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Abstract 

The multinomial probit (MNP) (Imai and van Dyk, 2005) framework is based on a 

multivariate Gaussian latent structure, allowing for natural extensions to multilevel modeling. 

Unlike multinomial logistic models, MNP does not assume independent alternatives. Kindo 

et al. (2016) proposed multinomial probit BART (MPBART) to accommodate Bayesian 

additive regression trees (BART) formulation in MNP. The posterior sampling algorithms for 

MNP and MPBART are collapsed Gibbs samplers. Because the collapsing augmentation 

strategy yields a geometric rate of convergence no greater than that of a standard Gibbs 

sampling step, it is recommended whenever computationally feasible (Liu, 1994a; Imai and 

van Dyk, 2005). While this strategy necessitates simple sampling steps and a reasonably fast 

converging Markov chain, the complexity of the stochastic search for posterior trees may 

undermine its benefit. We address this problem by sampling posterior trees conditional on the 

constrained parameter space and compare our proposals to that of Kindo et al. (2016), who 

sample posterior trees based on an augmented parameter space. We also compare to the 

approach by Sparapani et al. (2021) that specified the multinomial model in terms of 

conditional probabilities. In terms of MCMC convergence and posterior predictive accuracy, 

our proposals are comparable to the conditional probability approach and outperform the 

augmented tree sampling approach. We also show that the theoretical mixing rates of our 

proposals are guaranteed to be no greater than the augmented tree sampling approach. 

Appendices and codes for simulations and demonstrations are available online.  

 

Keywords: keyword: Data Augmentation, Categorical Outcomes, Latent Models  

  

Acc
ep

te
d 

M
an

us
cr

ipt



1 Introduction 

Bayesian additive regression trees (BART) (Chipman et al., 2010) is a flexible nonparametric 

Bayesian approach for regression on a recursively binary-partitioned predictor space; it uses 

sum-of-trees to model the mean function such that nonlinearities and interactions along with 

additive effects are naturally accounted for, and regularization priors are imposed to favor 

shallow trees to reduce over-fitting. There has been considerable literature on extending 

BART to various types of outcome variables (Bonato et al., 2011; Low-Kam et al., 2015; 

Sparapani et al., 2016; Waldmann, 2016; Henderson et al., 2020; Linero et al., 2021; Um et 

al., 2022). We consider the extension of BART to multinomial probit models (Imai and van 

Dyk, 2005) (MNP). Existing BART-related work has developed efficient Markov chain 

Monte Carlo (MCMC) algorithms for Gaussian likelihoods, which naturally adapt to 

frameworks with Gaussian-distributed latent variables. However, careful consideration of 

data augmentation (DA) schemes is needed to ensure the computational efficiency of 

implementing BART under the multinomial probit framework. The main contributions of this 

paper are to provide a detailed review of sampling algorithms for parameter expansion that 

are based on DA schemes and to introduce a set of new MCMC algorithms for multinomial 

probit BART (MPBART). 

The motivation for this work stems from the necessity to develop accurate predictive models 

for patient engagement in HIV care (Gardner et al., 2011; WHO, 2012). This requires taking 

into account death and transfer out of care as competing endpoints (Lee et al., 2017). These 

models are used to characterize patient transition through the HIV cascade, which describes 

essential stages of the HIV care continuum: (a) HIV diagnosis through testing, (b) linkage to 

care, (c) engagement in care, (d) initiation of antiviral therapy (ART) through retention, and 

(e) sustained suppression of viral load. The care cascade framework has been widely used as 

a monitoring and evaluation tool for improving and managing HIV healthcare systems. In 

Section 4, we will demonstrate and compare different algorithms for using multinomial 

BART models to characterize engagement and retention in HIV care. 

MNP (Imai and van Dyk, 2005) and multinomial logistic (McFadden, 1974) (MNL) 

regression models are widely used tools for predicting and describing the relationships of 

explanatory variables to multinomial outcomes. Kindo et al. (2016) proposed the MPBART 

framework that fits BART to the multivariate Gaussian latent variables in the MNP. Related 

work incorporating BART into categorical response models is introduced by Murray (2020), 

where BART is extended to log-linear models that include multinomial logistic BART 

(MLBART). Both MNP and MNL regression can be derived from a latent variable 

framework, where each outcome category is a manifestation of a latent utility that depends on 

covariates. The observed categorical outcome is the utility-maximizing category. MNP and 

MNL regression assume the latent utility distribution to be multivariate Gaussian and 

independent extreme-value distribution, respectively. The MNP formulation is appealing 

because it incorporates between-category dependence, a feature that extends naturally to 

MPBART. We will show that allowing non-zero correlations between latent variables can 

have a substantial impact on predictive accuracy.  

There are two difficulties in sampling from posterior distributions of MNP. First, a closed-

form expression for the multinomial outcome’s marginal distribution is not available; second, 

the identifiability of the MNP model requires constraints on the covariance matrix of the 

latent variables, hindering specification of conjugate distributions and making posterior 

sampling challenging. There has been considerable work on Bayesian sampling techniques to 

Acc
ep

te
d 

M
an

us
cr

ipt



address these computational issues based on DA-related methods (Albert and Chib, 1993; 

McCulloch and Rossi, 1994; Nobile, 1998; McCulloch et al., 2000; Imai and van Dyk, 2005). 

The original DA algorithm (Tanner and Wong, 1987) is a stochastic generalization of the EM 

algorithm (Dempster et al., 1977). Marginal data augmentation (MDA) (Meng and Van Dyk, 

1999; Liu and Wu, 1999; Van Dyk and Meng, 2001) generalizes and accelerates the DA 

algorithm via parameter expansion such that full conditionals are easier to sample from and 

expansion parameter(s) are subsequently marginalized over. Heuristically, the MDA Gibbs 

sampler can traverse the parameter space more efficiently with the extra variation induced by 

the expansion parameter(s), resulting in possible computational gains, including a faster 

mixing rate (Meng and Van Dyk, 1999; Liu and Wu, 1999). The MDA scheme circumvents 

the difficulties in sampling from a constrained parameter space and allows an easier and more 

efficient joint sampling of expansion parameters and transformed model parameters. Imai and 

van Dyk (2005) unified several previous proposals under the umbrella of MDA, examined 

different prior specifications of the model parameters, and outlined two adaptations of the 

MDA scheme for posterior sampling of the MNP based on parameter expansion.  

