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This comprehensive review delves into the intersection of ensemble machine learning models and interpretability techniques for
biomass and waste gasification, a field crucial for sustainable energy solutions. It tackles challenges like feedstock variability and
temperature control, highlighting the need for deeper understanding to optimize gasification processes. The study focuses on
advanced modeling techniques like random forests and gradient boosting, alongside interpretability methods like the Shapley
additive explanations and partial dependence plots, emphasizing their importance for transparency and informed decision-
making. Analyzing diverse case studies, the review explores successful applications while acknowledging challenges like
overfitting and computational complexity, proposing strategies for practical and robust models. Notably, the review finds
ensemble models consistently achieve high prediction accuracy (often exceeding R2 scores of 0.9) for gas composition, yield,
and heating value. These models (34% of reviewed papers) are the most applied method, followed by artificial neural networks
(26%). Heating value (12%) was the most studied performance metric. However, interpretability is often neglected during
model development due to the complexity of techniques like permutation and Gini importance. The paper calls for dedicated
research on utilizing and interpreting ensemble models, especially for co-gasification scenarios, to unlock new insights into
process synergy. Overall, this review serves as a valuable resource for researchers, practitioners, and policymakers, offering
guidance for enhancing the efficiency and sustainability of biomass and waste gasification.

1. Introduction

Gasification, a transformative thermochemical process,
holds a crucial role in converting a variety of carbon-based
feedstocks, ranging from coal to biomass, plastics, sewage
sludge, and municipal solid waste, into syngas [1]. This
syngas, composed of methane (CH4), hydrogen (H2), carbon
monoxide (CO), and carbon dioxide (CO2), stands as a
versatile resource for generating hydrogen gas, heat, or
electricity through combustion. Biomass and coal, recognized

as primary feedstocks for gasification, have significant impli-
cations for the energy landscape [2–4]. Despite its substantial
benefits, challenges persist, including the assurance of syngas
quality and addressing feedstock supply shortages for contin-
uous operation [5–7].

In response to these challenges, co-gasification has
emerged as a focal point of attention, presenting a promising
solution to maintain a consistent feedstock supply and
enhance gasification efficiency [7–9]. Co-gasification, partic-
ularly in the realm of coal-biomass co-gasification, offers
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environmental advantages by minimizing tar formation and
reducing pollutant emissions compared to conventional coal
gasification processes [10–13]. However, the intricacies of gas-
ification reactions, influencing syngas composition and heat-
ing value, remain persistent challenges for process control
[14, 15]. Factors such as feedstock properties, reactor types,
gasification agents, and operational conditions contribute to
the complexity of syngas quality and composition [16–19].

The realm of biomass gasification is undergoing exciting
advancements. Researchers are exploring methods to achieve
ultralow carbon dioxide emissions, with Zhu et al. [20] pro-
posing a system capturing and converting nearly 100% of
CO2. A key area of focus is the production of hydrogen-rich
syngas, a versatile fuel precursor, as evidenced in the review
by Makwana et al. [21]. Beyond conventional methods, inno-
vative approaches like catalytic gasification [22, 23], chemical
looping gasification [24–26], supercritical water gasification
[27–29], and microwave-assisted gasification [30, 31] are
being investigated. Economic viability is also a key focus, with
studies comparing production methods for valuable products
like methanol [32, 33] and exploring solar-assisted techniques
for hydrogen and chemical recovery [34]. Furthermore,
research is ongoing to optimize the gasification of organic
solid waste (D. [35]) and delve deeper into reactor design,
including evaluations of supercritical water gasification sys-
tems [36] and the integration of new reactors like plasma
[37], multistage [38], and water-gas shift units [39–41]. Life
cycle assessments are emphasizing the environmental and
economic benefits of these advancements, with Fang et al.
[42] analyzing concentrated solar thermal gasification for sus-
tainable electricity generation. This focus on innovation and
efficiency underscores the potential of gasification to become
a cornerstone of a sustainable biorefinery industry.

Optimizing gasification processes hinges on a suite of
powerful modeling techniques. Thermodynamic equilibrium
models, while simple to use, offer a potentially limited view
by assuming the system reaches a perfect state of balance
[43]. For a more nuanced understanding, kinetic models
incorporate reaction rates to predict how gasification
unfolds over time [44]. Computational fluid dynamics
(CFD) or numerical models delve even deeper, using com-
plex simulations to analyze gas flow, temperature distribu-
tion, and reaction behavior within the gasifier itself
[45–47]. Process simulation models provide a comprehen-
sive perspective by integrating aspects of thermodynamics,
kinetics, and reactor design to simulate the entire gasifica-
tion system [48, 49]. Among these methods, machine learn-
ing (ML) models are rapidly gaining favor. Their ability to
analyze vast datasets and identify hidden patterns makes
them adept at optimizing gasification processes [50–52].
ML is a subfield of artificial intelligence (AI) that equips
machines with the ability to learn from data without explicit
programming, enabling data-driven predictive analytics
across various industrial sectors [53–56]. ML models have
the ability to continuously improve their performance on a
specific task as they are exposed to more data. In the context
of gasification, this translates to tasks like predicting optimal
operating conditions, product yields, and even gasifier con-
trol strategies [57, 58].

Ensemble models, which combine the strengths of mul-
tiple ML algorithms, are particularly attractive due to their
enhanced accuracy and robustness [59]. However, a key
challenge remains: interpretability. The complex decision-
making processes within ensemble models can be difficult
to decipher, hindering transparency for users like managers
and policymakers who need to understand the model’s ratio-
nale [60–62]. This is a crucial point, as advancements in
areas like hydrogen production [34] and waste management
[35] hinge on clear communication and trust in the underly-
ing models. Despite this hurdle, the versatility and power of
modeling techniques, particularly in the rapidly evolving
field of ML, offer a compelling path towards optimizing gas-
ification processes for a more efficient and sustainable
future. As research into interpretability techniques pro-
gresses, we can expect ML models, as a powerful subset of
AI, to play an even greater role in unlocking the full poten-
tial of biomass gasification.

The latest research highlights the growing importance of
ML in optimizing and understanding biomass thermochem-
ical conversion processes [63]. Studies are applying ML
models to predict a variety of factors, including biochar yield
and surface area [64], total hydrogen production cost [65],
and bio-oil production from pyrolysis [66]. ML is also being
utilized to optimize processes themselves. For instance,
researchers have developed a neural network model to con-
trol fluidized bed gasification [67] and optimize concen-
trated solar thermal gasification [68]. Additionally, ML can
be used to analyze data from sensors for tasks like fuel feed-
ing rate estimation [69] and determine optimal operating
parameters for gasification [70]. The field encompasses a
broad range of applications, including the design and opti-
mization of catalysts [71], and even predicting solar-to-
liquid fuel production [72]. This integration of ML across
the entire conversion process chain, from feedstock analysis
to product prediction, signifies its potential to revolutionize
biomass conversion for a more efficient and sustainable bior-
efinery industry [73]. For further exploration, refer to related
works on ML in hydrogen production, gasification control,
and bioethanol production [74–76].

This paper tackles a critical gap in biomass and waste
gasification research. Existing reviews, as shown in Table 1,
have explored various facets like thermodynamics, kinetics,
and general modeling approaches. However, these reviews
often lack a focused exploration of two powerful tools:
ensemble machine learning (ML) models and interpretabil-
ity techniques. The emphasis on interpretability is crucial
for gasification. These processes are inherently complex,
with numerous variables impacting factors like syngas yield,
tar formation, and overall efficiency. Traditional “black box”
models, while effective in prediction, often lack transpar-
ency, making it difficult to understand the rationale behind
their outputs. This is a significant hurdle for gasification
optimization, as understanding the underlying decision-
making processes within the model is vital for targeted
improvements. Interpretable models, on the other hand,
provide valuable insights into how these variables interact
and influence the model’s predictions. This allows
researchers and engineers to not only predict outcomes but
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also to identify key factors that can be manipulated to opti-
mize gasification processes for sustainability.

This review highlights the potential of ensemble ML
models, such as random forests, to achieve this goal. Ensem-
ble models combine the strengths of multiple individual
models, often leading to more robust and accurate predic-
tions compared to single models. By incorporating interpret-
ability techniques like the Shapley additive explanations
(SHAP) and PDP (partial dependence plots), the review
explores how researchers can gain a deeper understanding
of the decision-making processes within these ensemble
models. This allows for targeted improvements in gasifica-
tion technology by focusing on the most influential factors
identified by the interpretability techniques. By showcasing
successful applications of ensemble ML models and inter-
pretability techniques in various gasification case studies,
the paper provides a balanced perspective. It acknowledges
the limitations of these methods, such as the computational
complexity of some interpretability techniques and the
potential challenges in generalizing models across diverse
feedstocks and gasification setups. However, the review
argues that the benefits of interpretability outweigh these
limitations, particularly in the context of complex and
dynamic processes like gasification.

Furthermore, the paper outlines future research direc-
tions, offering a roadmap for researchers and policymakers
seeking to leverage these methods for heightened efficiency
and sustainability in biomass and waste gasification pro-
cesses. It delves into the critical aspect of interpretation,
emphasizing the need for a profound understanding of
decision-making processes within gasification models. Most
notably, it highlights the potential oversight in previous
studies, where interpretability has been neglected in model
development goals, possibly due to the challenge of under-
standing and implementing interpretability approaches.
Generally, this paper’s innovation lies in its methodical focus
on ensemble ML methods and interpretability within the
broader spectrum of gasification studies. It is not merely a
compilation of existing methodologies but an intricate

exploration that bridges gaps in the current understanding
of gasification processes. By providing in-depth insights into
the role of ensemble models and interpretability methods,
the paper contributes a valuable guide for researchers, prac-
titioners, and policymakers aiming to enhance the efficiency
and sustainability of gasification technologies.

2. Overview of Biomass and Waste Gasification

Gasification, a thermochemical process, converts carbon-
containing materials into syngas, mainly consisting of CO,
H2, CO2, and CH4. Involving heating biomass or waste in
a high-temperature reactor with controlled oxygen or steam,
gasification prevents complete combustion. Diverse feed-
stock options, including agricultural residues and plastics,
undergo preparation [89]. Gasifiers, complex systems with
various types, are classified based on physical structure
[90]. These include fixed bed (updraft and downdraft), fluid-
ized bed (bubbling, circulating, and dual), entrained flow,
plasma, and rotary kiln gasifiers [91, 92]. The gasification
agent, such as air, carbondioxide, oxygen, or steam, varies
in each type, influencing chemical reactions [93]. Molino
et al. [94] extensively discuss the advantages and disadvan-
tages of different reactors, including rotary kiln and plasma.

