where H is the
self-adjoint operator extension generated by minimal operator L corresponding to
L1(L2). We thus solve the equation Ly = zy, where z is the spectral parameter.
First, we need to reduce Ly = zy into its first order form using quasi-differences
as given in [8]. These are of the form:

xj(t) = qj(t)∆
j−1y(t− j), 1 ≤ j ≤ m

xm+1(t) = qm(t)∆m(y(t−m))

xm+k(t) = −∆(qm(t)∆my(t−m))−pn−k(t)(qn−k(t)∆n−ky(t−n+k)), 2 ≤ k ≤ n

xn+m+r(t) = −(∆(xn+m+r−1(t)) + pn−r(t)xm+n−r(t)), 2 ≤ r ≤ n+m− 1.

In this case, we define 2(n+m)-dimensional vector

Y (t, z) = [x1(t), x2(t), ...x2(n+m)(t)]
tr.

Just like in Section 1, we use symplectic matrix

J =

[
0n+m −In+m

In+m 0n+m

]
.

Therefore, the Hamiltonian system for (2.3) is given by

J 4 Y (t) = P (t)K1Y (t), (2.4)

where K1 is the forward partial shift operator and P (t) is a 2(n+m)× 2(n+m)
matrix that can be written in a block form

P (t) =

[
A B
C −A∗

]
with A,B,C as (n+m)× (n+m) matrices having non-zero entries given by

Al,l+1 = 1 Bn+m,n+m = (pnqm)−1,

Cl,l = fl =
l∑

k=0

(
l∑

j=0

(pkqj)

)
, l = 0, 1, 2, · · · , n+m.
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Here, the term p0q0 should be interpreted as p0q0− z. The first order can now be
written explicitly as

Y (t+ 1, z) =

[
E EB

CEB I − A∗ + CEB

]
Y (t, z) (2.5)

= S(t, z)Y (t, z).

Here, we note that E = (In+m − A)−1.

In order to properly define the maximal and minimal difference operators gener-
ated by L in (2.3), we still need some regularity conditions just like in Section
1. These are

`2(N) = {y(t) : y(t) = {y(t)}∞t=0 ⊂ C
∞∑
t=0

K1(Y ∗(t))K1(Y (t)) <∞

}
.

in addition, there exists an integral domain I2 ⊂ N such that∑
t∈I2

K1Y
∗(t)K1Y (t) > 0,

`2(I2) ⊂ `2(N) and

`2(I2) =

{
y(t) ∈ `2(N) :

∑
t∈I2

K1Y
∗(t)K1Y (t) > 0

}
.

we thus define the scalar products for y(t), y1(t) ∈ `2(I2) by

〈y(t), y1(t)〉 =
∑
t∈I2

y(t)y1(t).

From the results of Theorem 2.2, it follows that I2 ⊆ I1 and hence `2(I2) is a
subspace of `2(I1) ⊂ `2(N).
Now if F1(t) is (2(n+m))-dimensional vector, then we also need a similar condition
like that stated in section 1 in order for the operators generated to be properly
defined.

J∆Y (t, z)− PK1Y (t, z) = F1(t), with ‖Y (t, z)‖ = 0, if, F1(t) = 0.

The construction of the associated maximal and minimal difference operators via
their domains is done as follows. The maximal difference operator L∗ defined via
its domain D(L∗) is given by

D(L∗) =
{
y(t) ∈ `2(I2) : there exists F1(t) ∈ `2(I2) such that

J∆Y (t)− PK1Y (t) = F1(t)}

and

L∗Y (t, z) = F1(t) if and only if J∆Y (t, z)− PK1Y (t, z) = F1(t).
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The corresponding pre-minimal operator is now given by

D(L0) = {y(t) ∈ D(L∗) : there exists n ∈ N
such that y(0) = y(t) = 0 for all t ≥ n+ 1} .

L∗y(t) = L0y(t), ∀y(t) ∈ D(L0).