Building upon the work of Imai and van Dyk (2005), Kindo et al. (2016) proposed an 

algorithm, which we refer to as KD, for fitting the MPBART. Our own implementation of 

KD yielded oversized posterior trees from overfitting and difficulty in posterior 

convergence.We therefore propose two alternative procedures for fitting the MPBART that 

have simpler algorithmic structure, improved convergence in the sum-of-trees and the 

covariance matrix, and a mixing rate at least as good as the original procedure when the 

Markov chain reaches equilibrium. Our algorithms show better out-of-sample accuracy and 

stability in predictive tasks under various settings when evaluated in terms of posterior 

predictive distribution and posterior mode. The posterior mode accuracy is commonly used as 

an evaluation metric in supervised learning literature (Kindo et al., 2016). Our proposals are 

based on the idea of fitting the sum of trees in a normalized parameter space to reduce 

disruptions to the stochastic search of posterior trees, resulting in a less difficult convergence 

of the Markov chain. 

In every step of the Gibbs sampler, the MDA scheme requires (1) the joint sampling of 

expansion parameter(s) and transformed model parameters, and (2) the marginalization over 

the expansion parameter. However, the two actions are not always feasible for complicated 

Gibbs sampling problems. For example, sampling the functional mean component jointly 

with an expansion parameter in an MPBART algorithm is difficult because posterior trees are 

sampled by stochastic search. Thus, instead of MDA schemes, algorithms for MNP and 

MPBART are in fact partially marginalized augmentation (PMA) samplers (van Dyk, 2010), 

which relaxes the fully marginalized structure of the MDA and can lead to improvements in 

convergence rate when more steps involve joint sampling and marginalization of the 

expansion parameter(s)’ components. Contrary to the intuition regarding PMA samplers that 

more augmented posterior sampling steps are associated with improved posterior 

convergence, we illustrate that when sophisticated Metropolis-Hastings or stochastic search is 

involved in complex samplers, certain steps may be sensitive to or undermined by the 

incorporation of expansion parameters. This motivates the need for new algorithm design 

considerations. 

This paper is structured as follows. Section 2.1 describes the formulation of MNP and 

MPBART frameworks; Section 2.2 reviews sampling schemes for the MNP, including DA 

and MDA; Section 2.3 connects the sampling schemes to the algorithms for fitting the MNP; 

Section 2.4 describes the existing algorithms and introduces our new proposals for fitting the 
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MPBART; and Section 2.5 provides a theoretical evaluation of different MPBART 

algorithms in terms of the mixing rate under stationarity. Section 3 compares multiple BART-

related multinomial outcome models, including our proposals, on simulated datasets under 

different settings, and Section 4 demonstrates the comparison on a real-world dataset from a 

large HIV care program in Kenya. Section 5 summarizes the conclusions. 

2 Method 

2.1 General Background 

For the categorical outcome S, which takes value in {0 , , }C , the general latent variable 

framework for multinomial models assumes that S is a manifestation of unobserved latent 

utilities 1

0
( , , )

T C

C
Z Z Z


    , where ( ) arg m ax ,

l l
S S Z Z   i.e. S k  if 

k l
Z Z  for all 

l k . In general, C is the number of outcome categories minus one. The framework requires 

normalization for identifiability because S is invariant to a translation or a scaling (by a 

positive constant) of Z. Without loss of generality, we assume that the reference outcome 

category is 0; the normalization is achieved by first characterizing S as a function of latent 

variables 
1

( , , )
T C

C
W W W   , such that 

0l l
W Z Z   and 

if  m ax ( ) 0
( )

0 if  m ax ( ) 0 .

l
l W W

S W
W

 
 



 (1) 

The MNP models W in terms of covariates X and accounts for correlation across outcome 

levels by assuming W follows a multivariate normal model 

( ) ~ M V N ( ( ; ) , ) ,W X G X    (2) 

where 
1 1 1

( ; ) ( ( ; ) , , ( ; )) , ( , , )
T T

C C C
G X G X G X          and { }

i j
   is a C C  

positive definite symmetric matrix. 

Identifiability of the model requires normalizing the scale of W because by definition the 

outcome S is invariant to a multiplication of W by any positive constant. From (2), the 

normalization for scale occurs by imposing a constraint on the covariance matrix  , i.e. 

t ra c e ( ) C   (Burgette and Nordheim, 2012). To illustrate, suppose there are latent variables 

W  such that 

( ) ~ M V N ( ( ; ) , ) ,W X G X    (3) 

where ( ) ( )W X W X , ( ; ) ( ; )G X G X   , 2
   , and 0  . By (1), W  and W yield 

the same S. However, if   satisfies the trace constraint, W is the normalized counterpart of 

W  and 2
trace ( ) / C    is a positive scalar that ensures a one-to-one mapping from W to 

W . 

Direct posterior sampling of parameters in (2) is difficult due to the constraint on  . A 

technique for easier sampling is to augment the parameter space such that it is possible to 

specify a conjugate prior so that target parameters can be obtained by converting samples 
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back to the normalized scale. The obvious choice of augmented parameter space is the one 

without the normalization for scale, i.e. ( , , )W    in (3). Imai and van Dyk (2005) suggested 

a constrained inverse Wishart prior for   such that its joint distribution with 2
  is equivalent 

to the unconstrained covariance matrix having prior distribution ~ in v-W ish art ( , )  . This 

makes it possible to sample easily from the conditional posterior of  . Setting 1C    and 

  to be an identity matrix is equivalent to sampling the corresponding correlations of   

from a uniform distribution. When 1C   , the expectation of   has a closed form 

( ) / ( 1)E C     . 