Gasification agents offer flexibility for outcomes, empha-
sizing hydrogen production or minimizing carbon dioxide
emissions [95]. Syngas cleanup is crucial for environmental
sustainability, ensuring suitability for power generation,
chemical synthesis, and fuel production. Gasification proves
promising for sustainable and efficient energy solutions,
contributing to the circular economy with minimal environ-
mental impact [96, 97]. Co-gasification, an innovative
approach, involves simultaneously gasifying multiple feed-
stocks in a shared reactor [98]. Combining materials like
agricultural residues and plastics exploits synergies in their
structures and compositions [99]. The cross-interaction
enhances the conversion of tarry compounds into valuable
gaseous products [100, 101]. Co-gasification, whether in gas-
ifiers or thermogravimetric analyzers, optimizes resource

Table 1: Comparison of the present review and published reviews on ML-aided thermochemical conversion of biomass and wastes.

Study
Overview of
biomass and

waste gasification

Detailed discussion
of ensemble models

Machine
learning applications

Detailed exploration
of interpretability analysis

Challenges and
future directions

Liao and Yao [77] ✗ ✗ ✓ ✗ ✓

Zhang et al. [78] ✗ ✗ ✓ ✗ ✓

Umenweke et al. [79] ✓ ✗ ✓ ✗ ✓

Sedej et al. [80] ✓ ✗ ✓ ✗ ✗

Kushwah et al. [51] ✓ ✗ ✓ ✗ ✓

Ascher et al. [81–83] ✓ ✗ ✓ ✗ ✓

Zhang et al. [84] ✓ ✗ ✓ ✗ ✓

Khan et al. [85] ✓ ✗ ✓ ✗ ✓

Sakheta et al. [86] ✗ ✗ ✓ ✗ ✓

Alfarra et al. [87] ✓ ✗ ✓ ✗ ✓

Bin Abu Sofian et al. [88] ✓ ✗ ✓ ✗ ✗

This review ✓ ✓ ✓ ✓ ✓
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utilization, improves efficiency, and contributes to sustain-
able energy solutions while addressing environmental chal-
lenges associated with organic waste.

2.1. Innovative Gasification Concepts. Innovative gasification
concepts are transforming biomass and waste conversion.
Chemical looping gasification utilizes metal oxide carriers
for oxygen separation, enhancing efficiency and reducing
emissions [102–104]. Catalytic gasification employs catalysts
to expedite reactions, boosting efficiency and operational
flexibility. Supercritical water gasification (SCWG) also
known as hydrothermal gasification, operating at elevated
temperatures and pressures, efficiently converts biomass into
syngas without external gasifying agents [28, 105–107]. It is
ideal for biomass and waste with high moisture content,
considered an environmentally friendly and cost-effective
approach for hydrogen production [108–110]. Distinctions
between conventional and hydrothermal gasification are
explored in detail by Umenweke et al. [79].

Gasification processes have evolved with two and three-
stage implementations. Two-stage gasification involves an
initial phase of pyrolysis or partial oxidation, producing
intermediates that undergo a second stage for further con-
version into syngas [111–113]. Three-stage gasification adds
an additional step, providing enhanced control over reaction
pathways and product composition [114, 115]. These
advancements showcase the dynamic nature of gasification
technologies, offering diversified approaches to meet specific
energy and environmental goals. Ongoing research in these
concepts holds promise for more efficient and sustainable
energy solutions through biomass and waste conversion
[69, 116]. Makwana et al. [21] comprehensively reviewed
waste/biomass gasification for hydrogen-rich syngas produc-
tion, providing an overview of gasification technologies.

2.2. Applications and Significance. Biomass and waste gasifi-
cation, a versatile thermochemical process, is a forefront
solution for sustainable energy and waste management,
converting carbon-containing materials into syngas [117].
The produced syngas serves as a valuable fuel source for
various power generation applications (such as gas engines,
turbines, and combined heat and power systems), contribut-
ing to diversified energy sources and reducing reliance on
conventional fossil fuels [118, 119]. Beyond power genera-
tion, applications extend to direct heating in industrial, dis-
trict, and residential processes.

Gasification integrates with biochemical processes,
enabling the production of biofuels, biochemicals, biochar,
and other high-value products, supporting the sustainable
evolution of the energy landscape [119–121]. The versatility
of syngas extends to its refinement for synthetic fuels like
synthetic natural gas (SNG), hydrogen, and liquid biofuels,
offering cleaner burning options in transportation and
industry [117]. Additionally, gasification plays a crucial role
in waste treatment, reducing the volume of diverse waste
streams, from municipal solid waste to agricultural residues,
offering an ecofriendlier disposal method compared to tradi-
tional means.

The significance of biomass and waste gasification
extends beyond immediate applications, encompassing envi-
ronmental sustainability, reduced greenhouse gas emissions,
and economic opportunities. By contributing to renewable
energy sources, gasification helps diminish dependence on
finite fossil fuels. Waste valorization provides dual benefits
of efficient waste management and resource recovery
[29, 122]. The reduced environmental impact of gasification,
compared to traditional waste disposal methods, aligns with
sustainability principles, offering a cleaner and more responsi-
ble approach to energy production and waste treatment [123].
Acknowledging these advantages, ongoing research and
development efforts are crucial to overcoming challenges
and optimizing the adoption of biomass and waste gasification
technologies on a larger scale.

2.3. Challenges and Opportunities. Biomass and waste gasifi-
cation represent cutting-edge technologies that hold great
promise for converting organic materials into valuable
energy products. This process involves the transformation
of biomass and waste into a gaseous mixture known as syn-
gas, comprising carbon monoxide, hydrogen, and methane
[39]. While the potential benefits include the generation of
clean energy and waste reduction, numerous challenges
underscore the complexity of these gasification processes,
ranging from feedstock variability to economic viability
and environmental concerns [124].

2.3.1. Process Challenges. The gasification process is a com-
plex interplay of thermochemical reactions occurring across
solid, liquid, and gas phases, compounded by the inherent
heterogeneity of biomass and waste feedstocks [125]. Vari-
ability in composition, moisture content, and physical prop-
erties introduces uncertainties affecting efficiency and
reliability. Feedstocks may contain contaminants like sulfur,
chlorine, and alkali metals, leading to corrosion, fouling, and
undesirable by-products during gasification. Ash manage-
ment poses operational challenges, with high ash content
causing slagging and fouling, impacting overall system effi-
ciency [124].

A pervasive challenge is tar formation, a complex mix-
ture of organic compounds that can condense on equipment
surfaces, causing operational issues. Effective tar removal or
conversion processes are crucial for system integrity and effi-
ciency. Incomplete gasification can result in char and other
solid residues, diminishing overall process efficiency. Precise
temperature control is critical as gasification reactions are
highly temperature-dependent [121, 126]. A review by Ramos
et al. [98] discussed the effect of different operation conditions
on gasification performance, including temperature, fuel parti-
cle size, pressure, gasifying agent, and gasifier types.

Scaling up from laboratory to commercial-scale
operations adds complexity. Factors like heat transfer, reac-
tor design, and process optimization become intricate in
larger systems. Syngas generated often requires cleanup pro-
cesses to meet quality standards, removing impurities like
particulates, tars, and contaminants. Operating gasification
processes at elevated pressures for enhanced gas yields pre-
sents engineering challenges and requires robust, expensive
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equipment [127]. Integrating gasification with downstream
processes demands careful engineering and optimization for
overall efficiency and economic viability [128, 129]. Economic
challenges, encompassing both capital and operational
expenses, are crucial for widespread adoption, especially amid
competition from other renewable energy sources [130].

2.3.2. Optimization Difficulties. Efforts to optimize gasifica-
tion face hurdles due to incomplete understanding of reac-
tion mechanisms and limited data on specific feedstocks.
Developing accurate models for predicting and controlling
gasification behavior is challenging due to the process’s com-
plexity and diverse feedstocks, hindering the collection of
reliable data, especially at the industrial scale [48, 131]. Envi-
ronmental considerations, including emissions and ash dis-
posal, add complexity. Compliance with regulatory
standards requires careful monitoring and mitigation strate-
gies. The lack of standardized testing protocols for different
feedstocks and gasifier configurations further complicates
system comparison and optimization [132].

Researchers address these challenges with innovative
solutions. Machine learning algorithms analyze process data
and identify optimal operating conditions. Data-driven
modeling, combining experimental data with computational
techniques, improves prediction accuracy. Multiobjective
optimization strategies are developed to simultaneously
optimize conflicting goals [71, 133]. Advanced gasifier
designs and technoeconomic analysis contribute to enhanc-
ing the efficiency and sustainability of biomass and waste
gasification technologies [134]. Despite challenges, the per-
sistent focus on research and development signifies the
potential of gasification as a transformative technology in
the transition to a renewable energy future [135].

2.3.3. Need for Advanced Modeling. Advanced modeling in
biomass and waste gasification involves sophisticated com-
putational techniques to simulate and analyze complex ther-
mochemical reactions. This encompasses various
mathematical and computational models that simulate gasi-
fication systems under different conditions [125]. The pri-
mary goal is to gain a comprehensive understanding of
interactions within the system for detailed predictions and
optimizations [136]. These models consider factors like tem-
perature, pressure, reaction time, and feedstock composi-
tion. Computational fluid dynamics (CFD) simulates fluid
flow, heat transfer, and chemical reactions within gasifiers.
This capability allows optimization of gasifier performance
by predicting temperature profiles, reaction time, and spe-
cies concentrations [137]. Kinetic modeling focuses on reac-
tion rates during gasification, predicting pathways, and
optimizing conditions [138].

Data-driven modeling, leveraging machine learning and
statistical techniques, analyzes extensive datasets to enhance
predictive capabilities and offer insights into optimal operat-
ing conditions [75, 139, 140]. These models complement tra-
ditional approaches like CFD and kinetic modeling,
providing a holistic understanding of biomass and waste
gasification processes. Process optimization is a primary
application, fine-tuning operating parameters for maximum

efficiency and identifying optimal conditions for desired out-
puts like syngas while minimizing undesired by-products.
Additionally, they contribute to efficiency improvement by
highlighting factors influencing gasification processes [14, 71,
141], aiding engineers in optimizing conditions, enhancing
resource efficiency, and reducing the environmental footprint.

In resource utilization, advanced modeling assesses bio-
mass and waste feedstocks’ suitability, guiding researchers
in identifying optimal compositions for specific gasification
systems. Models like CFD and kinetic modeling play pivotal
roles in designing and scaling up gasification systems, pre-
dicting larger-scale performance based on lab-scale experi-
ments, and minimizing risks associated with deploying
new technologies [51]. A detailed discussion on different
modeling approaches for the gasification process has been
reported by Ramos et al. [142]. Moreover, advanced model-
ing supports emissions prediction and control, assisting in
designing systems compliant with environmental regula-
tions. Life cycle assessment, technoeconomic analysis, eco-
nomic evaluation, cost-benefit analysis, and risk mitigation
are additional benefits, showcasing the indispensable role
of advanced modeling in advancing sustainable and eco-
nomically viable gasification technologies [42, 65, 68, 143].