L0 is densely defined, symmetric but not necessarily closed. Since we need closed
operators, we take the closure of this pre-minimal operator to be the minimal
difference operator which we denote by L. The boundary conditions at the regular
left end point [6, 21] can now be defined using (n+m)×(n+m) matrices (α̃1, α̃2)
with α̃1α̃1

∗ + α̃2α̃2
∗ = In+m and α̃1α̃2

∗ = α̃2α̃1
∗ so that at the regular left end

point t0,

(α̃1, α̃2)
[
Y (t0)

]
= 0. where Y (t) = [x1(t), x2(t), ..., x2(n+m)]

tr (2.6)

In solving the equation Ly = zy, we shall apply techniques of Eastham [10] which
have been applied extensively by Nyamwala and other authors, see [6, 5, 3, 16,
17, 18] for details. We assume the following growth conditions for the remaining
part of the analysis:

hl−1hl+1 = o(h2
l ), hl = pl, ql, l = 1, 2, . . . , n = m. (2.7)

We note now that the growth conditions in (2.7) results into fl−1fl+1 = o(f 2
l ),

where

fl =
l∑

k,j=0

pkqj, l = 0, 1, 2, . . . , n+m. (2.8)

In order to transform (2.3) into the required first order form , we need the eigen-
values of the matrix S(t, z) which we obtain from the zeroes of the characteristic
polynomial P(t, λ, z) = det(S(t, λ, z) − λ · I2(n+m)). By multiplying P(t, λ, z)

by (−1)n+mpnqmλ
−(n+m) and taking γ = 2 − (λ + λ−1), we obtain a reduced

polynomial of the form

F(t, γ, z) = (−1)n+mpnqmλ
n+mP(t, λ, z)

=
n+m∑
l=0

flγ
l. (2.9)

Before we proceed with our analysis, we start by proving that the basis of the
homogeneous equation L1L2y = 0 can be determined from the bases of solutions
of equations L1y = 0 and L2y = 0.

Theorem 2.4. Suppose L1L2y = 0, n = m, then the basis of the solutions of
this equation can be determined from the bases of the solutions of L1y = 0 and
L2y = 0.
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Proof. The proof in this case follow from the results of [13] with obvious modi-
fication to suit difference equations. Suppose that {y1, y2, . . . , y2n} is a basis of
solutions of L2y = 0 and {ỹ1, ỹ2, . . . , ỹ2n} is the basis of solutions of L1y = 0, then
the basis of the solutions of the composite is obtained using the Green’s function
G2(t, t1) associated with L2y = 0, and the corresponding Wronskian determinant.
For a fixed left regular end point t0 ∈ N, define functions

y2n+s(t) =
t−1∑
t1=t0

G2(t, t1)ỹs(t1) s = 1, 2, . . . , 2n.

Then the set Ỹ = {y1, y2, . . . , y2n, y2n+1, y2n+2, . . . , y4n}, is a basis of solutions of
the composite equation L1L2y = 0 for t ∈ N. To prove this, consider the equations
L2yk = 0, k = 1, 2, . . . , 2n, L2yk = ỹk, k = 2n + 1, . . . , 4n and L1L2yk = 0,
k = 2n+ 1, . . . , 4n. This implies that

(L1L2)yk) = L1(L2yk) = L1ỹk = 0, k = 2n+ 1, . . . , 4n.

The rest of the proof now follows from the usual linear algebra techniques. �

In the next result, we now prove that if L1 and L2 commute, then their composite
is symmetric and so is the operator L1L2.

Theorem 2.5. Assume that (2.1) is satisfied such that L1 and L2 are commuta-
tive. Then the minimal difference operators L1 and L2 are commutative and the
composite L1L2 is symmetric as well as L1L2.

Proof. From Theorem 2.2, we have that L1 and L2 are commutative and so are
L1 and L2. Similarly, the operators L∗1 and L∗2 commute and to see this, take
y, y1 ∈ D(L2) and we have

〈y, L∗1L∗2y1〉 = 〈y, (L2L1)∗y1〉 = 〈y, (L1L2)∗y1〉 = 〈y, L∗2L∗1y1〉.

Hence L∗1L
∗
2 = L∗2L

∗
1.