The standard framework for MNP regression assumes a linear model specification for each 

( )
l

W X , i.e. ( ; )
l l l

G X X   for 1, ,l C  . Kindo et al. (2016) proposed MPBART to 

increase the predictive power and the flexibility in dealing with complicated nonlinear and 

interaction effects. The innovative idea is to approximate each mean component of ( )W X  

using a sum of m trees, 
1

( ; ) ( ; ) ,

m

l l lk

k

G X g X 



   where 1, ,l C   and 
lk

  is the set of 

parameters corresponding to the kth binary tree for the lth latent variable, ( )
l

W X . MPBART 

uses the same Bayesian regularization prior on the trees to restrict over-fitting as in Chipman 

et al. (2010). An important contribution of Kindo et al. (2016) is deriving from (2) the 

conditional distribution for Gibbs sampling of each individual tree, and embedding it into the 

backfitting procedure of BART. See Chipman et al. (1998) and Chipman et al. (2010) for 

details on the BART backfitting procedure. 

2.2 Review of Data Augmentation 

The goal of data augmentation (DA) schemes is to draw samples of ( , )Y  , where Y and   

represent the augmented data and model parameters, respectively. The sampling algorithm 

Kindo et al. (2016) have for MPBART heavily relies on Imai & van Dyk’s (Imai and van 

Dyk, 2005) work on fitting the MNP, which explores different Gibbs samplers of ( , , )W    

under the umbrella of marginal data augmentation (MDA) (Meng and Van Dyk, 1999; Liu 

and Wu, 1999), an extension and improvement of the DA algorithm (Tanner and Wong, 

1987). This section provides a brief overview of relevant developments on the DA algorithm 

for fitting the MPBART. 

Basic data augmentation. For any variable X, let ( )f X  denote the density function of X. We 

illustrate the task of sampling ( , )Y   under the DA algorithm of Tanner and Wong (1987): 

Scheme [DA]  

1. Draw ~ ( | )Y f Y  .  

2. Draw ~ ( | )f Y  .  

Marginalized data augmentation (MDA). The basic idea of MDA versus DA is to expand the 

model and overparameterize ( , )f Y   to ( , , )f Y   ; the expansion parameter   often 

corresponds to a transformation of Y and/or  . For example,   may index a transformation 
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of Y to ( )Y t Y


  where t


 is one-to-one and differentiable, thereby expanding the model 

from ( , )f Y   to ( , , )f Y   . The choice to sample from ( , , )f Y    or ( , , )f Y    depends on 

the specific model, and they are usually interchangeable. This approach is appealing when 

sampling from ( , | )f Y    or ( , | )f Y    is easier than the sampling of Y alone. Liu and Wu 

(1999) and Meng and Van Dyk (1999) simultaneously developed MDA. Liu and Wu (1999) 

provided theoretical results on the convergence rate of the MDA. Meng and Van Dyk (1999) 

introduced the MDA under two augmentation schemes, grouping and collapsing (Liu, 1994a; 

Liu et al., 1994); both procedures lead to the same distribution of ( , )Y   as Scheme [DA]. 

MDA with grouping. The grouping scheme samples conditionally on the expansion parameter 

 , while the collapsing scheme integrates   out from the joint distribution. MDA under the 

grouping scheme is preferred when the sampling of Y or   jointly with   is easier than that 

in Scheme [DA]. For example, when ( | , )f Y   is easier to sample than ( | )f Y , and 

( , | )f Y    is easy to sample, the sampler can “group” Y and   together and treats them as a 

single component, 

Scheme [MDA-G]  

1. Draw ( , ) ~ ( , | )Y f Y   .  

2. Draw ~ ( | , )f Y   .  

MDA with collapsing. MDA under the collapsing scheme “collapses down”   by integrating 

it out from the joint distributions, i.e. ~ ( | ) ( | , ) ( | )Y f Y f Y f d        and 

~ ( | ) ( | , ) ( | )f Y f Y f Y d       . The implementation is as follows: 

Scheme [MDA-C]  

1. Draw ( , ) ~ ( , | )Y f Y    by ~ ( | )f    and ~ ( | , )Y f Y   .  

2. Draw ( , ) ~ ( , | )f Y     by ~ ( | )f Y   and ~ ( | , )f Y   .  

Notice that the newly sampled   is discarded in each step of the Scheme [MDA-C]. In 

practice, it may be reasonable to assume a priori independence between   and   because   

are parameters identified from the observed data, which does not contain information on  . 

Furthermore, given that transforming the augmented data Y is of interest, it may be true that 

the conditional sampling of model parameters   is more plausible under Y  than Y. 

Accordingly, Scheme [MDA-C] can be rewritten as: 

Scheme [MDA-C’]  

1. Draw ( , )Y   by drawing ~ ( )f   and then ~ ( | , )Y f Y   , and compute ( )Y t Y


 .  

2. Draw ( , )   by drawing ~ ( | )f Y   and then ~ ( | , )f Y   .  
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The ( )f   and ( | )f Y  are the prior and posterior (under the transformed augmented data) 

of  , respectively. The optimality of MDA under the collapsing scheme (Scheme [MDA-C]) 

over the DA algorithm (Scheme [DA]) in terms of convergence rate is proven in Meng and 

Van Dyk (1999) and Liu and Wu (1999). Liu and Wu (1999) also introduced Scheme [MDA-

LW], which is equivalent to Scheme [MDA-C’] in terms of the sampling distribution and rate 

of convergence. This scheme is implicitly applied in the algorithms for fitting the MNP and 

MPBART, typically in the normalization of model parameters after each round of Gibbs 

sampling. Structurally, Scheme [MDA-LW] is in the form of Scheme [DA] with an 

additional intermediate step, which makes more clear the connection between the MDA and 

the DA algorithm: 

Scheme [MDA-LW]  

1. Draw ~ ( | )Y f Y  .  

2. Draw 
1

~ ( )f  , compute 
1

( )Y t Y


 ; draw 
2

~ ( | )f Y  , compute 
2

1
( )Y t Y



 
 .  

3. Draw ~ ( | ).f Y 
   

Note that Y and Y
  follow the same distribution. The intuition behind the improvement of 

Scheme [MDA-LW] compared to the DA algorithm is that the intermediate step of sampling 

from Y
  allows the sampler for   to explore the expanded model space with more freedom. 