3. Ensemble Models in Biomass and
Waste Gasification

Ensemble models, a powerful machine learning technique,
combine predictions frommultiple models to achieve superior
overall performance and generalization [144]. By leveraging
the diversity of different models, ensembles overcome weak-
nesses in individual models and amplify their strengths. This
approach, prevalent in classification, regression, and anomaly
detection, consistently demonstrates improved accuracy,
robustness, and generalization, making ensembles a valuable
tool for machine learning tasks [145]. However, it is crucial
to note that ensembles come with certain trade-offs. One sig-
nificant consideration is the challenge of interpretability. As
ensembles aggregate predictions frommultiple models, under-
standing the decision-making process becomesmore complex.
The combined effects of diverse models can make it challeng-
ing to interpret and explain the rationale behind specific pre-
dictions. This lack of interpretability may be a limitation in
applications where understanding the model’s reasoning is
essential for user trust or regulatory compliance [146, 147].

Ensemble techniques, by aggregating predictions from
diverse models, offer advantages such as enhanced accuracy,
robustness against overfitting, and improved generalization
to new data. Applicable to various machine learning models,
successful ensembling relies on ensuring diversity among
base models, with each contributing unique insights or spe-
cializing in specific aspects of the data. This powerful
technique significantly contributes to the machine learning
toolbox, providing stable and reliable predictions [148,
149]. Ensemble ML integrates multiple conventional ML
models or base learners into a single predictive model with
enhanced accuracy [59, 150]. However, it is not mandatory
for an ensemble model to achieve better accuracy than the
most successful base learners [151]. For the case of
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regression problem, the accuracy of an ensemble model is
typically an average of all base learners’ performances
[151]. In real-world problems, the same generalization per-
formances may yield different predictions [152]. Therefore,
combining the outputs from base learners can improve pre-
diction accuracy, even when trained with small datasets
(cross-validation can be used) [153, 154].

3.1. Specific Ensemble Techniques. Ensemble methods can be
broadly classified into several categories, as depicted in
Figure 1 [151, 155, 156]. These include bagging, boosting,
voting, averaging, and stacking. Additional classifications
exist, such as cascade generalization, cascading, delegating,
arbitrating, and metadecision trees [157]; stochastic gradient
boosting [158]; and Bayes Optimal Classifier [159]. Tree-
based ensemble techniques like bagging and boosting are
well-developed, but other approaches like voting, averaging,
and stacking have also seen significant development. How-
ever, understanding and distinguishing between these tech-
niques are essential [160]. To provide a comprehensive
understanding of ensemble techniques, this section offers a
detailed discussion on bagging, boosting, voting, averaging,
and stacking. The summary of the advantages and limita-
tions of each technique is presented in Table 2.

3.1.1. Bagging Ensemble. Bagging (bootstrap aggregating)
leverages the bootstrap distribution to create subsets of data
for training diverse base learners [155], with the ensemble’s
output aggregated through averaging (for regression) or vot-

ing (for classification) to mitigate variance errors [161].
Decision trees are often chosen as base models for bagging
due to their capacity to capture intricate data interactions
[161]. This method, exemplified by random forest (RF)
and extremely randomized trees (ExtraTrees), is valued for
its simplicity, effectiveness, and robustness (especially in
scenarios where ensemble members exhibit different local
minima) [59, 162].

Random forests (RFs) constitute an ensemble of tree pre-
dictors, where each tree’s predictions rely on values sampled
independently from a random vector with a uniform distribu-
tion across all trees in the forest [163]. A supervised learning
meta-algorithm, RF, employs bootstrap aggregation to con-
struct independent decision trees (DTs) [151, 164], combining
the simplicity of DTs with enhanced flexibility for improved
accuracy in both classification and regression problems [165,
166]. Hyperparameters such as the number of randomly
selected predictors, splitting rules, and minimal node size
can be optimized using techniques like k-fold cross-
validation grid search or trial-and-error testing [165, 167].

Despite the proven success of RF in various domains, its
exploration in gasification remains limited, with a handful of
studies available [1]. Notably, Kardani et al. [150] achieved
high accuracy in predicting gasification performance indica-
tors using an RF model, while Ascher et al. [81] applied RF
to predict multiple gasification characteristics with notable
accuracy. These instances underscore the suitability of RF
as a valuable tool for assessing and predicting gasification
processes.

Ensemble technique

Model-based/ 
heterogenous base

learners

Data-based/
homogenous base-

learner

Linear
combination  Non-linear

combination

Stacking  AveragingVotingRSSBoostingBagging

ERT
AdaBoost

GBR

XGB
MV WMV SAE WAE Super learner Blending

CatBoost

LightGBM

RF

Figure 1: Classification of ensemble machine learning methods. Legend: MV: majority voting; SAE: simple averaging ensemble; WAE:
weighted average ensemble; RSS: random subspace; WMV: weighted majority voting; RF: random forest; ERT: extremely randomized
trees; GBR: gradient boosting regression.
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3.1.2. Boosting Ensemble. Unlike bagging, boosting adopts a
sequential approach to gradually build a collection of models
with weak individual performance, progressively refining
them into a highly accurate ensemble model [168, 169].
Boosting algorithms iteratively train and adjust the weights
of numerous weak learners, producing a potent ensemble
model. Examples of boosting algorithms encompass gradient
boosting for regression (GBR), adaptive boosting (Ada-
Boost), gradient boosting machine (GBM), extreme gradient
boosting (XGB), light gradient boosting machine
(LightGBM), and categorical gradient boosting (CatGBM)
[156, 170–172]. Gradient boosting models, particularly, have
garnered extensive utilization in gasification processes,
showcasing superiority over numerous other ensemble tech-
niques [173]. Table 3 delineates the strengths and weak-
nesses of each boosting algorithm.

GBM and GBR serve as specific types of boosting tech-
nique for classification and regression problems, respectively
[151]. GBR constructs a tree based on the errors (pseudore-
siduals) made by the preceding tree, repeating this process
until additional trees cease to enhance predictions [150].
GBR offers several advantages, including strong interpret-
ability, robust generalization ability, fast convergence during
training, and adaptability for datasets with multiple features
[173]. Boosting ensemble models, particularly GBR and
XGB, have been employed by various authors for gasifica-
tion processes. For instance, Ascher et al. [81] and Wen
et al. [174] utilized GBR to predict gasification performance

metrics, achieving average prediction accuracies with R2

scores of 0.9 and 0.87, respectively. Moreover, Ascher et al.
[81] and Kardani et al. [150] applied XGB to model gasifica-
tion processes, obtaining average prediction accuracies with
R2 scores of 0.84 and 0.95, respectively. AdaBoost was also
employed by Ascher et al. [81] to predict 10 gasification
characteristics, achieving an average prediction accuracy
with an R2 score of 0.85. While these examples demonstrate
the effectiveness of boosting methods in gasification model-
ing, it is noteworthy that other boosting ensemble models
like LightGBM and CatBoost have not yet been applied to
gasification.

3.1.3. Random Subspace Ensemble. Random subspace
method is an ensemble learning technique where multiple
models are trained on different subsets of features randomly
selected from the original feature set. Predictions from these
models are then aggregated (usually by averaging) to
improve overall model accuracy and robustness [175, 176].
This approach helps combat overfitting by reducing the
influence of irrelevant or noisy features within the data.
Unfortunately, there is no specific example of the random
subspace algorithm being used directly in gasification
modeling. Gasification models can be complex, involving
numerous input features like feedstock properties, operating
conditions, and desired products. The random subspace
algorithm could be particularly advantages in such scenarios
due to its ability to handle high dimensionality, improve

Table 2: Advantages and limitations of ensemble methods.

Ensemble
method

Advantages Limitations

Bagging
ensemble

(i) Reduces variance error
(ii) Works well when base learners have different local minima
(iii) Suitable for both regression and classification tasks

(i) May not significantly improve base model accuracy
(ii) Limited interpretability

Boosting
ensemble

(i) Combines weak learners into a highly accurate model
(ii) Strong interpretability
(iii) Works well for both regression and classification

(i) Sensitive to noisy data
(ii) Computationally intensive
(iii) Require careful tuning of hyperparameters

Random
subspace

(i) Decreases the likelihood of overfitting to specific features or
noise in the data

(ii) Captures various aspects of the data, leading to better
performance on unseen data

(iii) Each base learner focuses on different feature subsets,
enhancing overall model diversity

(iv) Enables efficient exploration of the feature space, especially
beneficial in high-dimensional datasets

(i) Interpreting the overall model becomes more
complex due to diverse base learners

(ii) Managing multiple models and their predictions
adds complexity to the modeling process

(iii) Noisy or irrelevant features in random subsets may
degrade individual base learner performance

(iv) Training multiple models on different feature
subsets can increase computational requirements

Voting
ensemble

(i) Simple and easy to implement
(ii) Typically used for classification tasks
(iii) Reduce bias towards individual base learners

(i) Loss of information may occur in majority voting
(ii) Weighted majority voting may be challenging to

implement

Averaging
ensemble

(i) Provides an unweighted average of base learner outputs
(ii) Suitable for both regression and classification tasks
(iii) Weighted averaging can improve predictions

(i) Vulnerable to weaker base learners
(ii) Sensitive to overconfident base learners

Stacking
ensemble

(i) Combines base learners in a hierarchical, nonlinear way
(ii) Maximizes prediction accuracy by leveraging the strengths of

diverse models
(iii) Optimizes weights through cross-validation

(i) Requires a large number of base learners for
optimal results

(ii) More complex to implement than other ensemble
models

(iii) Overfitting can be a concern with smaller datasets
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prediction accuracy, and reduce overfitting. In general, the
random subspace algorithm holds promise for gasification
modeling, especially considering the complexity of these
models. Further research could explore its effectiveness and
potential benefits in this field.

3.1.4. Voting Ensemble. Voting is one of the simplest
methods for aggregating prediction from multiple classifiers
[177]. It involves deriving a final prediction by combining
base learners [178]. Typically applied in two ways including
major voting (MV) and weighted majority voting (WMV).
Majority voting (MV) is the more prevalent approach for
classification tasks [159, 179]. It employs several classifica-
tion models to analyze each data point. The votes of these
base learners are then counted, and the final label predic-
tions are based on the most frequent vote [159, 180]. In con-
trast to MV, weighted majority voting (WMV) computes an
unweighted average of the predicted class probability from
base learners and selects the label with the highest average
probability [180]. WMV introduces weights based on each
classifier’s performance on a validation set [181]. The final
prediction considers the class with the highest weighted vote
for each instance [182]. Unlike MV, where all models have
equal weights, WMV assigns weights based on model perfor-
mance [150]. However, determining appropriate voting
weights for each class per classifier remains a challenge for
WMV, limiting its effectiveness [183].