It remains to show that D(L1L2) ⊆ D((L1L2)∗). Since L1 and L2 are closed

symmetric operators, it follows that D(L2) = H and since L1 commutes with
L2, we have D(L1L2) = D(L2) such that D(L1) ⊆ R(L2). Suppose now that
ỹ⊥D(L2) such that 〈ỹ, y〉 = 0, for all y ∈ D(L2), then for any solution ŷ of
L1L2ŷ = ỹ and since D((L1L2)∗) = D(L∗1L

∗
2) = D(L∗2), it implies that

〈ŷ,L1L2y〉 = 〈L∗2L∗1ŷ, y〉 = 〈L∗1L∗2ŷ, y〉 = 〈L1L2ŷ, y〉 = 〈ỹ, y〉 = 0.

This implies that y ∈ R(L1L2)⊥ = N (L∗2L
∗
1) = N ((L1L2)∗) and hence ỹ =

L1L2ŷ = (L1L2)∗ŷ = 0. The operator L1L2 is symmetric and so is the function
L1L2 that generates it on H = `2(N). �

The composite operator L1L2 is now symmetric but not necessarily densely de-
fined. We now state the necessary and sufficient conditions for the composite to
be densely defined.
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Theorem 2.6. Let L1 and L2 be minimal difference operators generated by L1

and L2 respectively. Assume (2.1) is satisfied and that R(L1), R(L2) are closed.
Then the operator L1L2 is densely defined.

Proof. By construction of L1 and L2 in Section 1, the two operators are closed.
This implies that their ranges are closed and hence there exists a closed subspace
D of H×H defined by

D = {(y, L1L2y) : y ∈ D(L1L2)}.

By injectivity and linearity of L1 and L2 which imply that of L1L2, D is graph
of L1L2 because for any (0, ỹ) ∈ D, it follows that ỹ = 0. On the other hand, for
any y ∈ D(L1L2), there is at most one ŷ such that (y, ŷ) ∈ D and ŷ = L1L2y.
The operator L−1

2 can now be defined on R(L2) because R(L2) is closed and L2

is injective hence D(L1) = R(L2). For the operator L2L1, now consider D(L1L2)
which can be expressed as

D(L1L2) = D(L2) ∩ L−1
2 D(L1).

Since D(L1) and D(L2) are dense in H by construction, L−1
2 D(L1) is a dense sub-

space of H and thus by Baires Category theorem, the subspace D(L2)∩L−1
2 D(L1)

is dense in H. The operator L1L2 is densely defined. �

The operator L1L2 together with conditions in Theorem 2.6 is now symmetric
and densely defined but not necessarily closed. We may take its closure, that is,
L1L2 and this we shall denote by L. This allows for the analysis of spectral theory
of self-adjoint operator extension of the composite of operators L1 and L2. Note
that by Closed-Range Theorem, if all the conditions in Theorem 2.6 are satisfied,
then the range of L∗ is closed. Thus by application of Rank-Nullity theorem we
have

dimN (L∗ − zI) = dimN (L1L2
∗ − zI) = dimN (L∗1 − zI) + dimN (L∗2 − zI).

This implies that defL = defL1 + defL2.

3. Spectral Analysis of L1, L2 and L with unbounded coefficients.

In this section, we will assume that (2.1), (2.2) and (2.7) are satisfied in ad-
dition to those conditions in Theorem 2.6 so that L1 and L2 are commutative
and the operators L1 and L2 are commutative as well. As before, we will take
the Hilbert space H = `2(N) and for simplicity take n = m though the analysis
can still be carried out even if n 6= m. We will also allow the coefficients pk and
qj to be unbounded. The reader is cautioned that the set up in [16] is slightly
different from ours since in the mentioned reference, the author had non-zero
odd order coefficients. We now formulate results which are extensions of those in
Theorem 2.1 under unbounded coefficients. We begin with the approximation of
the eigenvalues if (2.7) is assumed.
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Lemma 3.1. Suppose that (2.7) is satisfied, then the eigenvalues of the first
order system (1.5), computed from the zeros of the polynomial F(t, γ, z) are
approximately given by

λl(t, z) ≈ 1 +
hl−1

2hl
±
{
hl−1

hl
+
h2
l−1

4h2
l

} 1
2

+ o(1), hl = pl, ql.