2.3 Data Augmentation for the MNP 

For fitting the MNP, Imai and van Dyk (2005) introduced two algorithms for the Gibbs 

sampling of ( , , )W   , which we refer to as IvD1 and IvD2. The IvD1 modifies Scheme 

[MDA-C’] by expanding the model to ( , , , )W    such that W  and ( , )   correspond to Y  

and  , respectively, and 
1 2 3

( , , )    : 

Algorithm [IvD1]  

1. Draw 
1

( , )W   by drawing 
1

~ ( | )f    and ~ ( | , )W f W   , and compute 
1

W W .  

2. Draw 
2

( , )   by drawing 
2

~ ( | , )f W    and then 
2

~ ( | , , )f W    , and compute 

2
/   .  

3. Draw 
3

( , )  by ~ ( | )f W X     and compute 
3

trace ( ) / .C     

Using   and 
3

  from Step 3, we can compute the normalized covariance matrix 2

3
/     

and use it in Steps 1 and 2 of the next round of posterior sampling; this is analogous to having 

3
  index a one-to-one mapping from the expanded model space (  ) to the normalized space 

(  ). Steps 1 and 3 in Algorithm [IvD1] collapse down 
1

  and 
3

 , but Algorithm [IvD1] is 

not a direct implementation of the MDA as in Scheme [MDA-C’] because Step 1 is 
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conditional on  , or equivalently 
2

( , )   where 
2

/   . Hence, Step 2 does not integrate 

out (collapse down) 
2

 . 

Standard MDA (Schemes [MDA-C] and [MDA-C’]) are collapsed Gibbs samplers that 

integrate out expansion parameter(s) by redrawing and discarding   in every step. Algorithm 

[IvD1] is a partially marginalized augmentation (PMA) (van Dyk, 2010) procedure that 

relaxes the restrictive structure of full marginalization in MDA. PMA allows the conditional 

distribution in a kth step of the Gibbs sampler to depend on expansion parameter(s) drawn in 

other steps. Algorithms for fitting the MPBART in Section 2.4 are also PMA procedures. 

IvD1 can also be viewed from a different perspective. Due to the linearity in model 

specification of the MNP, i.e. ( ; )
l l l

G X X   for 1, ,l C  , the linear relationship between 

  and   holds in Step 2 of Algorithm [IvD1], and it is equivalent to direct sampling of   

from 
2

( | / , )f W   . Hence, IvD1 can be rearranged as follows: 

Algorithm [IvD1’]  

1. Draw ~ ( | , )W f W   .  

2. Draw 
1

~ ( | )f   , compute 
1

W W ; draw 
2

~ ( | , )f W   , compute 
2

/W W 

 .  

3. Draw ~ ( | , )f W 

 .  

4. Draw   by ~ ( | )f W X    , compute  

3
tra ce ( ) / C   , and 2

3
/    , where 

2
   .  

The first three steps are equivalent to sampling ( , | )f W    in Scheme [MDA-LW]. Step 4 

collapses down 
3

 , but the fact that Step 4 is conditional on 
1 2

( , )   through ( , )W   makes 

IvD1 not a collapsed Gibbs sampler collectively. IvD2 is given as follows: 

Scheme [IvD2]  

1. Draw 
1

( , )  by 
1

~ ( | )f    and ~ ( | , )W f W   , compute 
1
[ ( ; )]W G X   .  

2. Draw 
3

( , )  by ~ ( | )f  , compute  

3
tra ce ( ) / C   , and 2

3
/    .  

3. Draw ~ ( | , )f W   .  

IvD2 separates the sampling into two parts, ( , )  and  ; the first part utilizes the MDA 

under Scheme [MDA-C] and the second part is a standard Gibbs sampling draw. 

Theoretically, as stated in Imai and van Dyk (2005), IvD1 and IvD2 have the same lag-one 
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autocorrelation when the MCMC chain is stationary. However, they showed through 

numerical experiments that IvD1 is better than IvD2 in estimating the MNP in terms of being 

less sensitive to the starting values of ( , )  . In the next section, we describe Kindo et al.’s 

algorithm (KD) and our two new proposals and connect them to the schemes reviewed here. 

2.4 Algorithms for Posterior Sampling Algorithms of MPBART 

For ease of notation, let 
, 1 , 1

( , , ,
i l i i l

W W W
 

   
, 1

, , )
i l iC

W W


  and let ( ; )
C

G X    be the 

sum-of-trees component under the normalization of scale. We start with describing Algorithm 

[KD] and the two proposals, Algorithms [P1] and [P2], under the expanded model 

( , , , )W    as follows, where W is the normalized latent variables with distribution 

M V N ( , )   and   is the vector of expansion parameters indexed as in Algorithm [IvD1]. 

Steps 1 2 3 

Algorithm [KD]  
1

( , ) | ,W       
1

| ( , ),W      
3 1

( , ) | ( , ),W     

Algorithm [P1]  
1

( , ) | ,W       | ,W     
3 1

( , ) | ( , ),W     

Algorithm [P2]  | ,W      | ,W     
3

( , ) | ,W    

 

We make a few observations about these three algorithms: (a) Algorithm [KD] groups W and 

1
  together, as in Scheme [MDA-G]; (b) Algorithm [P1] is structurally equivalent to Scheme 

[IvD2]; and (c) the sampling of the normalized covariance matrix in all three algorithms 

integrates out 
3

  as in Scheme [MDA-C], i.e. 
3 3

~ ( , | , )f W d     in Algorithm [P2], 

and 
3 1 3

~ ( , | , , )f W d      in Algorithms [KD] and [P1]. In detail, Kindo et al.’s 

algorithm for fitting the MPBART can be summarized as the following augmented Gibbs 

sampler: 

Algorithm [KD]  

1. Sample 2

1
( , ) | ( , , )W S   .  

(a) Draw 2

1
  from its conditional prior 2 1 2

( | ) tra ce[ ] /
C

f


 


    ;  

(b) for each l, update 
i l

W  conditional on 
,i l

W


,  ,  , and the observed outcome 
i

S , from a 

truncated normal distribution; and  

(c) transform 
i

W  and   to 
1i i

W W  and * 2

1
   .  

  2.  
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Sample 2

1
| ( , , )W   . 

(a) Draw *
~ ( | , )f W   ; and  

(b) set ( ; )G X   and 
1

/   .  