While MV is popular for classification tasks, it has not been
applied in gasification, which is typically treated as a regression
problem. However, WMV shows promise for gasification
modeling. Kardani et al. [150] successfully applied WMV to
merge the output of five regression-based ML models (decision
tree regression (DTR), XGB, RF, multilayer perceptron (MLP),
and SVR) to create an optimized ensemble model (OEM). This
OEM achieved an impressive average prediction accuracy with
an R2 score of 0.98 for three gasification characteristics (LHV,
LHVp, and gas yield), surpassing most base learners. This
demonstrates the potential of WMV in constructing accurate
models for gasification assessment, prompting further explora-
tion of its suitability for regression problems.

3.1.5. Averaging Ensemble. Averaging, also referred to as vot-
ing regression, is an ensemble technique that combines pre-
dictions from multiple base learners through linear
combination [184, 185]. There are two main averaging
methods: simple averaging and weighted averaging. Simple
averaging ensemble (SAE), also known as unweighted aver-
aging or naïve averaging, is the most commonly averaging
method, particularly for neural networks. SAE takes an
unweighted average of the prediction from all the base
learners and reports it as the final predicted score [159,
180, 185]. While similar to MV, SAE can be applied to both
regression and classification problems [186]. A key

Table 3: Advantages and disadvantages of boosting ensemble algorithms.

Boosting ensemble
algorithms

Advantages Disadvantages

Gradient boosting
regression (GBR)

(i) Builds strong predictive models by iteratively
improving weak models

(ii) Handles heterogeneous data types well
(iii) Provides flexibility in defining loss functions
(iv) Less prone to overfitting compared to AdaBoost

(i) Susceptible to overfitting if not properly tuned
(ii) More complex to implement compared to

simpler algorithms
(iii) Requires careful tuning of hyperparameters

Adaptive boosting
(AdaBoost)

(i) Can combine weak learners into a strong learner
(ii) Less susceptible to overfitting
(iii) Works well with a variety of base classifiers
(iv) Handles high-dimensional data effectively

(i) Sensitive to noisy data and outliers
(ii) Training can be time-consuming
(iii) May not perform well with complex datasets

Extreme gradient booting
(XGB)

(i) Fast and scalable implementation
(ii) Handles missing data well
(iii) Provides regularization to prevent overfitting
(iv) Often achieves state-of-the-art performance

(i) Requires careful tuning of hyperparameters
(ii) Can be memory-intensive for large datasets
(iii) Prone to overfitting if not properly tuned

Light gradient boosting
(LightGBM)

(i) Extremely fast training speed, making it suitable
for large datasets

(ii) Efficient handling of high-dimensional data
(iii) Reduced memory usage compared to other

gradient-boosting implementations
(iv) Supports categorical features without requiring

one-hot encoding

(i) Prone to overfitting if not properly tuned
(ii) Requires careful tuning of hyperparameters
(iii) Less interpretability compared to simpler models

Categorical gradient
boosting (CatBoost)

(i) Automatically handles categorical features without
preprocessing

(ii) Robust to overfitting, thanks to built-in
regularization techniques

(iii) Handles missing data internally
(iv) Provides strong performance with minimal

hyperparameter tuning

(i) Slower training compared to some other
gradient-boosting implementations

(ii) May require more memory for large datasets
(iii) Limited interpretability due to its complex

nature
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limitation of SAE is its susceptibility to the influence of
weaker base learners and overconfident predictions [180].

Weighted average ensemble (WAE) extends SAE by
assigning specific weights to each base learner’s output
based on their relative importance to the final prediction
[186]. WAE typically offers improved prediction accuracy,
calibration, and validation effectiveness compared to SAE
[187]. Neither SAE nor WAE have been documented in
predictive modeling for gasification processes. Further
research is needed to explore their potential and suitability
in this field.

3.1.6. Stacking. Stacking, also known as stacked generaliza-
tion, is a unique ensemble learning framework categorized
as a hierarchical or nonlinear combination [185, 188].
Unlike previously discussed techniques, stacking employs a
metalearning model to combine base learners, aiming to
maximize overall prediction accuracy [59, 189–191]. This
method can leverage heterogeneous base learners (e.g.,
ANN, naive Bayesian, and logistic regression) to create
potentially more powerful ensemble [192]. Stacking can be
implemented with two or more layers [192, 193], and the
metalearner can be any individual machine learning model,
including generalized linear models [155]. There are two
main approaches to implementing stacking: super learner
and blending.

In the super learner approach, the metamodel is trained
on the out-of-fold predictions made by base models using
cross-validation [190, 191, 194, 195]. The super learner is
advantageous for handling large numbers of base learners
and selecting the optimal combination for a given dataset
[196]. However, for very large datasets, this approach can
become computationally expensive. Therefore, instead of
optimizing the V-fold cross-validation [197], a single split
cross-validation can be employed to optimize weights for
an optimal combination [198]. Similar to the super learner,
blending uses predictions from base learners to create a
new dataset for the metamodel. However, blending utilizes
a leave-out validation approach, setting aside a portion of
the training data for validation [159, 191, 195]. While this
makes the blending model simpler and faster to train, it
may be prone to overfitting with smaller datasets [191].

Stacking ensemble models offer potential for gasifica-
tion modeling, but limited research exists in this area.
Ascher et al. [81] developed an ensemble using a super
learner approach with six base learners (ANN, RF, GBR,
XGB, AdaBoost, and SVM). However, details regarding
the specific metalearning model used were not provided
[82]. This ambiguity necessitates further studies to evalu-
ate the efficacy of the super learner ensemble approach in
gasification modeling and to determine if a true super
learner or a simpler averaging method was actually
implemented.

3.2. Application of Machine Learning Models in Gasification.
Gasification performance is influenced by numerous factors,
including feedstock properties and operational conditions
[199–201]. Key performance indicators (KPIs) such as heat-
ing values, gas yield, CCE, gasification efficiency (GE), cold

gas efficiency (CGE), and tar yield are used to assess the eco-
nomic viability and quality of the gasification system [15,
202]. In this study, KPIs are categorized into four groups:
gas composition, product yields and quality, heating values,
and process efficiency. Machine learning (ML) has been
applied to both regression and classification problems in
gasification processes, with most research focusing on
regression tasks [203]. Additionally, the majority of ML
studies have examined single-feedstock gasification, with
limited research on cogasification. To address this gap, train-
ing ML models with heterogeneous datasets encompassing
various blend types and blending ratios is necessary.
Table 4 provides examples of relevant studies on applying
ML to gasification and cogasification processes.

In multiple input multiple output (MIMO) modeling,
where there are multiple outputs (target variables), it is
crucial to recognize that each target variable may have
varying levels of prediction accuracy. Therefore, relying
solely on the overall model accuracy can be misleading.
Traditionally, researchers have often focused on the overall
model performance, neglecting individual target variables.
However, for effective application selection, assessing the
prediction accuracy of each target variable is essential.
This section analyzes the prediction accuracy of individual
target variables to gain insights into the models’ strengths
and weaknesses for specific outputs. Despite variations in
modeling approaches, comparisons between ML models
are still possible [166, 215].

Artificial neural networks (ANNs) have been the most
widely used technique for gasification modeling [23, 221,
222], as shown in Figure 2(a). Many other ML techniques
have also been explored, including support vector SVR,
DTR, linear regression (LR), polynomial regression (PR),
Gaussian process regression (GPR), K-nearest neighbor
(KNN), and ensemble methods (RF, GBR, XGB, AdaBoost,
optimized ensemble model (OEM), and super learner). For
a comprehensive analysis of these methods’ advantages and
limitations, refer to Umenweke et al. [79]. Heating value,
including both lower heating value (LHV) and higher heat-
ing value (HHV), has been the primary target variable in
gasification modeling studies (Figure 2(b)). Other relevant
gasification performance metrics studied include gas compo-
sition (CO, CO2, H2, and CH4), product yields and gas qual-
ity (total gas yield, H2 yield, and tar yield), and process
efficiency (CCE and CGE).

3.2.1. Gas Composition Prediction. Syngas composition is a
critical indicator of gasification system performance [15,
223, 224]. The primary gas components in syngas typically
include CO, CO2, H2, CH4, and H2O [199, 225]. Additional
components may include Tar (C10H8), H2S, N2, and uncon-
verted carbon (char) [226]. In machine learning (ML)
models, syngas composition can be modeled in two ways:
multiple input single output (MISO) models (each gas spe-
cies is predicted as a separate target variable) and multiple
input multiple output (MIMO) models (all gas species are
predicted collectively). Commonly predicted gases include
CO, CO2, CH4, and H2, with recent studies exploring C2H4
and N2 prediction [81, 82].
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Studies have shown promising results using models like
ANNs, support vector regression (SVR), decision tree
regression (DTR), and gradient boosting regression (GBR)
[82, 174, 204, 220]. These studies consistently demonstrated
that ML models can effectively predict syngas composition,
with R2 values exceeding 0.7 for most gas components and
even reaching as high as 0.92 in some cases (Supplementary
material S3, S4, S5, and S6). Notably, ANNs consistently
delivered good performance across various studies, high-

lighting their potential as a reliable tool for syngas composi-
tion prediction [82, 174, 204].

While some research focuses on comparing multiple
models to identify the most effective approach [82, 204],
others delve deeper into optimizing the performance of a sin-
gle model, particularly ANNs [174]. Regardless of the chosen
approach, ML offers a powerful and versatile tool for analyz-
ing and predicting syngas composition. This allows for a dee-
per understanding of the intricate relationships between

ANN
26%

DTR
7%

SVR
13%LR

4%
PR
5%

GPR
5%

Ensemble
34%

Others
6%

(a)

H2 yield
6% CGE

5%

Gas yield
11%

CCE
3%

Heating value
12%

CO
11%CO2
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H2 
11%

CH4
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Tar yield
7%

Char yield
5%

Others
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(b)

Figure 2: Comparative analysis of (a) machine learning methodologies and (b) gasification performance metrics within gasification
research. The data used for constructing this figure can be accessed from the supplementary material (S1 and S2).

13International Journal of Energy Research



process parameters and gas production, paving the way for
optimizing gasification systems for improved efficiency and
performance.

3.2.2. Product Yields and Quality Prediction. Optimizing gas-
ification, especially when combining different feedstocks
(Co-gasification), requires a deep understanding of its prod-
ucts [227]. This includes not just the total amount of gas
produced (gas yield) but also the formation of tar, char,
and the yields of specific gases like hydrogen. One crucial
parameter is gas yield. This metric excludes inert gases like
nitrogen and focuses on the usable gas per unit of dry feed-
stock, free of ash. It provides valuable insights into
hydrogen-rich gas production, a key goal in many applica-
tions [200, 228]. Factors like steam addition and the speed
of steam-related reactions significantly influence how much
hydrogen yield (m3/kg) increases as gasification pro-
gresses [229].

