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A B S T R A C T

This study comprehensively analyzes the thermal decomposition characteristics as well as the kinetic and 
thermodynamic parameters of five biomass wastes, including coffee husk, groundnut shell, macadamia nutshell, 
rice husk, and tea waste, using Thermogravimetric Analysis (TGA) and the Coats-Redfern method. The TGA 
experiments were conducted on a PerkinElmer STA 6000 instrument under an inert N2 atmosphere with a 
heating rate of 20 ◦C/min, spanning a temperature range from 25 ◦C to 950 ◦C. The results identified three 
distinct pyrolysis stages: drying, devolatilization, and char formation, with macadamia nutshell demonstrating 
the highest thermal reactivity and efficient devolatilization characteristics, reflected by its lowest initial devo
latilization temperature (175 ◦C) and highest peak temperature (380 ◦C). Kinetic analysis revealed that coffee 
husk had the highest overall activation energy (Ea) of 60.59 kJ/mol, indicating complex thermal degradation 
behavior. The thermodynamic evaluation showed that coffee husk also exhibited the highest enthalpy change 
(ΔH=55.46 kJ/mol) but the lowest Gibbs free energy change (ΔG=148.34 kJ/mol), suggesting high energy 
requirements for decomposition but relatively more spontaneous reactions compared to other biomass types. 
Macadamia nutshell demonstrated high ΔG (163.24 kJ/mol) and moderate ΔH (32.44 kJ/mol), reflecting greater 
resistance to spontaneous decomposition. The comprehensive pyrolysis index (CPI) and devolatilization index 
(Ddev) confirmed macadamia nutshell as the most reactive biomass, while rice husk exhibited the lowest reac
tivity. The findings highlight the importance of multi-step kinetic analysis for accurately understanding pyrolysis 
processes, providing critical insights for optimizing biomass conversion for energy production. Future research 
should explore co-pyrolysis with varied biomass mixtures and advanced kinetic modeling to enhance energy 
yields.

1. Introduction

The ever-increasing global energy demand and the depletion of finite 
fossil fuel reserves necessitate a shift towards sustainable and environ
mentally friendly energy sources [1]. Biomass waste, a continuously 
generated byproduct from agriculture, forestry, and industrial activities, 
has emerged as a promising renewable energy resource [2,3]. Tradi
tional waste management practices, such as landfilling and incineration, 
pose significant environmental challenges [4,5]. Landfills occupy valu
able land and contribute to soil and water contamination through 
leachate [6,7]. Incineration reduces waste volume but releases harmful 

pollutants, including greenhouse gases, into the atmosphere, adversely 
impacting air quality and public health [8].

Biomass waste valorization through thermochemical conversion 
processes like pyrolysis and gasification offers a sustainable solution 
[9–11]. These processes transform waste into valuable biofuels or 
chemicals, alleviating the burden on conventional waste disposal 
methods and promoting a circular bioeconomy [12–14]. Techniques 
such as Thermogravimetric Analysis (TGA) provide valuable insights 
into these degradation stages and the kinetics of the process [15,16].

Various kinetic models and reaction mechanisms have been devel
oped to describe the thermal decomposition behavior of biomass 
including model-free and model-fitting methods [17–19]. The model- 
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free methods include the Flynn-Wall-Ozawa (FWO), Friedman, Starlink 
and Kissinger-Akahira-Sunose (KAS) methods [20,21]. The model- 
fitting methods include direct Arrhenius [22], Coats-Redfern [23], 
Kennedy-Clark [24], Criado master plot [25,26], and Distributed Acti
vation Energy Model (DAEM) methods [27,28]. Model-free methods 
provide an advantage by not assuming a specific reaction model, 
allowing for a more flexible analysis across different temperature ranges 
and heating rates. However, they often require extensive experimental 
data and can be computationally intensive. The Coats-Redfern method, a 
model-fitting approach, is widely used due to its simplicity and effec
tiveness in estimating kinetic parameters such as activation energy and 
pre-exponential factor [23,29]. This method assumes a first-order re
action model and linearizes the Arrhenius equation, facilitating 
straightforward calculations from TGA data [22]. By applying the Coats- 
Redfern method, researchers can obtain reliable kinetic parameters with 
fewer data points compared to model-free methods, making it an effi
cient choice for preliminary analysis of biomass pyrolysis [30,31]. The 
method’s ability to provide accurate and consistent results with limited 
data enhances its applicability in studies aiming to optimize pyrolysis 
conditions for various biomass materials.

Understanding the kinetic and thermodynamic parameters associ
ated with biomass pyrolysis is crucial for the successful industrialization 
of this process [32–34]. These parameters provide fundamental insights 
into the reaction mechanisms, energy requirements, and product dis
tribution, enabling the optimization of reactor design, operating con
ditions, and product recovery [35,36]. Kinetic parameters, such as 
activation energy (Ea), pre-exponential factor (A), and reaction order 
(n), quantify the rate at which biomass undergoes pyrolysis [37–40]. 
This information is essential for several reasons. Firstly, it aids in reactor 
design by allowing for the accurate modeling and simulation of pyrolysis 
reactors, leading to optimized reactor configurations and operating 
conditions [41–46]. Secondly, understanding the reaction kinetics is 
vital for process control, enabling precise regulation of process variables 
like temperature and residence time to achieve desired product yields 
and qualities [47,48]. Thirdly, accurate kinetic models help predict 
energy consumption and identify potential energy-saving strategies, 
enhancing overall energy efficiency [49–52].

Thermodynamic parameters, including enthalpy (ΔH), entropy (ΔS), 
and Gibbs free energy (ΔG), provide insights into the energy balance and 
spontaneity of the pyrolysis process [53]. This information is crucial for 
predicting product yields, as thermodynamic data can estimate the 
equilibrium yields of different products, aiding in process optimization 
[26,54]. Additionally, understanding the energy requirements of the 
pyrolysis process facilitates the integration of heat recovery systems and 
energy-efficient process design [55]. Thermodynamic analysis also helps 
assess the feasibility of different biomass feedstocks and identify suitable 
pyrolysis conditions, ensuring process viability [56,57].

The dynamics between kinetic and thermodynamic parameters is 

essential for a comprehensive understanding of the pyrolysis and 
biomass valorization processes [58,59]. By combining these parameters, 
researchers and engineers can develop predictive models, optimize 
reactor performance, and assess the economic feasibility of biomass 
pyrolysis [60]. This knowledge is critical for the successful commer
cialization of pyrolysis technologies and the production of high-value 
products from biomass wastes [61]. Ultimately, the accurate determi
nation of kinetic and thermodynamic parameters contributes to the 
development of sustainable and efficient biomass conversion processes 
[62]. This promotes a circular economy and reduces reliance on fossil 
fuels, paving the way for a more sustainable future [63,64].

Coffee husk, a byproduct of coffee bean processing, represents a 
significant waste stream globally, with millions of tons produced 
annually [65]. Its high volatile matter content and comparable heating 
value to woody biomass make it a potential candidate for biomass 
conversion [66,67]. Studies have shown that coffee husk degradation 
begins around 245 ◦C, with the maximum rate of weight loss observed 
around 310 ◦C, indicating the most rapid decomposition of volatile 
components [66]. Macadamia nutshells, a byproduct of macadamia nut 
processing, contain cellulose, hemicellulose, lignin, and extractives 
[68]. These components offer a valuable source of bio-oils, syngas, and 
biochar depending on the specific pyrolysis conditions. Macadamia 
nutshells have been found to exhibit high thermal stability, with initial 
decomposition starting around 220 ◦C and peak decomposition at 295 ◦C 
[69]. The high heating value reinforces its potential as a valuable 
feedstock for thermochemical conversion processes [70]. Additionally, 
studies suggest that macadamia nutshells can exhibit synergistic effects 
when co-pyrolyzed with other waste materials, such as polyethylene 
terephthalate (PET), leading to increased carbon yield [71].

Rice husk, a byproduct of global rice cultivation, has high cellulose 
content, making it a valuable feedstock for biofuel production [72,73]. 
Pre-treatment methods like acid or alkali treatment can improve its 
conversion efficiency [74]. Studies have shown that rice husk exhibits 
moderate thermal stability, with decomposition starting around 250 ◦C 
and maximum weight loss occurring around 350 ◦C [72]. Tea waste, rich 
in various components such as caffeine and polyphenols, offers potential 
for generating biofuels and valuable biochemicals [75]. Tailoring its 
pyrolysis behavior through pre-treatment techniques like torrefaction 
can optimize product yields based on the desired outcome [76]. 
Groundnut shell, another agricultural residue, has been studied for its 
pyrolysis kinetics and thermodynamic properties [77]. Research has 
indicated that groundnut shell exhibits moderate thermal stability, with 
initial decomposition starting around 230 ◦C and peak decomposition at 
340 ◦C [16]. Kinetic analysis has shown that groundnut has a relatively 
low energy barrier for reaction initiation [78,79].

Pyrolysis is a crucial thermal degradation process for converting 
biomass into valuable products such as biochar, bio-oil, and syngas 
[80,81]. Despite extensive research, detailed kinetic and 

Nomenclature

Abbreviation
CPI Comprehensive pyrolysis index
FWO Flynn-Wall-Ozawa
KAS Kissinger-Akahira-Sunose
TGA Thermogravimetric Analysis
RM Total mean reactivity

List of symbols
A Pre-exponential factor
Ea Activation energy
Ti Initial devolatilization temperature
Tp Peak temperature,

− Rp,max Maximum pyrolysis rate
− Rv Average weight loss rate,
Ddev Devolatilization index
Rw Pyrolysis stability index
ΔH Changes in enthalpy
ΔG Changes in Gibbs free energy
ΔS Changes in entropy
Tf Final devolatilization temperature
m∞ Residue weight
R2 Coefficient of determination
T Absolute temperature
R gas constant (8.314 J/mol/K)
oC degree Celsius
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thermodynamic analyses are still needed to optimize these processes. 
This study aims to address this gap by investigating the pyrolytic 
behavior of various biomass wastes using TGA and the Coats-Redfern 
model, providing insights into their potential bioenergy applications.

This study examines the thermal decomposition characteristics and 
kinetic parameters of five biomass wastes: coffee husk, groundnut shell, 
macadamia nutshell, rice husk, and tea waste. Using TGA, we aim to 
understand the thermal behavior and optimize the pyrolysis process for 
these materials. The primary objectives are to evaluate the initial and 
peak devolatilization temperatures, maximum pyrolysis rates, and 
average decomposition rates of the biomass wastes. Additionally, we 
estimate kinetic parameters including the Ea and A using the Coats- 
Redfern method. We also assess thermodynamic properties such as 
ΔH, ΔG, and ΔS. Finally, we compare the thermal stability of the 
different biomass wastes to identify potential bioenergy applications.

2. Materials and methods

2.1. Materials

The biomass wastes used in this study include coffee husk, groundnut 
shell, macadamia nutshell, rice husk, and tea waste (Fig. 1). The coffee 
husk, groundnut shell and macadamia nutshell were obtained from local 
agricultural processing units, while rice husk and tea waste were 
collected from rice mills and tea processing facilities, respectively. All 
biomass samples were selected based on availability, and sourced from 
sustainable and reliable suppliers to ensure consistency and quality.

2.2. Sample preparation and characterization

The biomass samples were first sun-dried for 2 days, 4 h each day to 
remove any surface moisture and then ground to a uniform particle size 
using a laboratory grinder. The ground samples were sieved to obtain 
particles of size < 1 mm, ensuring homogeneity. The prepared samples 
were stored in airtight containers to prevent moisture absorption before 
analysis. The proximate properties of the feedstocks were determined 
using macro-thermogravimetric analyzer (ELTRA THERMOSTEP Ther
mogravimetric Analyzer) following ASTM E1131-08 standard [82]. 
Elemental constituents of feedstocks were determined using CHNS 
Automatic Analyzer, Elementar-Vaio ELIII, Germany. In addition, Shen 
et al. [83] model, Parikh model [84], and Genetic Programming (GP)- 
model [85] were used to determine the elemental composition and 
compare with the experimental results. The lower heating value (LHV) 
and higher heating values (HHV) of the biomass were estimated from 
ultimate properties using the correlation models proposed by Hosokai 
et al. [86], Channiwala & Parikh [87] and Huang & Lo [88]. The 
proximate and the ultimate/elemental properties of the biomass waste 
materials are presented in Table 1 and Table 2, respectively.