Proof. In this case, we consider the polynomial F(t, γ, z) in (1.10) and without
loss of generality, we may assume that hl = pl since the proof using the coefficients
ql is done in a similar way and will thus follow at once. Now we can equate
F(t, γ, z) to zero and by right scaling, we multiply all through by γ−l+1 to obtain
a reduced polynomial of the form

plγ + pl−1 +R(t, γ, z), (3.1)

where

R(t, γ, z) = γ−l+1

{
n∑

ν=l+1

pνγ
ν +

l−2∑
ν=0

pνγ
ν

}
.

We need, therefore, to show that R(t, γ, z)→ 0 as t→∞. In order to show this,
we invoke the coefficient growth conditions in (2.7) and only show this for the
coefficients ν = l + 1 and ν = l − 2 since as one moves further away from the l
index, the summands tend to zero rapidly faster as t → ∞. Assume, therefore,
that ν = l+1 then we have the magnitude of leading terms for R(t, γ, z) as either
O(| pl−1

pl
|2| pl+1 |) or O(| pl−2 || pl

pl−1
|). These terms go to zero as t → ∞ as

shown here.

| pl−1

pl
|2| pl+1 |≈|

pl−1pl+1

p2
l

|| pl−1 |= o(1).

| pl−2 ||
pl
pl−1

|≈| pl−2
pl−1

pl−1

pl
pl−1

|=| pl−2pl
p2
l−1

|| pl−1 |= o(1).

Now substitute the value of γ = 2 − (λl(t, z) + λ−1
l (t, z)) in (3.1) and apply

completing square formula. Finally, one can easily show that these λ-roots are
actually the approximate value of the eigenvalues of S(t, z) in (1.5). For this,
take λl(t0, z), t0 left regular end point, as the initial approximate of the zeros
of (1.10) and within a suitably restricted region, perform infinite iterations and
since the underlying space is a Hilbert space, application of Banach fixed point
theorem will complete the proof. For more details, see [5] and the references cited
therein.

�

The next result gives the spectral results of the operators generated by L1 and
L2 under unbounded coefficients and thus could be considered as extension of
Theorem 2.1. In this case, the location of the absolutely continuous spectrum is
explicit unlike in Theorem 2.1.

Theorem 3.2. Assume that (2.1), (2.2) and (2.7) are satisfied and n = m.
Then the minimal difference operators L1 and L2 are commutative, have self-
adjoint operator extensions H1 and H2 with absolutely continuous spectrum R of
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various multiplicities. Moreover, the operators H1 and H2 are commutative and
defined via separated boundary conditions at infinity.

Proof. The proof of this theorem follows closely from Theorem 2.1, Theorem 2.2.
Lemma 3.1 and the main results of [16]. For completion, we will therefore give an
outline of the proof and detailed computations where required. Commutativity of
the generated minimal difference operators are immediate from Theorem 2.2. By
the results of Lemma 3.1 above, the eigenvalues of each of the first order systems
generated by Lry = zy can be approximated. Now one needs to show that
these eigenvalues satisfy the z-uniform dichotomy condition. For the eigenvalues
generated from the same root γl, the dichotomy condition is established via the

correction term z | ∂F(t,γl,z)
∂γ

|−1 for z = z0 + iη, z0, η ∈ R, η > 0, small. For

the coefficients of L1y = zy, explicit approximation of these λ-roots lead to the
following approximations as t→∞

λl±(t, z) ≈ 1∓ (z0 + iη) | pl |l−2| pl−1 |−l+1

and hence at the limit point, we have | λl+(t, z) |< 1 and | λl−(t, z) |> 1. The
analysis for the roots of L2y = zy is done in a similar way. This will separate
the magnitude of λl+(t, z) and λl−(t, z) such that one root has magnitude greater
than one and the other less than one. For the eigenvalues belonging to different
γ-roots, say, γl and γl±ν , then note that by application of (2.7) we have the
relation

| ∂F(t, γl−ν , z)

∂γ
|−1�| ∂F(t, γl, z)

∂γ
|−1�| ∂F(t, γl+ν , z)

∂γ
|−1 .