Machine learning (ML) offers a powerful tool for pre-
dicting gas yield (Supplementary material S7). Mutlu et al.
[205] developed several ML models (SVR, DTR, PR, ANN,
LR, and PLR) that all excelled at prediction, achieving R2

values consistently above 0.85. Notably, GPR and SVR were
particularly impressive with R2 values of 0.9, followed by
ANN (0.92), LR (0.91), PR (0.89), and DTR (0.88). Kardani
et al. [150] built on this research by applying different ML
models (SVR, DTR, ANN, XGB, RF, and OEM) to predict
gas yield in a fluidized bed reactor. All models surpassed
R2 values of 0.85, with XGB leading the pack at 0.996,
followed by OEM (0.99), RF (0.979), DTR (0.975), ANN
(0.93), and SVR (0.886).

While research on overall gas yield is extensive, studies
specifically focused on hydrogen yield (H2) are less common.
Ozbas et al. [214] proposed models (SVR, DTR, KNN, and
LR) for H2 yield prediction in a fixed bed reactor, all achiev-
ing R2 values above 0.9. Similarly, Zhao et al. [215] applied
different models (SVR, ANN, GPR, and RF) to an SCWG
system, with all models exceeding R2 values of 0.9. It is
important to note that the limited input features used in
these models by Ozbas et al. [214] and Zhao et al. [215]
may restrict their applicability to broader scenarios. A recent
study by Devasahayam and Albijanic [57] utilized various
ML models (DTR, Adaboost, GBR, and RF) to predict
hydrogen production from the cogasification of biomass
and plastics. The achieved R2 values were 0.76, 0.92, 0.99,
and 0.68, respectively.

Another important gasification byproduct is tar, which
consists of undesirable hydrocarbons, particularly aromatic
compounds. Minimizing tar formation is crucial for
achieving the desired gas quality [230]. It is important to
remember that tar is a complex substance with five distinct
classes. Focusing solely on total tar content or yield can be
misleading [229]. Various factors, including feedstock com-
position and operating conditions, significantly influence tar
production and its composition during biomass gasification
[208, 231]. Tar yield, a key metric, is calculated by multiply-
ing the total tar concentration in the gas product by the gas
yield per unit mass of dry ash-free feedstock [208].

Despite its significance, predicting tar yield using ML
models has received less attention, with only a few studies
available [208]. Ascher et al. [81] addressed this gap by devel-
oping an ANNmodel for predicting tar yield in universal gas-
ification systems, achieving high accuracy with an R2 value
exceeding 0.9. This aligns with the findings of Serrano and
Castelló [208], who developed ANN models for lab-scale gas-
ification, with the best model achieving an R2 value of 0.977.

In contrast, Ascher et al. [83] conducted a broader study
involving seven ML models (SVR, ANN, RF, GBR, XGB,
AdaBoost, and super learner) for predicting tar yield in uni-
versal gasification systems. Most models exhibited lower
accuracy in this broader study. SVR had the lowest R2 value
of 0.09. The XGB model outperformed others, achieving an
R2 value of 0.85, followed by GBR (0.76), super learner
(0.75), ANN (0.62), and RF (0.59). Notably, the ANN
model’s performance in this study by Ascher et al. [82]
was significantly lower compared to the results from their
previous study and the study by Serrano and Castelló
[208]. This highlights the potential influence of factors like
the specific dataset and model configuration on ML predic-
tion accuracy.

By providing accurate predictions of gas yield, hydrogen
yield, and tar formation, ML models can significantly con-
tribute to optimizing gasification processes for various appli-
cations. As research continues to explore and refine these
models, we can expect even greater advancements in under-
standing and controlling gasification dynamics.

3.2.3. Heating Value Prediction. Heating value, also known
as energy value or calorific value, is a crucial metric in gasi-
fication. It quantifies the energy released during the combus-
tion of a fuel per unit volume or mass (MJ/Nm3 or MJ/kg)
relative to liquid and gaseous water [150, 222]. There are
two main categories for gas heating values: lower heating
value (LHV) and higher heating value (HHV). The distinc-
tion lies in how they account for water vapor in the combus-
tion products. HHV considers the energy released when
water vapor condenses back to liquid at a standard state,
while LHV assumes the water vapor remains a gas. LHV is
generally preferred for gasification assessments and is often
derived from HHV [201].

Machine learning (ML) models have proven adept at
predicting both HHV and LHV in gasification processes
(supplementary material S8). Elmaz et al. [204] used four
ML models (SVR, DTR, PR, and ANN) to predict HHV in
downdraft gasification. ANN achieved the highest R2 value
(0.931), followed by DTR (0.921), SVR (0.886), and PR
(0.858). Mutlu et al. [205] employed six ML models (SVR,
DTR, PR, ANN, LR, and GPR) for downdraft gasification
HHV prediction. GPR performed best (R2 = 0 78). However,
their lower R2 values might be due to a smaller dataset (56
samples) compared to Elmaz et al. [204] who used 4826
samples. Kardani et al. [150] developed six ML models
(SVR, DTR, ANN, XGB, RF, and OEM) for LHV prediction
in lab-scale fluidized bed gasification. All models achieved
R2 values greater than 0.9, with OEM performing the best
(R2 = 0 973).
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Additionally, Ascher et al. [83] used seven ML models
(SVR, ANN, XGB, GBR, RF, AdaBoost, and super learner)
for predicting LHV in general-type gasification systems. All
models performed well except for ANN (R2 = 0 88). The
prediction accuracy of SVR, XGB, and RF was similar
between their study and Kardani et al. [150]. Notably, differ-
ences in ANN model R2 scores might be due to factors like a
larger number of features considered by Ascher et al. [82]
and potential overfitting in Kardani et al. [150] due to their
smaller dataset. Hasanzadeh and Azdast [219] developed a
polynomial regression (PR) model for LHV prediction,
achieving impressive results with R2 values exceeding 0.99.
This highlights the potential of polynomial functions for
accurate heating value prediction in gasification.

In general, various ML models have demonstrated
strong performance for both HHV and LHV prediction.
While ANNs have been promising, other approaches like
PR and SVR have also shown effectiveness. As shown in
the comparison between Elmaz et al. [204] and Mutlu et al.
[205], the size and quality of the dataset can significantly
impact the performance of ML models. Larger and more
diverse datasets are generally preferred for robust model
development. The choice of ML model and its hyperpara-
meter tuning can influence prediction accuracy. While vari-
ous models have been successful, exploring different options
and optimizing their configurations could potentially lead to
even better results. Selecting and engineering relevant fea-
tures as input for the models can significantly enhance their
effectiveness.

3.2.4. Process Efficiency Prediction. Carbon conversion effi-
ciency (CCE), cold gas efficiency (CGE), and gasification
efficiency (GE) are crucial metrics for evaluating the effec-
tiveness of gasification processes. They provide insights into
how well the feedstock is converted into usable gaseous
products. CCE is calculated by dividing the moles of carbon
in the product gas by the total moles of carbon in the feed-
stock [15]. Higher CCE values indicate a more significant
conversion of carbon into valuable gaseous products like
CO, CO2, and CH4 [232]. CGE compares the heating value
of the produced gas mixture to the heating value of the feed-
stock [233]. It focuses solely on the gases exiting the gasifica-
tion section and reflects how efficiently the potential energy
in the feedstock is converted into usable energy in the gas
[201]. GE, though less common, measures the overall con-
version of feedstock into gaseous products. It is calculated
as the total mass or moles of gas produced per unit of feed-
stock [224, 232].

While CCE and CGE are essential for efficiency evalua-
tion, relatively few studies have explored using machine
learning (ML) models for their direct prediction. Ascher
et al. [82] suggested that CCE and CGE can be estimated
based on other predicted parameters. However, directly eval-
uating ML model performance for CCE and CGE prediction
remains valuable due to potential variations in results. Mutlu
et al. [205] evaluated six ML models (SVR, ANN, LR, GPR,
DTR, and PR) for CCE and CGE prediction. GPR achieved
the best performance for CGE (R2 = 0 71), while SVR led
for CCE (R2 = 0 79). However, it is important to consider

limitations like dataset size, input selection, and hyperpara-
meter tuning, as these factors can significantly impact pre-
diction accuracy. Ozonoh et al. [3] used an ANN model
and achieved higher R2 values (0.9 for CGE and 0.84 for
CCE) compared to Mutlu et al. [205]. This highlights the
potential of ANNs for CCE and CGE prediction, but further
validation is needed. Hasanzadeh and Azdast [219] devel-
oped a polynomial regression (PR) model for predicting
CGE, achieving exceptional results with R2 values exceeding
99%. This suggests the potential effectiveness of polynomial
functions for CCE and CGE prediction.

Compared to gas yield and heating value prediction,
research on ML for CCE and CGE prediction is scarce. More
studies are needed to explore the effectiveness of various
models and identify the best approaches for different gasifi-
cation scenarios. The accuracy of ML models heavily relies
on the quality and size of the training data. Limited access
to high-quality datasets on CCE and CGE can hinder model
development and generalizability. While some ML models
can achieve high prediction accuracy, understanding the rea-
sons behind their predictions can be challenging. This limits
interpretability and the ability to refine gasification processes
based on model insights.

4. Interpretability Techniques in the
Context of Gasification

In the context of gasification, interpretability techniques play
a vital role in understanding and explaining the complex
processes and outcomes associated with thermochemical
conversion. Gasification transforms carbonaceous materials
into syngas, a versatile fuel used for electricity generation,
chemical production, and other applications. Comprehen-
sive understanding and interpretation of gasification system
mechanisms are crucial for optimizing efficiency and mini-
mizing environmental impact. Interpretability techniques
contribute significantly to the development of advanced
and sustainable gasification technologies by offering insights
into these complex processes, facilitating optimization
efforts, and ensuring reliable system operation [143].

Interpretability, broadly defined, refers to the ability to
understand and explain a model or system’s outputs or deci-
sions in a clear and human-understandable way. This con-
cept is particularly critical in machine learning and
artificial intelligence (AI) to ensure transparency and trust
in these decision-making models [234]. Interpretable
models, like linear regression, allow for straightforward
understanding of the relationship between input features
and output. However, complex models, such as deep neural
networks and ensemble models, can pose challenges due to
their intricate architectures. Balancing model complexity
with interpretability is an ongoing effort. Researchers are
actively developing methods to enhance interpretability,
providing valuable insights into the features and patterns
influencing predictions.