2.3. Thermogravimetric analysis (TGA)

Following, the wastes were sorted and a study on thermochemical 
conversion was performed to evaluate the scope of resource recovery. 
This study discusses the thermal decomposition behaviour of five 
biomass waste samples through TGA analysis using Perkimer STA 6000 

at a constant heating rate of 20 ◦C/min in an inert N2 atmosphere with a 
purge gas flow of 50 mL/minute from 25 ◦C to 950 ◦C (Fig. 2). The 
experiment was conducted with a single heating of 20 ◦C/min. The 
previous study revealed that at this rate, complete degradation of the 
material can be achieved in lesser time. Moreover, the quality of the data 
can be higher without much outliers [15]. Approximately 10 ± 1 mg of 
each biomass sample was placed in a platinum crucible and heated 
under the specified conditions. The TGA instrument continuously 
recorded the weight loss as a function of temperature and time, gener
ating TG and DTG curves for each sample.

2.4. Pyrolysis performance analysis

A variety of characteristic parameters can be used to quantify the 
performance of any pyrolysis process [89], including the initial devo
latilization temperature (Ti), peak temperature (Tp), maximum pyrolysis 
rate (− Rp), average weight loss rate (− Rv), comprehensive pyrolysis 
index (CPI), devolatilization index (Ddev) and pyrolysis stability index 
(Rw). The Ti, which may be estimated using the intersection approach, is 
the extrapolated onset temperature based on the partial peak caused by 
the degradation of the hemicellulose. Also, Ti and the final devolatili
zation temperature (Tf) can be used to compute the average mass loss 
rate (− Rv) [90,91].

2.4.1. Initial devolatilization and peak temperatures
The Ti is the temperature at which the pyrolysis process begins, 

marking the onset of significant mass loss due to the release of volatile 
components [79,92]. It is typically estimated using the intersection 
approach, which involves extrapolating the onset temperature based on 
the partial peak attributed to the degradation of hemicellulose. This 
temperature is crucial for understanding the thermal stability of the 
material and the initiation of pyrolysis reactions. The Tp is the temper
ature at which the maximum rate of pyrolysis occurs [93]. It indicates 
the point of the highest thermal decomposition activity and is critical for 
designing and optimizing pyrolysis processes, as it reflects the most 
intense phase of biomass breakdown [94].

2.4.2. Maximum decomposition and average weight loss rates
The − Rp is the rate at which decomposition or pyrolysis occurs at its 

peak, often expressed as a negative value to denote the mass loss rate 
[95]. This parameter is important for assessing the efficiency and speed 
of the pyrolysis reaction, providing insights into how quickly the ma
terial is being converted into gases, liquids, and char [96]. The − Rv is the 
parameter that represents the average rate of mass loss over the entire 
pyrolysis process. It is computed using both the Ti and the Tf, giving an 
overall measure of the decomposition rate of the material. The average 
weight loss rate is useful for evaluating the consistency and overall 
performance of the pyrolysis process [95].

2.4.3. Mean reactivity
The Mean Reactivity (RM) is a crucial parameter for assessing the 

overall reactivity of a material during the pyrolysis process [97]. The 
total mean reactivity (RMtot) is the summation of all RM at the different 
distinct peaks on the DTG curve. This index effectively summarizes how 
quickly and at what temperature the material undergoes decomposition 

Fig. 1. Biomass waste materials: (a) coffee husk, (b) groundnut shell, (c) macadamia nutshell, (d) rice husk, (e) tea waste.
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[97]. A higher RMtot value indicates that the material is highly reactive, 
decomposing rapidly at relatively lower temperatures [89]. This reac
tivity is vital for processes aiming to maximize efficiency and 
throughput, as more reactive materials tend to convert into the desired 
pyrolysis products more readily. High RM suggests that the pyrolysis 
process can be conducted at lower temperatures, potentially reducing 
energy consumption and increasing the overall process efficiency [98]. 
It was calculated using Eq. (1) [98]. 

RMtot = 100
∑(

Rp/Tp
)

(1) 

where Rp represents the maximum pyrolysis rate for each distinct peak, 
and Tp is the corresponding peak temperature.

2.4.4. Comprehensive pyrolysis index
The CPI is a synthetic parameter designed to encapsulate the overall 

efficiency and effectiveness of the pyrolysis process [89,99]. This index 
integrates multiple aspects of the pyrolysis process, including the rate of 
decomposition and the thermal characteristics of the material [27,100]. 
A higher CPI value indicates a more efficient pyrolysis process, charac
terized by high decomposition rates and significant weight loss, while 
retaining minimal residual mass [91,101]. This comprehensive measure 
helps in evaluating the overall performance of the pyrolysis process, 

guiding optimization for better energy efficiency and product yield. It 
was defined and calculated using Eq. (2) [98]. 

CPI =
(
− Rp,max

)
x(− Rv)xMf

TixTp,maxxΔT1/2
(2) 

Where; half-peak width range (△T1/2) (when R/Rp= ½ where R is the 
decomposition rate), Mf is the weight loss during the entire pyrolysis 
process (Mf = m0 − m∞), − Rv is average decomposition rate, − Rp is the 
maximum decomposition rate, m∞ is the residue weight, m0 is the initial 
weight in percentage.

2.4.5. Devolatilization index
The Devolatilization Index (Ddev) is a measure specifically focused on 

the rate and extent of volatile component release during pyrolysis [89]. 
While the exact formula can vary, it typically involves parameters such 
as the rate of weight loss and the characteristic temperatures associated 
with devolatilization [92]. This index is crucial for understanding how 
efficiently the volatile components of the material are being liberated 
during the pyrolysis process [79]. A higher Ddev value signifies a rapid 
and complete release of volatiles, which is particularly important for 
processes aimed at maximizing the production of gaseous and liquid 
products [102]. Efficient devolatilization can enhance the overall yield 
and quality of these products, making Ddev a key parameter for opti
mizing pyrolysis operations, especially when targeting specific output 
fractions like bio-oil or syngas. It was estimated using Eq. (3) [98]. 

Ddev =
Rp,max

TixTp,maxxΔT1/2
(3) 

Where; half-peak width range (△T1/2) (when R/Rp= ½ where R was 
the decomposition rate); Rp,max is the maximum decomposition rate, Ti is 
the initial decomposition temperature, Tp,max is the maximum decom
position peak.

2.4.6. Pyrolysis stability index
The Pyrolysis Stability Index (Rw) evaluates the consistency and 

stability of the pyrolysis process, taking into account the variability in 
decomposition rates and temperatures [89]. A lower Rw value indicates a 
more stable pyrolysis process, characterized by consistent decomposi
tion behavior over time and temperature ranges. Stability is a critical 
factor for industrial applications, as it ensures predictable and reliable 
production of pyrolysis products [103]. Stable processes are easier to 
control and optimize, leading to better product quality and process ef
ficiency [27]. By minimizing fluctuations in the pyrolysis process, op
erators can achieve more uniform and high-quality outputs, which is 
essential for scaling up pyrolysis technologies for commercial use [104]. 
Thus, Rw serves as an important index for ensuring process reliability 
and enhancing the overall robustness of pyrolysis operations. Rw was 
calculated using Eq. (4). [89]. 

RW = 8.5875x107x
− Rp,max

TixTp,max
(4) 

where, Ti is the initial decomposition temperature, Tp,max is the 
maximum decomposition peak. Rp,max is the maximum decomposition 

Table 1 
Proximate properties of different biomass waste materials.

Feedstock Moisture (%) Volatile matter (%) Fixed carbon (%) Ash (%) LHVa (MJ/kg) HHVb (MJ/kg) HHVc (MJ/kg)

Coffee husk 8.67 62.90 18.37 10.06 19.85 20.68 19.50
Groundnut shell 6.92 66.24 19.76 7.07 17.32 17.89 17.73
Macadamia nut shell 7.39 68.52 21.06 3.03 20.77 21.46 19.74
Rice Husk 5.90 59.19 15.90 19.01 16.6 16.83 16.42
Tea Waste 5.69 62.95 23.01 8.35 19.41 20.01 18.64

LHV a = 38.2C+84.9(H − O/8) − 0.62; HHVb = 0.3491C+1.1783H+0.1005S-0.1034O − 0.0151 N − 0.0211Ash.
HHVc = 0.3443C+1.192H-0.113O-0.024 N+0.093S.

Table 2 
Ultimate properties of different biomass waste materials.

Feedstock Coffee 
husk 
(%)

Groundnut 
shell (%)

Macadamia 
nutshell (%)

Rice 
Husk 
(%)

Tea 
waste 
(%)

Parikh model
Carbon (C) 40.320 42.727 44.389 37.057 43.299
Hydrogen 

(H)
4.855 5.135 5.343 4.496 5.099

Oxygen 
(O)

35.523 37.538 39.017 33.006 36.960

Shen model
Carbon (C) 39.642 42.347 44.602 35.515 42.775
Hydrogen 

(H)
4.914 5.165 5.336 4.636 5.178

Oxygen 
(O)

35.513 37.623 39.225 32.727 37.155

GP-model
Carbon (C) 41.474 43.781 45.787 38.335 45.172
Hydrogen 

(H)
5.765 5.836 6.005 5.305 5.665

Oxygen 
(O)

30.871 33.683 35.109 28.707 33.107

Experimental study
Carbon (C) 50.001 45.680 52.490 40.310 49.980
Hydrogen 

(H)
6.325 4.910 5.490 4.260 5.003

Oxygen 
(O)*

32.581 40.763 37.193 34.880 33.956

Nitrogen 
(N)

0.959 1.523 1.772 1.530 2.679

Sulphur 
(S)

0.072 0.054 0.025 0.009 0.0350

*Results obtained by difference (O =100 – (C+H+N+S+ASH)).
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rate.

2.5. Coat-Redfern method

The Coats-Redfern method, a widely employed technique for deter
mining kinetic parameters from TGA data, was chosen for this study over 
advanced isoconversional methods like Flynn-Wall-Ozawa (FWO) and 
Kissinger-Akahira-Sunose (KAS), which utilize multiple heating rates to 
offer more detailed insights. This decision was due to the Coats-Redfern 
method’s robustness, simplicity, and effectiveness under non-isothermal 
conditions typical of biomass pyrolysis [25,31]. By linearizing the 
Arrhenius equation, the Coats-Redfern method directly estimates the 
activation energy (Ea, from the slope) and pre-exponential factor (A, 
from the intercept), providing valuable insights into the thermal 
decomposition behavior of biomass. This method is particularly suitable 
for analyzing data from a single heating rate, aligning with the experi
mental design of our study.

While we acknowledge the concerns raised by Vyazovkin & Mur
avyev [105] regarding the limitations of single heating rate methods, 
such as their potential failure to reliably determine kinetic triplets due to 
the complexities of biomass decomposition, our choice is based on 
practical considerations. The Coats-Redfern method is ideal for pre
liminary studies where an approximate understanding of kinetic pa
rameters is needed, allowing for meaningful comparisons across 
multiple biomass samples under consistent conditions. Moreover, ex
periments with multiple heating rates require substantial time, re
sources, and equipment, which may not be feasible. The single heating 
rate approach also reflects real-world applications where biomass py
rolysis often occurs under constant heating rates, enhancing the rele
vance of our findings. Despite its limitations, the Coats-Redfern method 
has demonstrated reliability in numerous studies when used with an 
awareness of its constraints [106].

2.5.1. Reaction mechanism and kinetic Equations
Biomass waste consists of a complex matrix of biopolymers, with 

numerous reactions occurring simultaneously during pyrolysis within a 
given timeframe [107]. This complexity makes predicting the specific 
reaction mechanisms formed during pyrolysis challenging. To address 
this, a generalized decomposition reaction is proposed, as shown in Eq. 
(5). 

