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ABSTRACT 

Hydrological models provide a way to conceptualize and investigate the relationships 

between climatic variables and management practices with water resources. The 

decision on which modelling approach to employ poses a challenge to water resource 

managers and researchers. Due to their different structures and varying data 

requirements, models should be tested prior to application. The challenge of lack of 

current data that hinders quantification of a catchment’s water yield. The objective of 

this research was to set up,  calibrate and validate the lumped conceptual model (MIKE 

11-NAM)and the semi-distributed physically based model (SWAT), evaluate both 

models using statistical and graphical techniques and thereafter apply the models to 

estimate the current catchment yield of the Sergoit basin and compare the results. 

Meteorological data was sourced from the Kenya Meteorological Department. Both 

models were setup, calibrated and validated.Data for the periods 1975 to 1977 and 1982 

to 1984 was used for calibration and validation of the NAM model, while 1975 to 1979 

and 1981 to 1984 data inclusive of a one year warmup period was used for calibration 

and validation of the SWAT model respectively. Goodness of fit statistics and graphical 

methods were used to evaluate model performance. The models were then used to 

estimate thecatchment yield for the period 2005 to 2009. The overall results from the 

goodness-of-fit statistics shows differences in performance and overall behaviour of the 

two models. NAM performed better than SWAT during the calibration period with an 

NSE, R2, IA, and PBIAS of 0.81, 0.81, 0.94 and 1.80% and 0.69, 0.70, 0.90, and 

15.11% respectively. The validation period marked a slight performance drop with 

NAM and SWAT attaining an NSE, R2, IA, and PBIAS of 0.78, 0.80, 0.95 and 0.65% 

and 0.65, 0.65, 0.89 and -11.82% respectively. There is a general tendency to 

underestimate the peak values in both models. On the basis of extreme value analysis, 

the NAM model performed better than the SWAT model. The general underestimation 

increases for larger values, indicating poor extrapolation capabilities. The semi-

distributed nature of the SWAT model and the large number of model parameters 

makes it difficult to calibrate and is vulnerable to the quality of data, whereas the 

lumped nature of the NAM model and low number of model parameters makes it easier 

to calibrate and gives a better overall performance as most values are averaged 

throughout the basin. The NAM model estimates the mean annual basin yield for the 

period 2005 to 2009 at 94.8 MCM/year while the SWAT model gives a lower estimate 

of 69.6 MCM/year. The study recommends the installation of well distributed weather 

stations within the Sergoit Basin to improve on the representativeness and the data 

captured and further study is recommended to incorporate effects of land use and 

climate change as these have an impact on the catchment’s water yield. 
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1. CHAPTER 1: INTRODUCTION 

1.1 Introduction 

This chapter gives a general introduction to this study, the hydrological modelling of 

the Sergoit catchment. The importance and need for the effective management of water 

resources in global and local contexts is expounded. This is followed by an introduction 

into hydrological modelling and modelling approaches and the challenges of data 

scarcity. The scope and the definition of the problem are given as well as the objectives 

of the study. The characteristics of study area are given followed by the general outline 

of this research. 

1.1.1 The need for water resource management 

Water is indispensable for the propagation of all life forms and indeed all human 

activity. The United Nations Committee on Economic, Social and Cultural Rights in 

2003declared the access to safe freshwatera basic universal human right(Kundzewicz et 

al., 2007). There is increasing demand on the available water resources due to but not 

limited to the following reasons as stated in the United Nations Water periodic report of 

2012. 

1. The increasing water resource demand has been driven mainly by global 

demographics;our global population stands at about 7 billion from the previous 

population of 5.3 billion in 1992.  

2. The increased rural to urban migration of populations, and the displacement of 

populations occasioned by social and political conflict.  

3. An increase in wealth in the fast developing economies has led to increased 

water use demand that have had an adverse impact on the use and management 

of water resources. 
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4. Additionally, climate change, pollution, economic turmoil, increased demand 

for food, energy and increased industrial development.  

These issues have raised competition between water uses resulting in complicated 

allocation decisions which further compound the challenges of managing water 

resources (UNEP, 2012). 

In a global sense these issues form a back drop that necessitates the growing need to 

assess, quantify and manage water resources effectively. The need to manage water 

resources emanates from endemic systematic failures in the management of water 

resources over the past years. What has exacerbated the rapidly accelerating pressures 

felt today on the freshwater resources arising from these increasing demands,are 

failures by local management that may lack capacity or may not be well equipped to 

handle the challenges and adapt or adequately respond to them (UNEP, 2012). 

A river-basin is a natural system that is made up of a number of components.These 

include: water sources (inputs),demands(water use), in-stream and off-stream 

components, and other intermediates such as treatment and recycling. 

It is thus appropriate to handle the question of water resource management as a single 

system in an integrated way. Global Water Partnership (GWP, 2000) defines Integrated 

Water Resources Management (IWRM) as a “process which promotes the coordinated 

development and management of water, land and related resources, in order to 

maximize the resultant economic and social welfare in an equitable manner without 

compromising the sustainability of vital ecosystems.”Hence, the management of water 

resources should be implemented in a sustainable way by encompassing and balancing 

water needs among all uses, domestic, industrial, agricultural (irrigation), power 

generation and ensuring provision for environmental flows for biodiversity and 

ecosystem services (Tessema, 2011). 
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1.1.2 The Kenyan context 

Kenya is classified as awater scarce country as it has a renewable freshwater supply of 

647 m3 per capita per annum which is below the global threshold of 1000 m3 per capita 

per annum for a water stressed country (Akivaga et al., 2010).Kenya is also 

characterized by high spatial and temporal variability in climate with extremes in 

droughts and floods (MWI and UN-Water, 2006).A growing economy coupled with a 

fast growing population has led to increased pressure on limited resources. Of vital 

importance is the fact that despite the ever increasing demand for water resources the 

quantity of fresh water has remained more or less constant. This in effect has 

necessitated the push for better management of water resources in the country 

especially at the catchment level.With these developments the need to better estimate 

the fluxes between the various compartments of the hydrologic cycle is always present. 

1.1.3 Hydrological modelling 

The use of models in decision making applications enables the selection of an optimal 

course of action. Models are often constructed to enable reasoning within an idealized 

logical framework about the processes of interest(Shrestha et al., 2010). 

Watershed or hydrological models in this case, are vital tools that can be used to study 

hydrologic processes. Additionally responses to both natural and anthropogenic factors 

can be investigated, but due to the limitations encountered in the representation of 

complex natural systems, model calibration and validation ordinarily must be 

undertaken prior to the application of these models in order that their output may match 

reality (Shrestha et al., 2010). 

The estimation of these fluxes are not only important because of management concerns  

of available water resources, but alsofor analysis of impacts due to the severity of 
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hydrological events caused by the variability and frequency of the changing climatic 

conditions (Githui, 2008). Further, the correct estimation of the runoff volume draining 

out of catchments is an important issue in hydrology and engineering, as it is often the 

basis for the planning, design and management of river, water supply, irrigation and 

flood protection works (El-Nasr et al., 2011).The choice of the method to be used for 

the assessment of the catchment hydrology is thus the first step. 

Hydrological modelling is an approach used to forecast and predict the quantity and 

quality of water for decision makers (Chow et al., 1988).A model can simply be 

described as a representation of a physical system or processes. Models are simple 

representations of a complex hydrological system (Bahremand, 2006) and thus aim to 

represent and predict the response to input for a hydrological system. 

In hydrological modelling, different modelling approaches exist. These approaches 

vary from lumped models to fully distributed models, and from statistical, stochastic 

models to deterministic models. These modelling approaches attempt to describe the 

dominant or mostimportant components to the catchment rainfall-runoff process. 

Components of the hydrologic cycle, include direct and indirect runoff, physical 

processes such as soil infiltration, groundwater recharge, soil moisture storage, surface 

and subsurface flow, interception and evapotranspiration. These models can be applied 

to simulatevarious fluxes at various times steps, for instance,hourly, daily, monthly or 

annual time steps(Staes et al., 2011). 

1.1.4 Lumped models 

In the lumped hydrologic modelling approach, there is no spatial variability considered 

in the catchment rainfall-runoff processes.Characteristically, the lumped rainfall-runoff 

model lumps or averages spatially, in a general sense, the highly complex land use, 
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precipitation and soil processes and properties into a limited number of processes and 

parameter values that are representative of the whole catchment. In a spatially 

aggregated or lumped way the model parameters represent the physical features of the 

basin and the hydrologic processes, in a some what empirical nature (Staes et al., 

2011).Data input in lumped models consist of spatially averaged values of 

precipitation, evapotranspiration and the size of the basin area.  The observed river flow 

data at the outlet of the basin is then used for calibration.Due to the afore-mentioned 

qualities, the main advantage of the lumped modelling approach is that due to its simple 

structure, the data requirements are minimal and the model setup and calibration of 

model parameters is fast (Staes et al., 2011). This means that it is easily implemented. 

1.1.5 Distributed models 

The spatially and fully distributed hydrological models on the other hand consider that 

the parameters vary completely in space at a resolution usually selected by the modeler. 

Distributed models require large amounts of data for each grid cell thusincreasing the 

amount of data and computational requirements. It is expected that because the physical 

and hydrological processes are modelled in full spatial detail, they then will provide a 

high degree of accuracy. In reality however, data availability is limited to the extent 

that it might be difficult to identify all parameter values from the available data (Staes 

et al., 2011).This leads to a situation where the number of parameters is too large for an 

accurate calibration on the basis of the limited amount of data. Therefore it means that 

no unique set of ‘optimal’ parameter values exists as different sets of the model 

parameters will lead to an equally good fit to the observed model output. The model is 

then called “over parameterized” (Staes et al.,2011). 

Rainfall runoff estimation from a watershed is of vital importance as these values are 

required in most hydrologic analysis. Such purposes include water resources planning, 
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flood forecasting and pollution control.Modelling studies therefore contribute to our 

understanding of model structures and hydrological processes (Tanner and Hughes, 

2013). 

1.1.6 Data scarcity 

Model input consists of raw or preprocessed data collected from weather stations and 

river gauging stations which due to a number of reasons may contain errors and thus 

increase uncertainty in model results. A challenge that is experienced at the moment in 

Kenya is the incompleteness of existing records (MWI and UN-Water, 2006). 

This problem of lack of data is depicted in the Integrated Water Resources 

Management and Water Efficiency Plan by the Water resources Management Authority 

(WRMA, 2009). It noted that in the 20 years following independencein 1963, the 

operational number of hydrological, meteorological and water quality stations in Kenya 

remained relatively stable and experienced a commensurate increase.Based on the 

demand for river gauging stations (RGS) the number rose from 377 in 1963 to 381 by 

1973 to 446 stations by 1983. A drastic drop however was experienced thereafter with 

110 operational stations being left active by 1996 and 50 stations by 2005 as 

represented in Figure 1.1. 

 

Figure 1.1: The number of RGS stations in Kenya (WRMA, 2009) 
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This state of affairs makes it challenging for a modeler or a water resource manager 

who wants to make decisions presently based on sound data.The catchment of interest 

in this study is the Sergoit catchment and it’s a good example for it faces the same 

challenge of lack of continuous data and inconsistency, as the time series captured at 

the outlet of the catchment, River Sergoit RGS ID: 1CA02 is incomplete.  

1.2 Scope of the study 

 

The scope of this study covers the application of hydrological modelling approaches to 

the determination of the water yield of the catchment based on currently limited hydro-

meteorological datausing a lumped modelling approach and the semi distributed 

physically based modelling approach during calibration and validation. Each model 

was applied to generate synthetic discharge data based on more recent meteorological 

data. The resulting discharge data generated was evaluated to obtain current catchment 

yield estimates for both cases. It is envisaged that the research will also contribute to 

the understanding of the hydrology of the Sergoit basin and also serve as a baseline 

study for Moi University, School of Engineering, Department of Civil and Structural 

Engineering which is at the initial stages of setting up an experimental watershed in the 

same catchment. 

1.3 Problem statement 

 

Knowledge of the water yield in a river catchment is an indispensable prerequisite in 

the sustainable management of water resources at watershed level (Adeniyi et al.,2014). 

At the same time,calibration of hydrological models in ungauged basins is a current 

research focus in the field of hydrology (Xingqi, et al., 2014).The Sergoit catchment is 

currently ungauged thus it is currently difficult to quantify its water yield. Given this 
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scenario it is important to identify a hydrological modelling approach that can best 

describe the hydrological processes in the catchment to sufficiently determine the 

basins water yield given its limited hydro-meteorological data.The decision on which 

modelling approach to employ poses a problem to many water resource managers and 

researchers. This is due to their different structures and varying data requirements. 

Although hydrological models have been widely used in hydrological related studies, 

more information is needed to determine the impact of the structural differences 

between these hydrological models on the hydrological predictions forming their 

outputs (Vansteenkiste et al., 2012). While there have been various investigations or 

studies conducted dealing with the comparison of hydrologic simulations between 

distributed models and lumped models, their results have been inconclusive. The results 

indicate that distributed models may or may not provide any improvements over those 

obtainedby lumped models (Shultz, 2007). 

Having established this it is important to carry out hydrological modelling research to 

provide solutions to the problems faced in the Sergoit catchment that may be replicated 

in other catchments at various scales. 

1.4 Justification 

 

Understanding hydrological processes and developing suitable models for a watershed 

is a vital part of water resource development and management programmes. These 

watershed based hydrologic simulation models are likely to be used for the assessment 

of the quantity and quality of water (Shawul et al., 2013). 

As a backdrop to the study, the Sergoit basin is important as it is located astride the 

Uasin Gishu County.It is estimated that in Uasin Gishu County, 90% of the land is 

arable. Uasin Gishu is endowed with good land resources and varied agro-ecological 
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potential. It is the bread basket for the country; producing over 4.5Million bags of 

maize and about 1Million bags of wheat annually.  It is also estimated that agriculture 

supports over 80% of the rural population of Uasin Gishu County in terms of household 

income and food security. The Sergoit basin is thus an important contributor to the 

socio-economic activities in the Uasin Gishu County and the entire Country as well 

(Korir, 2010). 

In the field of hydrological sciences, it is recognized that the available approaches for 

the representation of rainfall-runoff transformation are often still far from satisfactory 

and that more complex hydrologic modelling does not always lead to better results 

(Linde, 2007). A key issue to operational users of hydrological models and engineering 

hydrologists is the selection of the most appropriate model and modelling approach to 

apply for a catchment based on the need for accurate analysis. Limiting constraints like 

resources, nature of the problem and limited time among others, further complicates 

this endeavor. 