Interpretability analysis, also known as feature impor-
tance assessment, variable importance assessment, or rela-
tive feature importance analysis, focuses on extracting
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knowledge about the relationships learned by a model or the
patterns within the underlying data [235, 236]. In simpler
terms, interpretability refers to a human’s ability to under-
stand why a machine learning model makes a particular pre-
diction. Highly interpretable models are easy to understand,
and their results can be readily predicted by a human. In
contrast, models with low interpretability are challenging
to grasp [61, 82, 235].

4.1. Importance of Understanding Models. In the dynamic
field of biomass and waste gasification, understanding
machine learning models is paramount for all stakeholders,
including operators, researchers, and policymakers. Clear
model interpretation is essential, as it unlocks actionable
insights that aid in process optimization and facilitate effec-
tive decision-making. This is particularly crucial in domains
where model-based decisions have significant consequences,
such as healthcare, finance, and law [237].

Several key reasons highlight the importance of under-
standing models across various domains, including data sci-
ence and machine learning [238]. Firstly, interpretability and
explainability are vital. They empower individuals to com-
prehend and explain the results and predictions of models,
especially in high-stakes decision-making. Understanding
the underlying model is crucial for troubleshooting and
debugging issues. Furthermore, knowledge of the parameters
and their impact allows practitioners to optimize and fine-
tune models for better performance. Additionally, compre-
hension of model applicability and limitations guides practi-
tioners in selecting the most suitable approach for a given
problem and avoiding inappropriate model applications.

The importance of understanding models extends
beyond technical aspects. It plays a pivotal role in feature
engineering. Knowledge of a model’s characteristics helps
guide the selection of the most relevant data points to
improve model accuracy. Effective communication of results
to nontechnical audiences is also facilitated by understand-
ing the model. If one grasps the inner workings of the model,
they can translate complex concepts into clear explanations.

Understanding models is crucial for addressing biases
and ensuring responsible model usage. By understanding
how the model arrives at its conclusions, researchers and
practitioners can identify and mitigate potential biases in
the data or algorithms. Finally, as models are not static enti-
ties, continuous improvement relies on a deep understand-
ing of models to inform decisions about updates or
replacements based on evolving data or requirements. In
conclusion, understanding models goes beyond technical
considerations. It plays a critical role in informed decision-
making, model reliability, and ethical considerations across
diverse applications [239].

4.2. Overview of Interpretability Techniques. Interpretability
techniques are crucial for unlocking the secrets of gasifica-
tion processes, which are essential for achieving sustainable
energy production and effective waste management. Broadly
categorized into model-agnostic and model-specific
methods, these techniques offer a range of benefits. They
empower stakeholders to optimize gasification conditions,

diagnose issues that may arise, and make informed decisions
throughout the design and operation stages. This ultimately
contributes to enhanced efficiency and sustainability in gas-
ification processes.

Model-agnostic methods focus on understanding the
overall behavior of the model and can be applied to various
gasification models. Examples include sensitivity analysis,
which quantifies the impact of individual input variables
on the model’s output. Feature importance analysis high-
lights the most significant features influencing the model’s
predictions. Partial dependence plots, on the other hand,
provide visual insights into the relationships between input
variables and the model’s output [240].

For deeper insights specific to gasification models, model-
specific methods are available. Rule extraction techniques, for
instance, reveal the decision rules within rule-based models.
Feature interaction analysis explores how input variables
interact and influence the model’s output. Additionally, coun-
terfactual explanations help illustrate the cause-and-effect
relationships of altering specific inputs [60, 241].

These interpretability techniques go beyond technical
considerations. By empowering stakeholders with a deeper
understanding of the model’s inner workings, they enable
process optimization, fault diagnosis, and informed
decision-making. This multifaceted approach to interpret-
ability, as illustrated in Figure 3, caters to different aspects
of model interpretation. The figure categorizes the methods
based on various characteristics, such as intrinsic vs. post
hoc (built-in vs. applied afterwards), model-specific vs.
model-agnostic, premodel (in-model) vs. postmodel (appli-
cation stage), and global vs. local interpretability (providing
insights into the entire model or specific aspects). A detailed
analysis of the advantages and limitations of these methods
within the gasification context is provided in Table 5 [82,
242]. This comprehensive approach ensures a holistic
understanding of the intricate dynamics of gasification sys-
tems, paving the way for advancements in sustainable energy
production and waste management.

The use of interpretability techniques to understand
complex machine learning (ML) models in gasification sys-
tems is a nascent field. Many researchers have not prioritized
interpretability as part of model development [243]. How-
ever, a growing body of research is exploring interpretability
methods for complex models like ensembles and artificial
neural networks (ANNs). Analysis of existing literature
reveals five methods gaining traction for feature importance
assessment: permutation importance, Gini importance,
SHAP (Shapley additive explanations), sensitivity analysis,
and partial derivative plots. Sensitivity analysis, particularly
methods designed for ANNs, has been the most widely used
(Figure 4(a)). However, its application has primarily focused
on interpreting ANNs (Figure 4(b)).

Integrating interpretability techniques with ensemble
models holds significant promise. While ensembles often
outperform other models, their complexity can hinder
understanding of their decision-making processes. Interpret-
ability methods can bridge this gap, improving transparency
and trust in these models. This is crucial in domains where
understanding the rationale behind predictions is essential.
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Benefits include increased trust and accountability,
improved model debugging, better feature selection, and
more effective communication between developers and
stakeholders [244].

However, challenges remain. These include developing
efficient and scalable interpretability techniques, balancing
accuracy with interpretability, standardizing methods, and
adapting to new ensemble models [245]. Despite these chal-
lenges, the potential benefits of interpretability are substan-
tial. Increased trust, more informed decision-making, and
improved model performance all underscore the importance
of further research in this area. Table 6 summarizes various
studies involving model interpretability in gasification. It is
worth noting some inconsistencies in the literature, with
terms like “Gini importance” being misused as a type of sen-
sitivity analysis [150]. To address this confusion, a critical
evaluation of the five interpretability methods is provided
elsewhere, offering a brief overview of their theory, strengths,
weaknesses, and applications in feature importance analysis
for gasification.

4.2.1. Permutation Importance. Permutation importance,
also known by various terms including permutation feature
importance [163, 246], permutation accuracy importance
[164], or mean decrease accuracy [247], offers a valuable
approach to understanding how features influence a
model’s predictions. It shares a similar algorithmic concept
with random forests [163]. This method is specifically
aimed at assessing the statistical significance of each fea-
ture’s impact on the model’s output [248]. It provides
insight into feature importance by using the coefficients of
linear models, which are often employed as interpretable
models [249]. Permutation importance operates as a global
interpretability technique. It works by modifying or per-
muting the order of input features. Subsequently, the
impact of this manipulation on the model’s performance
is measured [215]. Essentially, this approach quantifies
how much individual features contribute to the accuracy
of a prediction model [250].

Within the context of permutation importance, a feature
is considered crucial if permuting its values leads to a signif-
icant increase in prediction error. Therefore, the greater the
increase in model error observed, the more important the
feature is deemed to be [215]. Detailed explanations of inter-
preting feature importance results can be found in previous
studies [251–253]. Permutation importance’s primary
strength lies in its ability to offer a global insight into the
model’s behavior and to automatically account for interac-
tion effects among features [61, 254]. Additionally, it per-
forms well with correlated variables and can be estimated
using Equation (1) [240].

PFI j f̂ = Ε L f̂ X j , Y − Ε L f̂ X , Y , 1

where X j is the p-dimensional random variable vector
of features and the idea behind this method is to break the
association between the jth feature and the target variable
by permutating its feature values. If a feature is not useful
for predicting an outcome, changing its values by permuta-
tion will not increase the expected loss.

Ascher et al. [83] compared the performance of permu-
tation importance on four different tree-based ensemble
models (RF, XGB, GBR, and AdaBoost). Their findings
revealed that all models exhibited good agreement in rank-
ing features, with temperature consistently emerging as the
key feature. However, the overall importance of individual
predictors could result from contributions of different sub-
models within the ensembles. The authors also noted slight
variations between submodels for each output variable of
each model type [82].

Another study by Zhao et al. [215] used permutation
importance to interpret a random forest model for supercrit-
ical water gasification (SCWG) on H2 yield. They separated
the interpretation for biomass properties and SCWG process
parameters. Their findings revealed that biomass concentra-
tion was the most influential feature among process param-
eters (temperature, residence time, and pressure). Hydrogen

Model interpretability

ScoopComplexity

Local GlobalModel-agonisticModel-specific Post-hocIntrinsic

Dependency

Figure 3: Classification of model interpretability analysis method.
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and oxygen were identified as the most prominent features
among the biomass properties considered (carbon and ash
contents) [215]. It is important to note that SCWG is a novel
gasification concept that differs from conventional gasifica-
tion. As it utilizes feedstock with high moisture content
(wet feedstock), process parameters like biomass concentra-
tion, temperature, and pressure play crucial roles in SCWG
performance.

4.2.2. Sensitivity Analysis. Sensitivity analysis (SA), also
known as uncertainty analysis, plays a crucial role in
understanding complex models, often referred to as
“black-box” models. SA assesses how the model’s output
reacts to changes in its input variables [3, 249]. This tech-
nique is particularly valuable for developing visual tools
that help us inspect models with nonlinear or nonmono-
tonic behavior. By performing sensitivity analysis, we can
gain valuable insights into the robustness and decision-
making processes employed by machine learning models
[255, 256]. There is a variety of SA methods available, cat-
egorized as local or global. Some common examples
include one-at-a-time analysis, Morris methods, Sobol
indices, perturb and profile methods, and techniques based
on artificial neural networks [257–260].

When it comes to interpreting artificial neural network
(ANN) models, two main categories of SA methods are
commonly used: pure SA (like perturb and profile methods)
and neuron network-based SA methods (like connection
weights or Garson’s algorithm) [261–263]. Within the neu-
ron network-based methods, partial derivatives (Pad) and
connection weight (Garson’s algorithm) approaches have
been applied to interpret ANN models [3]. Ozonoh et al.
[3] argued that the Pad is a more reliable method compared
to connection weights, step-wise methods, and perturb and
profile methods. Using Pad to interpret their ANN model,
they found that carbon was the most influential feature for

all predicted outputs (CGE, gas yield, and LHV), followed
by volatile matter and then temperature.

Several studies have employed SA techniques to under-
stand how input features influence the outputs of ANN
models. For instance, Serrano & Castelló [208] used the Gar-
son method to analyze the influence of input features on tar
yield in an ANN model. Their results revealed that the ele-
mental composition (C, H, and O) of the biomass feedstock
had a significant impact (over 45%) on tar yield, while the
operating conditions (ER and temperature) of the gasifica-
tion system contributed over 30%. Yucel et al. [210] applied
the Garson method to interpret an ANN model with two dif-
ferent input groups. They found that temperature distribu-
tions were the most influential factors for all output
variables in one case. However, another case showed differ-
ent features (AF and AR) becoming more important for spe-
cific predictions. This highlights how the choice of model
inputs can significantly impact the resulting gasification pre-
dictions. Baruah et al. [213] included reduction zone tem-
perature alongside other variables as model inputs. The
Garson method revealed that each input variable had a
strong influence on the outputs (ranging from 8% to 31%),
with reduction temperature being the most crucial factor
for predicting CO and H2. These case studies demonstrate
how sensitivity analysis can be a powerful tool for under-
standing how different features influence the predictions of
ANN models used in various applications.