  3.  

Sample 
2

3
( , ) | ( , )W  . 

(a) Draw 
1

~ In v -W ish a rt ( , )

N

T

i i

i

N 



     , where 
i i i

W   ;  

(b) set 2

3
tra c e ( ) / C   ; and  

(c) set 2

3
/     and 

3
/W    .  

Step 1 jointly samples from 2

1
( , | , , )f W S    by first drawing the expansion parameter 2

1
  

from its prior distribution 2
( | )f   , and then computing 2

W W  where W is sampled 

from ( | , , )f W S  . Step 1(a) samples 2

1
  such that 2 1

1
/ tra ce[ ]


   follows an inverse-chi-

squared distribution with C  degrees of freedom. Step 1(b) samples each 
i l

W  from a 

truncated normal distribution described in Appendix D.1 based on (1), as the observed 

outcome 
i

S  imposes an interval constraint on 
i

W , e.g. if 
i

S  equals the reference level 0, then 

i l
W ’s are right truncated at 0. Step 2 samples posterior trees across multivariate mean 

components by Gibbs sampling and each posterior tree is sampled as in regular BART. Step 3 

computes 
3

  using the sampled   and then normalizes the scale of the model by Step 3(c). 

Notice that the sampling of model parameters   is conditional on *
( , )W  , which is 

equivalent to conditioning on 2

1
( , , )W    or 2

1
( , , )W   ; this observation is essential to the 

analysis of Algorithm [KD] in Section 2.5. Algorithm [KD] is closely related to IvD1 

(Algorithm [IvD1]) but different in that it does not update the expansion parameter 
2

  as in 

Step (b) of IvD1. This is analogous to having 
2

  in IvD1 set to the sampled value of 
1

  from 

Step (a). The reason for this modification is that the posterior tree parameters in BART, 

denoted by  , are drawn via stochastic search; it would be extremely challenging to derive 

an analytical expression for ( | , )f W   from ( , | , )f W d    as in MNP because the 

specification is no longer linear in  . 

In the first step, W  is a scaled version of W through 
1

W W . From (3), fitting the sum-of-

trees component to W  is analogous to sampling the parameters in an un-normalized space. 

We adopt four proposals for the posterior sampling of trees: GROW, PRUNE, CHANGE, 

and SWAP. Other tree sampling proposals such as perturbation and rotation (Pratola, 2016) 

are not considered here. Stochastic search in a massive space of possible tree structures can 
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be challenging when W , the quantity to which the sum-of-trees is fitting, is unstable. 

Heuristically, we would expect fitting the sum-of-trees component to W, which is a 

normalized quantity, instead of W  to be more stable, induce better posterior convergence, 

and improve the prediction accuracy. Given these considerations, we modify Algorithm [KD] 

and propose the following:  

Algorithm [P1]  

1. Sample 2

1
( , ) | ( , , )W S   .  

(a) Draw 2

1
  from its conditional prior 2 1 2

( | ) tra ce[ ] /
C

f


 


    ;  

(b) for each l, update 
i l

W  conditional on 
,i l

W


,  ,  , and 
i

S , from a truncated normal 

distribution; and  

(c) transform 
i

W  to 
1i i

W W .  

  2.  

Sample | ( , )W  . Draw ~ ( | , )f W    and then set ( ; )G X  . 

  3.  

Sample 2

3 1
( , ) | ( , , )W   . 

(a) Draw 
1

~ In v -W ish a rt ( , )

N

T

i i

i

N 



     , where 
1i i i

W    ;  

(b) set 2

3
  to trace ( ) / C ; and  

(c) set 2

3
/     and 

3
/W    .  

In the first proposal (Algorithm [P1]), the expansion parameters 
1 3

( , )   do not affect the 

sampling of the trees in Step 2. If the order of Steps 2 and 3 are swapped, it becomes Scheme 

[IvD2] in Section 2.2. Algorithms [KD] and [P1] are the respective MPBART analogs of 

IvD1 and IvD2 for the MNP. Imai and van Dyk (2005) expected IvD1 to outperform IvD2 for 

the MNP and demonstrated through simulations. While for MPBART, we find Algorithm 

[P1] to be equal or superior to Algorithm [KD] theoretically (Section 2.5) and 

computationally (Sections 3 and 4). 

As an alternative to Algorithm [P1], we introduce another proposal, Algorithm [P2], which 

“abandons” the MDA framework. The only augmentation involved in Algorithm [P2] is Step 

3, which adopts a Scheme [MDA-LW]-like strategy in the constrained parameter space. If we 

fix 
1

  to be 1, both Algorithms [KD] and [P1] simplify to Algorithm [P2]. We show in 

Appendix B that Algorithms [P1] and [P2] draw   from approximately the same sampling 

distribution under certain conditions. 
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Algorithm [P2]  

1. Sample | ( , , )W S  . For each l, update 
i l

W  conditional on 
,i l

W


,  ,  , and 
i

S  from a 

truncated normal distribution.  

2. Sample | ( , )W  . Draw ~ ( | , )f W    and then set ( ; )G X  .  

3. Sample 2

3
( , ) | ( , )W  .  

(a) Draw 
1

~ In v -W ish a rt ( , )

N

T

i i

i

N 



     , where 
i i i

W   ;  

(b) set 2

3
  to trace ( ) / C ; and  

(c) set 2

3
/     and 

3
/W    .  

Appendix D provides more details on the implementation of the algorithms. Software for 

fitting all three algorithms is available at https://github.com/yizhenxu/GcompBART. 

2.5 Theoretical Comparison of Algorithms for MPBART 

In what follows, we assume the Markov chain of ( , , )W    has reached equilibrium. Liu 

(1994b) introduced the usage of diagrams that show dependency structures between two 

consecutive iterations for analyzing Bayesian algorithms. We do this for Algorithms [KD], 

[P1], and [P2], and derive their mixing rate in terms of autocorrelations. We prove the 

dependency structure as diagrams in Figure 1, which summarizes the three algorithms based 

on their sampling schemes. 

A common measure for quantifying the mixing rate of a Markov chain is the lag-1 

autocorrelation; lower autocorrelation indicates a better mixing rate. Using the dependency 

diagrams, we argue that Algorithms [P1] and [P2] have an ideal mixing rate when the 

Markov chain is stationary. 