Many authors like Linde et. al, (2007), Anh et al., (2008), Kovacs et al., (2005), Shultz 

et al.,(2007), have critiqued the use of distributed models with their main concern being 

the many parameters that need to be altered during the calibration phase. They have 

even argued that they consider models which are usually claimed to be distributed 

physically based as in fact being lumped conceptual models with more parameters. A 

key observation of the distributed model is that the problem of over parameterization is 

greater (El-Nasr et al., 2011). 

Even though a variety of rainfall-runoff models are available, the selection of a suitable 

rainfall-runoff model for a given watershed is essential to ensure efficient planning and 

management of watersheds(Verma, 2010). Therefore this study attempts to contribute 

to the understanding of models and modelling approaches discussed herein, especially 

in Kenya where there is an increasing need for tools used in the management of water 
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resources. This will be done while expounding on their level of accuracy and the ease 

of development in their application to a catchment with limited data. The choice of 

these two particular models is based on their availability, their representation of the 

model structures to be tested and their suitability for use in areas where hydro-

meteorologic data is a constraint. 

1.5 Objectives 

 

1.5.1 Main objective 

The main objective of this study is to set up and evaluate the performance of 

twomodelling approaches for the Sergoit basin; a lumped conceptual model MIKE 11-

NAM and a semi distributed physically based model SWAT, in estimating the 

catchment yield given by  the two approaches. 

1.5.2 Specific objectives 

i. To set up, calibrate and validate a lumped conceptual model MIKE 11NAM for 

the Sergoit catchment. 

ii. Toset up, calibrate and validate a semi distributed physically based SWAT 

model for the Sergoit catchment. 

iii. To evaluate model performance based on observed data during the calibration 

and validation periods. 

iv. To estimate the catchment yield based onthe twomodelling approaches for a 

more recent time period between the years 2005 to 2009. 
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1.6 Outline of the Research 

 

The desertation is divided into six chapters. Chapter one provides the general 

introduction of the study, scope of the study, problem statement, and objective of the 

research, chapter two gives a detailed description of the study area and the data used. 

Chapter three covers a literature review of the relevant issues in water resource 

management and hydrological modelling, the various classification of models and 

modelling approaches and the importance of GIS in hydrological modelling. Also 

reviewed are the methods in data preprocessing, the SWAT and the MIKE 11-NAM 

models,Model performance evaluation,Model sensitivity analysis and finally a review 

of previous research into comparative hydrological model analyses. The fourth chapter 

outlines the methods applied to this study including data collection and preprocessing, 

the setup of the SWAT and the MIKE 11-NAM models and finally the application of 

these models. Chapter five presents the results of each model’s calibration and 

validation evaluation and the simulated estimates of the basin water yield for the model 

calibration, validation and application periods.The sixth chapter reports the conclusions 

and recommendations drawn for this research. 
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2. CHAPTER 2 : STUDY AREA AND DATA 

2.1 Introduction 

This chapter gives a general introduction to the study area which is the Sergoit 

catchment.The characteristics of study area are given including the location, 

topography and drainage, population, landuse and soil classifications found in the area. 

2.2 Study area 

2.2.1 Location 

The Sergoit catchmentis located in Kenya and lies between longitudes 35.05 and 35.57 

East and latitudes 0.44 and 0.73 North. It is part of the greater Nzoia Catchment that 

lies on the western regions of Kenya (Fig.2.1).Administrative regions arround the study 

area are shown in Appendix A. 

 

Figure 2.1: The location of Sergoit catchment 

It forms part of the upper Nzoia catchment that is part the Lake Victoria and the greater 

Nile basin. 
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2.2.2 Topography and drainage 

The Sergoit catchment has a mean elevation of 2140m with an elevation that varies 

from 1806m to2676m above mean sea level. The main drainage feature is the River 

Sergoit whose length is about 96.42 km based on DEM processing, (Fig.2.2). As part of 

the drainage in the Sergoit basin, River Chepkoilel has three tributaries; Chepkosom, 

Chepkoilel and Koitoror. Kisonei River is a tributary of Chepkosom River. Sergoit 

River has its source on the western slopes of the Kerio Escarpment near Iten and is 

joined by Chepkoilel River near Kuinet to drainout of the Sergoit River basin. 

 

Figure 2.2 : Sergoit Catchment DEM 

The Sergoit River drains an area of about 716.3Km2(691.325Km2 from the RGS point) 

which joins the Sosiani River then the Kipkaren River further downstream. These rivers 

join the Nzoia River which finally drains into Lake Victoria. This catchment is 

bounded by the Cheranganyi hills to the North East and the Kerio valley to the Eastern 

side.  
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2.2.3 Population and Land use 

Based on the 2009 census results,Uasin Gishu County, which covers a major part of the 

catchment area has a population of 894,179 persons and a population density of 267.3 

inhabitants per square kilometer. The population growth rate from the year 1999 to 

2009 is 3.68%.Based on the sub-counties (Appendix A) that cover most of the Sergoit 

catchment, Moiben and Soy have populations of 138,409 and 171,941 persons with 

population densities of 244.3and 251.9 inhabitants per square kilometers respectively 

(County Govt U.G, 2013). 

 As earlier stated, it is estimated that Uasin Gishu has about 90% of the land in the 

county as arable, with about 2,000 km2 and 1,000 km2 categorized as high potential and 

medium potential agricultural land respectively (Korir, 2010). As much of the 

catchment falls within this region most of the land use is given to agriculture as 

represented by Figure 2.3. The land use in the catchment is predominantly dense 

agriculture and plantations according to the land use maps prepared by JICA in 1987. 

Other land use types include forests and woodland as depicted on the land use map 

(Fig. 2.3) 

 

Figure 2.3: Sergoit Basin Land Use Map 
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2.2.4 Soils 

The geology in the region is dominated by tertiary volcanic rock with no known 

commercially exploitable minerals(County Govt U.G, 2013). The soil types found 

within the county include Red loam, red clay, brown clay and brown loam (Korir, 

2010).The textural descriptions of the dominant soil classes in the Sergoit basin 

include, very clayey, clayey and loamy soils. This is represented in the Figure 2.4, 

showing the soils codes which represents the soil mapping unit indicating the 

physiographic conditions e.g. whether the soil is well drained, shallow or very deep, the 

color, type of clay (eutric, nitisols ). The textural descriptions found within the basin 

are Loamy soils which include; loam, sandy clay loam, clay loam, silt, silt loam and 

silty clay loam and,Very clayey soils which hasmore than 60% clay content (Kenya 

Soil Survey, 1997),(Table 2.1). 

Table 2.1 Soil types found in Sergoit Basin (Source; Kenya Soil Survey, 1997) 

Soil Name A1 F14 L5 L8 Pv3 Ux7 

LAYERS 5 4 5 5 5 4 

Hydrologic Soil Group B B B B B B 

Max. Depth 1000 800 900 1000 1000 700 

Textural Class Clayey Sandy V.Clayey Clayey V.Clayey Loamy 

Bulk Density 1.33 1.4 1.1 1.3 1.3 1.61 

Hydraulic Conductivity 7.38 20.73 17.35 8.73 8.15 10.48 

CLAY% 52 19 59 50 60 14 

SILT% 22 13 17 22 12 18 

SAND% 26 68 24 28 28 68 
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Figure 2.4: Soil types within the Sergoit basin (Source; Author generated Maps) 

 

2.2.5 Climate 

The Kenyan climate is primarily controlled by the Inter-Tropical Convergence 

Zone(ITCZ) and the wide range of topographic relief. As a result of the ITCZ, most 

parts ofthe country are characterized by two rainy seasons, March to May (long rains) 

and October to December (short rains)(Karani, 2005). The Temperatures in the area 

around Sergoit basin and the larger Uasin Gishu, range between 80C and 26ºC(Korir, 

2010) and an annual average Temperature of 240C. The monthly average temperatures 

(1960-1990) are depicted in the Figure 2.5. 
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Figure 2.5:Monthly mean Max andMintemperatures.(Climatemps.com, 2013) 

The area around Sergoit basin and the larger Uasin Gishu,receives an average annual 

rainfall of 900-1,200 mm (Korir, 2010). The Average monthly (1960-1990) 

precipitation in the year is represented in the Figure 2.6 

 

Figure 2.6:Monthly mean precipitation. (Climatemps.com, 2013) 
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2.3 Data 

2.3.1 Data collection  

 It is difficult to collect extensive data sets on all hydrological process variables at the 

required time and at the spatial-scales needed to capture vital catchment wide 

hydrological processes.  The engineering hydrologist, therefore as a modeler faces 

enormous challenges brought by limited availability of good data. In an effort to 

overcome this problem, data used in this research was collected from a 

numberinstitutions and downloaded frominternet sources. Meteorological data was 

sourced from both the Kenya Meteorological Department (KMD) and internet sources 

including the National Oceanic and Atmospheric Administration (NOAA).Soiland land 

cover GIS data sets were obtained fromFAO and ILRI while the digital elevation model 

(DEM) was downloaded from CGIAR - Consortium for Spatial Information (CGIAR-

CSI). 

2.3.2 Rainfall data 

The available rainfall data sourcedfrom Kenya Meteorological Department (KMD) was 

analyzed for use based on the periods with high percentages of complete data. This was 

done for a number of stations (Table 2.2) that fell within and around the Sergoit 

catchment. 

Table 2.2: Selected Rainfall stations(KMD, 2005) 

STATION NAME 
Station 

Number 
Lat. Long. 

Year 

Opened 

Year 

Closed 

Soy Kipsomba Estate 8935016 0.46 35.11 1914 ---- 

Abai Farm,Cheplaskei 8935108 0.48 35.26 1950 ---- 

Kipkwen D.O.'S Office,Chepkorio 8935131 0.22 35.33 1954 ---- 

Eldoret,Institute of Agriculture 8935133 0.34 35.18 1954 ---- 

Kessup Forest Reserve,Elgeyo 8935134 0.39 35.31 1955 ---- 

Boimet Farm,Turbo 8935157 0.36 35.9 1964 1977 

Kaptagat,Sabor Forest Station 8935164 0.30 35.29 1965 ---- 

Turbo Forest Nursery 8935170 0.38 35.3 1966 ---- 

Eldoret Met.Station 8935181 0.32 35.17 1972 ---- 
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      Stations with little data were eliminated and the remaining stations with data were 

checked and compared with the data available from theWRMA River Gauging station 

on River Sergoit 1CA02. As an initial step the available rainfall and discharge data was 

summarized as annual rainfall values, represented in Figure 2.7. The years with missing 

data are coded in yellow while years with complete data are in green. 

An initial period 1960 to 1990 was checked for completeness on a coarser annual scale 

then on a finer time scale of daily values.  
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                    Figure 2.7 Available Rainfall and Discharge Records. 

 

2.3.3 Discharge data. 

The measured discharge data from River Sergoit taken at the RGS Station ID: 1CA02  

(Figure 2.8) was used in the calibration of the models.  The gauging station is located 

on longitude 35.06 E andlatitude 0.642 N.The available data was from January 1975 to 

December 1984 with periods of missing data as represented in Figure 2.7 above. 
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Figure 2.8: Discharge from River Sergoit 1975-1984: RGS 1CA02(WRMA) 

 

2.3.4 Topographical data 

A digital elevation model was used to derive topographic information on the Sergoit 

basin. The Shuttle Radar Topography Mission (SRTM) 90m resolution DEM’s have a 

ground resolution of 90 meters by 90 meters at the equator and a horizontal resolution 

of 10 to 16 meters. These data sets were sourced from  http://srtm.csi.cgiar.organd was 

used in this study to derive the physical characteristics of the study area that were 

required for hydrological modelling like elevations, catchment boundaries, catchment 

area and stream networks.These DEM’s were processed in a GIS environment using 

ArcGIS 9.3.1. 

2.3.5 Land use maps 

Land use maps were sourced from the FAO website http://www.fao.org/ geonetwork. 

The land cover map shows general land use classes derived from 1980 Landsat satellite 

imagery data. The land use map data is provided in shape files and comes along with 

database files. The database files contain map identification values that are assigned to 

various land use types. 
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2.3.6 Soils maps 

The soils map was sourced from Kenya soil survey (KSS) of 1982. The maps coverage 

represents the soil physical and chemical properties of Kenyan soils. Additionally Soil 

data was obtained from the Kenya Soil and Terrain (KENSOTER) database at a scale 

of 1:1,000,000 that was compiled by the Kenya Soil Survey (KSS).Thesoil parameter 

estimates and associated soil analytical data were derived from soilsurvey reports.The 

data is provided in shape files and is accompanied by database files.  Some of the 

parameters included in the data files include: the bulk density, percentage of sand, silt 

clay, by mass and depth of soil layer among others. 
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3. CHAPTER 3: LITERATURE REVIEW 

3.1 Introduction 

This chapter reports a review of literature into the relevant issues of water resource 

management and hydrological modelling, the various classification of models and 

modelling approaches and the importance of GIS in hydrological modelling. Also 

reviewed are the methods in data preprocessing, the SWAT and the MIKE 11-NAM 

models, model performance evaluation, model sensitivity analysis and finally a review 

of previous research into comparative assessments of hydrological models. 

3.2 The management of water resources 

 

In the past few decades there has been a global push to promote better management of 

water resources. In 1992 the United Nations Conference on Environment and 

Development (UNCED) held in Rio de Janeiro covered a wide spectrum of 

developmental issues. Among the main issues was globalwater resources which was 

informed by the International Conference on Water and the Environment that formed 

the “Dublin Principles”. “Agenda 21” resulted from UNCED  in which Chapter 18 

Section 2  on freshwater emphasizes a holistic and integrated approach to sectoral water 

plans and programs that are within the national and social policy framework(UNEP, 

2012). 

The river basin or the catchment area, is the most appropriate unit in the management 

of water resources. It is the best unit to monitor effects of physical developments, 

technical management choices of water resources, and it is most appropriate for water 

accounting. Since, water resources in Kenya are considered as scarce it is more 

important to ensure continuous monitoring, assessment and evaluation to facilitate 

planning for water security(MWI and UN-Water, 2006). 
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This raises a need for hydrological research within the country to betterquantify the 

available water resources and support catchment management programs that provide 

better safeguards and decision support tools for water managers. These tools are mainly 

climatic, hydrological hydro-geological and soil erosion and sediment transport 

models(Setegn et al., 2008). Complex modelling of watershed hydrology is an efficient 

tool to provide information on the impact of natural and anthropogenic phenomena on 

the status of water and to facilitate decision-making in water management Hydrological 

processes (Kovacs et al.,2005). 

3.3 Mathematical models 

 

There are different types of models that exist for different uses.  They can be 

distinguished or classified according to whether they are conceptual, physically 

based,spatially distributed, lumped, deterministic or stochastic models. 