4.2.3. Partial Dependence Plot. Partial dependence plots
(PDPs) offer a valuable tool for visualizing and understand-
ing the global relationship between a machine learning
model’s output and its individual input features within a
reduced feature space [249]. However, it is important to be
aware of their limitations. PDPs can produce misleading
results when dealing with strongly correlated predictors.
This is because they rely on extrapolating the model’s

SH
AP

Sensitiv
ity

analysis
Permutation

importance

PDP

G
ini

im
portance

(a)

GBR

Machine learning methods layer

XGBRF ANN AdaBoost

Interpretability methods layer

GM Gini PDPGMGMSHAPPI SAPa

Interpretability analysis in
gasification

(b)

Figure 4: Interpretability methods in gasification: (a) extent of use among studies, (b) linking with ML models. Note. SHAP: Shapley
additive explanations; PDP: partial dependence plot; GM: Garson method; SA: sensitivity analysis; PI: permutation importance; PaD:
partial derivatives. Data used for creating (a) can be accessed in supplementary material S9.
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response at predictor values that fall outside the range of
values observed in the training data [264]. The calculation
of PDPs can often be achieved using the following equation:

f̂ s xs = 1
n
〠
n

i=1
f xs, x i

c , 2

where i is a generic observation, xs represent the features

(s) of interest, x i
c are the other features included in the

model, and n is the number of instances which the dataset
consists of.

Interpreting PDPs is relatively straightforward, as they
share similarities with regression models. However, they
have limitations. Firstly, PDPs might not be suitable for
illustrating the input-output relationship in models with
multiple inputs and multiple outputs (MIMO models). Sec-
ondly, PDPs may not capture the influence of confounding
factors [82].

Despite these limitations, PDPs are often used alongside
other interpretability methods. PDPs excel at visualizing
how a specific input variable affects model predictions, while
other methods, like permutation feature importance, help
identify which input variables have the strongest influence
on the model’s output [253]. PDPs can be generated in both
1D and 2D formats. Two-dimensional PDPs are particularly

useful for interpreting the interaction between two input
variables and their combined impact on the predicted out-
put [243].

There are examples of studies to showcase the strengths
and weaknesses of PDPs as a tool for interpreting machine
learning models. Zhao et al. [215] employed PDPs to illus-
trate the marginal effect of one or two features on the predic-
tions made by a random forest (RF) model. They found that
two-variable PDPs were effective in demonstrating how fea-
tures like biomass concentration and temperature can have a
synergistic impact on H2 yield [215]. A more recent study by
Li et al. [243] utilized PDPs to visualize the correlations
between input variables and predicted targets using a
gradient-boosting regression (GBR) model (Figure 5). PDPs
were successful in illustrating the interactions between the
most critical conditions (e.g., temperature) and the proper-
ties of the feedstock or other operational conditions on H2
and CO2 yield [243].

4.2.4. Shapley Additive Explanations. The Shapley additive
explanations (SHAP) stand out as a powerful tool for inter-
preting machine learning models, offering a significant
advancement over local interpretable model-agnostic expla-
nations (LIME) [265]. Unlike LIME, which delves into local
explanations for individual data points, SHAP focuses on the
bigger picture. It is aimed at explaining the predictions of a
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Figure 5: PDP plot on impacts of the interaction of temperature with other factors (a) on H2 yield and (b) on CO2 yield in syngas. Source:
adapted from Li et al. [243]. ER: equivalent ratio; N: nitrogen atom. Copyright © Elsevier 2023.
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given data sample by quantifying the contribution of each
feature to the model’s overall prediction [266]. SHAP
accomplishes this by leveraging coalitional game theory, a
concept from economics. It calculates Shapley values, which
essentially represent how much credit each feature deserves
for the final prediction [249].

SHAP offers a significant advantage; it provides an intu-
itive visual representation of how various features influence
a specific prediction. This visualization makes it easier to
understand the reasoning behind the model’s output. The
Shapley value for a feature is calculated using a specific for-
mula (Equation (3)), but the core concept is more important
[267]. In simpler terms, the formula considers different
combinations of features and calculates how much each fea-
ture contributes to the model’s output within those combi-
nations. The Shapley value represents the average of these
contributions across all possible feature combinations. This
approach provides a more comprehensive understanding of
feature influence compared to methods that only look at
individual features in isolation.

g z′ =∅0 + 〠
M

J=1
∅ jz j′, 3

where g equals the model and z′ is the coalition vector.
The zj′ stands for a coalition vector where if a specific feature
value is included, it is represented by 1 and 0 if it is not
included. M is the maximum size of the coalition, and j is
the feature attribution for a feature j, i.e., Shapley values.
∅0 indicating a constant value when all inputs are missing.
The generic ∅j is the weight against the feature contribution
summation for the output of the model for overall feature
combinations.

One of the key strengths of SHAP for global interpreta-
tion is that it goes beyond just feature importance. It also
reveals the relationships between features and the model’s
output. Additionally, SHAP ensures that its feature attribu-
tions (contributions) are fairly distributed across all features,
leading to more trustworthy results. These advantages have
made SHAP a popular choice in various studies [61, 268].
SHAP can also be effectively combined with other interpret-
ability methods, such as partial dependence plots (PDPs), to
provide even more comprehensive interpretations [171].

For instance, Ascher et al. [83] applied SHAP to explain
the predictions made by three different ensemble models
across ten output variables. In the case of a model predicting
gas yield, which used 24 input features, SHAP identified car-
bon, ER (equivalence ratio), and temperature as the key fea-
tures. The authors also demonstrated how SHAP can be
used to provide explanations for individual model predictions
(Figure 6). They highlighted that such visualizations are valu-
able for communicating the prediction process of a machine
learning model to stakeholders or policymakers [82].

4.2.5. Gini Importance. Gini importance, also known as
impurity importance or mean decrease impurity, is a
method introduced by Breiman [163] to assess the signifi-
cance of variables in decision tree models [178, 243]. It
works by quantifying the level of “impurity” during the pro-
cess of building a decision tree. In simpler terms, impurity
refers to how mixed the data samples are within a specific
node of the tree. Features that are used more frequently to
create separation points between these data samples are con-
sidered more significant by the model. Gini importance is
typically used for classification problems, while regression
tasks employ a similar approach with the sum of squares
as the impurity measure [252, 269]. This can be estimated
using Equation (4) [252].
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Figure 6: SHAP explanations of some selected individual predictions. The syngas yield from barley straw gasification is shown for (a) a base
case at 800°C and (b) a high-temperature case at 1,000°C. Source: extracted from Ascher et al. [82]. Copyright © Elsevier 2022.
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Γ t = 〠
J

j=1
φ j t 1 − φ j t , 4

where φ j t is the class frequency for class j in the node t.
While Gini importance offers a clear advantage in its

simplicity and speed for interpreting tree-based models, it
is not without limitations. One drawback is its tendency
to favor categorical features with a high number of cate-
gories. Additionally, it can be biased towards features that
are continuous and have little correlation with each other
[163]. However, research suggests that Gini importance
can sometimes identify important categorical features as
well [82]. Another limitation is that this method is not
applicable to other types of models, limiting its versatility
[270]. Interestingly, Gini importance can yield similar
interpretations of feature importance for GBR and RF
ensemble models when compared to permutation impor-
tance [82].

Several studies have applied Gini importance to interpret
machine learning models used in biomass gasification. For
instance, Kardani et al. [150] used Gini importance to ana-
lyze an XGB model predicting target variables like lower
heating value (LHV) and gas yield. Their findings revealed

that temperature had the most significant influence on the
outputs, with importance scores ranging from 35% to
40.8%. Ascher et al. [83] compared the performance of Gini
importance on different ensemble models, including GBR,
RF, XGB, and AdaBoost. They found that the particle size
of the feedstock and the choice of gasifying agent were con-
sistently important predictors across all models (Figure 7).
Interestingly, they also observed that even when using the
same interpretability method (Gini importance), feature
importance can vary among different ensemble models. This
highlights the importance of considering the specific model
type when interpreting feature importance.

In a separate study, Li and Song [23] conducted an inter-
pretation of a GBR model applied to gas composition, tar,
char, and gas yields. Their analysis revealed that ash content,
nitrogen content, and temperature were the most influential
features when compared to H2 yield in relation to the other
input features, including hydrogen content, sulfur content,
oxygen content, steam-to-biomass ratio, and equivalence
ratio. Interestingly, temperature emerged as a key feature
in both studies by Li and Song [23] and Kardani et al.
[150]. However, it is worth noting that Kardani et al. [150]
included proximate analysis of the feedstock, such as mois-
ture content, as an input feature to their XGB model, which
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Figure 7: Gini feature importance of (a) gradient boosting models and (b) random forest models. Source: adapted from Ascher et al. [82].
Copyright © Elsevier 2022.
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was not considered in Li et al.’s study. Both studies
employed GBR and XGB models, which belong to the boost-
ing ensemble method, allowing for a meaningful comparison
of their interpretations.

5. Challenges and Future Research Directions

Machine learning (ML) offers tremendous potential for opti-
mizing and enhancing gasification processes. However, there
are still challenges to address and exciting areas for further
exploration.

5.1. Challenges with Limited Datasets. One major hurdle lies
in the use of relatively small datasets, often collected from
literature or generated through experiments. These limited
datasets can restrict the prediction accuracy of ML models
[203]. While there is no established minimum data size for
optimal accuracy, it is generally understood that more data
leads to better results. To overcome these limitations,
researchers often employ resampling techniques like cross-
validation during model development. However, limited
exploration of alternative methods and the lack of consistent
cross-validation implementation can hinder unbiased per-
formance evaluations and scalability [205]. Therefore, focus-
ing on improved feature selection, identification of crucial
factors, and data preprocessing is vital for boosting the accu-
racy of ML models in gasification.