This will result into correction terms with different magnitudes and hence will
lead to distinct asymptotic behaviour of eigensolutions as required. The two
arguments now settle the uniform dichotomy condition.
The first order systems can then be diagonalized appropriately and be trans-
formed into the Levinson-Benzaid-Lutz form like in Section 1 and thus the so-
lutions of the respective first order are given by (1.9). The deficiency indices,
here, will depend on the nature of the γl-roots. The two solutions associated
to the γl-roots such that | γl |→ 2 as t → ∞ will both be square summable if
| hl |l−2| hl−1 |−l+1 is summable. In this particular case, the operators Lr will
be at non-limit point at infinity. The self-adjoint operator extensions can only
be described by separated boundary conditions. We will do this for the operator
L1 since the analysis for the second operator L2 is done in a similar way. For
simplicity, we may assume that defL1 = (ζ, ζ), n ≤ ζ ≤ 2n. This implies that the
set of all square summable solutions of L1y = zy is linearly dependent. In order
to obtain the basis of this set, we let ω1, . . . , ωζ−n be the set of solutions which
are linearly independent modulo D(L1) at infinity and these we may choose as
the eigensolutions of L∗1ω

∗
k = zωk, k = 1, 2, . . . , ζ − n. Thus we set ζ − n extra

boundary conditions at infinity by demanding that

lim
t→∞

ω∗k(t)J ωk1(t) = 0, for k, k1 = 1, 2, . . . , ζ − n.
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This will result into a set of linearly independent square summable solutions for
the equation L1y = zy. The self-adjoint operator extension of the operator L1 is
defined using separated boundary conditions given here below

D(H1∞) = {y(t) ∈ D(L∗1)|(α1, α2)y(0) = 0,

lim
t→∞

ω∗k(t)J y(t) = 0, for k = 1, 2, . . . , ζ − n.
}

It follows, therefore, that for any self-adjoint operator extension of L1 defined
this way, we obtain the relation,

dim (D(H1∞)/D(L1)) = dimN (L∗1 − zI) = n

so that H1∞ is n-dimensional operator extension of L1. One has, therefore,
L1 ⊂ H1 = H1∞ = L∗1 in the operator sense. Here, the operator H1 is the
self-adjoint operator extension of L1 at limit point which is defined in Section 1
and also similar to that constructed under conditions imposed on the coefficients
in Theorem 2.2. The analysis and construction of the self-adjoint operator exten-
sion of L2, H2∞, when | qj |j−2| qj−1 |−j+1 are summable is done in a similar way.

Those eigensolutions of Lr that lose their square summability as η → 0+ con-
tribute to absolutely continuous spectrum. Just like in the case of differential
operators, as well as in Theorem 2.1, we need to check that the associated M -
matrix is bounded so that the spectral measure is continuous. For that, we apply
the relation for computing ImM(t, z) of the M -matrix as used in [4, 19, 18, 21].
Here, we do it for the solution associated with the eigenvalue λl+(t, z).

ImM(t, z) = lim
η→0+

η〈yl+(t, z), yl+(t, z)〉 = lim
η→0+

η | ρl+(t, z) |2
t∏

s=t0

| λl+(s, z) |2

and by application of Euler logarithmic relation, this can be approximated by

lim
η→0+

∫ ∞
t0

| ρl+(t, z) |2 exp

(
−2η

∫ t

t0

| hl |l−2| hl−1 |−l+1 (s, t)ds

)
dt,

which is bounded and the limit exists non-trivially. Here, ρl+(t, z) is the nor-
malized eigenvector. Since the coefficients are allowed to be unbounded, the
absolutely continuous spectrum will be the whole of R. The spectral multiplicity
will be the number of solutions with such asymptotic behaviour.