The general structure of mathematical modelsseeks to describe a physical reality in 

hydrology or waterengineering. For each mathematical modelling application, the 

general structure represented in Figure 3.1 holds. 

 

Figure 3.1 General structure of a mathematical model 

Some physical processes are captured in the model structure, indicated by the box and 

are represented by a number of mathematical functions F,to describe some output 
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variables Y in that physical space. The variables Y are the ones which the model user is 

interested in, and are usually the unknowns which are often referred toas model-output 

variables or simulated variables. In the generation of these variables (model output 

variables), use is made of other more easily known variables X. These are variables 

which are easily obtained or measured and are called model input variables.  

The model structure or the model body is a set of mathematical relations used to 

describe therelationship between the input and output variables. The model structure is 

usually parameterized using a number of model parameters P. These parameters control 

the nature of the relationship between the model inputs and the model outputs, and thus 

determine the response of the system represented with respect to the inputs. 

3.4 Hydrological models 

Hydrological models involve the application of mathematical expressions to relate 

precipitation to stream discharge or runoff. These expressions define quantitative 

relationships between inputs,like factors inducing flows and outputs which are mostly 

flow characteristics like depths and volumes. The scope of hydrologicmodelling and 

itsapplications has broadened dramatically over the past decades.  

From the late 1950’s numerous models have been developed to simulate the hydrologic 

processes that occur within watersheds(Bengtson and Padmanabhan, 1999). Many 

types of these models have been developed for various processes, though some may 

inherently have structural similarities occasioned by similar underlying assumption in 

the development of the models while others may not. 

Hydrologic modelling is related to the spatial processes of the hydrologic cycle and is 

often used to estimate basin water resources as well as for impact assessment or more 

precisely water resource management (Githui, 2008). 
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A basic concept is application of the water balance computed through the system that is 

represented as interrelated storages comprising of canopy, soil surface and sub-surface 

storages. Hydrologic models compute runoff from excess precipitation falling within 

the watershed’s divides which is then routed to the basins outlet. The excess 

precipitation is obtained by subtracting that part of precipitation volume that is 

intercepted by vegetation, stored in various storages, lost to evapotranspiration or lost 

to deep percolation. 

 As with most models, hydrological models require inputs which in this case are the 

driving variables in the hydrologic cycle. These inputs are mainly climatic variables 

like precipitation, temperature and evapotranspiration. The output from hydrological 

models are mostly discharge values or runoff depths at various time steps leading to a 

hydrograph from which peak flow magnitudes, time to peaks and recessions can be 

displayed. 

In order for these outputs to be relied upon they must be compared with actual 

observations of the observed variables from the outlet of the watershed basin or a 

specified time period similar to the period of the input variables. The process of 

calibration which is the adjustment of parameters associated to the model outputs is 

undertaken until an acceptable match between the model output and the actual observed 

values is sufficiently achieved. 

3.5 Application of hydrological models 

 

Hydrological modelling can be applied to a number of objectives, depending on the 

problem under investigation(Pechlivanidis et al., 2011).Applications of hydrological 

modellinginclude: 

a) Extrapolation of point measurements in space and time. 
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b)  Improving the essential understanding of existing hydrological systems and ; 

c) Assessing theimpact of change (e.g. climate and land cover change) on water 

resources. 

3.6 Classification of hydrological models 

3.6.1 Statistical versus Deterministic 

Hydrological models can be classified as either statistical models or deterministic 

models. Statistical models include consideration of uncertainties in both the parameters 

and input data. Simple statistical analysis could include techniques such as double mass 

curve analysis, regression, and flood frequency analysis. They simply aim to relate the 

input variable to the outputs by deriving statistical relationships between the two. 

These techniques can be used to show changes in hydrologic response in a watershed, 

but it may be very difficult to determine what underlying factors have contributed to 

the changes(Bengtson and Padmanabhan, 1999). 

Deterministic simulation models on the other hand describe the behaviour of the 

hydrologic processes taking place in a watershed through mathematical functions. 

These expressions interrelate the various phases of the hydrologic cycle. These models 

are verified or calibrated by comparing the model output with existing data (Bengtson 

and Padmanabhan, 1999). 

3.6.2 Empirical Models, Lumped Conceptual Models and Physically based 

models 

Hydrological models may also be classified depending on the level of detail captured in 

the model structure to represent physical processes within a catchment. Thus the 

models vary from detailed physically-based models to simplified conceptual models to 

empirical models. In Table 3.1, they are classified according to how well and to what 
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detailed the model structure represents the physical processes in the hydrology of the 

catchment (Willems, 2012). 

Table 3.1 Modelling types (Willems,2012) 
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 In a physically-based model, the relation between model input and output is described 

by a number of equations, which represent physical processes. Due to this, the model 

structure is transparent and it thus mayalso be called a white box model. For a detailed 

physically-based model, most parameter values can be measured and calibration is not 

so necessary, unless measurements are not available as is frequently the case. 

A conceptual model means that the hydrological processes are represented in the way 

they are perceived to occur. The processes and properties within the catchment are 

lumped together in a few processes and values to represent the system in a spatially 

averaged manner. In this way, process description and model parameters are more 

conceptual than physical in nature, and cannot be directly obtained from field 

observations or measurements. Because the physical reality and underlying 

assumptions of the processes are less transparent, a conceptual model may also be 

called a gray-box model (Willems, 2012). Conceptual models need calibration because 



28 
 

 

the model parameters are from a lumped representation of the physical characteristics 

of the catchment and their values cannot be measured directly.  

As opposed to the physically-based models and conceptual models, empirical models 

do not have an internal description. They are built and calibrated based on the 

simultaneous evaluationof the model input and output. Because a physical basis is 

missing for these models, the model structure may depend on the period that was 

selected for calibration (Willems, 2012). 

It is worthwhile noting that most models combine most of these approaches as sub 

models or sub routines and some model structures have both a physically-based part 

and an empirical part, while some even have stochastic models incorporated.   

3.6.3 Single event models and Continuous models 

Hydrological models can also be classified as single event-simulation models when 

they are used for modelling a single precipitation or rainfall- runoff event. These 

models generally use short time steps in the order of hours or even minutes. These 

models produce a single event runoff hydrograph, with the main interest usually being 

only the peak flow. 

These models do not account for Precipitation that infiltrates into the soil, interflow or 

groundwater flow from infiltrated water, although they mayinclude a baseflow 

component from groundwater recharge into a river reach (Bengtson and Padmanabhan, 

1999). They also generally do not model evaporation and transpiration, or changes in 

the soil moisture. This is because these processes are considered not to contribute 

significantly to the runoff over the short duration that runoff occurs from a precipitation 

event. 
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Continuous models on the other hand, are generally used to represent the generation of 

flow overlong periods of time such as months and even years while accounting for all 

theprecipitation-runoff events during the period. In addition to the hydrologicprocesses 

included in the event-based models, continuous models keep anaccounting of soil 

moisture by routing infiltration into the soil and partitioning it tosubsurface flow, 

groundwater flow, and evapotranspiration. (Bengtson and Padmanabhan, 1999). The 

Classification of hydrologic models, as suggested by Bengtson and Padmanabhan, 

(1999), is represented in Figure 3.2. 

 

Figure 3.2 Classification of hydrologic models (Bengtson and Padmanabhan, 1999). 

3.6.4 Application based classification 

Models can alsobe classified according to their typical application. These uses vary 

from agricultural applications, urban storm runoff, sedimentapplication models, 

pesticide application models to pollutant and water quality models(Bengtson and 

Padmanabhan, 1999). 
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3.7 Hydrological modelling 

There are some common modelling approaches that are based on how a model 

represents the hydrology and the physical properties and characteristics of a catchment. 

These approaches include, lumped modelling, semi-distributed modelling and 

distributed modelling approaches. 

3.7.1 Lumped hydrological models 

Lumped conceptual models have been widely used in hydrology for many years. The 

models are typically able to describe the most essential processes in a catchment 

through a set of solvable equations. They are usually preferred because they have such 

advantages as their basic physically-based nature and simplicity(Anh et al., 2008). For 

lumped models however, their parameters cannot always be measured directly from the 

basin as conceptual models are lumped on a catchment level and the catchment is 

treated as a solitary unit.  This means that model variables and parameter sets are 

values averaged for the entire catchment (Chow et al., 1988). 

An assumption made in Lumped models includes, uniformly distributed rainfall i.e. 

mean areal precipitation is averaged over a watershed basin in both a spatial and 

temporal manner over a given time step. This assumption almost never happens in 

reality although there could be a limited number of cases where this may come 

close(Shultz etal., 2007). Other assumptions in lumped modelling include uniformity 

soil types and texture, averaged slope and other catchment characteristics such as 

vegetation types and land-use practices. In reality, these parameters may vary very 

widely across the entire basin. Due to the averaging together of these parameters across 

the basin, the results are uniform conditions that create a lumped model(Shultz et al., 

2007).Examples of lumped models are the Stanford model, the problem-oriented 

computer language for building Hydrologic Models, HYMO, the flood hydrograph 
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package of the Hydrologic Engineering Center, HEC-1, the model for runoff and 

stream flow routing in river basins, RORB, the Tank model, and the Erosion-

Productivity Impact Calculator, EPIC model among others(Krysanova et al., 1999). 

3.7.2 Fully distributed hydrological models 

Distributed models are models that are able to explicitly represent the spatial variability 

of the important land surface and climatic characteristics(Rubarenzya et al., 2007). 

There are several distributed physically based hydrological models. These include 

among others, WetSpa, MIKE SHE, and Topmodel(Willems, 2012). The basic idea 

behind the distributed modelling approach is the discretization of the modeled space 

into grid cells with the use of model equations with finite differential equations. The 

equations applied in the distributed approach are the continuity and the momentum 

equations.The momentum equation is used to describes the flow or the water balance 

from one block to another. This equation can be described as; 

√1 − So
2 ∂h

∂s
+ α

U

g

∂u

∂s
+

1

g

∂u

∂t
= So − Sf −

2α2Q

gA2
q              Equation 3.1 

The continuity equation is used in the models to describe the water storage in the 

blocks or grid cells. The continuity equation is given by; 

∂A

∂t
+

∂Q

∂s
= q         Equation 3.2 

These model equations are solved in a two dimensional way and assumptions like the 

kinematic wave assumption are applied, where the dynamic terms related to time is 

neglected and the water surface slope is assumed to be equal to the bottom slope. 

Further simplification assumes uniform flow conditions, meaning that there is no 
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variation of the flow in time. The movement of ground water is also represented in the 

model by the equation; 

∂

∂xi
(Kij

∂h

∂xj
) = S

∂h

∂t
+ q       Equation 3.3 

Where the terms, 𝐾𝑖𝑗  is the hydraulic permeability coefficients, 𝑆 is the storage 

coefficient and,𝑞is the additional discharge. 

The main advantage of the distributed modelling approach is the high detail captured in 

terms of the spatial representation of the processes. This also will be reflected in the 

results where the spatial distribution of model results will also be available. The 

disadvantages to this approach is the large amount of data required, long calculation 

times and computational resources needed to run these models. Additionally there are a 

large number of model inputs and parameters needed for the model setup. Examples of 

The distributed physically-based models are represented by the Système Hydrologique 

Européen, MIKE SHE, the Institute of Hydrology Distributed Model, IHDM, and the 

WetSpa model (Krysanova et al., 1999;Willems, 2012). 

3.7.3 Semi distributed hydrological models 

Semi-distributed models are considered somewhat as intermediate models. This 

modellingapproach differs significantly with regards to the representation of 

hydrological processes and accompanying spatial representation. Different semi-

distributed models have different approaches to achieve a form of spatial 

representation. For example, the Precipitation-Runoff Modelling System, PRMS and 

the SWAT model subdivides the basin first into sub-basins then further into Hydrologic 

Response Units, HRU’sbased on land-use, soil data and slope. The SLURP model 

(Simple Lumped Reservoir Parametric) divides a watershed into "Grouped Response 
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Units", while the semi-distributed hydrological model, HBV-96 subdivides a basin into 

sub-basins based on elevation and vegetation zones (Krysanova et al., 1999). 

 

3.8 Comparison of lumped conceptual and distributed modelling 

approaches. 

 

Traditionally hydrologic research has been done using lumped models. However recent 

technological advancements especially in computing and Geographical Information 

Systems (GIS), have made the use of distributed models easy with the improved access 

to spatial data. Distributed models are seen as a way to capture the various hydrologic 

conditions and processes is a spatial manneracross drainage areas and ultimately the 

response the hydrologic basin to climatic input (Shultz et al., 2007). 

Given that, there is an ongoing debate in hydrological research on the use and 

application of different hydrological modelling approaches, it is imperative to test these 

approaches to evaluate which approach represents the system (catchment) we are 

interested in better. The sense of usingmore complex distributed models that aim to 

describe all physical processes taking place within a catchment, betweenland and 

atmosphericinteraction and feedback processes, in rainfall-runoff modelling is still a 

question best tackled by comparative studies. The general idea ofdistributed modelling 

is that it represents reality better than lumped model approachesas it takes into account 

spatial information and more importantly it uses physical laws like mass balance and 

energy equations to describe the hydrological processes(Te Linde et al.,2007). 

However, while the use of complex models may look appealing in representing the 

rainfall-runoff process, the lack of adequate hydro-meteorological, soil and land cover 
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data and the large spatial and temporal variability strongly hinders the use of distributed 

modelling approaches(Célleri et al., 2010). 

Though distributed modelling approaches remain the most objective in answering to 

questions related to problems with the need for spatial representation, researchers in 

recent years have cast doubts on the misperception that model complexity is positively 

correlated with confidence in the results. This has been based on these reasons given by 

(Xu, 2002). One reason given is that hat the current representations in process-based 

models are often too crude to enable accurate application to predictive problems. 

Secondly the difficulties he states, relate to both the perception of model capabilities 

and the fundamental assumptions and algorithms used in the models.  Additionally the 

scale of measurement for many parameters is often not compatible with their use in 

hydrologic models. The choice of models for particular catchments should generally be 

based on the availability of data, the project objective and the structure of the model 

(Anh et al., 2008; Xu, 2002). 

The available approaches are still far from providing a satisfactory representation of 

rainfall-runoff transformation and that more complex modelling does not always lead to 

better results (Linde et al., 2007).As absolute objective methods of choosing the best 

model for a particular problem have not yet been developed, the choice remains as a 

part of the art of hydrological modelling(Xu, 2002). This shows that it is essential to try 

out the different models and modelling approaches to identify the best representation 

for the hydrological processes taking place in the catchment of interest to address the 

problems or challengesencountered in the specific area. 
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3.9 GIS and hydrological modelling 

It is important to mention that developments in computer technology, remote sensing 

and geographical informationSystems (GIS) have provided an effective and less costly 

way to study hydrologic systems. In many applications, results from remote sensing 

and/or GIS analyses serve as input into hydrological models. GIS also serves as a way 

of displaying and analyzing outputs from hydrological models. Thus GIS serves as both 

a pre-processor and post-processor for hydrological models. 