Theorem 1  

Assuming the chain of MPBART parameters ( , , , )W    has reached equilibrium. For  , 

Algorithms [P1] and [P2] have the same lag-1 autocorrelation, which is no larger than that 

from Algorithm [KD].  

Proof: Appendix A. 
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3 Simulation 

The simulation study will compare the predictive accuracy of three algorithms, Algorithms 

[KD], [P1], and [P2]. Denote the posterior sample of model parameters by 
( ) ( )

{ , | 1, , }
j j

j J    . The posterior predictive distribution for 
i

S  can be represented by its J 

posterior predictions, 
(1 ) ( )ˆ ˆ{ , , }

J

i i
S S , where 

( ) ( )

( )

( )

ˆ ˆif  m a x ( ) 0
ˆ

ˆ0 if  m a x ( ) 0 ,

j j

i i lj

i
j

i

l W W
S

W

  
 



 (4) 

( ) ( ) ( )

1 ,

ˆ ˆ ˆ( , , )
j j j

i i i C
W W W   is the vector of latent variables, 

( ) ( ) ( )ˆ ~ M V N ( ( ; ), )
j j j

i i
W G X   , and 

( ) ( ) ( )

1 1
( ; ) ( ( ; ) , , ( ; )) .

j j j

i i C i C
G X G X G X     

Recall that each mean component is parameterized as the sum of trees, 

( ) ( )

1

( ; ) ( ; )

m

j j

l i l i lk

k

G X g X 



  , where 1, ,l C  . 

We consider two metrics of predictive accuracy: posterior percent agreement and posterior 

mode accuracy. While posterior mode accuracy compares the observed outcome 
i

s  and the 

maximum a posteriori (MAP) estimate of the outcome, posterior percent agreement measures 

the concordance between 
i

s  and the sampled posterior predictive distribution. Under the 

multinomial probit framework, Algorithms [KD], [P1] and [P2] directly sample posterior 

predicted outcomes, 
(1 ) ( )ˆ ˆ{ , , }

J

i i
S S , e.g. the jth posterior draw is 

( )ˆ j

i
S ; the posterior percent 

agreement is averaged over N subjects as follows, 

( )

1 1

1 1
ˆ{ { } }.

N J

j

i i

i j

S s
N J

 

  1  (5) 

Posterior mode accuracy summarizes the agreement between the observed 
i

s  and the 

posterior mode prediction, 
ˇ

( )

{ 0 , , }

1

ˆa rg m ax { }

J

j

i l C i

j

S S l
 



  1 , via 

ˇ

1

1
{ } .

N

i i

i

S s
N



 1  (6) 

The two accuracy measures are different in that the posterior mode accuracy ignores the 

infrequent categories in MCMC sampling, whereas the posterior percent agreement accounts 

for all posterior predictive draws. 

Numerical experiments for all simulations use 3,000 posterior draws after a burn-in of 5,000 

for each model and parameterize the mean component of each latent variable as the sum of 

100 trees. The tree priors for the three algorithms are specified as recommended in Chipman 
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et al. (2010), where the prior probabilities for the posterior tree search are 0.25, 0.25, 0.4, and 

0.1 for tree GROWTH, PRUNE, CHANGE, and SWAP, respectively. Prior specification of 

the latent variable covariance matrix assumes the scale matrix   has diagonal elements equal 

to 1. 

For each simulation replicate, we create a training set 
1
 and a test set 

2
, each of size 5000. 

Under different prior specifications and data-generating settings, we apply the three 

algorithms on 
1
. Each experiment is performed on 100 simulation replications and the out-

of-sample performances are evaluated by calculating the two accuracy metrics using 
2
. We 

simulate 
1
 and 

2
 similar to Kang and Schafer (2007). We set the number of latent utilities 

2C   and assume a set of covariates ( , )U V  where 
i id

1 5
( , , ) ~ U n ifo rm (0 ,1)U U U   and 

~ U n ifo rm (0 , 2 )V , and set 2

1 1 2 3 4 5
1 5 s in ( ) ( 0 .5 ) 1 0 5G U U U U U     . We set 

3

2 3 4 5
( 0 .5 ) 2 0 4G U U U V     in Setting 1 for a relatively balanced distribution of the 

outcome categories and 2

2 3 4 5
( 0 .5 ) 4G U U U V     in Setting 2 for highly unbalanced 

outcomes. The covariance matrix is 
1 0 .5

0 .5 1

 
 

 
 

. 

Averaged across the 100 simulation replicates, the distribution of the outcome alternatives is ( 

0.45, 0.25, 0.30) and (0.32, 0.65, 0.03) for Settings 1 and 2, respectively. Figure 2 compares 

the out-of-sample posterior predictive accuracy of the algorithms, under different priors for 

the augmented latent covariance, ~ In v-W ish art ( , )  . Assuming 
1 1 2 2

1    , we 

consider uniform (
1 2

1, 0C     ), negatively tilted (
1 2

3, 0 .5C      ), and positively 

tilted (
1 2

3, 0 .5C     ) priors. Algorithm [KD] performs well under the posterior mode 

accuracy but is relatively more sensitive to the prior specifications and tends to have large 

variation across posterior predictions, resulting in a sub-optimal performance under the 

posterior agreement accuracy, which reflects the posterior predictive distribution. 

We also investigate how the multinomial probit algorithms behave in estimating   under 

different prior specifications and simulation settings. As with data generation, the reference 

level used in estimations is set to zero. Figure 3 summarizes the posterior mean of the 

normalized covariance matrix  . For 
1 1

  and 
1 2

 , [ · | ]E D  is the posterior mean based on a 

simulation replicate D; { [· | ]}E E D  and { [· | ]}S E D  are the mean and standard deviation of 

[ · | ]E D  across the 100 replicates. Note that 
2 2

  is not displayed in the Figure 3 because   is 

normalized, satisfying 
2 2 1 1

trace ( )    . The true conditional correlation, 
1 2

co rr ( , | )W W G , 

equals 0.5; for the posterior mean of the covariance, 
1 2

 , Algorithm [KD] returns negative 

estimates while our proposals generate positive estimates, agreeing with the true correlation 

in sign. Appendix C shows how 
1 2

  affects the outcome distribution, given 
1 1 2 2

1   . 