The case when | pk |k−2| pk−1 |−k+1 and | qj |j−2| qj−1 |−j+1 are summable for
all k = 1, 2, . . . , n and for all j = 1, 2, . . . ,m is similar to that in Section 2 in
Theorem 2.1, since both the operators L1 and L2 will be at limit point with
discrete spectrum at most and the self-adjoint operator extension given by (1.7).

�

We now extend the results of Lemma 3.1 to the case of the composite opera-
tors by obtaining the expression for approximating the roots of the polynomial
in (2.9).
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Lemma 3.3. Suppose that (2.7) is satisfied and that ∆fl → 0 as t → ∞ as
required by (2.1), fl defined in (2.8), then the γ-roots of F(t, γ, z) in (2.9) can
be approximated from the relationship

flγ + fl−1 +R(t, γ, z), (3.2)

where

R(t, γ, z) = γ−l+1

{
n+m∑
ν=l+1

fνγ
ν +

l−2∑
ν=0

fνγ
ν

}
.

Proof. Just like in Lemma 3.1, it suffices to show that R(t, γ, z) → 0 as t → ∞.
This can be shown for the coefficients ν = l+ 1 and ν = l−2. Assume, therefore,
that ν = l + 1 then we have that the leading term for R(t, γ, z) is either

O(| fl−1

fl
|2| fl+1 |) or O(| fl−2 || fl

fl−1
|). It is easy to show that these terms go to

zero as t→∞ using similar approach like in Lemma 3.1. �

The eigenvalues of Ly = zy resulting from polynomial (2.9) can then be ap-
proximated using (3.3). The dichotomy conditions and the form of solutions
follow closely from the results in Section 2 with the obvious change of the ap-
propriate coefficients. The continuity of the M -matrix follows immediately from
the results of Theorem 2.1 in the case of approximate constant coefficients and
Theorem 3.2 in the case of unbounded coefficients. Only those γ values such that
the associated λ-roots satisfy the relation | λ(t, z) + λ−1(t, z) |≤ 2 shall lead to
some solutions that lose their square summability and hence contribute to abso-
lutely continuous spectrum. These can now be summarised in the following two
theorems. Theorem 3.4 extends the results of Theorem 2.1 to the composite case
while Theorem 3.5 extends the results of Theorem 3.2 to the composite case.

Theorem 3.4. Consider the minimal difference operator L generated by L =
L1L2 in (2.3) and assume that (2.1)- (2.2) in addition to the conditions in The-
orem 2.6 are satisfied. Then L is at limit point at infinity if the boundary condi-
tions defined by the matrix α̃ at t0 are satisfied. The corresponding self-adjoint
operator extension H has no singular continuous spectrum and the absolutely con-
tinuous spectrum agrees with that of the constant coefficient limiting operator with
the spectral multiplicity equals to half the number of eigenvalues with magnitude
1.

Proof. The proof follows closely from that of Theorem 2.1 with some modifica-
tion in line with the composite L1L2. Here, we define L = L1L2 on the Hilbert
space `2(N) ∼= `2

w(N), w = w(t) = 1, for all t ∈ N. The first order system
of the composite is obtained as in (2.5) and the corresponding characteristic
polynomial P(λ, t, z) computed. The roots of the polynomial in (2.9) will be
considered within a set K = {z ∈ C | z − z0 |< ε} with relevant spectral pa-
rameters which can be adjusted until P(λ, t, z) has distinct roots. The roots
are then approximated using (3.3) and one can apply γ = 2 − (λ + λ−1) to
obtain λ-roots from the corresponding γ-roots. By superimposition principle,
the roots of P(λ, t, z), the characteristic polynomial generated by L = L1L2,

will have λ1(t, z), λ2(t, z), ..., λ4s, λ̃4s+1, λ̃4s+2 + ...+ λ̃2(m+n), where | λl(t, z) |6= 1,



COMPOSITES OF HIGHER ORDER DIFFERENCE OPERATORS 23

l = 1, 2, ..., 4s, | λ̃l(t, z) |= 1, l = 4s + 1, ..., 2(m + n). Just like in Theorem 2.1,
the dichotomy condition is only required for those characteristic roots (eigen-

values of S(t, z)) with magnitude 1, that is λ̃l(t, z). Using complex analysis,

represent these eigenvalues by λ̃l(t, z) = exp(iβl) for some angle βl. It follows

that λ̃l(t, z) = exp(−iβl) will also be a root. Then off the real axis and taking
z = z0 + iε, ε > 0, z0, ε ∈ R, ε > 0 is small, we have,

λ̃l(z0 + iε) + λ̃l(z0 + iε) = 2 cos βl l = 2s+ 1, ..., 2(s− l).
Thus

λ̃l(z0 + iε) = λ̃l(z0) +
iε

∂λlP(λ, t, z)
(z0, λl).