GIS has also contributed significantly by providing tools for effectiveand efficient 

storage and manipulation of spatially referenced information and othernon-spatial 

information. One of the usual applications of GIS is the use of adigital elevation model 

(DEM) for the accurate extraction of hydrologic catchment propertiessuch as flow 

accumulation and direction, elevation, slope, and the delineation of thecatchment 

boundaries(Githui, 2008). 

3.10 Model data preparation 

Data processing is the most important task in modelling. It is of great importance to 

ensure that models have the best possible data set available. This is to ensure that the 

modeled results are reliable and the calibration process speedy(Anh et al., 2008). 

3.10.1 Homogeneity testing 

Before analysis of rainfall data, it is required that the data be homogeneous and 

independent. The restriction of homogeneity assures that the observations are from the 

same population. One of the tests of homogeneity is based on the cumulative deviations 

from the mean: 

Sk = ∑ (Xi − X̅)     k = 1, … . , nn
i=1       Equation 3.4 
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Where; 𝑋𝑖  are the records from the series X1, X2… Xn and 𝑋̅is the mean. The initial 

value of Sk=0and last value Sk=n are equal to zero. When the values of Skare plotted, 

i.e. the residual mass curve, changes in the mean are easily detected. For a record Xi 

above normal, the Sk=i increases, while for a record below normal, Sk=i decreases. For 

a homogenous record the residuals fluctuate around zero because there is no systematic 

pattern in the deviations of the records from their average value𝑋̅(Raes, 2006). 

3.10.2 Filling of missing values 

There are methods that can be applied to fill in missing data in rainfall time series data. 

These methods include Inverse Distance Weighting (IDW),Arithmetic Mean method, 

Normal Ratio method, Areal Precipitation Ratio (APR) method. The Arithmetic Mean 

method and the normal ratio method can both be used if the normal annual 

precipitations at surrounding gauges are within the range of 10% of the normal annual 

precipitation at station of interest (De Silva et al., 2007).Inverse distance weighted 

(IDW) interpolation is based on the assumption that the missing value at a given point 

can be approximated by a weighted average of observed values of surrounding points. 

The weights used for averaging are a decreasing function of the distance between the 

points. The common weighting function is the inverse of the distance squared, and the 

equation used by IDW to estimate a missing value (Px) at a point is given by; 

Px =
∑

1

di
pZi

n
i=1

∑
1

di
p

n
i=1

        Equation 3.5

    

Where;𝑍𝑖 (i = 1, 2,. . .,n),𝑑𝑖 is the distance between the ith point 𝑍𝑖and the point with a 

missing value, and p is the power (exponent) variable. The power variable dictates the 

significance of the surrounding points upon the interpolated value. A higher power 

leads to a lesser influence from distant points and a stronger influence from points that 
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are closer to the point of interest.  The number 2 is the most commonly used value for 

p(Ruelland et al.,2008). 

3.10.3 Estimating areal rainfall 

There are three main methods of extending point rainfall estimates to areal averages. 

These are station-averaged, Thiessen polygon and Isohyetal methods. The station 

averaged method is easy to apply, however it may not provide good estimates that 

reflect the actual spatial distribution of rainfall when rain gauges are not uniformly 

distributed throughout the watershed. The Isohyetal method on the other hand assigns 

weights on the basis of storm morphology, spatial distribution of the rain gauges, and 

orographic effects.  The Thiessen polygon method  which was applied in this study, 

assigns weights to the rain gauges based on the ratios of the area (polygon) influenced 

by a particular gauge to the total watershed area. Polygons are constructed about each 

gauge by constructing perpendicular bisectors between each pair of nearby gauges. The 

equation to obtain areal rainfall is thus; 

P =
∑ ai×pi

N
i=1

A
        Equation 3.6 

WhereN is the number of sub areas (polygons) coinciding with the number of gauges, 

𝑎𝑖 is the area of polygon i, A is the total area of the watershed and𝑝𝑖 is the precipitation 

value for the gauge located within the area (polygon)𝑎𝑖. 

3.11 MIKE 11-NAM 

NAM is an abbreviation of the Danish "Nedbør-Afstrømnings-Model", meaning 

precipitation-runoff-model. This model was originally developed by the Department of 

Hydrodynamics and Water Resources at the Technical University of Denmark.It forms 

part of rainfall-runoff modules in MIKE 11 River modelling system.  
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The NAM model can be applied independently as done in this study or used to generate 

lateral inflows to a river network for other MIKE 11 modules. The NAM model is 

characterized as a deterministic, lumped, conceptual model with moderate input data 

requirements. This model has been found suitable to basins whose surface area ranges 

between 10 and 2000 km2(Gautam, 2004; DHI, 2009;Anh et al., 2008). 

3.11.1 Nam model inputs 

The basic input requirements for the NAM model consist of: 

1. Model parameters 

2. Initial conditions 

3. Meteorological data 

4. Stream flow data for model calibration and validation 

The basic meteorological data requirements are: 

a) Rainfall 

b) Potential evapotranspiration 

In the cases of snow modelling there are additional meteorological data required. 

Meteorological data requirements are; 

a) Rainfall time series 

In many cases applied to the NAM model, daily rainfall values in mm are required. The 

rainfall data are treated as accumulated daily totals.  Generally the time resolution of 

the rainfall input depends on the objective of the study and on the time scale of the 

catchment response. Also acceptable is rainfall data with variable time increments as 

long as it is specified in the rainfall input.  
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b) Potential evapotranspiration  

Potential evapotranspiration data in mm is also required.When daily time steps are 

used, monthly values of potential evapotranspirationare sufficient. The 

evapotranspiration data is treated as accumulatedtotals where the evapotranspiration 

associated with any particular time isthe evapotranspiration since the last entered value. 

3.11.2 Model structure 

The model structure is a set of linked mathematical equations that describe thebehavior 

of the land phase of the hydrological cycle in a simplified way. The hydrologic model 

represents various components of the rainfall-runoff process by continuously 

accounting for the water content in four different and mutually interrelated storages: 

 snow storage,  

 surface storage, 

  root zone storage (subsurface) 

  groundwater storage 

These storage zones represent different physical elements of a catchment. In NAM, 

total flow is a sum of the overland flow, interflow and baseflow.  

The concept of the linear reservoir is applied to route overflow and interflow through 

two linear reservoirs in series with their time constants while the baseflow is calculated 

as the outflow from a linear reservoir with baseflow time constant.  

The NAM model can be used for simulating single events or for simulating continuous 

hydrological processes over a range of flows (El-Nasr et al., 2011; DHI, 2009). The 

NAM model structure is represented by Figure 3.3. 
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Figure 3.3 MIKE 11-NAM model structure(DHI, 2009;Willems et al., 2014) 

i. Surface storage 

This is the first storage is the NAM model structure. The NAM model may be 

considered to have two main storage reservoirs apart from the ground water 

storage(Willems et al.,2014). The surface storage has a maximum storage capacity Smax 

(represented as Umaxin the model)and a second storage reservoir representing soil water 

storage with a maximum capacity Lmax.  

Spatially averaged rainfall (Areal rainfall) forms input that first fills up a surface 

storage reservoir. The maximum surface storage is represented by the 

parameter𝑈𝑚𝑎𝑥 .The surface storage represents water stored on surface depressions and 

the top or upper layer storage of the soil surface.  Overflow occurs when𝑈 ≥ 𝑈𝑚𝑎𝑥, 

meaning that the reservoir becomes full and overflows. The surface storage reservoir is 

then emptied by potential evapotranspiration ep and by reservoir through flow ci which 
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is the contribution to interflow. (Willems et al., 2014) When the surface storage 

capacity is depleted, the reservoir overflow volume is separated into overland flow 

csand interflowcicontributions.  

The part of the overflow volume that contributes to quick or surface runoff is controlled 

by the fraction fs. The rainfall fraction   fs, linearly depends on the relative soil water 

content
𝑈

𝑈𝑚𝑎𝑥
. A threshold value Utr, sis provided and it should be taken into account that 

no surface runoff will occur when the relative soil water content has a value lower than 

a threshold value Utr, s. The equation describing this relationship is equation 3.7: 

fs =

U

Umax
−Utr,s

1−Utr,s
        Equation 3.7 

 

The overland flow is modeled after the concept of the linear reservoir and using the 

linear reservoir equation. The surface runoff and interflow is routed through two linear 

reservoirs in series. The recession constants of these reservoirs (𝐶𝑘1  𝑎𝑛𝑑 𝐶𝑘2) are the 

controlling parameters that affects the response time of surface runoff to rainfall. These 

recession constants combined with the recession constant of the surface runoff reservoir 

determine the response time of interflow to rainfall 

ii. Root zone storage 

The second storage is the root zone soil storage. The maximum water content is 

represented by𝐿𝑚𝑎𝑥. When the soil is saturated the actual evapotranspiration equals the 

potential evapotranspiration i.e. 

ea = eP.          Equation 3.8 
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The actual evapotranspiration is a fraction of the potential evapotranspiration and is 

linearly dependent on the relative soil water content. This can be represented as seen in 

equation 3.9: 

ea = ep ×
U

Umax
                 Equation 3.9 

 

After overland flow is extracted, the remaining rainfall fraction (1 − 𝑓𝑠)infiltrates into 

the soil. The sub surface soil storage reservoir is filled by infiltration into the soil 

storage. This reservoir is then emptied by actual evapotranspiration ea, which is a 

fraction of ep, depending on the relative soil saturation level as represented by equation 

3.9. 

Interflow or subsurface runoff, also contributes to the total flow and is controlled by the 

threshold value for interflow Utr, i. This value sets the condition for interflow to occur 

by determining the fraction𝑓𝑖 . The inflow is then routed through the two overland flow 

routing reservoirs. 𝑓𝑖is linearly dependent on u and its value can be determined through 

the equation 3.10 

fi =

U

Umax
−Utr,i

1−Utr,i
               Equation 3.10 

 

iii. Groundwater storage 

Part of the infiltration water contributes to the groundwater (𝑐𝑔). This is controlled by 

the fraction ( 𝑓𝑔).This fraction is linearly dependent on the relative soil water content.  

Here again a threshold value 𝑈𝑡𝑟,𝑔is used to control this movement. Only when the 

relative soil water content attains a value higher than a threshold value does percolation 

occur. The equation representing this relationship is given by equation 3.11. 
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fg =

U

Umax
−Utr,g

1−Utr,g
                   Equation 3.11 

 

As was done with the surface and interflow contributions, the outflow of the 

groundwater reservoir is modeled by means of a linear reservoir, where the 

groundwater reservoir recession constant 𝐶𝐾𝐵𝐹  determines the response time of 

groundwater to rainfall. 

3.11.3 The NAM model parameters 

The NAM model has nine main parameters that are adjusted during the calibration 

process. These parameters are discussed as summarized below from the R.R. Reference 

manual byDHI, (2009). 

The surface and root zone parameters 

1) Umax 

 This is the maximum water content in the surface storage. It depends on the type of 

soil, vegetation cover, and land use pattern. This storage represents interception storage 

(on vegetation), surface depression storages, and storage in the uppermost few 

centimeters of the ground. Typical values of Umaxare in the range 10-35 mm. When the 

value of Umax is increased, then there is a corresponding increase in infiltration and, the 

overland flow is reduced.  

2) Lmax 

 This is the maximum water content in the lower root zone storage and can be 

physically defined as the maximum soil moisture storage in root zone. It usually 

depends on the type of soil. Lmaxand Umax are the main parameters controlling the water 
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balance as actual evapotranspiration is highly dependent on the water content of the 

surface and root zone storages.The consequence of increasing Lmaxis that, there will be 

less overland flow, higher infiltration, and small base flow values. Lmaxranges from 100 

to 300mm. 

3) Overland flow runoff coefficient (CQOF) 

This is a dimensionless value parameter lying between 0 to 1 that determines to which 

extent excess rainfall runs off as overland flow and the magnitude of infiltration. It 

depends on the permeability of the soil and the average slope of the basin. For high 

permeable soils with flat terrain, the value is near to zero and for steep terrain with 

rocky soil; the value is near to one. This value is crucial for the overland flow and 

infiltration. The higher value of CQOF leads to higher overland flow and vice versa. 

4) Time constant for interflow (CKIF) 

It is the interflow time constant together with Umax that determines the interflow.CKIF 

is dependent on the quantity of surface water content U that is drained to interflow 

every hour. The increase in CKIF will lead to higher interflow, less infiltration, and 

small overland flow. The normal value of CKIF varies from 500 to 1000 hours.  

5) Time constant for routing interflow and overland flow CK1 and CK2 

CK1 and CK2 are defined as routing time constant for overland flow and interflow in the 

basin. This parameter determines the shape of the hydrograph peaks. Generally, the 

value of CK1 and CK2 depend on the basin size, and how fast the response of runoff is to 

precipitation. Mostly, the value of CK1 and CK2 are the same.  

6) Root zone threshold for overland flow (TOF) 
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This is the threshold value for overland flow as no overland flow is generated if the 

relative moisture content (𝐿 𝐿𝑚𝑎𝑥
⁄ ) in the lower root zone storage is below this value. 

This value is normally varies from 0 to 1. The consequence of high a TOF value is 

higher infiltration and a later start of overland flow during the wet season. Similarly, 

the root zone threshold value for interflow TIF and ground water recharge TG act as 

threshold values for generation of interflow and recharge respectively. 

7) Root zone threshold value for interflow (TIF) 

Similar to TOF, the TIF is a threshold value for interflow, and this value ranges from 0 

to 1.This parameter dictates when interflow occurs, the higher the TIF, the higher will 

be the overland flow.  

8) Root zone threshold value for ground water discharge (TG) 

The threshold value for ground water flow is an important parameter for simulating the 

rise of the groundwater table in the beginning of a wet season. Higher value of TG 

indicates the later start of groundwater recharge.  

9) Time constant for base flow CKBF 

The time constant for base flow, CKBFin hours, is the parameter that determines the 

shape of the simulated hydrograph during the dry periods. Generally, the value of 

CKBFis higher than CK1 and CK2. The consequence of increasing CKBFis longer duration 

of the base flow component with flatter recession curves in the dry seasons.  

3.12 SWAT 

 

The Soil and Water Assessment Tool (SWAT) is a continuous time model that operates 

on a daily time step at catchment scale. It is a physically based semi-distributed 
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hydrological model developed by the US Department of Agriculture (U.S.D.A) in order 

to quantify the impact of land management practices on water quantity, sediment and 

water quality in large complex watersheds with varying soils, land use and management 

conditions over a long time durations (Nietsch et al., 2005; Arnold et al., 1998). 