Conditional on the additive trees, 
1 2

  has a substantial effect on the outcome predictive 

distribution, for example, Appendix C illustrated that a negative 
1 2

  induces smaller 

reference level outcome probability ( 0 )P S  . Having a negative estimated posterior mean of 

1 2
  may lead to posterior tree estimates that are systematically different from the simulation 

truth, where 
1 2

  is set to be positive. 

Acc
ep

te
d 

M
an

us
cr

ipt



The autocorrelation for the average tree depth with lags ranging from 1 to 10 is shown in 

Figure 4. We summarize the sum-of-trees component with its average tree depth because 

trees are nonparametric and cannot be directly analyzed. The figure shows that Algorithm 

[KD] has stronger short-term autocorrelation in the average tree depths than the two 

proposals, reflecting the conclusion in Theorem 1 on lag-1 autocorrelation. It indicates that 

Algorithms [P1] and [P2] may be mixing better than Algorithm [KD] for the sum-of-trees 

component. Our proposals converge faster than Algorithm [KD] because the latter updates 

the sum-of-trees component conditional on latent utilities that are augmented / not 

normalized, which makes posterior convergence for trees more challenging. When the 

outcome is unbalanced, posterior convergence is more difficult. 

4 Application 

In this application, we investigate patients’ retention in HIV care after enrollment as a 

function of their baseline characteristics and treatment status. The data were extracted from 

electronic health records of adults enrolled in HIV care between June 1st 2008 and August 

23rd 2016 in AMPATH, an HIV care program in Kenya. We look at a 200-days window after 

the initial care encounter and split the data into training and test sets of sample sizes 49,942 

and 26,714, respectively. Outcome is defined as disengagement, engagement, and reported 

death, where engagement in care means there was at least one visit to the clinic for HIV care 

during the first 200 days after a patient’s initial encounter, and disengagement otherwise if 

the person was not reported dead. The outcome distribution is extremely imbalanced, such 

that the frequency of disengagement, engagement, and death is 16 % , 80 % , and 4 % , 

respectively. Covariates are summarized in Table 1, including baseline age, gender, year of 

enrollment, travel time to clinic, marriage status, weight, height, baseline treatment status, 

whether CD4 count was measured at enrollment, whether CD4 count was updated post-

enrollment before day 200, and the most recent CD4 count by day 200. To handle 

missingness, we use a separate category and a missing values indicator for categorical and 

continuous covariates, respectively.  

We use 10,000 posterior draws after a burn-in of 10,000 and keep other settings the same as 

in simulations. Table 2 compares the posterior accuracy for Algorithms [KD], [P1], and [P2]. 

Algorithm [KD] has posterior mode accuracy comparative to, but not as good as that from 

our proposals. Algorithm [KD] does not separate the latent utilities of the true outcome level 

and those for the other outcome alternatives well, resulting in a less ideal posterior agreement 

accuracy. In terms of the stability in accuracy measures with respect to the choice of 

reference level, the performance of the proposals is more stable than the Algorithm [KD]. 

Under the reference level being disengagement, the first row of Figure 5 presents the MCMC 

convergence plots of the average tree depth corresponding to latent variables 

1 e n g d ise n g
W Z Z   and 

2 d e a th d ise n g
W Z Z  , and the histogram of the posteriors of 

1 2 1 2
C o v ( , )W W  , where 

e n g d ise n g d e a th
( , , )Z Z Z  are latent utilities corresponding to each of the 

outcome levels and 
1 2

  is the normalized conditional covariance of 
1

W  and 
2

W . The plots 

show that the average tree depths are around 6 and 9 respectively for 
1

W  and 
2

W  under 

Algorithm [KD], and approximately 2 for those under Algorithms [P1] and [P2]. The 

Bayesian regularization priors that favor shallow trees do not work well for Algorithm [KD], 

as a tree depth of 6 allows up to 6
2  leaves, which increases the risk of over-fitting and makes 

the stochastic tree search inefficient. The second and third rows of Figure 5 set engagement 
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and reported death as the reference level, respectively, and the latent variables are defined 

accordingly. Similar conclusions are observed for tree depth. Under all choices of the 

reference level, the histogram of 
1 2

  from Algorithms [P1] and [P2] agree on the sign of 
1 2

 , 

which was demonstrated in previous simulations to match the sign of the true value of the 

underlying 
1 2

 . 

5 Concluding Remarks 

While computational performance is an important criterion in building Gibbs sampler for 

complicated models, the dependency structure and sampling schemes are as crucial for 

devising an algorithm that generates a Markov chain with computational efficiency and fast 

mixing rates. We explore the data augmentation schemes involved in the Bayesian estimation 

of multinomial probit models and propose two alternative algorithms that improve the 

computational and theoretical properties of the estimating procedure of MPBART proposed 

in Kindo et al. (2016). We showed that KD and one of our proposals are, respectively, the 

MPBART-generalization of Algorithms [IvD1] and [IvD2] proposed in Imai and van Dyk 

(2005) for estimating MNP. The primary distinction between the two MNP algorithms is that 

the former uses augmentation in the sampling of model coefficients for the mean of latent 

variables, while the latter does not. Imai and van Dyk (2005) recommended [IvD1] over 

[IvD2] because the geometric rate of convergence of [IvD1] is at least as good as [IvD2]. One 

of our key contributions is to demonstrate that the same recommendation does not apply to 

MPBART.  

We evaluate the algorithms’ computational performance under the same parameter 

specifications using two accuracy measures: posterior percent agreement and posterior mode 

accuracy. Posterior mode accuracy, which compares observed categorical outcomes to the 

mode in posterior predictions, is widely used in machine learning literature, particularly in 

cross-sectional supervised learning studies such as Kindo et al. (2016). Alternatively, 

posterior percent agreement accounts for the posterior predictive probabilities of the outcome 

labels, so the estimated distribution of the non-dominant levels also influences the metric. In 

applications where multinomial models are used as generative components, posterior 

predictive distribution is more relevant than posterior mode predictions and it is crucial to 

examine the posterior predictive distribution of the categorical outcomes. 