5.2. Hyperparameter Optimization. Hyperparameter optimi-
zation plays a key role in refining the performance of ML
models. Traditionally, researchers have relied on the time-
consuming trial-and-error method, particularly for tuning
artificial neural network (ANN) models [271, 272]. Fortu-
nately, alternative techniques are emerging to identify the
most effective hyperparameter combinations. These include
the grid search algorithm, particle swarm optimization,
genetic algorithms, and Bayesian optimization methods
[82, 141, 150, 215]. The impact of these optimization
methods can vary depending on the ML model being used.
Ensemble models (like random forest, XGBoost, gradient
boosting regression, and AdaBoost) and tree-based methods
(like decision tree regression) have shown less sensitivity to
hyperparameter optimization [82]. However, a more com-
prehensive understanding of how these methods affect dif-
ferent models is still needed. Additionally, conducting
comparative analyses of various optimization techniques
would be valuable for advancing this field.

5.3. Developing Generalizable ML Models. While improving
prediction accuracy and preventing overfitting have been
major focuses, developing generalizable ML models that
can handle complex real-world scenarios in gasification is
equally important. Unfortunately, there is a limited number
of studies exploring universal models capable of effectively
handling high-dimensional or heterogeneous data, encom-
passing both continuous and categorical variables [273].
Furthermore, there is room for improvement in preprocess-
ing categorical variables, with more exploration needed for
alternative encoding methods. By emphasizing model gener-
alizability, ML models can be tailored to address real-world

challenges in gasification. For instance, cogasification intro-
duces new factors like feedstock blend types and ratios. Pre-
dicting the synergistic behavior of these blends using ML
models could be a valuable area of exploration. Depending
on the specific feedstock combinations, different models
might be required to effectively capture binary, ternary,
and other combination types. Developing a generalized
model that can adapt to new feedstock blends while consid-
ering their composition would be a significant advancement.
Additionally, models capable of capturing novel gasification
systems beyond conventional ones (e.g., two- and three-
stage gasification/cogasification, chemical looping gasifica-
tion/cogasification, catalytic gasification/cogasification)
could significantly enhance generalizability and address
real-world complexities.

5.4. Interpreting Complex ML Models. Most ML models are
well-suited for harnessing heterogeneous data to create highly
generalizable predictive models. However, interpreting models
developed using high-dimensional and heterogeneous data
remains a challenge, especially for those designed for predict-
ing complex gasification systems. While various interpretable
approaches exist, their suitability for specific models requires
further investigation. For example, the SHAP method might
not be compatible with AdaBoost models, even though it
works well for certain ensemble models [82].

5.5. Standardization and Frameworks. Establishing frame-
works for comparing different ML interpretation approaches
and their corresponding results is crucial. This is because dif-
ferent interpretability methods used on the same model might
reveal similar or distinct underlying logic and characteristics.
Additionally, creating benchmarks for both existing and new
interpretation methods specifically within the context of gasi-
fication is essential. High-quality benchmark datasets would
be indispensable for achieving this. Exploring ways to combine
the results obtained from multiple interpretability methods to
provide a more comprehensive and coherent interpretation of
the models is another valuable pursuit. Reproducibility is cru-
cial in ML research. Standard practices and frameworks can
ensure reproducibility across different studies.

5.6. Deployment for Real-World Applications. Finally,
deploying ML models for real-world applications should be
a core consideration during development [141]. This can
be facilitated by creating graphical user interfaces (GUIs)
and software applications that offer an interactive digital
environment for predicting gasification performance based
on user-provided input parameters, allowing engineers and
technicians to leverage the power of ML for optimizing gas-
ification processes in real time. This would bridge the gap
between research and practical applications, accelerating
the development and implementation of efficient and sus-
tainable gasification technologies.

6. Limitations and Practical Implications

Despite these limitations, the review offers valuable insights
with practical implications for researchers, practitioners,
and policymakers working in the field of gasification.
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Despite these limitations, the review offers valuable insights
with practical implications for researchers, practitioners,
and policymakers working in the field of gasification.

6.1. Limitations of Current Studies. The specific criteria used
for selecting reviewed papers may have inadvertently
excluded some relevant studies. Future reviews could benefit
from expanding the search strategy or including a wider
range of publication types (e.g., conference proceedings).
Another limitation lies in the focus of this review. While
ensemble models and interpretability methods are signifi-
cant areas of research, other potentially relevant ML tech-
niques (e.g., deep learning) or interpretability approaches
might not have been covered in as much detail. Finally, the
generalizability of the findings may be limited by the avail-
ability and quality of data used in the reviewed studies. Data
scarcity and potential biases within datasets can affect the
overall conclusions drawn about the performance of ML
models in gasification.

6.2. Practical Implications of This Review. The emphasis on
interpretable ensemble models highlights the need for
researchers to not only achieve high prediction accuracy
but also gain a deeper understanding of the factors influenc-
ing gasification processes. This knowledge can be crucial for
optimizing these processes and ensuring their effectiveness.
Standardized data collection and preprocessing protocols are
essential for data quality and comparability. Establishing such
protocols would facilitate collaboration among researchers
and enable the development of more generalizable ML
models. Developing user-friendly interfaces and software
applications for the deployment of ML models is critical to
bridge the gap between research and practical applications.
Making these models accessible to engineers and technicians
working on real-world gasification systems will accelerate the
adoption and impact of this technology. The exploration of
promising research directions, such as multimodal learning,
physics-informed ML, and explainable AI for sustainability,
provides a roadmap for future research efforts. By pursuing
these directions, researchers can unlock the full potential of
ML for advancing gasification technologies.

7. Conclusions and Recommendations

This comprehensive review delves into critical discussions
surrounding emerging concepts in gasification, particularly
focusing on ensemble machine learning (ML) modeling
and interpretability analysis. Drawing insights from a
diverse range of research findings, the study sheds light on
the landscape of ML models employed in gasification. The
review explores the use of both conventional ML models
(support vector regression, Gaussian process regression, arti-
ficial neural networks, polynomial regression, linear regres-
sion, and decision tree regression) and ensemble ML
models (random forest, gradient boosting regression,
extreme gradient boosting, AdaBoost, super learners, and
weighted majority voting). Interestingly, ensemble models
were the most commonly employed model in roughly 34%
of reviewed papers, followed by ANN models, representing

26% of the reviewed literature. The study also explores com-
monly applied interpretability methods like sensitivity anal-
ysis (Garson algorithm and partial derivative methods), Gini
importance, SHAP (Shapley additive explanations), partial
dependence plots, and permutation importance. This high-
lights the growing importance of understanding how these
ML models arrive at their predictions.

The review emphasizes the substantial promise of ensem-
ble ML models and their associated interpretability analyses
for applications in gasification systems modeling. Significant
advancements in this area are anticipated in the coming years.
However, it is important to acknowledge that there is no single
“best” ML method or interpretability approach. The optimal
choice depends on the specific dataset, research question,
and learning objectives. Consistency in results across multiple
interpretability techniques can help build trust in the interpre-
tation. A crucial consideration highlighted in this review is the
inherent limitation of interpretability methods. The insights
gleaned are ultimately limited by the content, quality, and
quantity of the data used to construct the models. Therefore,
careful selection of training data and features is essential to
prevent the introduction of technical or scientific artifacts into
both the models and their interpretations. This study offers
significant contributions to the field of gasification research
by highlighting the role of ensemble machine-learning model-
ing andmodel interpretability analysis. By examining a diverse
array of ML models and interpretability methods, we provide
insights into their applications and potential advancements in
gasification systems modeling.

This paper underscores the pivotal contributions of
ensemble models and interpretability techniques to the realm
of biomass and waste gasification. Through a precise explora-
tion of challenges and successes, the study emphasizes the
potential of these methodologies in achieving cleaner and
more sustainable energy production. The integration of
advanced modeling not only showcases achievements but also
addresses critical challenges like overfitting and computational
complexities, paving the way for strategic approaches to miti-
gate these issues. Beyond the core focus on ensemble models
and interpretability, the future of ML in gasification holds
exciting prospects for further exploration:

(i) Explore incorporating sensor data, operational data,
and even visual data from the gasification process
into the ML models. This could lead to more com-
prehensive and accurate models that capture the
intricate relationships between various factors and
overall gasification performance

(ii) Integrate physics-based models with data-driven ML
models. This approach would leverage the strengths
of both approaches—physics-based models could
provide a foundation for the ML models, while the
data-driven approach could learn from experimental
data to improve accuracy and efficiency

(iii) Utilize real-time data from sensor networks to
develop ML models for closed-loop control of gasi-
fication processes. This would allow for dynamic
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adjustments to operating conditions to optimize
performance metrics like yield, heating value, and
minimization of harmful emissions

(iv) Develop explainable AI (XAI) techniques specifi-
cally tailored to gasification, enabling researchers
to not only understand how ML models arrive at
predictions but also assess their environmental
impact. This would be crucial for ensuring the sus-
tainability and environmental benefits of gasifica-
tion technologies

Abbreviations

Symbols/Nomenclature

%: Percentage
>: Greater than
C: Carbon atom
CH4: Methane
CO: Carbonmonoxide
CO2: Carbondioxide
H: Hydrogen atom
H2: Hydrogen molecule
N: Nitrogen atom
N2: Nitrogen molecule
O: Oxygen atom
P: Pressure
R2: Coefficient of determination
S: Sulphur atom
T : Gasification temperature
t: Residence time
TR: Reduction temperature.

Acronyms

AdaBoost: Adaptive boosting
AFR: Air/fuel ratio
ANN: Artificial neural network
BC: Biomass concentration
BFB: Bubbling fluidized bed
BFR: Biomass feed rate
BM: Bed material
CCE: Carbon conversion efficiency
CGE: Cold gas efficiency
CFB: Circulating fluidized bed
CFR: Coal feed rate
daf: Dry and ash-free
db: Dry basis
DFB: Dual fluidized bed
DTR: Decision tree regression
ER: Equivalence ratio
FC: Fixed carbon
FR: Fuel flow/feed rate
GBM: Gradient boosting machine
GBR: Gradient boosting regression
GC: Gas composition
GPR: Process Gaussian regression
GY: Gas yield

KNN: K-nearest neighbor regression
LHV: Lower heating value
LHVp: Product gas lower heating value
MAD: Mean absolute deviation
MC: Moisture content
MDA: Mean decrease accuracy
ML: Machine learning
MLP: Multilayer perceptron
MSE: Mean square error
MSW: Municipal solid waste
MV: Majority voting
NARX: Nonlinear autoregressive exogenous
OEM: Optimized ensemble model
PaD: Partial derivatives
PDP: Partial dependence plots
PR: Polynomial regression
PS: Particle size
RF: Random forest
RMSE: Root mean square error
RSP: Random subspace
SAE: Simple averaging ensemble
SBR: Steam biomass ratio
SFR: Steam/fuel ratio
SHAP: Shapley additive explanations
SMFR: Specific mass flow rate
SR: Steam feed rate
SVM: Support vector machine
SVR: Support vector regression
TD(T0-T5): Temperature distribution
TSM: Tar sampling method
VM: Volatile matter
WAE: Weighted average ensemble
WMV: Weighted majority voting
XGB: Extreme gradient boosting.
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