SWAT is an easily available public domain model,and has been in usewidelyin 

hydrological research. The main users have been hydrologists interested in watershed 

hydrology andrelated issues. Several studies have been conducted using SWAT to 

address several hydrological challenges by various researchers including; Githui(2008), 

Zakayo (2009), Setegn et al., (2008), Alansi et al., (2009) and Shrestha et al., (2010). 

The SWAT model is capable of simulating a high level of spatial detail. This is 

accomplished through the division of a catchment into a large number of 

subcatchments and further into HRU’s. During the implementation of SWAT, a single 

large watershed is divided into a number of sub watersheds. These sub watersheds are 

then further subdivided into smaller units referred to as Hydrologic Response Units 

(HRUs) that consist of homogeneous slope, land use, management, and soil physical 

characteristics (Gassman et al., 2003; Arnold et al., 1998). 

3.12.1 SWAT model inputs 

The basic SWAT model inputs include rainfall (mm), maximum and minimum 

temperature (0C),solar radiation (MJ/m2), wind speed (m/s), Relative Humidity, Land 

Cover, Soil and Elevation (DEM). The watershed is subdivided into subbasins that are 

related to one another spatially. This way the natural configuration of the natural 

channels and flow paths of the watershed are preserved. 

SWAT model outputs include, flow generation, sediment yield, and non-point-source 

loadings from each HRU in a sub watershed which are then added up or combined. The 
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summed up loadings are then routed to the watershed outlet, through channels, ponds, 

and  reservoirs that may be defined within the watershed. The key component of 

SWAT that is of interest to this study is hydrology, although there are other 

components include plant growth, erosion, nutrient transport and transformation, 

pesticide transport and management practices. 

3.12.2 SWAT model structure 

Simulation of the hydrology of a watershed in SWAT can be separated into two major 

divisions. The first division is the land phase of the hydrology cycle and the second 

division is the routing phase of the hydrologic cycle. The land phase of the hydrologic 

cycle controls the amount of water, sediment, nutrient and pesticide loading to the main 

channel in each sub basin, while the routing phase can be defined as the movement of 

water, sediments, nutrients and bacteria, through the channel network of the watershed 

to the outlet (Nietsch et al., 2005).The soil water balance equation is the basis of 

accounting for soil water in the model: 

SWt = SW0 + ∑ (Rday − Qsurf − Ea − Wdeep − Qgw)t
i=1             Equation 3.12 

 

Where; SWt is the final soil water content (mm), SW0 is the initial soil water content on 

day i (mm), t is the time (days), Rday is the amount of precipitation on day i (mm), Qsurf 

is the amount of surface runoff on day i (mm), Ea is the amount of evapotranspiration 

on day i (mm), Wdeep is the amount of water percolating into the deep aquifer on day i 

(mm), and Qgw is the amount of return flow on day i (mm). Runoff is predicted 

separately for each HRU and routed to obtain the total runoff for the watershed (Figure 

3.4).  
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Figure 3.4 Pathways for water movement within SWAT (Neitsch et al., 2004) 

 

SWAT is a semi distributed model in the sense that sub basins are spatially related to 

one another and will contain at least one HRU, a tributary channel and a main channel. 

The next subdivisions are the HRU’s. These are portions of a subbasin that have unique 

landuse/ land cover, slope and soil characteristics. It is important to note that they are 

not geographically or spatiallyreferenced (thus semi distributed). 

Additionally, although individual HRUs may be scattered throughout a sub basin, their 

areas will be lumped together to form one HRU. These units are the ones that account 

for the spatial diversity in the basin characteristics. The assumption made is thatHRU’s 

in one sub basin do not interact with each other. The contributions from each HRU are 

calculated discretely and thensummed together to determine the total loadings from 

each subbasin. 
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Inputs used to model processes within the catchment in the SWAT model aredefined at 

three levels. These are the watershed level, the subbasin level and the HRU level. The 

method used to model each process is uniform for all HRUs in the catchment, while 

inputs likerainfall and temperature are set at the same valuefor all HRUs in the 

particular subbasin. At the HRUlevel, land use and soil inputs are set to unique values 

for each HRU in the catchment  

In SWAT, surface runoff amounts can be estimated by using either the SCS curve 

number or the Green Ampt infiltration method. The SCS curve number method is an 

empirical model that estimates the amounts of runoff under varying land use and soil 

types. The SCS curve number (CN) is a function of the soil’s permeability, land use 

and antecedent soil water conditions(Arnold et al., 1998). 

Qsurf =
(Rday−Ia)

2

(Rday−Ia+S)
                  Equation 3.13 

 

Ia is approximated as 0.2S therefore the accumulated excess runoff becomes 

Qsurf =
(Rday−0.2S)

2

(Rday+0.8S)
                Equation 3.14 

Where, Q surf is the accumulated runoff or rainfall excess (mm), Rday is the rainfall 

depth for the day (mm),Ia-is the initial abstractions which includes surface storage, 

interception andinfiltration prior to runoff (mm), and S is the retention parameter (mm). 

The retention parameter varies spatially due to changes in soils, land use and slope. 

Temporally variations to this parameter also occur due to changes in soil water content. 

The retention parameter is represented by; 

S = 25.4 (
1000

CN
− 10)                Equation 3.15 
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Calculation for the peak flow rates is done using the modified rational formula which 

is; 

qpeak =
αtc×Qsurf×Area

3.6×tconc
             Equation 3.16 

Where, qpeak is the peak runoff rate (m3/s), αtcis the fraction of daily rainfall that occurs 

during the time of concentration, Qsurf is the surface runoff (mm H2O), Area is the sub-

basin area (km2), tconc is the time of concentration for the sub-basin (hr.) and3.6 is a unit 

conversion factor. 

In this study SWAT was implemented through the ArcSWAT graphical userinterface. 

This program provides an interface withinthe ArcGIS geographic information systems 

(GIS) software to facilitate Data input and SWAT input file preparation. ArcSWAT 

uses the topographic data (DEM’s) to delineate the watershed into sub basins and 

extract other inputs like slope classes, stream geometry and elevations. More details 

can be found in the SWAT Theoretical Documentation byNeistch et al., (2011) 

andArnold et al., (1998). 

3.12.3 SWAT model parameters 

SWAT model parametersrelated to hydrology can be summarized by the Table 3.2. 

Table 3.2 SWAT parameters for simulation of flow (Nossent, 2010) 

Flow related parameters 

 Parameter  Definition  Process  Level  Range 

ALPHA_B
F 

Base flow recession factor (1/day) 

 Groundwater HRU 0–1 

BLAI 
Maximum potential leaf area index for 

crops PlantGrowth HRU 0–12 

CANMX 
Maximum canopy index (mm) 

Evapotranspira

tion HRU 0–10 

CH_K2 
Hydraulic conductivity in main channel 

(mm/h) Routing 

sub 

basin 0–150 
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CH_N 
Manningcoefficientforchannel Routing 

sub 

basin 

0.001–

0.1 

CN2 

SCS 

runoffcurvenumberformoistureconditionI

I SurfaceRunoff HRU 35–98 

EPCO 
Plantuptakecompensationfactor 

Evapotranspira
tion HRU 0.01–1 

ESCO 
Soilevaporationcompensationfactor 

Evapotranspira

tion HRU 0–1 

GW_DEL
AY Groundwaterdelay(days) Groundwater HRU 0–100 

GWQMN 
Thresholdstorageinshallowaquiferforretur

nflow(mm) Groundwater HRU 0–5000 

GW_REV
AP Groundwater‘revap’coefficient Groundwater HRU 

0.02–
0.2 

RCHRG_D

P 

Groundwaterrechargetodeepaquifer(fracti

on) Groundwater HRU 0–1 

REVAPM
N 

Thresholdstorageinshallowaquiferfor‘rev
ap’(mm) Groundwater HRU 0–500 

SLOPE 
Averageslopesteepness(m/m) LateralFlow 

sub 

basin   

SLSUBBS
N Averageslopelength(m) 

Concentration
Time 

sub 
basin   

SOL_ALB 
Soilalbedo 

Evapotranspira

tion HRU 0–1 

SOL_AWC 
Availablewatercapacityofthesoillayer(m
m) Soil Water HRU 0–0.3 

SOL_K 
Soilconductivity(mm/h) Soil Water HRU 0–15 

SOL_Z 
Depthfromthesoilsurfacetothebottomlayer

(mm) Soil Water HRU 0–12 

SURLAG 
Surfacerunofflagcoefficient Surface Runoff 

sub 

basin 0.01–1 

 

 The parameters related to snowthat are not included in the calibrationare,TIMP- for 

Snow pack temperature lag factor , TLAPS- Temperature laps rate (°C/km) , SMFMN -

Minimum melt rate for snow (mm/°C/day)SMFMX -Maximum melt rate for snow 

(mm/°C/day), SMTMP Snow melt base temperature (°C)  and SFTMP- Snowfall 

temperature (°C). 

For estimating potential evapotranspiration, the SWAT model uses three different 

methods for estimating PET and AET; namely, Hargreaves, Priestley-Taylor, and 

Penman-Monteith. 
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 The SWAT model uses seven main databases. Five databases are used to store the 

required information about land use/ land cover, plant growth, tillage, fertilizer 

components and pesticide properties. Two databases, the user soil database and the user 

defined weather generator database (userwgn) have to be created for regions outside the 

United States of America (USA) to store custom soil characteristics and weather 

parameters. These databases must be created and edited to the required content before 

setting up the SWAT model. More detailed information can be found in the SWAT user 

manual 2005 and ArcSWAT interface for SWAT 2005 user’s guide byWinchell  et al., 

(2007). 

3.13 Model uncertainties 

3.13.1 Model input uncertainties 

 There are a lot of uncertainties associated with model input data due to the associated 

errors during their estimation, collection or representation. The estimation of point 

rainfall values is prone to error. Rainfall spatial and temporal variability isa basic 

reason for uncertainty in precipitation data. Other model inputs such as 

evapotranspiration also increase uncertainty in model predictions. Another source of 

uncertainty arises from the discrete time nature of the data, which provides no 

information about the variation within time steps which can affect parameter 

estimates(Pechlivanidis et al., 2011). 

3.13.2 Model structure uncertainties 

The model structure in hydrological models considers the hydrological processes 

through mathematical representation. This structure is however controlled by our 

understanding of the hydrological system, based on the information and the data 
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available. It is thus common to ignore unobserved processes. This has the effect of 

introducing uncertainties to modelling results(Pechlivanidis et al.,2011). 

3.13.3 Model parameter uncertainties 

Model parameters in essence control the model output and it is essential to understand 

their effect during model calibration. Parameter uncertainty therefore cannot be ignored 

during model development due to the fact that it is still difficult to determine how 

representative a model parameter is (Quan, 2006). This is because most model 

parameters representing physical catchment characteristics or hydrological processes 

cannot fully capture the extent of spatial and temporal variation within a catchment and 

the hydrological system. 

3.14 Model calibration and validation 

 

3.14.1 Model calibration 

The process of selecting suitable values of model parameters such that the models 

simulations are close compared to the observations is called model calibration. Two 

types of model parameters can be identified in most models. These are physical 

parameters which represent physical properties and can be measured, and process 

parameters that represent catchment characteristics and cannot be directly 

measured.There are also some physical parameters which are measurable in theory but 

difficult to measure in practice, such as the hydraulic conductivity and porosity. These 

parameters hence have to be calibrated. 

Calibration is vital to the process of modelling, due to the fact that in reality it is 

impossible to measure all hydrological properties of a catchment. Model calibration 

generally aims to ensure that the model represents the hydrological processes while 
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retaining a physically sensible meaning.During calibration it is important to identify a 

unique set of parameters. Failure to attain this leads to the problem of equifinality. This 

is a case where different model parameter sets yield equally “good” results.This will 

pose significant constraints to development and application of the model(Pechlivanidis 

et al., 2011). 

There are two approaches to model calibration. This process can either be carried out 

manually, using a trial and error process of parameter adjustments, or by using 

computer based or automated approach or automatic procedures(Zakayo, 2009).In 

practice however a combination of the two is often applied. 

3.14.1.1 Manual calibration 

 

Manual calibration involves altering the values of a number of input parameters within 

their specified ranges and then running the model and analyzing or critically looking at 

the behavior of the model outputs  with the aim of observing whether the said changes 

leads to the improvement in the fit between the simulated and the observed flows. 

From other studies it has been observed that itis possible for an experienced hydrologist 

to obtain very good model parameters that are hydrologically sound by applying 

manual calibration. It is also noted that manual calibration is tedious, subjective, time-

consuming, and easily excludes the effects of theinteraction between the 

modelparameters (Zakayo, 2009; Xu, 2002; Pechlivanidis et al., 2011). 

It is generally difficult to determine the “best fit” or to determine a clear point   to 

indicate the end of the calibration process; this has often led to different results being 

obtained by different modelers(Xu, 2002). Given the time consuming nature of manual 

calibration, the “heuristic”( based on one’s knowledge of the catchment hydrological 
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and physical processes) approach however, makes the use of modelers’ knowledge and 

experience and, therefore, can prove to be useful (Shrestha at al., 2010). 

3.14.1.2 Automated calibration 

 

The need to speed up the calibration process has partly motivated the development of 

computer-based methods for automatic calibration of hydrological models. This has 

vastly improved computational efficiency and has sped up the process of calibration 

(Pechlivanidis et al,  2011; Xu, 2002). 

Automated calibration is carried out by using optimization algorithms. Optimization 

algorithms for calibration can be classified into two categories. These categories are the 

local search and theglobal search optimization objectives. Literature reports that local 

search procedures offer some limitations and therefore global search procedures have 

been developed(Zakayo, 2009). 

With automated calibration the prediction error is first computed using an equation 

which is the objective function and is usually one ora combination of goodness of fit 

statistics. Then an automatic optimization procedure or a search algorithm is used to 

locate parameter values that optimize the value of the objective function.Depending on 

the objective function, the automated calibration procedures can be classified as single 

objective procedures and multiple objective procedures. Single objective function 

procedures usually defines an objective function with a goodness of fit measure such as 

Mean Squared-Errors (MSE) estimator, Nash and Sutcliffe Efficiency (NSE), or others, 

and tries to maximize or minimize this value depending on the case  in order to obtain a 

better fit between predicted and observed time series of discharges. The concept of 

multi-objective optimization has evolved and has been applied to many models as 
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many real-world problems involve multiple measures of performance, or objectives, 

which should be optimized simultaneously(Zakayo, 2009). 