Biomass waste→k(t),Moisture + Volatile(gases + tar) + Char (Solid residue)
(5) 

where k is rate constant, the volatile mean sum of condensable (tar) and 
non-condensable gasses. The rate constant (k) is dependent on absolute 
temperature (T), which is expressed by the Arrhenius equation:

The kinetic equation for such heterogeneous system can be written as 
in Eq. (6). 

dα/dt = k(t)f(α) (6) 

where, dα/dt represents rate of degradation. It is a linear function of 
temperature dependent rate constant, and f(α) is the temperature in
dependent function of conversion, which depends on reaction 
mechanism.

The normalized conversion (α) is given by Eq. (7). 

α =
m0 − mt

m0 − m∞
(7) 

where, m0 is initial mass of the material, mt is mass of the material at 
time t, and m∞ is the final mass or residue weight of the material after 
degradation.

Weight loss is given by Eq. (8); 

Weightloss% =
m0 − mt

m0
x100% (8) 

Fig. 2. Experimental setup for thermogravimetric analysis. (a) STA 6000 TGA, (b) computer monitor (c) schematic of TGA.
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The k(T) is rate constant and is expressed by the Arrhenius equation 
(Eqs. (9) and (10) [108]. 

k(T) = Aexp( − Ea/RT) (9) 

dα/dt = k(T).f(α) (10) 

The following integral form of Eq. (9) and (10) is given by Eq. (11). 

g(α) =
∫ α

0
(dα/f(α) ) = A

/

β
∫ T

T0

exp( − Ea/RT)dT (11) 

where, A is pre-exponential factor (min− 1), Ea is activation energy 
(kJ/mol), k(T) is the rate constant, R universal gas constant (0.008314 
kJ/mol K), T is the temperature of reaction (K), α is the conversion rate 
and f(α) is the kinetic model, g(α) is the integral form of the kinetic 
model.

Coats-Redfern method is employed to find out pre-exponential factor 
and activation energy by fitting the TGA experimental data (Eq. (12)); 

In
(
g(α)

/
T2 ) = In[AR/βEa(1 − 2RT/Ea) ] − Ea

/
RT (12) 

Slope = − Ea/R (13) 

Intercept = In(AR/βEa) (14) 

2.5.2. Adoption of multiple reaction mechanism functions
To enhance the accuracy and comprehensiveness of the kinetic 

analysis, this study employed nine different reaction mechanism func
tions (g(α)) representing various kinetic models, such as order-based 
chemical reaction, diffusion-controlled, and contracting sphere 
models, as summarized in Table 3 [109]. Each model captures different 
aspects of the biomass pyrolysis process, which involves multiple 
overlapping reactions due to the distinct thermal degradation charac
teristics of cellulose, hemicellulose, and lignin. Using multiple models 
allows for a more precise fit to the TGA data, leading to accurate 
determination of kinetic parameters [39]. This approach provides a 
comprehensive understanding of the thermal degradation kinetics, 
enabling the optimization of pyrolysis conditions to maximize energy 
recovery and improve the efficiency of biomass conversion processes 
[110].

2.5.3. Significance of activation energy and pre-exponential factor
Activation energy (Ea) is a fundamental kinetic parameter that 

quantifies the minimum energy required to initiate the decomposition 
reactions within biomass during thermal degradation [113]. It repre
sents the energy barrier that reactant molecules must overcome for the 
bonds to break and new products to form. In the context of pyrolysis, 
activation energy provides insight into the thermal stability of different 
biomass components. For instance, cellulose, hemicellulose, and lignin 
each have distinct activation energies, reflecting their varying resistance 
to thermal decomposition [89,114,115]. The Ea was estimated using 
slope of the fitted experimental data using Eq. (13). The pre-exponential 

factor (A), also known as the frequency factor, is a crucial kinetic 
parameter in the Arrhenius equation that indicates the frequency of 
collisions between reactant molecules that lead to a reaction [116]. It 
provides insight into the number of successful molecular collisions per 
unit time, which result in the decomposition of biomass [115]. The A 
value was estimated from intercept of the fitted experimental data using 
Eq. (14).

2.6. Thermodynamic parameters

These thermodynamic parameters including enthalpy change (ΔH), 
Gibbs free energy change (ΔG) and entropy change (ΔS) collectively 
provide a comprehensive understanding of the energy dynamics, spon
taneity, and disorder associated with the pyrolysis process. By analyzing 
these parameters, researchers can optimize the conditions for pyrolysis, 
improve energy efficiency, and enhance the overall performance and 
yield of the desired products. The following constants are used in 
calculation: the Boltzmann constant (KB=1.381 × 10 − 23 J/K), Plank’s 
constant (h = 6.626 × 10 − 34 Js), Gas constant (R=0.08314 kJ/mol.K), 
and the DTG peak temperature (Tp, in Kelvin), respectively 
[100,117–119]. The ΔH in the context of pyrolysis is a measure of the 
total energy required to initiate the decomposition process of a material. 
The ΔH was estimated using Eq. (15). 

ΔH = Ea − RTp (15) 

Where; R is the universal gas constant, Tp, is the peak temperature (in 
Kevin), Ea is the minimum energy needed for a chemical reaction to 
occur.

The Gibbs free energy change (ΔG) is a thermodynamic potential 
that measures the maximum reversible work obtainable from a ther
modynamic system at constant temperature and pressure. ΔG was 
calculated using Eq. (16). 

ΔG = Ea +R.TpIn
(

KBTp

hA

)

(16) 

Entropy change (ΔS) is a measure of the disorder or randomness in a 
system during the pyrolysis process. It was estimated using Eq. (17). 

ΔS =

(
ΔH − ΔG

Tp

)

(17) 

2.7. Global single-step and segmented kinetic modeling approaches

This section compares two kinetic modeling approaches used to 
analyze the pyrolysis process of biomass: the global single-step approach 
and the multi-step segmented approach. The segmented approach offers 
a detailed understanding by treating each temperature range as a 
distinct reaction step with specific kinetic parameters, while the global 
single-step approach simplifies the entire pyrolysis process as a single 
reaction with uniform kinetic parameters across the full temperature 
range [120].

Table 3 
The common reaction model for determining the mechanism of biomass degradation [109,109,112].

Reaction model Reaction mechanism Code f(α) g(α)

Diffusion 1D diffusion (parabolic rule) D1 (2α)− 1 α2

2D diffusion (Va lensi equation) D2 [ − ln(1 − α)]− 1 (1 − α)ln(1 − α) + α
3D diffusion (Jander) D3 3/2(1 − α)2/3

[
1 − (1 − α)1/3

]− 1 [
1 − (1 − α)1/3

]2

3D diffusion (Ginstling-Brounshtein) D4 3/2
[
(1 − α)− 1/3

− 1
]− 1

1 −
2
3

α − (1 − α)
2
3

Geometrical contraction models/ Shape contraction model Contracting area of sphere G5 2(1 − α)1/2 1 − (1 − α)1/2

Contracting volume of cylinder G6 3(1 − α)2/3
1 − (1 − α)

1
3

Order-based chemical reaction 1st order reaction R7 1 − α In(1 − α)
2nd order reaction R8 (1 − α)2

(1 − α)− 1
− 1

3rd order reaction R9 (1 − α)3 1/2
[
(1 − α)− 2

− 1
]
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2.7.1. Multi-step segmented approach
The multi-step segmented approach assumes that each stage of the 

biomass pyrolysis process, defined by specific temperature ranges or 
stages, can be treated as a single-step reaction with distinct kinetic pa
rameters [121]. This method accounts for different reaction pathways 
dominating at various stages of pyrolysis, allowing for a more accurate 
representation of the decomposition behavior within each stage [107].

To calculate the overall kinetic parameters for the entire temperature 
range of pyrolysis process, we combined the segmented values using a 
weighted average approach:

1 Determine the contribution of each Stage

Each stage’s fractional weight (wi) was calculated based on its 
contribution to total conversion or mass loss using Eq. (18): 

wi =
Δαi

Δαtotal
(18) 

2 Calculate overall activation energy (Ea,overall)

The overall activation energy was computed using Eq. (19): 

Ea,overall =
∑

i
wiEa.i (19) 

Where; Ea,i is the activation energy for stage i.

3 Calculate overall Pre-Exponential factor (Aoverall)

The overall pre-exponential factor was determined using a loga
rithmic average (Eq. (20)). 

Aoverall = exp

(
∑

i
wilnAi

)

(20) 

where; Ai is the pre-exponential factor for stage i.
In the multi-step segmented approach, a weighted average is used to 

combine the activation energies (Ea,i) from each temperature range, 
rather than a simple average, to accurately reflect the contribution of 
each stage to the overall pyrolysis process, ensuring that stages with 
greater mass loss or conversion have a proportionate impact on the 
overall kinetic parameters. A simple average would fail to account for 
these differences, potentially leading to an inaccurate representation of 
the kinetics [122].

2.7.2. Global single-step approach
The global single-step approach assumes that the entire pyrolysis 

process can be represented by a single reaction with uniform kinetic 
parameters across the temperature range. This method simplifies the 
overall process by considering a single dominant reaction pathway, 
characterized by a single global activation energy (Ea,global) and a pre- 
exponential factor (Aglobal). This approach provides a generalized view 
of the pyrolysis kinetics, useful for practical applications where a 
simplified model is sufficient, such as preliminary process design or 
scaling up [75,94].

3. Results and discussion

3.1. Thermal analysis by TGA and DTG

The thermal degradation behavior of different biomass waste feed
stock was investigated using thermogravimetric analysis (TGA) (Fig. 3) 
and derivative thermogravimetry (DTG) (Fig. 4). The feedstock samples 
included coffee husk, groundnut shell, macadamia nut shell, rice husk, 
and tea waste. The results are summarized in Table 4, highlighting the 
degradation stages, biomass component degradation temperature range, 
weight loss percentage, peak temperatures (Tp) for each stage, and 
maximum degradation rate for each stage (DTGmax or Rp,max), initial and 

Fig. 3. TGA curves for mass loss during thermal degradation of different biomass waste materials. me: mass loss during drying stage, m1: mass loss during devo
latilization stage, m2: mass loss during char formation stage, MR: residue mass, To: starting or ambient temperature, Ti; initial devolatilization temperature, Tf : final 
devolatilization process temperature.
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final temperature of each stage.

3.1.1. Drying stage
During the drying or dehydration stage [123], the initial and final 

temperatures for all biomass materials ranged from 25 ◦C to approxi
mately 175–215 ◦C. This stage primarily involves the removal of mois
ture content, as noted by previous studies [98,124]. Among the 
materials studied, coffee husk exhibited the highest weight loss at 13.51 
%, indicating a higher initial moisture content compared to other ma
terials. Groundnut shell and rice husk followed with weight losses of 

10.22 % and 7.31 %, respectively. Macadamia nutshell and tea waste 
showed the lowest weight losses at 6.62 % and 6.64 %, respectively.

The drying peak temperature (Tp) was relatively low across all ma
terials with minor differences. Macadamia nutshell and tea waste had 
slightly lower degradation rates (Rp values of − 2.024 %/min and 
− 1.770 %/min, respectively), suggesting slower moisture removal 
compared to coffee husk, which had the highest Rp value of − 3.475 
%/min.

When comparing these results with previous studies, some inter
esting observations emerge. For coffee husk, the first peak in the drying 

Fig. 4. DTG curves of degradation rate for different biomass materials. (P1-P5); first peak at stage I, (P6-P10): second peak (hemicellulose, cellulose peak) at the stage 
II, (P11-P15): third peak (lignin peak) at stage II. P16: fourth peak (oxidation peak) at the decomposition (stage III). Rp: maximum degradation rate at the main peak, 
Rp/2: half-width peak degradation rate. T1: lower end temperature at the intersect of the half-width peak degradation rate, T2: upper end temperature at the intersect 
of the half-width peak degradation rate.

Table 4 
Changes in initial and final temperature during the three pyrolysis stages (drying, devolatilization and decomposition) for different biomass waste materials.