It is the correction term iε(∂λkP(λ, t, z))−1 which will lead to either λ̃l(z0 + iε)
having magnitude greater than 1 or less than 1 off the real axis. As before, the
number of roots that will have magnitude greater than 1 off the real axis will
be half the roots λ̃l(t, z) while the others will have magnitude less than 1 which
establishes the uniform dichotomy condition.

The M-matrix of L again is the Borel-transform of the spectral measure µ. The
density of the absolutely continuous spectrum of H is given by

(
1

π
) lim
ε→0+

M(µ+ iε) = (
1

π
)M(µ+) = %(µ).

The spectrum is absolutely continuous if M has finite limits M(µ+). The eigen-
values of H correspond to the poles of M . The M(z) is determined off the real
axis and can be constructed from the eigenfunctions of H that are square summa-
ble. Thus one has to estimate the zeros of the characteristic polynomial P(λ, t, z)
and then apply the results of Theorem 1.1 in order to obtain the right form of
solutions as in (1.9) which can be summed over the integral domain I2 given in
Section 1 and with rkk(t, z)→ 0 as t→∞.
In this case note that the deficiency indices for L are (n+m,n+m) at the limiting
point with α−boundary conditions also imposed as t→∞.

Assume that V (t, z) =

(
V1(t, z)
V2(t, z)

)
is the set of square summable eigenfunctions

of L with Dirichlet boundary conditions given in (2.6) with

α̃1α̃
∗
1 + α̃2α̃

∗
2 = In+m, α̃1α̃

∗
2 − α̃2α̃

∗
1 = 0.

Then the square summable eigenfunctions are given by
(
Yt0

)
(t)

(
In+m

Mt0(z)

)
.

and one can then show that(
Mt0

)
(z) = V2(t0, z)V

−1
1 (t0, z).

V −1
1 (t0, z) exists boundedly because again V1(t0, z) is the Vandemonde’s matrix.

(Mt0)(z) is continuous for all z within the region of consideration. The continuous
spectrum for H is not singular continuous spectrum but absolutely continuous
spectrum. The left end regular point t0 can then be extended to t0 = 0 using the
results of Remling [19]. �
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We now prove a result that extends those of Theorem 3.2 to the composite case.
This result therefore completes the spectral analysis of operator L1, L2 and their
respective composite L.

Theorem 3.5. Let L be the difference operator generated by the difference func-
tion L in (2.3). Assume that (2.1), (2.2) and (2.7) are satisfied in addition to
conditions in Theorem 3.2. Then,

(i) If the coefficients pk and qj are almost constant coefficients and n = m,
then at limit point defL = (n+m,n+m) and the spectrum of H coincides
with that of the constant coefficients case.

(ii) Suppose that n = m and (2.7) is satisfied, moreover, if | fl−1 |−l+1| fl |l−2,
for all l = 1, 2, . . . , n + m, is not summable, then defL = (n + m,n + m)
and the absolutely continuous spectrum of H is the whole of real line,
σac(H) = R.

Proof. (i) The proof follows immediately from Theorems 2.1, 2.2, 3.2 and 3.4.
We note here, that by construction, the operator H is n + m-extension of the
operator L and it is constructed as

D(H) = D(L)+̇ {y + V y : y ∈ N (L∗ − zI)} ,

where V = (zI − L)(z̄I − L)−1. (ii) We note that if | fl−1 |−l+1| fl |l−2 is not
summable, then each of the γ − roots of F(γ, t, z) in (2.9) will have λ − roots
with magnitude almost equal to one as explained in Theorem 3.4. It is half of the
roots that lose their square summability as t→∞ and η → 0+ that contributes
to absolutely continuous spectrum. Since the coefficients are unbounded, the
spectrum is the whole of R. �

Finally we relate the operator H and the composites of H1 and H2.