Despite automatic calibration being fast and less subjective it has major limitations 

depending on the assumptions made for the objective function and the existence of 

local minima which is closely related to the number of model parameters. Taking this 

into account, automated calibration should be used with caution(Shrestha et al.,2010). 

A typical automatic parameter estimation procedure consists of four major elements: 

the selected objective function (or performance measure); the optimization algorithm; 

the termination criteria; and the calibration data. The purpose of automatic calibration 

is to find those values of the model parameters that optimize (minimize or maximize, as 

appropriate) the numerical value of the objective function. 

3.14.2 Model validation 

Model validation also called model verification is done after the model has been 

calibrated. The purpose of validation is to test if the model performs well on a portion 

of independent data, which was not used in calibration. 

 The aim of model verification is to check the model’s robustness and its capability to 

describe the hydrological response of a catchment under a different set of data. This can 

also further detect any biases in the calibrated parameters(Pechlivanidis et al., 2011).  It 

has been noted however that, the model’s performance is usually better during the 

calibration period than the validation period. This phenomenon is known as “model 

divergence”. In the event the degree of divergence is considered unacceptable, the 

model structure and the calibration is examined and revised. 
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3.15 Split sample tests 

 

Split sample tests arefrequentlyused in hydrological model calibration and 

validation.The test is done by having one period ofobservations used in the calibration 

of the modelwhile another separate period is used to verify thatthe model predictions 

are satisfactory.Several tests have been proposed including different splitsampling tests, 

proxy catchment testing and proxy catchment split sample tests.  

3.15.1 Split-Sample (SS) 

 This test can be applied when, testing river flow in a gauged basin with adequate time 

series of data that is sufficiently long. The available record is split in two equal 

portions, one for calibration, and theother for validation. Ordinarily, the record should 

be split 70% forcalibration, 30% for validation. The model is deemed acceptable if both 

calibration and validation results are similar and errors areminimal. 

3.15.2 Types of Split-Sample tests 

 The other split sample tests include the Differential Split Sample (DSS) test, which is 

done when the model is to simulate flows in a gauged basin under conditions different 

from those corresponding to the available flow record (e.g. change in climate).Here two 

periods with the different climatic parameter of interest are selected from the available 

record (e.g. high and low mean precipitation). If the model is intended to simulate wet 

climate flow then it must be calibrated on dry record and validated with the wet record 

and vice versa. 

Another test is the Proxy Basin (PB) test. This is a basic test for geographic transpose-

ability to a separate basin. For an un-gauged basin C, two gauged basins A and B are 

selected within the same region.  The model is calibrated on basin A, and validated on 
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basin B.  Minimal errors on both accounts then indicate that the model is considered 

sufficient and therefore the model parameters are transferable to basin C.  

A Proxy Basin Differential Split-Sample (PB-DSS) on the other hand is applied where 

the model is meant to be both geographically, climatically or even in terms of land 

use,transferrable to a different basin. Two gauged basins, A and B with characteristics 

similar to those of C are identified with Wet and Dry periods for each basin selected i.e. 

A-wet, A-dry and B-wet, B-dry. To assess a wet climate in basin C, A-dry /B-wet and 

B-dry/A-wet need to be undertaken for calibration and validation respectively. The 

model is judged adequate if results from B-wet and A-wet are similar or satisfactory. 

3.16 Model evaluation 

 

3.16.1 Goodness of fit statistics and calibration plots 

A good model calibration and validation process requires the use multiplestatistics with 

each covering a different aspects of the simulated and observed hydrographs so that the 

entire hydrograph is captured. This is important because the use of a single evaluation 

statistic can lead to over-emphasis or an exageration on the matching of one atribute of 

a hydrograph at the expense of otheraspects(Moriasi, et al., 2007; Arnold, et al., 2012). 

There are several statistical error indices commonly used in model evaluation. These 

mainly include; Mean absolute error (MAE), Mean square error (MSE) and Root mean 

square error (RMSE). These indices are valuable because they indicate error in the 

units (or squared units) of the constituent of interest, which aids in analysis of the 

results. RMSE, MAE, and MSE values of 0 indicate a perfect fit and RMSE and MAE 

values less than half the standard deviation of the measured data may be considered 

low. A number of goodness of fit statistics are considered: 
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1. Percent bias (PBIAS)  

Percent bias (PBIAS) measures the average tendency of the simulated data to be larger 

or smaller than their observed values. The optimal value of PBIAS is 0.0, with low-

magnitude values indicating accurate model simulation. Positive values indicate model 

underestimation, while negative values indicate model overestimation. PBIAS is 

calculated as; 

PBIAS = [
∑ Yi

obs−Yi
sim×100n

i=1

∑ Yi
obsn

i=1

]            Equation 3.17 

 

Where; 𝑌𝑖
𝑜𝑏𝑠 are the observed values and 𝑌𝑖

𝑠𝑖𝑚  are the simulated values. PBIAS is the 

deviation of data being evaluated expressed as a percentage. 

 

2. RMSE-observations standard deviation ratio (RSR): 

RMSE is a commonly used error index. RSR standardizes RMSE using the 

observations standard deviation, and it combines both an error index and some 

additional information. RSR is calculated as the ratio of the RMSE and standard 

deviation of measured data as; 

RSR =
RMSE

STDEVobs
=

[√∑ (Yi
obs−Yi

sim)
2n

i=1 ]

[√∑ (Yi
obs−Yi

obs mean)
2n

i=1 ]

         Equation 3.18 

 

Where; 𝑌𝑖
𝑜𝑏𝑠 are the observed values and 𝑌𝑖

𝑠𝑖𝑚  are the simulated values,𝑌𝑖
𝑜𝑏𝑠 𝑚𝑒𝑎𝑛is the 

mean of observed data values, and nis the total number of observations. 
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3. Nash-Sutcliffe efficiency (NSE):  

For the comparison of the evaluation of performance of the models and further to unify 

the presentation of the different models, the modeled results were evaluated based on 

the same statistical measures.The Nash-Sutcliffe efficiency (NSE) is a normalized 

statistic that determines the relative magnitude of the residual variance compared to the 

measured data variance. NSE indicates how well the plot of observed versus simulated 

data fits the 1:1 line.It is a measure of how well the observed and simulated values 

match. NSE is given by; 

NSE = 1 − [
∑ (Yi

obs−Yi
sim)

2n
i=1

∑ (Yi
obs−Yi

obs mean)
2n

i=1

]              Equation 3.19 

 

Where; 𝑌𝑖
𝑜𝑏𝑠is the ith observation value, 𝑌𝑖

𝑠𝑖𝑚 is the ith simulated value 𝑌𝑖
𝑜𝑏𝑠 𝑚𝑒𝑎𝑛is the 

mean of observed data values, and n is the total number of observations.NSE values 

range between −∞ and 1. Values between 0.0 and 1.0 are generally viewed as 

“acceptable” levels of performance, and values less than 0 indicates that the mean 

observed value is a better predictor than the simulated value, which suggests 

unacceptable performance.  NSE values that are moving towards 1 indicate better 

model performances (Anh et al., 2008; Krause et al.,2005; Amir, et al., 2013; Moriasi, 

et al., 2007). 

4. Coefficient of determination R2 

The coefficient of determination R2 measures the proportion of variability in the 

observed stream flows that is accounted for by the model. The value for R2 can range 

from 0 to 1, with higher values indicating a better model performance(Wang et 

al.,2010). 
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R2 =
((Yi

obs−Y̅obs)×(Yi
sim−Y̅i

sim))
2

∑(Yi
obs−Y̅obs)

2
× ∑(Yi

sim−Y̅sim)
2             Equation 3.20 

 

5. Index of agreement (IA) 

The index of agreement IAwas proposed to overcome the insensitivity of NSE’s and R2 

to differences inthe observed and predicted means and variances. The index of 

agreement represents the ratio of the mean square error and the potential error and is 

represented as; 

IA = 1 −
∑ (Yi

obs−Yi
sim)

2n
i=1

∑ (|Yi
sim−Yi

obs mean|+|Yi
obs−Yi

obs mean|)
2n

i=1

           Equation 3.21 

 

Where; 𝑌𝑖
𝑜𝑏𝑠is the ith observation value, 𝑌𝑖

𝑠𝑖𝑚 is the ith simulated value 𝑌𝑖
𝑜𝑏𝑠 𝑚𝑒𝑎𝑛is the 

mean of observed data values. The range ofIA lies between 0 for no correlation and 1 

indicating a perfect fit (Krause et al., 2005). 

3.16.2 Graphical plots 

In addition to the traditional goodness of fit statistics between simulated and observed 

discharges the properties of the flow time series are also analyzed using goodness-of-fit 

plots (Willems, 2005).Goodness-of-fit statistics, such as those discussed above are most 

widely used for evaluating model performance. They however have the disadvantage 

that they largely summarize the goodness-of-fit information only for a few numbers 

and values. It is thus better to complement these statistics with graphical goodness-of-

fit plots. Generally, these plots compare the simulated and observed values, as used on 

the basis of the statistics in a graphical way, and provide the modeller with far more 

complete information about the goodness-of-fit. Model residuals or model errors 

typically increase with higher flow values. This means that the higher flow values 
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receive more weights in evaluations based on the goodness of fit statistics due to the 

squared error terms in the equations. They are clearly oversensitive to peak values. To 

remedy this problem one can apply weighting coefficients to the squared terms or use 

transformations of the variable of interest, without the need to modify the equations. 

There are different types of transformation that can be found in literature. These 

transformations include, non-parametric normal quantile transformations applied to 

transform the model residuals into a normal distribution, the square root transformation, 

the logarithmic or ln-transformation and the Box-Cox transformation byBox and Cox, 

(1964).  The Box-Cox (BC) transformation is a very flexible onedepending on its 

parameter value and can cover a whole range of weak and strong transformations. The 

BC-transformation, when applied to a variable Q, is given by; 

BC(Q) =
Qλ−1

λ
       Equation 3.22 

Where the parameter λ needs to be calibrated in an attempt to reach homoscedasticity 

(or homogeneity of variance) in themodel residuals. The value of λ ranges from 0 to 

1.For the best λ, the standard deviation is constant i.e. it is independent of the flow 

magnitudes.For runoff discharges the parameter λ usually falls around a value of 0.25 

(Willems , 2005). 

As a summary, graphical techniques including hydrographs and percent exceedance 

probability curves, and other plots provide visual model evaluation overviews.  The 

first steps in model evaluation should typically involve the use of these techniques. 

Generally a visual agreement between observed and simulated data indicates adequate 

calibration and validation.The next step should be to calculate values of the goodness 

of fit statistics selected. With these values, model performance can be judged based on 
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general performance ratings(Moriasi et al., 2007).The Table 3.3 indicates some 

performance ratings adopted in this study. 

Table 3.3 Performance ratings(Moriasi et al., 2007) 

Performance 

Rating 

Goodness of fit statistics 

RSR NSE PBIAS (%) 

Verygood 0.00 ≤ RSR ≤0.50 NSE  ≥ 0.75 PBIAS ≤ ± 10 

Good 0.50 ≤ RSR ≤ 0.60 0.65 ≤ NSE ≤ 0.75 ±10 ≤ PBIAS ≤ ±15 

Satisfactory 0.60 ≤ RSR ≤ 0.70 0.50 ≤ NSE ≤ 0.65 ±15 ≤ PBIAS ≤ ±25 

Unsatisfactory RSR≥0.70 NSE ≤ 0.50 PBIAS ≥ ±25 

3.16.3 Extreme Value Analysis 

Models can be evaluated based on how well they simulate both peak flows and low 

flows. Estimation of various probabilities of exceedance of high discharges with 

corresponding return periods is required for a wide range of engineering problems. 

Pickands, (1975) showed that, for a set of ordered and independent observations, the 

values above a sufficiently high threshold tends towards the Generalized Pareto 

Distribution (GPD). A more detailed review can be found inWillems, (2009). The 

Water Engineering Time Series PROcessing Tool (WETSPRO) software was used in 

this study for the comparative evaluation of the two models abilities to predict extreme 

flows. 

3.17 Sensitivity analysis 

 

Sensitivity analysis refers to the process of identifying a set of parameters that have the 

most effect in the model. It is a step carried out prior to model calibration. It speeds up 

the optimization process by concentrating on finding the optimum values for a limited 

number of parameters that govern the model outputs. The process of sensitivity analysis 
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determines the rate of change in model output with respect to changes in model 

parameter inputs. Sensitivity analysis is required to investigate how the hydrological 

models outcomes are sensitive to its parameters. Some hydrological models are 

complex and over-parameterized; especially the semi-distributed or the fully distributed 

models, which have many model parameters that can pose a challenge during the 

calibration process.  

Therefore, the sensitivity analysis is essentially important in most of hydrological 

models since it reduces the number of parameters that have to be calibrated 

byidentifying the parameters that the model output is sensitive to, thus helping to 

reduce a lot of the time required to calibrate a model. 

Sensitivity analysis actually evaluates how parameters influence model predicted 

outputs.Sensitive parameters are then identified for use in model calibration. This 

procedure in short serves as a process for narrowing down the wide number 

ofparameters in a particular model to only the important ones so that a focused analysis 

is directed to a modelled problem. The ability of a watershed model tosufficiently 

predict constituent yields and stream flow for a specific application isevaluated through 

sensitivity analysis, model calibration, and model validation. 

A number of sensitivity analysis techniques are available. These include differential 

analysis, Manual sampling, one-at-a-time (OAT) design, factorial design, the derivation 

of sensitivity and importance indices, subjective analysis, construction of scatter plots, 

the relative deviation methods, partial correlation coefficients, regression techniques, 

the Smirnov test statistic, the Cramer-vonMises test, Mann-Whitney test and others 

(Zakayo, 2009; Githui, 2008). In this study, a LH-OAT (Latin Hypercube-One At a 

Time) method that is integrated in the ArcSWAT interface was applied for the SWAT 

model. 
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3.17.1 Manual sampling 

Manual sampling is an easy method applied to carry out sensitivity analysis. It starts by 

changing the parameter values and checking the effect of those changes on the model 

simulated output results (Saleh, 2008).The parameters which cause significant changes 

to the overall results with small variations in their values are then considered sensitive. 

This method is mainly suited for models that have few parameters like lumped models. 

Manual sampling sensitivity analysis was done for the NAM model. 

3.17.2 Automated sensitivity analysis 

Sensitivity analysis can become too complex when done manually in complex models 

with many parameters. There are thus automatic techniques developed to handle this 

challenge. These automated methods are embedded in hydrological model packages to 

carry out sensitivity analysis by running the model several times with different sets of 

parameter values then noting the change in model output. After this is done parameters 

are ranked according to their sensitivities. An example is the LH-OAT algorithm in 

SWAT. 