Feedstock samples Degradation Stages Initial temp. 
(oC)

Final temp. 
(oC)

Weight loss 
(%)

Peak temp. (Tp), 
oC

DTGmax (%/min) 
(Rp)

Fractional weight 
(w)

Coffee husk Stage 1: Drying 25 215 13.51 100 − 3.475 0.142
Stage 2: 
Devolatilization

215 425 44.87 345 − 9.58 0.473

Stage 3: Char formation 425 950 36.49 486 − 4.483 0.385
Groundnut shell Stage 1: Drying 25 205 10.22 98 − 3.182 0.109

Stage 2: 
Devolatilization

205 415 48.79 361 − 12.11 0.519

Stage 3: Char formation 415 950 34.98 516 − 2.628 0.372
Macadamia nut 

shell
Stage 1: Drying 25 175 6.62 103 − 2.024 0.069
Stage 2: 
Devolatilization

175 440 55.56 382 − 17.73 0.575

Stage 3: Char formation 440 950 34.4 624 − 2.404 0.356
Rice husk Stage 1: Drying 25 180 7.31 101 − 2.430 0.087

Stage 2: 
Devolatilization

180 435 48.14 369 − 10.79 0.575

Stage 3: Char formation 435 950 28.32 534 − 2.360 0.338
Tea waste Stage 1: Drying 25 185 6.64 109 − 1.770 0.067

Stage 2: 
Devolatilization

185 430 48.2 358 − 9.81 0.484

Stage 3: Char formation 430 950 44.86 552 and 914 − 2.918 and − 1.714 0.450
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stage (<215 ◦C) occurred at 100 ◦C in this study, which is consistent 
with Nam et al. [66], where the first peak in the dehydration stage 
(<238 ◦C) occurred at 110 ◦C. This similarity is attributed to the evap
oration of water in the sample. For macadamia nutshell, Linh et al. [69]
reported the drying stage occurring at temperatures below 220 ◦C, 
whereas in this study, it occurred at temperatures below 175 ◦C, indi
cating a difference in drying temperature ranges.

For groundnut shell, Mishra & Vinu [107] observed the drying stage 
at temperatures below 150 ◦C. In contrast, this study found the drying 
stage occurring at temperatures below 205 ◦C, suggesting a higher 
drying temperature range in this analysis. Rice husk, as reported by 
Kumar et al. [72], had a drying stage at temperatures below 240 ◦C, 
whereas this study found it to occur at temperatures below 180 ◦C, 
indicating a lower temperature range for moisture removal. Finally, for 
tea waste, Alashmawy et al. [75] reported the drying temperature at 
below 196.17 ◦C, while this study observed drying at temperatures 
below 185 ◦C, showing a similar but slightly lower drying temperature 
range.

3.1.2. Devolatilization stage
The devolatilization stage is characterized by significant thermal 

degradation and the release of volatiles. In this study, the initial tem
peratures for this stage ranged from 175 ◦C to 215 ◦C, while the final 
temperatures ranged from 415 ◦C to 440 ◦C. Macadamia nutshell 
exhibited the highest weight loss of 55.56 %, indicating a higher volatile 
content and greater thermal reactivity. This finding aligns with its 
proximate analysis. Groundnut shell and tea waste followed closely with 
weight losses of 48.79 % and 48.2 %, respectively. Coffee husk and rice 
husk showed slightly lower weight losses of 44.87 % and 48.14 %, 
respectively. The Tp for devolatilization varied from 345 ◦C for coffee 
husk to 382 ◦C for macadamia nutshell, reflecting different thermal 
stabilities and decomposition behaviors. Macadamia nutshell also had 
the highest Rp at − 17.73 %/min, indicating rapid decomposition, while 
coffee husk and tea waste had lower Rp values of − 9.58 %/min and 
− 9.81 %/min, respectively.

Comparing these results with previous studies reveals some inter
esting observations. For coffee husk, the second stage was observed in 
the temperature range from 215 ◦C to 425 ◦C, with a 44.87 % weight loss 
and a second peak in the DTG curve at 345 ◦C. This is similar to the 
findings of Nam et al. [66], who reported the second stage occurring 
between 238 ◦C and 400 ◦C, with a weight loss of 50–60 % and a peak at 
310 ◦C. For groundnut shell, the second stage in this study occurs be
tween 205 ◦C and 415 ◦C, whereas Mishra & Vinu [107] reported the 
second stage spanning 150 ◦C to 600 ◦C, involving the decomposition of 
hemicellulose (200–350 ◦C) and cellulose (350–600 ◦C) into lower 
molecular weight compounds.

For macadamia nutshell, this study found the temperature range for 
devolatilization to be between 175 ◦C and 440 ◦C, with a Tp,max at 
382 ◦C. Linh et al. [69] reported a Tp,max of 295 ◦C within a temperature 
range of 220 ◦C to 450 ◦C, indicating a higher maximum peak temper
ature in the current study. In the case of rice husk, the devolatilization 
stage in this study occurs between 180 ◦C and 435 ◦C, while Kumar et al. 
[72] reported a range of 240 ◦C to 500 ◦C, showing a lower initial 
temperature for this stage in the present analysis. For tea waste, this 
study showed an initial temperature (Ti) of 185 ◦C, a maximum peak 
temperature (Tp,max) of 358 ◦C, and an Rp,max of − 9.81 %/min. 
Comparatively, Alashmawy et al. [75] reported Ti, Tp,max, and Rp,max at a 
heating rate of 20 ◦C/min as 196.17 ◦C, 340.47 ◦C, and − 6.97 %/min, 
respectively, suggesting a slightly lower initial temperature and a higher 
maximum peak temperature in the current study.

3.1.3. Char formation stage
In the char formation stage, which occurs at higher temperatures 

ranging from 415 ◦C to 440 ◦C initially and up to 950 ◦C for all materials, 
the focus is on transforming the remaining solid residue into char. Coffee 
husk exhibits a significant weight loss of 36.49 % at temperatures above 

486 ◦C. Groundnut shell, macadamia nutshell, and tea waste show 
weight losses of 34.98 %, 34.4 %, and 44.86 %, respectively. Rice husk 
has the lowest weight loss at 28.32 %. The peak temperature (Tp) for 
char formation varies significantly among the materials, with macad
amia nutshell showing the highest Tp at 624 ◦C, indicating higher 
resistance to thermal degradation. Groundnut shell, rice husk, and tea 
waste also exhibit high Tp values of 516 ◦C, 534 ◦C, and 552 ◦C, 
respectively, with tea waste having an additional peak at 914 ◦C, sug
gesting complex thermal degradation behavior. The rate of weight loss 
(Rp) during char formation is generally lower compared to the previous 
stages, indicating a slower and more gradual char formation process. 
Groundnut shell and rice husk show the lowest Rp values of − 2.628 
%/min and − 2.360 %/min, respectively. Tea waste, with two Rp values 
of − 2.918 %/min and − 1.714 %/min, also indicates a complex and 
prolonged char formation process.

When comparing these results with previous studies, some inter
esting observations emerge. For coffee husk, Nam et al. [66] revealed 
that the third stage of weight loss occurs at higher temperatures above 
400 ◦C, known as the intermediate decomposition along with the ther
mal degradation of lignin at a lower rate. In this study, it occurs at 
temperatures above 425 ◦C, showing a slight shift to higher tempera
tures. For groundnut shell, Mishra & Vinu [107] reported the third stage 
occurring at temperatures above 600 ◦C, whereas in this study, the stage 
starts at temperatures above 415 ◦C, indicating a lower temperature 
range for the char formation stage. For rice husk, Kumar et al. [72] re
ported the char formation stage occurring at temperatures above 500 ◦C. 
In this study, it occurs at temperatures above 435 ◦C, indicating a lower 
initial temperature for this stage. Linh et al. [69] reported the char 
formation stage for macadamia nutshell starting from 450 ◦C, which is 
close to the present study’s finding of beyond 440 ◦C. Alashmawy et al. 
[75] reported the char formation stage for tea waste occurring at tem
peratures beyond 558.15 ◦C. In contrast, this study found it occurring at 
temperatures beyond 430 ◦C, indicating a lower temperature range for 
the onset of char formation.

For all pyrolysis stages, the observed similarities, such as the weight 
loss percentages and the peak temperatures for drying, devolatilization 
and char formation, indicate consistent thermal behavior across 
different studies for certain materials. However, discrepancies in the 
temperature ranges and peak temperatures highlight the variability in 
biomass characteristics and experimental conditions. These differences 
could be due to variations in initial moisture content, sample prepara
tion, and heating rates used in different studies.

3.2. Pyrolysis property parameters

Pyrolysis parameters provide critical insights into the thermal 
degradation behavior of various biomass waste materials [89]. This 
section discusses key parameters (Table 5), including the mean reac
tivity (RM), comprehensive pyrolysis index (CPI), devolatilization index 
(Ddev), and pyrolysis stability index (Rw). Understanding these parame
ters is essential for optimizing pyrolysis processes and improving the 
efficiency of biomass conversion to bioenergy and biochar.

The RM values for different stages of pyrolysis provide insights into 
the reactivity of the biomass materials. In stage I, coffee husk has the 
highest mean reactivity at − 3.48 %/min◦C, indicating high reactivity at 
the initial stage of pyrolysis. In contrast, macadamia nutshell shows 
lower reactivity in stage I at − 1.96 %/min◦C. In stage II, macadamia 
nutshell exhibits higher reactivity at − 4.64 %/min◦C, indicating sig
nificant decomposition activity. The total mean reactivity (RMtot) is 
highest for groundnut shell at − 7.11 %/min◦C, suggesting it is highly 
reactive overall, followed by macadamia nutshell at − 6.99 %/min◦C. 
The RMtot of groundnut shell is higher than that of other biomasses due 
to its high volatile matter content, faster decomposition rates, and 
reactive lignocellulosic structure, which collectively accelerate its 
thermal degradation during pyrolysis [107]. While tea waste has the 
lowest RMtot (− 4.89 %/min◦C) due to its high lignin content, stable char 
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formation, and lower volatile matter, resulting in a slower overall 
thermal decomposition rate during pyrolysis.

The CPI reflects the overall pyrolysis performance. Macadamia 
nutshell exhibits the highest CPI at 194 × 10− 5 %3⋅◦C− 3⋅min− 2, indi
cating superior overall pyrolysis efficiency and performance. Groundnut 
shell follows with a CPI of 101 × 10− 5 %3⋅◦C− 3⋅min− 2, showing good 
pyrolysis characteristics. Coffee husk, tea waste, and rice husk have 
lower CPI values, indicating moderate to low overall pyrolysis perfor
mance. These CPI values suggest that macadamia nutshell is the most 
efficient biomass material for pyrolysis, followed by groundnut shell 
[89]. The higher CPI for macadamia nutshell is due to its higher volatile 
content, lower ash content, and denser structure, which promote rapid 
and efficient decomposition during pyrolysis. In contrast, rice husk has a 
lower CPI because of its high silica and ash content, which reduce 
reactivity and slow down the thermal degradation process.

The Ddev indicates the efficiency of devolatilization during pyrolysis. 
Macadamia nutshell has the most negative Ddev value at − 2101.9 
%/min◦C3, indicating highly efficient devolatilization due to its high 
volatile content and lower ash content, which facilitate rapid thermal 
decomposition. Additionally, the nutshell’s dense structure enables 
effective heat transfer and rapid release of volatiles, resulting in a more 
concentrated and efficient devolatilization phase compared to other 
biomass types. Groundnut shell also shows a high devolatilization effi
ciency with a Ddev value of − 1488.6 %/min◦C3. Coffee husk and tea 
waste have moderate Ddev values, while rice husk has a relatively lower 
devolatilization efficiency, indicated by a Ddev value of − 1766.4 
%/min◦C3. These differences in Ddev values highlight the varying effi
ciencies of devolatilization for different biomass materials.