Theorem 3.6. Let L1, L2 and L be minimal difference operators generated by
L1, L2 and L respectively and defined on `2(N). Assume that (2.1), (2.2) and
(2.7) are satisfied. Moreover, assume that L1 and L2 are injective with closed
ranges, then

(i) H = H1H2 with σac(H) = R if | pk |k−2| pk−1 |−k+1 and | qj |j−2| qj−1 |−j+1

are not summable for all k, j = 1, 2, . . . , n.
(ii) H = H1H2 with σ(H) discrete if | pk |k−2| pk−1 |−k+1 and | qj |j−2|

qj−1 |−j+1 are summable for all k, j = 1, 2, . . . , n.

Proof. The proof of this theorem now follows from those of Theorems 2.2, 3.2, 3.4
and 3.5. We only note that by Rank-Nullity theorem, defL̃ = defL1 + defL2 and
in the two cases considered in the theorem, L has self-adjoint operator extension
which we shall denote by H. This is a 2n-dimensional extension of L. From the
results of Theorem 3.4, without loss of generality, we may even take H = H1H2.
The rest of the proof are now straight forward.

�
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The example below now verifies the results of Theorems 3.4 and 3.5 by computing
the composite of two second order symmetric difference operators with unbounded
coefficients and then analysing their deficiency indices and spectra.

Example 3.7. We consider two second order difference operators generated by
Sturm-Liouville equation with potential p(t) = ln(t) and a second order square
well given by

L1y(t) = −∆2y(t−1)+(ln t)y(t), L2y(t) = −∆2y(t−1)+t−εy(t), ε > 0 (3.3)

defined on `2(N). The functions L1 and L2 at limit point commute and their
composite can be written as

Ly(t) = ∆4y(t− 2)−∆
[
(ln t+ t−ε)∆y(t− 1)

]
+ t−ε ln ty(t).

The conversion of the composite equation Ly = zy into its first order form is
done using quasi-differences of the form

x1(t) = y(t− 1), x2(t) = ∆y(t− 2),

u1(t) = (ln t+ t−ε)∆y(t− 1)−∆3y(t− 2), u2(t) = ∆2y(t− 2).

The characteristic polynomial det(S(t, z) − λ · I4) when multiplied by λ−2 and
equated to zero leads to

γ2 + (ln t+ t−ε)γ + t−ε ln t− z = 0,

where γ = 2 − (λ + λ−1). Thus we fix our regular left end point at t0 > 1 and
hence we have approximate values of γ as

γ1 ≈ −t−ε + t−2ε(ln t)−1 +O(ln t)−2

γ2 ≈ − ln t− t−2ε(ln t)−1 +O(ln t)−2.

Now approximation for the λ-roots for this system gives

λ1±(t, z) ≈ 1± t−
ε
2 +O(t−ε(ln t)−1)

and

λ2+(t, z) ≈ (ln t)−1 +O(ln t)−2, λ2−(t, z) ≈ 2 + ln t− (ln t)−1 +O(ln t)−2.

The solutions associated with the λ-roots derived from γ2 contribute (1, 1) to the
deficiency indices because of the nature of the λ-roots. On the other hand, the two
solutions associated with γ1 will all be square summable if the term t−

ε
2 (lnt)−1 is

summable and thus contributes (2, 2) to the deficiency indices. All the solutions
will be uniformly square summable. Thus defL = (3, 3) and the spectrum of H
is discrete at most. Meanwhile, if the term t−

ε
2 (lnt)−1 is not summable, the γ1

also contributes (1, 1) to the deficiency indices with one solution losing its square
summability as η → 0+ and hence the absolutely continuous spectrum of H is
non-empty. Thus defL = (2, 2) and σac(H) ⊂ [0,∞) of spectral multiplicity one.
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