As indicated in the SWAT “Sensitivity, auto-calibration, uncertainty and model 

evaluation in SWAT2005” manual (Griensven, 2008), the LH-OAT sensitivity analysis 

method combines both the robustness of the Latin Hypercube sampling which ensures 

that the full range of all selected parameters has been sampled with the precision of 

aone at a time (OAT) design. This ensures that the changes in the output in each model 

run can be clearly attributed to the changed parameters in a simulation run. This 

method requires several model runs to obtain the required parameter sensitivities. Form 

intervals in the LH method, and p parameters to be considered, a total of m*(p+1) runs 

are required (Griensven, 2008). 
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3.18 Water yield and water balance 

 

The total volume of water that can be expected from a stream or river within a given 

period such as a water year is called the yield of the stream or the catchment basin. 

Estimation of water yield and water balance in a river basin is critical to the sustainable 

management of water resources at watershed level in any countryand is an 

indispensable prerequisite in the sustainable management of water resources at 

watershed and basin levels(Adeniyi et al., 2014). A basin’s yield calculated in water 

resources development studies can be done using; hydrograph method, runoff – rainfall 

correlation method, empirical equations, and watershed modelling. For this research 

two watershed models, the lumped MIKE 11-NAM and the semi-distributed SWAT 

model will be applied. 

3.19 Lumped and Semi-Distributed Approaches 

 

 This study applied a lumped conceptual NAM hydrological model and a semi-

distributed physically based SWAT model to the Sergoit catchment. As NAM is a 

lumped model it treats the catchment as a single unit. The represented model 

parameters are therefore, average values for the whole catchment.  This means that 

most parameters in their final parameter estimation must be performed by calibration 

against time series of hydrological observations.  This is done because the model 

parameters do not have a direct physical catchment meaning. 

On the other hand the semi- distributed hydrological model structure applied in the 

SWAT model enables the spatial variations in catchment characteristics to be 

represented first by sub catchments and then by hydrologic response units which 

represent homogeneous units of similar soils, slope and land use. For each HRU several 

parameters and variables are extracted.  
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The use of process based, easily accessible, public domain modelling software like 

SWAT is an easy option for hydrologists while considering watershed modelling 

(Shrestha et al.,2010). This however has to be balanced with the data availability for the 

area of study and the skills required of the modeler to set up the model. 

3.20 A review of comparative studies on hydrological models 

 

There have been some research efforts in conducting hydrologic model comparison. 

On face value it can be generally accepted that the distributed modelling approach 

represents reality and in more spatial detail better than the lumped model approach and 

more importantly it uses the physical laws of mass balance and energy equations to 

describe the hydrological processes, while the lumped approach uses averaged values 

and conceptual representations of the hydrologic processes over an entire basin. 

 Despite the ongoing debate, it is important to study the available modelling approaches 

applied to the specific catchment of interest and assess which modelling approach 

provides a more satisfactory representation of rainfall-runoff transformation in the 

particular area of interest and which model structure best captures the complex 

hydrological processes taking place in the catchment under study.  Several comparative 

researches are discussed below. 

3.20.1 NAM (DHI), FEH (UK) and TVM 

Anh et al., (2008) evaluated the performance of three lumped conceptual rainfall-runoff 

models at catchment scale. The selected models were the NAM   and FEH models 

which represented continuous modelling while the TVM model was an event based 

model. The selected catchment was the Bradford catchment in the UK and the models 

were applied on a seasonal basis i.e. summer and winter. The time steps for the models 

were the hourly and the quarter hourly time intervals. For the comparison of the 
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evaluation of performance of the models and further to unify the presentation of the 

different models, the modeled results were evaluated based on the same statistical 

measures. These measures included the water balance error (WR), NSE proposed by 

Nash and Sutcliffe (1970), peak flows (quick flow) and low flows (slow flow) statistics 

including MSE, RMSE and the coefficient of determination (R2). They concluded that 

the study showed that generally TVM model having an NSE of 0.79 and 0.54 

performed better than the NAM model with an NSE of 0.53 and 0.45 during calibration 

and validation respectively. Additionally the hydrological models represented the 

catchment well and gave reasonable results in terms of accuracy. They however noted 

that, the selection of models for particular catchments should be based on data 

availability, project objective and model structure (Anh et al., 2008). For this study the 

NAM model was taken for its suitability for continuous modelling as recommended. 

3.20.2 VIC and HBV 

In a research by Linde et al., (2007)  the hydrological models HBV (Hydrologiska 

Byråns Vattenbalansavdelning) and VIC (Variable Infiltration Capacity) models were 

compared for the Rhine basin by testing their performance based on observed runoff. 

HBV is a semi distributed lumped conceptual model while VIC is a distributed 

physically based model. In this paper it was argued  that even for a well-documented 

river basin as the Rhine, the available approaches were still far from providing a 

satisfactory representation of rainfall-runoff transformation and that more complex 

modelling  approaches do not always lead to better results. From the results on the 

research, the hydrological models HBV and VIC were compared for the Rhine basin by 

evaluating the model’s performances for simulating discharge. Overall, the semi-

distributed lumped conceptual HBV model performed much better than the distributed 

physically based VIC model. Additionally, it concluded that deviations between the 
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observed and simulated discharge in many cases resulted from errors or deviations in 

forcing data rather than from a structural problems in model definition (Linde et al., 

2007) 

3.20.3 MIKE 11-NAM and MIKE SHE 

El-Nasr at al., (2011) compared two different methods for predicting rainfall-runoff. 

The models implemented in their study represented modelling approaches with a 

gradual increase in complexity, ranging from a lumped conceptual approach to a fully 

distributed physically based approach. The model that represented a lumped semi-

empirical approach was the NAM-module of the MIKE 11 model, and the MIKE SHE 

model represented the fully distributed, physically-based deterministic catchment 

model. The two modelling approaches were applied to the Jeker River basin, in 

Belgium. The size of the catchment area is 465 km2. The model performance was tested 

based on each model’s ability to simulate peak flows(El-Nasr et al., 2011). A good 

analysis on the agreement between the model simulated and the observed river flow in 

the two split sample conditions of calibration and validation periods was conducted. 

The quantitative evaluation on the models performance by use of statistical 

performance indices including the Root Mean Square Error (RMSE), Mean Absolute 

Error (MAE), Coefficient of Determination (CD), Modelling Efficiency (EF) and 

Goodness of Fit (R2) statistics was carried out. Also the examination of the model’s 

long-run prediction of the high peaks through extreme value analysis and using 

different performance criteria was utilized to perform the analysis on the river 

discharge at the basin outlet station.  

The study results showed that the lumped conceptual NAM model (NSE of 0.74) 

behaved better than distributed physically based MIKE SHE model (NSE of 0.60) for 

the calibration period. In the validation period there was a marginal improvement in the 
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NAM results (NSE of 0.76) compared with a greater improvement in the MIKE SHE 

model output (NSE of 0.76).  There was an inclination to underestimate flow values for 

MIKE SHE model. This was observed in the validation period .This trend however was 

observed in both calibration and validation periods in the NAM model.   

It was observed that on the basis of an extreme value analysis of simulated values from 

both models, the MIKE SHE model performed much better than the NAM model.  It 

was noted that for the NAM model there was increasing underestimation for larger 

peak values which indicated a poor performance for use in extrapolation purposes (El-

Nasr et al., 2011). 

3.20.4 SWAT, HSPF and DWSM 

Borah and Bera, (2004) compared three watershed−scale hydrologic and 

nonpoint−source pollution models, all having the three major components which 

included hydrology, sediments, and chemical, that were selected based on a review of 

eleven models whichh included AGNPS, AnnAGNPS, ANSWERS, 

ANSWERS−Continuous, CASC2D, DWSM, HSPF, KINEROS, MIKE SHE, PRMS, 

and SWAT, presented in a companion article.The models selected were SWAT, a 

model for long−term continuous simulations in predominantly agricultural 

watersheds;HSPF, also model for long−term continuous simulations in mixed 

agricultural and urban watersheds; and DWSM, a rainfall event simulation model for 

agricultural and suburban watersheds. They reported that as supported in  literature, the 

SWAT and HSPF models require a significant amount of data and empirical parameters 

for development and calibration. DWSM on the other hand has efficient physically 

(process) based simulation routines and thereforehas a small number of calibration 

parameters. SWAT and HSPF were found suitable for predicting yearly flow 

volumes,sediment, and nutrient loads. Monthly predictions were generally good, except 
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for months having extreme storm events andhydrologic conditions(Borah and Bera, 

2004). Daily simulations of extreme flow events were poorly represented. In their 

assessment, the DWSM model reasonably predicted distributed flow hydrographsand 

the concentrations or discharge graphs of sediment, nutrient, and pesticides at small 

time intervals resulting fromrainfall events. The finally concluded that the combined 

use of these complementary models and perhaps other models having different 

strengths was warranted to adequately address water quantity and quality problems and 

their solutions. Their research effort demonstrates the need for evaluation and 

assesment of hydrological models before their application in waterhed analysis. 
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4. CHAPTER 4: METHODOLOGY 

4.1 Introduction 

This chapter describes the methodology that was applied in this research for the two 

modelling approaches. The first and second schematic (Figure 4.1 and Figure 4.2) 

represents the methodology applied in the lumped modelling approach and the semi 

distributed approach respectively. 
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Figure 4.1 Lumped Conceptual Modelling Approach using MIKE 11-NAM. 
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Figure 4.2 Semi Distributed physically based Modelling Approach using SWAT 

 

Both modellingapproaches were set up andapplied to the Sergoit basin and then their 

performance evaluated using statistical and graphical methods. 

 

4.2 Data pre-processing 

 

4.2.1 DEM Processing and Catchment delineation 

After the DEM data was identified and downloaded from the http://srtm.csi.cgiar.org 

web site, ArcGIS 9.3.1 with the Arc Hydro tools extension was used to process the 

DEM after creating a raster from the mosaic of the four raw DEM tiles and extracting 

http://srtm.csi.cgiar.org/SELECTION/inputCoord.asp
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the area of interest using a mask. This was followed by projecting the resulting DEM 

raster file into an appropriate projection coordinate system. Here UTM projection 36N 

was used. The process of catchment delineation involved the following processes using 

the Arc Hydro tools extension. The DEM was first filled for sinks to eliminate pits. 

This was followed by processing for flow direction for each cell using the D8 

algorithm. This process determines the relative elevation of one cell with respect to 

other cells surrounding it. The next process was flow accumulation. Using the 

information from flow direction processing, it is then possible to establish how many 

cells drain to a particular cell. This results in a flow accumulation raster file which is 

used as an input to obtain the stream network file which is formed on the basis of a 

threshold value which represents the minimum number of drained cells that can form a 

stream. When a low threshold value is set, it implies that only a few cells are required 

to form a stream and this leads to a dense stream network and vice versa.  

To determine the catchment boundaries, the coordinates of the river gauging station 

were used to create a point shape file having a similar projection coordinate system 

with the base DEM. This formed the pour point or outlet point to the watershed and 

was used together with the stream links file and the flow accumulation file generated 

earlier to delineate the catchment of interest in this case the Sergoit basin. The 

delineated basin boundaries were thereafter used for other spatial analysis using various 

tools in ArcGIS. These included the clipping and extraction of soil maps, land use/land 

cover maps and estimating the area of the Sergoit basin.  

4.2.2 Rainfall data processing 

From the initial time period an excel sheet enabled macro was utilized to check data 

completeness. The period was then reduced to between 1975 and 1984.  This was done 
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based on the collection periods of other data sets like the soils and the land use data. 

The results on the data completeness for this period are shown below (Table 4.1). 

Table 4.1: Data completeness of selected period 1960-1990 

Station ID Station Name % Complete 

8935133 Eldoret Institute of Agriculture 86.64 

8935181 Eldoret Met.Station 90.28 

8935170 Turbo Forest Nursery 100.00 

8935134 Kessup Forest Reserve,Elgeyo 85.35 

8935164 Kaptagat Sabor Forest Station 85.09 

8935131 Kipkwen D.O.’S Office,Chepkorio 37.50 

8935108 Abai Farm,Cheplaskei 12.48 

8935016 Soy Kipsomba Estate 81.27 

8935157 Boimet Farm,Turbo 1.61 

1CA02 River Sergoit RGS 80.10 

 

 

According to the World meteorological organization (WMO) standards, it is not 

recommended to fill more than 10% of missing data(Githui, 2008). But due to the 

scarcity of data, a threshold of 20% was used because of the limited data. 

From Table 3.2, above the stations that did not meet this threshold were eliminated 

from the study.Other climatic data required included; maximum and minimum 

temperature, wind speed, relative humidity, solar radiation and dew point temperature. 

Eldoret Institute of Agriculture (station ID 8935133) is the only station that is near the 

catchment under study that has temperature, wind speed and relative humidity data 

recorded. Therefore solar radiation and dewpoint temperature data required was 

sourced from the National Oceanic and Atmospheric Administration (NOAA) website 

(NOAA, 2014). These data sets were necessary to build a user weather database for the 

inbuilt SWAT weather generator. 
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The rainfall data used to represent rainfall in the Sergoit basin are from the rainfall 

stations represented in the map below (Figure 4.3). 

 

Figure 4.3: Selected Rainfall stations and the Sergoit RGS. 

 

For the selected stations and period of study the missing values were filled using 

Inverse Distance Weighting (IDW) discussed in section 3.10.2.  

 

4.2.3 Estimation of aerial rainfall 

The Thiessen polygon method as discussed in section 3.10.3 was used in this study to 

convert daily point rainfall values for the selected stations into daily areal rainfall 

values for input into the MIKE 11-NAM model. The map (Figure 4.4) represents the 

areas of influence for each rainfall station within the Sergoit basin. The Thiessen 

weights for each station were calculated (Appendix B). 
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Figure 4.4 Thiessen Polygons covering Sergoit catchment 

4.2.4 Potential Evapotranspiration 

Temperature data from Eldoret Institute of Agriculture (station ID: 8935133) and 

Eldoret Meteorological Station (Station ID: 8935181) were used in the estimation of 

potential evapotranspiration (PET) using the Hargreaves-Samani (1985) Method(Lu et 

al.,2005) given by; 

𝛌𝐏𝐄𝐓 = 𝟎. 𝟎𝟎𝟐𝟑 × 𝐑𝐚 × 𝐓𝐃𝟎.𝟓 × (𝐓 + 𝟏𝟕. 𝟖)               

Equation 4.1 

 

Where PET is the daily PET (mm/day); λ is the latent heat of vaporization (MJ/kg); T is 

the daily mean air temperature (°C); Ra is the extraterrestrial solar radiation 

(MJ/m2/day; and TD is the daily difference between the maximum and minimum air 

temperature (°C). The Hargreaves method was used as it requires only tepmerature data 

to estimate PET.Unlike rainfall data, the evaporation data can be assumed to be the 

same for the entire watershed (Willems et al., 2014). 
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4.2.5 Sub flow filtering 

This exercise was done to get an idea of the main hydrologic components that 

contribute to the runoff process.Sub-flow filtering was done iteratively and with a 

stepwise approach using the processing tool WetsPRO. 