The Rw provides insights into the thermal stability of the biomass 
materials during pyrolysis. Macadamia nutshell has the highest Rw value 
at 3.3 %/min◦C2, indicating high thermal stability. Groundnut shell 
follows with an Rw value of 1.8 %/min◦C2. Rice husk and coffee husk 
have similar Rw values around 1.9 %/min◦C2 and 1.3 %/min◦C2, 
respectively. Tea waste has an Rw value of 1.6 %/min◦C2. These Rw 
values suggest that macadamia nutshell is the most thermally stable 
biomass material during pyrolysis, followed by groundnut shell. Mac
adamia nutshell has the highest Rw due to its complex lignocellulosic 
structure and lower ash content, allowing it to maintain structural 
integrity over a broader temperature range. This results in a more 
gradual decomposition, reflecting greater resistance to thermal degra
dation [89]. Conversely, coffee husk has the lowest pyrolysis stability 
index due to its higher hemicellulose content and lower lignin content, 

which lead to faster decomposition at lower temperatures, making it less 
thermally stable during pyrolysis.

In conclusion, the macadamia nutshell exhibits higher CPI and Rw 
compared to other biomass types due to its intense thermal degradation 
characteristics. It has the highest maximum decomposition rate (− 17.6 
%/min) and a narrow half-peak width temperature range (55 ◦C), 
indicating a rapid and concentrated pyrolysis reaction. This high reac
tivity, particularly during the devolatilization stage (− 4.64 %/min◦C), 
suggests an efficient breakdown of organic matter into volatiles, 
resulting in a high CPI and stability index. Despite its high CPI and Rw, 
the macadamia nutshell has a low residue weight (3.42 %), reflecting a 
highly efficient conversion process with minimal char remaining [27]. 
In contrast, tea waste, which has the lowest residue weight (0.3 %), 
shows lower CPI and Rw values due to its slower decomposition rate 
(− 9.8 %/min) and wider temperature range (75 ◦C), suggesting a less 
concentrated and less reactive pyrolysis process. These differences 
highlight the distinct pyrolysis behaviors of these biomass types, driven 
by their specific compositions and thermal properties.

3.3. Kinetic analysis

Model fitting is a crucial aspect of analyzing pyrolysis data, as it 
allows for the quantification and comparison of kinetic parameters 
across different biomass waste materials including the coffee husk, 
groundnut shell, macadamia nutshell, rice husk and tea waste. This was 
done using OriginPro2024b statistical software. By fitting experimental 
data to various kinetic models, meaningful parameters were extracted 
which provided insights into the thermal degradation behavior of these 
biomass materials.

Four different temperature ranges were considered including stage I 
(drying, 25 ◦C to Tf), stage II (devolatilization, Ti to Tf), stage III (char 
formation, Tf to 950 ◦C), and the full temperature range (25 ◦C to 
950 ◦C). To estimate the best-fitted reaction model for each stage of 
biomass pyrolysis and over full range temperature (single-step 
approach), we applied the Coats-Redfern method and assessed the fit of 
different reaction models to the TGA data. For each stage of degradation, 
we calculated the coefficient of determination (R2) to evaluate the 
goodness-of-fit of the different reaction mechanism functions and 
analyzed the residuals to minimize discrepancies between experimental 
and predicted values. Since biomass pyrolysis is a multi-step process 
involving overlapping reactions with different thermal stabilities, the 
best-fitted reaction model varied across different stages as highlighted in 

Table 5 
Pyrolysis parameters for different biomass waste materials.

Parameters Coffee husk Groundnut shell Macadamia nutshell Rice husk Tea waste

Initial devolatilization temperature (Ti, oC) 215 205 175 180 185
DTG maximum peak temperature (Tp,max, oC) 345 360 380 368 358
Final devolatilization temperature (Tf, oC) 425 415 440 435 430
Initial devolatilization time (ti, min) 9.50 9.00 7.50 7.75 8.00
DTG maximum peak time (tp, min) 16.00 16.75 17.75 17.15 16.65
Final devolatilization time (tf, min) 20.00 19.50 20.75 20.50 20.25
Residue weight (m∞, %) 5.13 6.01 3.42 16.23 0.30
Weight loss for entire pyrolysis (Mf, %) 94.87 93.99 96.58 83.77 99.7
Maximum decomposition rate (− Rp,max, %/min) 9.56 12.11 17.60 10.80 9.80
Average decomposition rate (− Rv, %/min) 4.24 4.57 4.18 3.71 3.87
Half-peak time at the lower intersect of DTG (t1, min) 13.80 14.65 16.00 14.60 14.25
Half-peak time at the upper intersect of DTG (t2, min) 17.50 18.15 18.75 18.60 18.00
Half-peak width time range (Δt1/2, min) 3.70 3.50 2.75 4.00 3.75
Half-peak time at the upper intersect of DTG (T1, oC) 301 318 ‘345 317 310
Half-peak time at the upper intersect of DTG (T2, oC) 377 388 400 397 385
Half-peak width temperature range (ΔT1/2, oC) 76 70 55 80 75
Mean reactivity for stage I (RM1, %/minoC) − 3.48 − 3.25 − 1.96 − 2.40 − 1.62
Mean reactivity for stage II (RM2, %/minoC) − 1.00 − 3.35 − 4.64 − 2.92 − 2.74
Mean reactivity for stage III (RM3, %/minoC) − 0.92 − 0.51 − 0.38 − 0.44 − 0.50
Pyrolysis stability index (Rw, 109. %/minoC2) 1.3 1.8 3.3 1.9 1.6
Devolatilization index (Ddev, %/minoC3); − 1165.9 − 1488.6 − 2101.9 − 1766.4 − 1422.3
Total mean reactivity (RMtot, %/minoC) − 5.40 − 7.11 − 6.99 − 5.77 − 4.89
Comprehensive pyrolysis index (CPI, 10− 5⋅%3⋅oC− 3⋅min− 2) 68.2 101.0 194.0 63.3 76.1
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Table 6 
Kinetic parameters for different biomass waste materials determine using the Coat-Redfern integral methods.

Reaction Models Coffee husk Ground nutshell Macadamia nutshell Rice husk Tea waste
A (min− 1) Ea (kJ/mol) R2 A 

(min− 1)
Ea (kJ/mol R2 A 

(min− 1)
Ea (kJ/mo) R2 A 

(min− 1)
Ea (kJ/mol) R2 A 

(min− 1)
Ea (kJ/mol) R2

Diffusion (Drying stage; Start temperature (25 oC) to Initial devolatilization temperature (Ti))
D1 6.21E+06 71.3330 0.7898 1.86E+08 82.8000 0.7241 1.83E+10 98.400 0.8201 4.83E+10 99.7102 0.7716 5.29E+08 88.4419 0.7615
D2 3.65E+06 71.7447 0.7920 1.06E+08 83.1371 0.7258 1.00E+10 98.6305 0.8210 2.73Eþ10 100.0313 0.7841 2.89E+08 88.6680 0.7625
D3 9.54E+05 72.1632 0.7942 2.69Eþ07 83.4783 0.7275 2.43Eþ09 98.8625 0.8219 6.88E+09 100.3569 0.7743 6.99Eþ07 88.8909 0.7637
D4 8.55Eþ05 71.8841 0.8277 2.46E+07 83.2503 0.7263 2.29E+09 98.7083 0.8213 6.34E+09 100.1468 0.7733 6.56E+07 88.7236 0.7634
Geometrical Contraction (Drying stage; Start temperature (25 ◦C) to Initial devolatilization temperature (Ti))
G5 2.55E+02 32.8119 0.7575 2.48E+02 32.8728 0.6979 3.91E+03 41.8753 0.7717 1.53E+03 39.2539 0.7298 2.36E+03 40.9859 0.6263
G6 1.78E+02 32.9163 0.7588 1.72E+02 32.9603 0.6989 2.68E+03 41.9403 0.7724 9.47E+04 39.3460 0.7308 1.61E+03 41.0526 0.6271
Order-based Chemical Reaction (Drying stage; Start temperature (25 ◦C) to Initial devolatilization temperature (Ti))
R7 5.80E+02 33.1265 0.7615 5.53E+02 33.1361 0.7013 8.45E+03 42.0708 0.7738 4.94E+03 39.5312 0.7330 5.10E+03 41.1863 0.6290
R8 7.53E+02 33.7675 0.7695 6.87E+02 33.6706 0.7080 9.85E+03 42.4654 0.7779 6.16E+03 40.0930 0.7393 5.96E+03 41.5911 0.6345
R9 9.83E+02 34.4244 0.7774 8.58E+02 34.2157 0.7147 1.15E+04 42.8647 0.7819 7.70E+03 40.6645 0.7458 6.97E+03 42.0008 0.6399
Diffusion (Devolatilization stage; Initial devolatilization temperature (Ti) to Final devolatilization temperature (Tf))
D1 79.78 39.34 0.9544 222.77 45.833 0.8508 113.49 45.26 0.7663 52.06 40.66 0.7725 113.93 43.26 0.9469
D2 102.92 42.87 0.9534 259.29 49.0480 0.8478 114.81 47.90 0.7631 68.09 43.55 0.7709 112.55 45.76 0.9440
D3 65.45 46.84 0.9517 145.93 52.62 0.8432 55.43 50.82 0.7591 36.14 46.79 0.769 52.23 48.49 0.9406
D4 32.47 44.19 0.9284 78.52 50.23 0.8459 33.03 48.87 0.7617 20.22 44.63 0.7701 31.97 46.67 0.9429
Geometrical Contraction (Devolatilization stage; Initial devolatilization temperature (Ti) to Final devolatilization temperature (Tf))
G5 0.76 17.59 0.9282 1.31 20.66 0.7893 0.83 20.00 0.6847 0.61 17.89 0.6858 0.78 18.86 0.9182
G6 0.67 18.57 0.9284 1.12 21.55 0.7891 0.68 20.72 0.6850 0.52 18.69 0.6880 0.64 19.53 0.9169
Order-based Chemical Reaction (Devolatilization stage; Initial devolatilization temperature (Ti) to Final devolatilization temperature (Tf))
R7 3.70 20.62 0.9282 5.69 23.3851 0.7883 3.19 22.23 0.6851 2.56 20.37 0.6915 2.91 20.93 0.9139
R8 25.70 27.49 0.9238 30.74 29.47 0.7828 13.17 27.22 0.6820 12.82 25.95 0.6965 10.03 25.4 0.9033
R9 217.82 35.37 0.9168 196.54 36.39 0.7750 62.82 32.88 0.6758 75.71 32.34 0.6962 45.76 30.56 0.8916
Diffusion (Char formation stage; Final devolatilization temperature (Tf) to 950 ◦C)
D1 − 4.45E-3 − 3.0393 0.1505 − 4.10E-3 − 2.8207 0.2973 − 3.96E-3 − 2.6985 0.2529 − 5.23E-03 − 4.1056 0.4241 6.24E-04 0.3501 0.0145
D2 9.67E-03 3.3209 0.1152 4.16E-02 7.8595 0.9524 6.40E-02 9.6634 0.9868 5.57E-02 8.7365 0.9353 1.81E-02 6.2128 0.8748
D3 2.32E-01 19.1058 0.7127 2.89E-01 20.9901 0.9750 5.08E-01 24.3334 0.9676 5.25E-01 23.7168 0.9647 6.95E-02 16.4177 0.9354
D4 1.20E-02 7.8386 0.3738 1.19E-01 11.8662 0.9922 4.74E-02 14.1466 0.9954 4.37E-02 13.2564 0.9749 1.10E-02 9.3931 0.9457
Geometrical Contraction (Char formation stage; Final devolatilization temperature (Tf) to 950 ◦C)
G5 − 3.32E-3 − 2.2115 0.1241 1.56E-04 0.0785 0.0144 2.96E-03 1.2819 0.9228 2.26E-03 0.9654 0.3702 − 2.38E-3 − 2.0186 0.6577
G6 3.88E-03 1.8372 0.0723 8.29E-03 3.3593 0.8538 8.33E-03 3.4711 0.8905 1.47E-02 4.7268 0.8404 6.42E-04 0.5128 0.0602
Order-based Chemical Reaction (Char formation stage; Final devolatilization temperature (Tf) to 950 ◦C)
R7 7.55E-01 14.0168 0.7277 4.38E-01 12.1854 0.8048 7.18E-01 14.6753 0.8296 8.94E-01 15.2147 0.8114 8.19E-02 6.9604 0.6156
R8 4.36Eþ05 82.5356 0.8910 4.23E+03 56.6288 0.6574 9.74E+03 62.7875 0.7372 4.39E+04 70.5848 0.6296 7.25E+01 37.2491 0.6176
R9 2.51E+12 171.4493 0.8742 1.84E+12 174.5269 0.7896 8.26E+12 188.104 0.8113 5.36E+12 181.5557 0.8294 7.27E+05 89.1372 0.5831
Diffusion (Full range temperature; Start temperature (25 ◦C) to 950 ◦C); Global single step approach
D1 2.3450 27.0652 0.7184 3.5749 30.0489 0.6968 7.5530 35.3534 0.7896 296.4180 42.6545 0.8349 5.4534 33.6915 0.7717
D2 3.3230 30.1831 0.7795 13.0306 36.5382 0.7644 29.2546 42.1962 0.8404 1138.1110 49.5072 0.8572 6.6336 36.4783 0.8111
D3 4.0529 35.5224 0.8592 9.3430 40.1792 0.8097 19.9607 45.7572 0.8689 787.4701 53.1097 0.8792 4.1821 39.7816 0.8537
D4 1.2510 31.8179 0.8080 4.2270 37.7075 0.7804 9.3430 43.3426 0.8507 364.8730 50.6654 0.8650 2.0625 37.5433 0.8264
Geometrical Contraction (Full range temperature; Start temperature (25 ◦C) to 950 ◦C); Global single step approach
G5 0.1091 11.4478 0.6600 0.1661 12.9718 0.7025 0.2409 15.1402 0.7766 11.9440 23.2346 0.8946 0.0896 11.8556 0.6570
G6 0.1197 12.7906 0.7309 0.1558 13.9059 0.7400 0.2247 16.1159 0.8015 10.9902 24.2234 0.9055 0.0827 12.7696 0.7035
Order-based Reaction (Full range temperature; Start temperature (25 ◦C) to 950 ◦C); Global single step approach
R7 1.2455 16.3180 0.8484 10.2037 161.2618 0.8026 1.4475 18.3888 0.8400 68.4073 26.1059 0.9138 0.5123 14.8741 0.7853
R8 3.04E02 33.4979 0.8306 21.4339 25.2569 0.7991 28.3939 27.7375 0.8209 1.44E03 36.3727 0.8450 7.7957 23.3694 0.8415
R9 2.22E05 55.4796 0.7304 8.62E04 53.6562 0.6578 1.35E05 57.7988 0.6748 1.04E07 68.2814 0.7398 341.4685 36.1779 0.7096
Overall (based on multi- 