Through simulations and application, we compare our proposals to the estimating procedure 

in Kindo et al. (2016) (Algorithm [KD]). While Algorithm [KD] performs well in terms of 

posterior mode, its posterior percent agreement is less ideal. One possible explanation is that 

Algorithm [KD] samples posterior trees conditional on augmented latent variables, making 

posterior convergence of the trees more challenging; this may undermine the Bayesian 

regularization priors in BART, resulting in larger trees and higher computational costs, and 

lead to exploration of the latent correlation structure in a parameter space different from the 

truth. In Appendix C we further explore how the correlation of the latent variables affects the 

marginal outcome distribution, demonstrating that an estimated covariance of the wrong sign 

may be associated with a sum-of-trees component with values that are systematically 

different from the true data-generating mechanism. 
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Figure 1: Above diagrams from left to right correspond to Algorithms [KD], [P1], and [P2], 

respectively. 

 

Figure 2: Posterior predictive accuracy measured by (5) and (6) are compared under 

Algorithms [KD], [P1], and [P2]. Based on 100 simulation replicates, the averages of the 

accuracies are displayed as squares, circles, and triangles, with empty and solid symbols 

indicating different simulation settings, and the corresponding 95% confidence intervals are 

represented as bars. The prior of   is In v -W is h a r t ( , )  , where 
1 1 2 2

1    , with 

1 2
( , )C    being (1, 0 ) , (3 , 0 .5 ) , and (3 , 0 .5 ) . 
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Figure 3: Comparison of mean and standard deviation of 
1 1

[ | ]E D  and 
1 2

[ | ]E D  under 

Algorithms [KD], [P1], and [P2]. [ · | ]E D  indicates the estimated posterior mean on one 

simualted data D. Figures display the means (squares, circles, and triangles) and 95% 

confidence intervals (bars) from 100 simulation replicates. Settings 1 and 2 are represented 

by empty and solid symbols, respectively. The prior of   is In v -W is h a r t ( , )  , where 

1 1 2 2
1    , with 

1 2
( , )C    being (1, 0 ) , (3 , 0 .5 ) , and (3 , 0 .5 ) . Dashed horizontal lines 

show the corresponding true values. 

 

Figure 4: Comparing the autocorrelation of the average tree depth for the two latent utilities 

under Algorithms [KD], [P1], and [P2]. Figures display the means (squares, circles, and 

triangles) and 95% confidence intervals (bars) from 100 replicates. Settings 1 and 2 are 

represented by empty and solid symbols, respectively. The prior of   is In v -W is h a r t ( , )  , 

where 
1 1 2 2

1    , with 
1 2

( , )C    being (1, 0 ) , (3 , 0 .5 ) , and (3 , 0 .5 ) . 
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Figure 5: Traceplot of posterior average tree depth for each latent utility in the application to 

AMPATH data (left), and histogram of the 
1 2

  (right) under its prior (purple), posterior from 

Algorithms [KD] (red), [P1] (black), and [P2] (blue); same color specification applies to the 

left plot. Posterior inference is under 1C   , 
1 2

0  , with reference level as indicated in 

the plot labels. 
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Table 1: Summary table of covariates stratified by outcome. The table reports “median (25th 

percentile, 75th percentile)” for continuous variables and percentage of true for binary 

variables or each level of categorical variables. ENRL is the abbreviation for enrollment. 

  
Disengaged (6497) Engaged (67462) Died (2697) 

Male 
 

22.5 34 51.3 

Year of ENRL 2008 5.1 9.7 11.2 

 
2009 8.3 18.7 17.1 

 
2010 9.3 17.3 17.6 

 
2011 9.2 15.8 17 

 
2012 17.9 11.5 14 

 
2013 18.5 8.9 11.3 

 
2014 18.8 9.0 8.2 

 
2015 12.8 8.3 3.3 

 
2016 0.3 0.8 0.3 

Travel Time < 30 min 17.4 24 23.6 

 
30 min - 1 h 19.4 26.9 29.4 

 
1 h - 2 h 8.2 14.6 16.5 

 
> 2 h 5.2 7.7 7.8 

 
Missing 49.9 26.8 22.6 

WHO Stage 1 13.7 4.7 1.0 

 
2 1.8 2.0 1.1 

 
3 2.3 2.2 4.3 

 
4 0.6 0.3 0.7 

 
Missing 81.7 90.7 92.9 

Married 
 

57.2 52.3 49.7 

 
Missing 13.6 8.3 6.2 

On ART 
 

39.9 14.1 14.1 
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CD4 Measured at ENRL 
 

64.8 80.9 74.7 

CD4 Updated after ENRL 
 

6.6 26 7.6 

Most Recent CD4 Count 
 

327 (144, 525) 279.77 (137, 462) 59 (18, 152) 

Age 
 

29.91 (24.66, 36.51) 35.56 (28.93, 43.65) 37.97 (31.7, 45.7) 

Height 
 

163 (158, 169) 165 (159.1, 171) 167 (160, 173) 

 
Missing 24.6 16.2 17.7 

Weight 
 

57.5 (51, 65) 56 (50, 63) 50 (44, 57) 

 
Missing 7.9 3.9 6.9 
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Table 2: Accuracy comparison of Algorithms [KD], [P1], and [P2] on the AMPATH data. 

Posterior predictive accuracy measured by (5) and (6) are reported under reference levels 1, 

2, and 3. The prior of   is 
3

In v-W ish art (3, )I . 

 
Posterior Agreement Accuracy 

 
Train Test 

Ref Level KD P1 P2 KD P1 P2 

1 0.67 0.82 0.82 0.67 0.81 0.81 

2 0.55 0.82 0.82 0.54 0.81 0.81 

3 0.66 0.82 0.82 0.66 0.81 0.81 

 
Posterior Mode Accuracy 

 
Train Test 

Ref Level KD P1 P2 KD P1 P2 

1 0.88 0.89 0.89 0.88 0.89 0.89 

2 0.85 0.89 0.89 0.84 0.89 0.89 

3 0.88 0.89 0.89 0.88 0.89 0.89 
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