step)
8187.4003 60.5947 − 28.9394 37.3008 − 22.7858 37.8826 − 30.1404 36.5609 − 4.3654 31.1210 −
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Table 6. By selecting the model with the highest R2 value and the 
smallest residuals for each stage, we ensured that the kinetic parameters 
accurately reflected the thermal decomposition behavior of the biomass 
[89]. This approach allowed for a more precise understanding of the 
kinetics specific to each stage of degradation. The linear fitting curves 
for different models are observed to have unique patterns for each stage 
and full temperature range. For instance, Fig. 5 compares the different 
linear fitting curves for the full temperature range (25 ◦C to 950 ◦C) of 
the different integral models used.

Estimating kinetic parameters across distinct temperature ranges 
provides a comprehensive understanding of biomass pyrolysis. In the 
range 25 ◦C to Ti, parameters reveal the energy required for moisture 
removal. The range Ti to Tf focuses on the primary decomposition, 
highlighting volatile release and weight loss, while Tf to 950 ◦C captures 
secondary reactions, including char formation from more stable com
ponents. Analyzing the full temperature range (25 ◦C to 950 ◦C) in
tegrates these stages, offering a complete view of thermal degradation, 
enabling optimization of conditions for desired yields and product 

Fig. 5. Fitting curves of the integral method for estimating the kinetic parameters (full temperature range 25 ◦C to 950 ◦C) of (a) coffee husk, (b) groundnut shell, (c) 
macadamia nutshell, (d) rice husk, (e) tea waste.
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quality across different biomass types.

3.3.1. Best fit models for coffee husk
For coffee husk, the D3 diffusion model was the best fit across the full 

temperature range, with an R2 value of 0.8592, an Ea of 35.52 kJ/mol, 
and an A value of 4.05 min− 1, indicating that a three-dimensional 
diffusion mechanism governs the overall pyrolysis process. In drying 
stage, the D4 diffusion model was the most suitable, achieving an R2 of 
0.8277, an Ea of 71.88 kJ/mol, and an A of 8.55E+05 min− 1, suggesting 
a complex diffusion process due to the removal of moisture. During 
devolatilization stage, the D1 diffusion model provided the best fit, with 
an R2 of 0.9544, an Ea of 39.35 kJ/mol, and an A of 79.78 min− 1, 
reflecting a simpler mechanism as volatiles are released. In char for
mation stage, the R8 second-order reaction model was optimal, with an 
R2 of 0.8910, an Ea of 82.54 kJ/mol, and an A of 4.36E+05 min− 1, 
indicating that a reaction-based model better describes the formation of 
stable char. These results underscore the multi-mechanistic nature of 
coffee husk pyrolysis.

3.3.2. Best fit models for groundnut shell
For groundnut shell, the D3 diffusion model provided the best fit over 

the full temperature range, with an R2 value of 0.8097, an Ea of 40.18 
kJ/mol, and an A of 9.34 min− 1, suggesting a three-dimensional diffu
sion mechanism governs the overall pyrolysis. In drying stage, the D3 
diffusion model also performed best, achieving an R2 of 0.7275, an Ea of 
83.48 kJ/mol, and an A of 2.69E+07 min− 1, indicating it effectively 
captures the initial moisture removal phase. For devolatilization stage, 
the D1 diffusion model was most appropriate, with an R2 of 0.8508, an 
Ea of 45.83 kJ/mol, and a high A of 222.77 min− 1, suggesting a one- 
dimensional diffusion mechanism. In char formation stage, the D4 
model again showed the best fit, with an R2 of 0.9922, an Ea of 11.87 kJ/ 
mol, and an A of 11.9 min− 1, reflecting continued diffusion as stable 
char is formed. This indicates that groundnut shell pyrolysis is charac
terized by different diffusion mechanisms at various stages, reflecting its 
complex thermal decomposition.

3.3.3. Best fit models for Macadamia nutshell
For macadamia nutshell, the D3 diffusion model consistently showed 

the best fit across all temperature ranges, with an R2 of 0.8689, an Ea of 
45.76 kJ/mol, and an A of 19.96 min− 1, indicating a dominant three- 
dimensional diffusion mechanism. In drying stage, the D3 diffusion 
model was also optimal, with an R2 of 0.8219, an Ea of 98.86 kJ/mol, 
and an A of 2.43E+09 min− 1, suggesting strong moisture removal 
characteristics. During devolatilization stage, the D1 model provided a 
good fit, with an R2 of 0.7663, an Ea of 45.26 kJ/mol, and an A of 113.49 
min− 1, indicating one-dimensional diffusion. In char formation, the D4 
model performed best, with an R2 of 0.9954, an Ea of 14.15 kJ/mol, and 
an A of 0.05 min− 1, suggesting continued three-dimensional diffusion 
during char formation. These findings indicate that the pyrolysis of 
macadamia nutshell is predominantly governed by diffusion processes 
across all stages.

3.3.4. Best fit models for rice husk
For rice husk, the R7 first-order reaction model was consistently the 

best fit across all temperature ranges, achieving an R2 of 0.9138, an Ea of 
26.11 kJ/mol, and an A of 68.41 min− 1, pointing to a first-order reaction 
mechanism throughout the pyrolysis. In drying stage, the D2 diffusion 
model showed good performance, with an R2 of 0.7841, an Ea of 100.03 
kJ/mol, and an A of 2.73E+10 min− 1, indicating significant energy re
quirements for moisture removal. During devolatilization, the D1 model 
was suitable, with an R2 of 0.7725, an Ea of 40.66 kJ/mol, and an A of 
52.06 min− 1, suggesting one-dimensional diffusion. In char formation, 
the D4 model demonstrated the best fit, with an R2 of 0.9749, an Ea of 
13.26 kJ/mol, and an A of 0.04 min− 1, indicating continued diffusion as 
char is formed. These findings highlight the dominant role of diffusion 
processes in the pyrolysis of rice husk [110].

3.3.5. Best fit models for tea waste
For tea waste, the D3 diffusion model consistently provided the best 

fit across all temperature ranges, achieving an R2 of 0.8537, an Ea of 
39.78 kJ/mol, and an A of 4.18 min− 1, suggesting that a three- 
dimensional diffusion mechanism effectively describes its pyrolysis. In 
drying stage, the D3 diffusion model was optimal, with an R2 of 0.7637, 
an Ea of 88.89 kJ/mol, and an A of 6.99E+07 min− 1, indicating a 
complex mechanism for moisture removal. During devolatilization 
stage, the D1 diffusion model showed a high fit, with an R2 of 0.9469, an 
Ea of 43.26 kJ/mol, and an A of 113.93 min− 1, pointing to a one- 
dimensional diffusion mechanism. In char formation, the D4 model 
again demonstrated the best performance, with an R2 of 0.9457, an Ea of 
9.39 kJ/mol, and an A of 0.01 min− 1, reflecting ongoing diffusion during 
char formation. Overall, the results suggest that tea waste pyrolysis is 
predominantly governed by diffusion mechanisms, reflecting its com
plex thermal decomposition profile [110].

3.4. Kinetic parameters variations across different stages

For drying stage, as shown in Fig. 6a, the Ea and A vary significantly 
among the biomass types, reflecting their different moisture content and 
drying characteristics. Rice husk shows the highest Ea (100.03 kJ/mol) 
and A (2.73E+10 min− 1), suggesting that it requires more energy to 
remove moisture due to its dense structure and high silica content, 
which hinders moisture release. Macadamia nut shell also exhibits high 
Ea (98.86 kJ/mol) and A (2.43E+09 min− 1), indicating a substantial 
energy requirement for drying, likely due to its thicker cell walls and 
complex structure. In contrast, Coffee husk has the lowest Ea (71.88 kJ/ 
mol) and A (8.55E+05 min− 1), reflecting easier moisture loss, likely due 
to its less dense structure. Tea waste and Groundnut shell show mod
erate Ea and A values, indicating intermediate drying behaviors. These 
variations highlight the impact of biomass physical properties and 
structure on their drying kinetics.

During devolatilization, the biomass wastes showed distinct thermal 
decomposition behaviors. Groundnut shell exhibited the highest Ea 
(45.83 kJ/mol) and A (222.77 min− 1), suggesting a more energy- 
intensive devolatilization process due to its dense structure (Fig. 6b). 
Macadamia nutshell had a similar Ea (45.26 kJ/mol) but a lower A value 
(113.49 min− 1), indicating a comparable but slightly less complex 
decomposition pathway than the groundnut shell. Tea waste displayed a 
slightly lower Ea (43.26 kJ/mol) but a similar A value (113.93 min− 1), 
suggesting similar reaction kinetics but slightly less energy required for 
decomposition [98]. In contrast, coffee husk and rice husk had the 
lowest Ea (39.35 and 40.66 kJ/mol) and A values (79.78 and 62.06 
min− 1), indicating easier thermal breakdown due to their more acces
sible structures.

During the char formation stage, coffee husk exhibited the highest Ea 
(82.54 kJ/mol) and A values (435,925.57 min− 1), suggesting that its 
thermal degradation is significantly more energy-demanding and 
kinetically complex (Fig. 6c). This contrasts sharply with the other 
biomass wastes, which showed much lower Ea and A values, indicating 
less energy-intensive decomposition [98]. Groundnut shell (11.87 kJ/ 
mol), macadamia nut shell (14.15 kJ/mol), rice husk (13.26 kJ/mol), 
and tea waste (9.39 kJ/mol) all displayed low activation energies, 
suggesting easier char formation with less energy required. The very low 
pre-exponential factors for macadamia nutshell, rice husk, and tea waste 
also reflect simpler reaction pathways compared to coffee husk.

3.5. Comparison of overall and global kinetic parameters

The kinetic parameters, specifically the Ea and the A, were deter
mined for various biomass feedstocks using two different approaches: 
the multi-step method (overall kinetic parameters) and the global single- 
step method (global kinetic parameters) [106,125]. The comparison of 
these results reveals notable differences in the values obtained, high
lighting the distinct decomposition characteristics of each biomass type 

O. Bongomin et al.                                                                                                                                                                                                                              Energy Conversion and Management: X 24 (2024) 100723 

13 



and the implications of using different modeling approaches.

3.5.1. Overall and global activation energy
The global single-step approach (Fig. 6d) generally shows lower Ea 

values for most biomass types compared to the overall multi-step 
approach (Fig. 6e), highlighting the complexity of the pyrolysis pro
cess. For example, coffee husk shows a significantly higher Ea in the 
multi-step approach (60.59 kJ/mol) than in the single-step (35.52 kJ/ 
mol), indicating multiple reactions with varying energy requirements 
that are better captured in the multi-step model. This Ea is slightly higher 
than the 56.60 kJ/mol reported by Alashmawy et al. [75], likely due to 
differences in experimental conditions and kinetic models.

Groundnut shell and macadamia nutshell show slight differences in 
Ea between the two approaches, with overall values (37.30 kJ/mol and 
37.88 kJ/mol, respectively) being somewhat lower than global values 
(40.18 kJ/mol and 45.76 kJ/mol). These results align with Collins & 
Ghodke [126], who reported Ea values of 40.16 kJ/mol and 49.58 kJ/ 
mol, suggesting consistent thermal degradation behavior across studies. 

The lower Ea for macadamia nutshell compared to the much higher 
values for its components reported by Xavier et al. [68] reflects a more 
integrated, less energy-intensive pyrolysis pathway.

For rice husk, the overall Ea (36.56 kJ/mol) is higher than the global 
Ea (26.11 kJ/mol), contrasting sharply with the much higher Ea reported 
by Kumar et al. [72] using different models (219.67–222.19 kJ/mol). 
This suggests simpler kinetics in the current study. Tea waste shows a 
lower overall Ea (31.12 kJ/mol) than the global Ea (39.78 kJ/mol), 
aligning with the findings by Alashmawy et al. [75] that indicated more 
complex degradation at different heating rates.

The findings indicate that the multi-step approach provides a more 
detailed understanding of pyrolysis kinetics by capturing varying energy 
requirements across different stages, while the single-step model offers a 
simplified, less accurate view of biomass degradation [106].

3.5.2. Overall and global pre-exponential factor
The pre-exponential factor (A) indicates the frequency of molecular 

collisions leading to decomposition. The multi-step approach often 

Fig. 6. Comparison of the kinetic parameters of the different biomass waste materials. (a) drying stage, (b) devolatilization stage, (c) char formation stage (d) global 
single-step approach, (e) overall multi-step approach. CH: coffee husk, GS: groundnut shell, MS: macadamia nutshell, RH: rice husk, TW: tea waste.
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provides higher overall A values, capturing multiple reaction pathways 
more effectively than the single-step approach (global A values). For 
example, coffee husk’s overall A value is 8187.40 min− 1 (Fig. 6e) 
compared to global A value (4.05 min− 1, Fig. 6d). This is lower than the 
21,137.18 min− 1 reported by Alashmawy et al. [75], suggesting simpler 
reaction mechanisms under different experimental conditions.

Groundnut shell shows higher overall A value (28.94 min− 1) than 
global A value (9.34 min− 1). This contrasts with Collins & Ghodke 
[126], who reported much higher A values (396.32 min− 1 and 4.62 x 
103 min− 1), indicating more complex kinetics under their conditions. 
Similarly, for macadamia nutshell, the global A value (19.96 min− 1) 
closely matches the overall A value (22.79 min− 1), but remains lower 
than values for specific components reported by Xavier et al. [68].

Rice husk’s global A value (68.41 min− 1) is higher than overall A 
value (30.14 min− 1), contrasting with much higher values from Kumar 
et al. [72], suggesting simpler kinetics in this study. For tea waste, both 
approaches yield similar A values (~4.3 min− 1), but Alashmawy et al. 
[75] reported much higher values at different heating rates.

These comparisons highlight that the multi-step approach better 
captures the complex decomposition processes, while the single-step 
model offers a simplified but less detailed kinetic picture [19,106].

3.6. Thermodynamic analysis

The thermodynamic parameters including enthalpy change (ΔH), 
Gibbs free energy change (ΔG), and entropy change (ΔS) for various 
biomass feedstocks were evaluated across different temperature ranges 

using kinetic models (Table 7). These parameters provide insights into 
the thermal stability and energy requirements of the biomass during 
pyrolysis [100].

3.6.1. Enthalpy change
Enthalpy change (ΔH) represents the total change in heat content 

between the reactants and products during the pyrolysis process. This 
parameter is crucial in determining whether the decomposition process 
is endothermic or exothermic, as indicated by the sign of ΔH, which can 
be either positive or negative. Additionally, ΔH is vital for assessing the 
energy required to convert biomass into bioenergy products, making it 
an important thermodynamic indicator in bioenergy production [39].

During the drying stage (Fig. 7a), ΔH values reflect the energy 
required to remove moisture from biomass. Rice husk shows the highest 
ΔH (96.92 kJ/mol), indicating significant energy demand, likely due to 
its moisture retention properties [73]. Macadamia nutshell (95.74 kJ/ 
mol) also has a high ΔH, suggesting a dense structure requiring sub
stantial energy for drying. Coffee husk has a lower ΔH (68.78 kJ/mol), 
indicating less energy is needed for moisture removal, while tea waste 
(85.72 kJ/mol) and groundnut shell (80.39 kJ/mol) exhibit intermedi
ate values, reflecting moderate energy requirements.

In the devolatilization stage (Fig. 7b), ΔH values decrease, indicating 
reduced energy requirements as biomass components decompose. 
Groundnut shell has the highest ΔH (40.56kJ/mol), suggesting a more 
energy-intensive devolatilization process. While coffee husk (34.20 kJ/ 
mol) and rice husk (35.32 kJ/mol) have lower values, indicating easier 
devolatilization. Macadamia nutshell (39.82 kJ/mol) and tea waste 
(38.02 kJ/mol) show intermediate values, reflecting their more complex 
decomposition processes.

During the char formation stage (Fig. 7c), ΔH values are minimal, 
reflecting lower energy requirements as the biomass decomposition 
nears completion. Coffee husk exhibits a relatively high ΔH (76.23 kJ/ 
mol), suggesting it still requires considerable energy, likely due to stable 
lignin components. The other biomass types show much lower ΔH 
values: groundnut shell (5.31 kJ/mol), macadamia nutshell (6.69 kJ/ 
mol), rice husk (6.55 kJ/mol), and tea waste (2.54 kJ/mol), indicating 
that they require minimal energy for char formation.

When considering the full temperature range (Fig. 7d), ΔH values are 
lower, representing the average energy requirement across all pyrolysis 
stages [91]. Macadamia nutshell has the highest ΔH (40.31 kJ/mol), 
suggesting consistent energy demand throughout the process, while rice 
husk (20.77 kJ/mol) and coffee husk (30.39 kJ/mol) show lower values, 
reflecting a more gradual energy requirement [26].

The multi-step approach (Fig. 7e) reveals distinct differences in ΔH 
values, providing a more detailed understanding of stage-specific energy 
requirements. Coffee husk shows a higher overall ΔH (55.46 kJ/mol) in 
the multi-step analysis, indicating that separate stage analysis captures 
more accurately the energy demand. Similarly, groundnut shell (32.03 
kJ/mol), with a ΔH value close to the 29 kJ/mol reported by Xu et al. 
[127], along with macadamia nutshell (32.44 kJ/mol), rice husk (31.22 
kJ/mol), and tea waste (25.88 kJ/mol), show variations in ΔH values. 
These findings demonstrate that the multi-step approach provides a 
more detailed understanding of the energy requirements during pyrol
ysis compared to the single-step method [19].

3.6.2. Gibbs free energy change
Gibbs-Free Energy Change (ΔG) indicates the amount of usable en

ergy available from the feedstock during pyrolysis and is crucial for 
determining the spontaneity of the decomposition process. A positive 
ΔG implies that the process is non-spontaneous, requiring external en
ergy input [39]. During the drying stage (Fig. 7a), ΔG values indicate the 
spontaneity of moisture removal. Tea waste has the highest ΔG (112.87 
kJ/mol), suggesting the least spontaneous drying process, possibly due 
to its structure or moisture content. Macadamia nutshell (111.32 kJ/ 
mol) also shows a high ΔG, reflecting a non-spontaneous drying process 
likely due to its dense structure. Rice husk, with the lowest ΔG (104.88 

Table 7 
Thermodynamic parameters for different biomass feedstocks.

Biomass waste Tp, (K) A (s-1) ΔH (kJ/ 
mol)

ΔG (kJ/ 
mol)

ΔS (kJ/ 
mol.K)

Stage I (Drying)
Coffee husk 373.15 5.13E+07 68.7832 108.8730 − 0.1074
Groundnut 

shell
371.15 1.61E+09 80.3940 109.6151 − 0.0787

Macadamia 
nutshell

376.15 1.46E+11 95.7367 111.3158 − 0.0414

Rice husk 374.15 1.64E+12 96.9222 104.8818 − 0.0213
Tea waste 382.15 4.19E+09 85.7152 112.8659 − 0.0710
Stage II (Devolatilization)
Coffee husk 618.15 4786.8 34.2032 150.8777 − 0.1887
Groundnut 

shell
634.5 13366.2 40.5573 155.0412 − 0.1804

Macadamia 
nutshell

655.15 6689.4 39.8157 161.9684 − 0.1865

Rice husk 642.15 3123.6 35.3237 159.0094 − 0.1926
Tea waste 631.15 6835.8 38.0151 155.3838 − 0.1860
Stage III (Char formation)
Coffee husk 759.15 2.62E+07 76.2271 166.5204 − 0.1189
Groundnut 

shell
789.15 712.0 5.3083 168.3569 − 0.2066

Macadamia 
nutshell

897.15 2.84 6.6913 234.1913 − 0.2536

Rice husk 807.15 2.62 6.5490 211.0638 − 0.2534
Tea waste 825.15 0.661 2.5361 221.2003 − 0.2650
Full temperature range (25 to 950 ◦C)
Coffee husk 618.15 243.2 30.3856 162.3671 − 0.2135
Groundnut 

shell
634.5 560.6 34.9065 166.1128 − 0.2068

Macadamia 
nutshell

655.15 1197.6 40.3129 171.8308 − 0.2007

Rice husk 642.15 4104.4 20.7696 142.9981 − 0.1903
Tea waste 631.15 250.9 34.5367 169.2384 − 0.2134
Overall (based on multi-steps approach)
Coffee husk 618.15 491244.0 55.4579 148.3434 − 0.1503
Groundnut 

shell
634.5 1736.4 32.0310 157.2042 − 0.1974

Macadamia 
nutshell

655.15 1367.1 32.4383 163.2355 − 0.1996

Rice husk 642.15 1808.4 31.2246 157.8268 − 0.1972
Tea waste 631.15 261.9 25.8762 160.3529 − 0.2131
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kJ/mol), indicates a more spontaneous drying, likely due to lower 
moisture content. Coffee husk (108.87 kJ/mol) and groundnut shell 
(109.62 kJ/mol) show intermediate spontaneity.

In the devolatilization stage (Fig. 7b), ΔG values increase, reflecting 
reduced spontaneity as volatiles are released. Macadamia nutshell 
(161.97 kJ/mol) has the highest ΔG, indicating the least spontaneous 
devolatilization, likely due to its complex structure. Rice husk (159.01 
kJ/mol) and tea waste (155.38 kJ/mol) also exhibit high ΔG, while 
coffee husk (150.88 kJ/mol) shows the lowest ΔG, suggesting a more 
spontaneous process.

During the char formation stage (Fig. 7c), ΔG values further rise, 
indicating non-spontaneity in forming stable char residues. Macadamia 
nutshell has a very high ΔG (234.19 kJ/mol), suggesting a highly non- 
spontaneous process due to its dense structure. Tea waste (221.20 kJ/ 
mol) and rice husk (211.06 kJ/mol) also require significant energy, 
whereas coffee husk (166.52 kJ/mol) and groundnut shell (168.36 kJ/ 

mol) show relatively lower ΔG values, reflecting more spontaneous char 
formation.

Across the full temperature range (Fig. 7d), ΔG values provide an 
overview of pyrolysis spontaneity. Macadamia nutshell (171.83 kJ/mol) 
and tea waste (169.24 kJ/mol) have the highest ΔG, indicating resis
tance to thermal degradation, while rice husk (142.99 kJ/mol) has the 
lowest ΔG, suggesting a more spontaneous decomposition. Coffee husk 
(162.37 kJ/mol) and groundnut shell (166.11 kJ/mol) show moderate 
overall spontaneity.

The multi-step approach offers a more detailed perspective on ΔG 
variations (Fig. 7e), with generally lower values for all types: coffee husk 
(148.34 kJ/mol), groundnut shell (157.20 kJ/mol), macadamia nutshell 
(163.24 kJ/mol), rice husk (157.83 kJ/mol), and tea waste (160.35 kJ/ 
mol) than the single-step analysis, indicating increased spontaneity 
when stage-specific energy requirements are considered. This approach 
reveals a more accurate depiction of the pyrolysis process, highlighting 

Fig. 7. Comparison of thermodynamic parameters of the different biomass waste materials. (a) drying stage, (b) devolatilization stage, (c) char formation stage, (d) 
full range temperature (single-step approach), (e) multi-step approach. CH: coffee husk, GS: groundnut shell, MS: macadamia nutshell, RH: rice husk, TW: tea waste.
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the complexities and energy demands of each stage, compared to the 
simplified single-step analysis [106,125].

3.6.3. Entropy change
Entropy change (ΔS) reflects the degree of disorder or randomness 

during the pyrolysis process and can be either negative or positive [14]. 
Negative ΔS values observed across all biomass feedstocks and tem
perature ranges suggest a decrease in randomness, aligning with the 
formation of more ordered solid char and gas products from complex 
biomass structures. During the drying stage (Fig. 7a), all biomass types 
exhibit negative ΔS values, indicating a decrease in disorder as water is 
removed [26]. Rice husk shows the least negative ΔS (− 0.0213kJ/ 
mol⋅K), suggesting minimal reduction in randomness due to its loose 
structure. Macadamia nutshell (− 0.0414 kJ/mol⋅K) also shows a mod
erate decrease in entropy, likely due to its dense structure. In contrast, 
coffee husk (− 0.1074 kJ/mol⋅K), tea waste (− 0.0710 kJ/mol⋅K), and 
groundnut shell (− 0.0787 kJ/mol⋅K) display more negative ΔS values, 
reflecting greater entropy reduction due to stabilization of complex 
structures [106].

In the devolatilization stage (Fig. 7b), ΔS values become more 
negative, indicating the formation of ordered structures as volatiles are 
released [91]. Groundnut shell (− 0.1804 kJ/mol⋅K) and tea waste 
(− 0.1860 kJ/mol⋅K) have less negative value compared to rice husk 
(− 0.1926 kJ/mol⋅K) and macadamia nutshell (− 0.1865 kJ/mol⋅K), 
suggesting moderate entropy decreases. Coffee husk shows a slightly 
more negative ΔS (− 0.1887 kJ/mol⋅K), reflecting significant 
reorganization.

During char formation (Fig. 7c), ΔS values are highly negative, 
showing further reduction in disorder as stable char forms. Tea waste 
(− 0.2650 kJ/mol⋅K) exhibits the most negative ΔS, indicating extensive 
ordering. Macadamia nutshell (− 0.2536 kJ/mol⋅K) and rice husk 
(− 0.2534 kJ/mol⋅K) also show significant entropy reductions. 
Groundnut shell (− 0.2066 kJ/mol⋅K) and coffee husk (− 0.1189 kJ/ 
mol⋅K) have less negative value, suggesting less ordered char formation 
[128].

For the full temperature range (Fig. 7d), all biomass types maintain 
negative ΔS values, with tea waste (− 0.2134 kJ/mol⋅K) and coffee husk 
(− 0.2135 kJ/mol⋅K) showing the greatest overall reduction in 
randomness. Macadamia nutshell (− 0.2007 kJ/mol⋅K), groundnut shell 
(− 0.2068 kJ/mol⋅K), and rice husk (− 0.1903 kJ/mol⋅K) indicate vary
ing degrees of entropy reduction.

The multi-step approach (Fig. 7e) offers a detailed view of stage- 
specific entropy changes. Tea waste shows the most negative overall 
ΔS (− 0.2131 kJ/mol⋅K), indicating significant entropy reduction. 
Macadamia nutshell (− 0.1996 kJ/mol⋅K) and rice husk (− 0.1972 kJ/ 
mol⋅K) also exhibit substantial negative changes, while groundnut shell 
(− 0.1974 kJ/mol⋅K) and coffee husk (− 0.1503 kJ/mol⋅K) show less 
reduction. These findings underscore the importance of the multi-step 
approach in capturing detailed entropy changes, reflecting the unique 
decomposition pathways of each biomass type [125].

3.7. Implications, limitations and future research directions

The findings from this study provide valuable insights into the py
rolysis behavior of various biomass wastes, highlighting the potential for 
optimizing thermal conversion processes to achieve more efficient en
ergy production and resource recovery. However, certain limitations in 
the experimental conditions and methodologies suggest areas for 
improvement. Future research directions are proposed to enhance the 
applicability and accuracy of these findings, addressing both the meth
odological limitations and exploring new avenues for biomass 
utilization.

3.7.1. Implications
Understanding the thermal decomposition characteristics and ki

netic parameters of various biomass wastes is crucial for optimizing 

pyrolysis processes. By tailoring temperature profiles and heating rates 
to the specific thermal stability and decomposition rates of different 
biomass types, more efficient and higher-yielding pyrolysis processes 
can be developed. The study identifies macadamia nutshells as having 
the highest thermal stability, indicating their suitability for high-value 
applications. In contrast, the lower stability of coffee husk and tea 
waste suggests their potential for faster pyrolysis processes, aiding in the 
selection of appropriate feedstocks based on desired pyrolysis outcomes.

The calculated CPI and Ddev values provide a basis for evaluating the 
efficiency of biomass waste conversion into valuable biofuels and 
chemicals. For instance, the high CPI of macadamia nutshell highlights 
its potential for efficient resource recovery and waste valorization, 
contributing to a circular bioeconomy. Optimizing pyrolysis processes 
based on these findings can lead to more effective biomass waste man
agement, reducing reliance on landfilling and incineration, mitigating 
environmental pollution, and promoting the generation of renewable 
energy and bio-based products, aligning with sustainable development 
goals.

3.7.2. Limitations
The TGA experiments in this study were conducted under controlled 

laboratory conditions, including a fixed heating rate and an inert at
mosphere. However, real-world pyrolysis processes often involve vari
able conditions, such as fluctuating heating rates, different atmospheric 
compositions, and the presence of contaminants, which can significantly 
influence the thermal behavior of biomass wastes. Additionally, this 
study focused on five specific types of biomass waste, each with unique 
thermal properties. Although this provides a useful range of insights, the 
findings may not be entirely generalizable. Further research involving a 
broader spectrum of biomass types, including less studied or uncon
ventional feedstocks, and larger sample sizes would help enhance the 
applicability of these results.

Moreover, the Coats-Redfern method employed in this study, while 
useful for estimating kinetic parameters, assumes a first-order reaction 
model and linearizes the Arrhenius equation. This simplification may 
not adequately represent the complex, multi-step kinetics typically 
observed in biomass pyrolysis, where multiple overlapping reactions 
and varying activation energies occur. The method’s reliance on line
arization can also introduce errors, especially in systems with significant 
deviations from first-order behavior. Therefore, complementary kinetic 
models or advanced computational techniques may be needed to more 
accurately capture the intricate decomposition pathways of different 
biomass materials.

3.7.3. Future research directions
Future research should focus on addressing the limitations identified 

in this study and further enhancing the understanding of biomass py
rolysis. One key area is the application of advanced kinetic analysis 
techniques. Utilizing the Criado master plot method can help determine 
the complex thermochemical reaction mechanisms governing biomass 
pyrolysis, providing deeper insights into the kinetic behavior of different 
materials. Additionally, conducting TGA experiments under multiple 
heating rates and employing advanced isoconversional methods [129], 
can offer a more accurate determination of kinetic and thermodynamic 
properties. Comparisons with other model-fitting approaches, like the 
Distributed Activation Energy Model (DEAM), would also help validate 
and refine the findings of this study.

Incorporating machine learning approaches, such as Artificial Neural 
Networks (ANN), represents another promising direction for future 
research. These models can improve the prediction of kinetic parameters 
and account for complex, non-linear interactions that traditional models 
might overlook [26]. By leveraging large datasets and advanced algo
rithms, machine learning can enhance the understanding of biomass 
pyrolysis and facilitate the development of more accurate and robust 
predictive models.

Exploring the thermal decomposition characteristics of biomass 
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blends is another important area for future research. Investigating 
combinations of different feedstocks, such as rice husk with macadamia 
nutshell or coffee husk with groundnut shell, can reveal potential syn
ergistic effects that improve the efficiency and yield of pyrolysis 
[110,130]. Understanding these interactions can lead to optimized 
blending strategies, maximizing the advantages of different biomass 
types and contributing to more sustainable and efficient biomass con
version processes.

Conclusion

This study comprehensively analyzed the pyrolysis behavior of five 
biomass types including coffee husk, groundnut shell, macadamia 
nutshell, rice husk, and tea waste through the TGA, kinetic modeling, 
pyrolysis indices, and thermodynamic assessment across different stages 
of decomposition. The TGA and DTG analyses indicated that biomass 
pyrolysis occurs in three stages: drying, devolatilization, and char for
mation, each with unique weight loss profiles and decomposition rates. 
These stages highlight the varied thermal stability and reactivity among 
the biomass types. The CPI revealed that macadamia nutshell had the 
highest overall thermal reactivity (194 x 10− 5 %3⋅◦C− 3⋅min− 2), while 
rice husk exhibited the lowest (63.3 x 10− 5 %3⋅◦C− 3⋅min− 2), reflecting 
the energy requirements for decomposition. Ddev confirmed the effi
ciency of macadamia nutshell (− 2101.9 %/min◦C3) in devolatilization, 
while Rw suggested that macadamia nutshell has the highest stability 
(3.3 %/min◦C2) during pyrolysis. Groundnut shell demonstrated the 
highest total Rm at − 7.11 %/min◦C, indicating its rapid thermal 
decomposition rate compared to other biomass types.

The multi-step kinetic analysis revealed significant variations in the 
pyrolysis behavior of different biomass types. Coffee husk exhibited the 
highest Ea (60.59 kJ/mol), indicating a complex and energy-intensive 
decomposition process, while tea waste showed the lowest Ea (31.12 
kJ/mol), reflecting a simpler thermal degradation pathway. The D3 
diffusion model emerged as the best fit for most biomass types, sug
gesting that three-dimensional diffusion predominantly governs the 
pyrolysis process, although variations across stages highlight the multi- 
mechanistic nature of biomass decomposition. Thermodynamic analysis 
further supported these findings, with coffee husk having the highest ΔH 
(55.46 kJ/mol) and relatively lower ΔG (148.34 kJ/mol), indicating a 
high energy demand but moderate spontaneity during pyrolysis. In 
contrast, macadamia nutshell showed the highest ΔG (163.24 kJ/mol), 
reflecting less spontaneous decomposition. Tea waste exhibited the most 
negative ΔS (− 0.2131 kJ/mol⋅K), indicating significant structural 
ordering during pyrolysis, while coffee husk had the least negative ΔS, 
suggesting minimal reorganization.
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