 

4.3 Mike11 NAM model setup 

 

As an initial step the data was split into two sets. One set covered the three year 

calibration period from January 1975 to December 1977 and the three years validation 

period from January 1982 to December 1984. Inorder to setup a MIKE 11-NAM 

model, four files input prepared. The first file was a time series file. This file contained 

the input rainfall, potential evapotranspiration and observed discharge time series data 

for the calibration period January 1975 to December 1977 and the validation period 

between January 1982 and December 1984. The next file was a rainfall runoff 

parameter file that contained the NAM model parameters and within it was the location 

of the time series file as input. This file specified the catchment area and the model that 

was applied (NAM) and this was where the NAM parameters were adjusted during the 

calibration process(Figure 4.5). 

The simulation file wasthe third and last file created. In this file Mike 11 module of 

interest in this case the rainfall runoff module was selected. The main input to thisfile is 

rainfall runoff parameters file. Also this was where the results file was specified, the 

simulation period (1975-1977 for calibration)and the daily time stepselected. 
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Figure 4.5. MIKE 11-NAM model Screen Shot 

After this set up the model was run and the results viewed using Mike View for visual 

comparison with the observed flows. From here the simulated values were transferred 

to an excel workbook to calculate the goodness of fit statistics when compared with 

observed flows as discussed in section 3.16. 

4.3.1 Model sensitivity analysis and model calibration 

Before calibration the model parameters were manually changed as discussed in section 

3.17.1. to evaluate each model parameter’s sensitivity. This was done by varying each 

of the model parameters within the parameter limits and observing the change in the 

objective function. The objective function in this case is the NSE. The NAM model 

was then calibrated by first keeping the threshold parameters TOF, TIF, and TG at 0 

while varying the timing constants CKIF, CKBF, the storage parameters Umax,Lmax and 

the runoff coefficient CQOF. After achieving a visually reasonable fit between the 
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observed and simulated flows the threshold parameters were then varied and used in 

this way to fine tune the calibration. Automatic calibration was also done along with 

the manual calibration. This process was done iteratively while observing the goodness 

of fit statistics and graphical plots as discussed in section 3.16.  

4.3.2 NAM Model validation 

After calibration and achieving a good performance rating (depicted in Table 3.3), the 

model was then validated using an independent period from 1982 to 1984 while using 

the same model parameters attained during the calibration period.The simulated results 

were then compared with the observed discharge values from the same validation time 

period and evaluated based on the same goodness of fit statistics used earlier for 

comparison. The WetsPRO tool was also used to check on the performance of the 

model using graphical plots. 

4.4 SWAT model set up 

4.4.1 SWAT model user database set up 

SWAT requires user databases to be created first for SWAT applications outside the 

United States. One database is the “usersoil” database that requires the soil types of the 

modeled area and accompanying attributes like, the hydraulic soil group, the number of 

soil layers and their thicknesses, bulk density, hydraulic conductivity, sand, silt and 

clay percentages (by weight)among others.  

The other database needed before simulation was the weather generator database 

“userwgn”. The SWAT model using this database has an ability to generate missing 

weather data. The statistical data required was generated based on weather data from 

the Eldoret Meteorological Station. The data included rainfall, wind speed, minimum 

and maximum temperature, dew-point temperature, relative humidity and solar 
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radiation data. The data was processed for the required statistical parameters using a 

macro enabled excel worksheet that was used to obtain parameters listed below: 

 average daily maximum and minimum temperatures,  

 standard deviation of both maximum and minimum temperatures- 

 average total monthly rainfall (pcpmm) 

  standard deviation of daily precipitation of each month (pcpstd) 

 Skew coefficient of daily precipitation in each month (pcpskw) 

 The probability of a wet day following a dry one (pr_w(1)) 

 The probability of a wet day following a wet day (pr_w(2)) 

 Average number of days of precipitation in a month (pcpd) 

 Average daily wind speed in a month(windav) 

 Average daily dew point temperature for each month (dewpt) 

 Average daily solar radiation in a month (solarav) 

After this process the SWAT 2009 database was updated with these parameters 

representing the local weather to make the user defined databases.SWAT data inputs 

are requiredin specific file types as either as database (.dbf) files or ascii text (.txt)files. 

The numbers within the files also need to be in a specified format. These data input 

formats are presented in the manual ArcSwat Interface for SWAT 2005(Winchell et al., 

2007). 

4.4.2 SWATmodel set up 

The SWAT model requires many input files. In order to generate these files the 

ArcSWAT interface was used to extract information from geographically referenced 

maps in the ArcGIS 9.3.1 environment. The process of setting up the SWAT model 

included defining a project folder, loading the DEM, rainfall, temperature, soil and land 
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use data(described in section 2.3.4 to 2.3.6) through the ArcSWAT interface. The 

interface is used to generate the stream network and delineate the catchment boundary 

from the DEM and further subdivide the catchmentinto subbasins. The land cover and 

soil layers were used to generate HRUs. Theclimatic data was also integrated spatially 

to assign these data as the main drivers ofthe model to the various subbasins. 

The first step was to load the digital elevation model (DEM) that was projected to the 

UTM zone 36N projection system. A mask covering the Sergoit catchment was used to 

focus on the watershed area. After this DEMprocessing which includes filling sinks, 

slope generation, flow direction and flow accumulation was done.The stream network 

was generated after assigning a threshold area that determined the number of cells 

required to initiate a stream. Lower threshold values lead to denser streamnetworks and 

vice versa. In order to delineate the Sergoit catchment the location coordinates of the 

Sergoit River RGS point was added to the map. Once the sub basins were delineated 

the sub basin parameters (longest flow path, basin centroid and slope) were calculated. 

This resulted in 9 subbasins are shown in Figure 4.6. 

 

Figure 4.6 SWAT generated sub basins 
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4.4.3 Land use and soil type definitions 

This was followed by land use, soils and slope definition. The landuse and soil maps 

were first loaded then followed by a lookup table for each map that wasusedto relate 

the default map classification with the SWAT crop database classification. After the 

land use and soil mapswereadded and clipped to the basin size and coverage, they 

werereclassified, andthen overlaid. This resulted in the catchments landuse and soil 

definitions as shown in Figures 4.7 and 4.8. 

 

 

Figure 4.7 Soils class definition. 
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Figure 4.8 Land use class definition. 

4.4.4 Definition of HRU’s 

The definition of HRU’s was achieved by defining threshold percentage areas below 

which the land use and soil types would be discarded. Here the landuse threshold of 

5%, a soils threshold of 5% and a slope threshold of 5% was selected. These values 

ensured that most land use and soil types in the basin were represented for a fully semi 

distributed model. Based on this criteria 78 HRUs were created (Figure 4.8).  Table 4.2 

shows the land use, soils and slope distributions. 

 

Table 4.2 Land Use, Soils and Slope distribution 

Land use / Soils / Slope definitions Area [Km2] % Area 

LANDUSE: 
Wetlands-Non-Forested 11.370 1.64 

Forest-Mixed 10.498 1.52 
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Forest-Deciduous 36.177 5.23 

Agricultural Land-Close-grown 396.094 57.29 

Agricultural Land-Row Crops 237.186 34.31 

 SOILS: 

A1 529.824 76.64 

Ux7 70.785 10.24 

L8 14.091 2.04 

Pv3 3.964 0.57 

F14 13.203 1.91 

L5 59.459 8.6 

 SLOPE: 

0-4 553.084 80 

0-6 63.338 9.16 

6-9999 74.903 10.83 

 

 

Figure 4.9 SWAT HRU's 
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4.4.5 Weather data definition 

Before loading the climatic data the user weather generator station from the SWAT 

user weather generator database (created in section 4.4.1) must be selected. Rainfall 

and temperaturedata was then loaded through the ArcSWAT interface.Here the 

different weather station data sets were saved separately as text files with an 

accompanying batch file which contains the name, location and elevation of each 

station (Figure 4.10). These stations are assigned to the subbasins in the watershed 

based on how close a station is to the sub basin. The last stage in the model set up is the 

writing of all the SWAT input files and executing the model run after selecting the 

calibration period from 1975 to 1979 with 1975 as the warm up period. 

 

 

 

Figure 4.10 Rainfall input files (text files) 
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4.4.6 SWAT model calibration and sensitivity analysis 

The SWAT model was calibrated using 1975 to 1979 data. This is because the SWAT 

model requires significantly more data and empirical parameters for development and 

calibration.For ideal calibration, awarm up period of one year plus 3 to 5 years of data 

that includes average, wet, and dry years, is suggested by Moriasi et al., (2007). Model 

climatic inputs were based on data from six rainfall stations and one temperature station 

in and around the study area for this period. Prior to model calibration an automated 

sensitivity analysis was carried out prior to the calibration exercise. This was done by 

use of the LH-OAT method that combines the ‘One-factor-At-a Time’ (OAT) design 

and the Latin Hypercube (LH) sampling by taking the LH samples as initial points for a 

OAT design. (Section 3.17.2). Based on the ranks assigned to the parameters with 

respect to their sensitivity, the 10 most sensitive parameters were selected and used for 

automatic calibration. Automatic calibration was done using the parameter solution 

method (Parasol) that uses the shuffled complex evolution (SCE-UA) algorithm 

(Griensven, 2008). This was executed in the model by selecting the "Auto-calibration 

and Uncertainty" option and selecting the simulation target for automatic calibration. 

The observed discharge for the calibration period was loaded then the sensitive 

parameters and their ranges within which they’ll be optimized selected.  Here users 

have the ability to select a method of updating or changing the parameter values during 

automatic calibration. Parameters can be modified by replacement or by addition for an 

absolute change or by a multiplication for a relative change.  

A relative change means that the parameters, or several distributed parameters 

simultaneously, are changed by a certain percentage. However, a parameter is never 

allowed to go beyond the predefined parameter ranges. The next step was to set the 

number of runs which was mainly set between 3,000 to 10,000 model runs and took 
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some hours to execute. The general process of SWAT calibration was conducted by 

running the sensitivity analysis first, then selecting the sensitive parameters and finally 

running automatic calibration. This was repeated several times. 

4.4.7 SWAT Model validation 

Similar to the NAM model, a good enough performance rating was deemed to have 

been reached after which the model was validated using an independent period. This 

period was from 1981 to 1984. Here also a warm up period was set as one year (1981), 

while using the same model parameters attained during the calibration period.The 

simulated results were then compared with the observed discharge values from the 

same validation time period and evaluated based on the same goodness of fit statistics 

and graphical analysis using the WetsPRO tool. 

4.5 Model application 

 

After obtaining well calibrated models the next step was to apply the model to generate 

a time series of synthetic discharges that would be used to determine the catchment 

yield based on the more recent weather inputs. To this end the available rainfall and 

temperature data was acquired and processed for the period 2005 to 2009. The same 

methodology for data preparation and input for both models was followed and the 

generated discharges at the basin outlet processed to estimate the basin yield using the 

model output results. For the NAM and SWAT models the basin water yield was 

estimated by equation 4.2 and 4.3 respectively.  

Water Yield = (OF + IF + BF)            Equation 4.2 

 

Where, OF -is overland flow (mm), IF- is interflow (mm) and BF -is base flow (mm) 
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WYLD = SURQ + LATQ + GWQ − TLOSS        Equation 4.3 

 

Where, WYLD is the amount of water yield (mm), SURQ is the surface runoff (mm), 

LATQ is the lateral flow contribution to stream flow (mm), GWQ is the groundwater 

contribution to stream flow (mm) and TLOSS is the transmission losses (mm) from 

tributary channels in the HRU via transmission through the stream bed (Nietsch et al., 

2005; Adeniyi et al., 2014). These values were further averaged annually and 

multiplied by the Sergoit catchment area. 
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5. CHAPTER 5: RESULTS AND DISCUSSION 

5.1 Introduction 

 

This chapter presents the various results obtained data preprocessing and from both 

models during calibration validation, evaluation and model application. This section 

presents both goodness of fit statistics and graphical evaluation techniques of the 

models simulations for these periods. 

5.2 Data preprocessing 

 

5.2.1 Homogeneity Testing 

The rainfall data from the selected rainfall stations was tested for homogeneity for the 

study period.The results indicate that the data was found to be homogeneous and from 

the same population. (Appendix C) A sample homogeneity plot is shown in Figure 5.1. 

 

 

Figure 5.1: Sample Homogeneity plot for station 8935170 
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5.2.2 Sub flow filtering 

The plot of the sub flows is shown in the Figure 5.2. The Quick flow components were 

found to be about 68% of total flows. With a base flow recession constant of 18 days -1. 

This demonstrates that the dominat hydrologic process is quick surface runoff. 

 

Figure 5.2: Sub Flow Filter Plots 

5.3 MIKE 11-NAM model Results 

 

 The MIKE 11-NAM model was set up and calibrated using 1975 to 1977 data. The 

data inputs for this period included River discharge, spatially averaged rainfall or areal 

rainfall. Potential Evapotranspiration (PET) was estimated using the Hargreaves-

Samani(1985) Method given by equation 4.1 from temperature data for the same 

period. 

5.3.1 NAM sensitivity analysis results 

The sensitivity analysis of the MIKE11 NAM model was done on all the nine model 

parameters. This was done by running the model after changing each model parameter 
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parameterwas changed at a time while the others were heldconstant. This was done 

while noting the changes in the objective functions. Two objective functions, R2 and 

Water Balance Error (WB ERR) were selected to monitor parameter sensitivity. The 

parameters were first set to their lowest value within the allowable range then a 20% 

incremental change added until the upper limit was reached. 

 The incremental 20% change in parameter value was chosen as it has a sufficient 

resolution to highlight changes in sensitivity with respect to the onjective function. For 

each simulated run, R2 and Water Balance Error (WB ERR) was determined from the 

model output. The results were analysed by plotting R2 and Water Balance Error (WB 

ERR) against the respective model parameters (Figure 5.3) and the ranking of 

parameters was tabulated (Table 5.1 and 5.2) indicating the parameter against the 

maximum change in the objective function and thus parameter sensitivity.  

Table 5.1 Sensitivity to (R2) 

Rank Parameter Max.change in 

R2 

1 Lmax 1.491 

2 CQOF 1.355 

3 CKBF 0.353 

4 TIF 0.226 

5 CKIF 0.164 

6 CK1,2 0.133 

7 Umax 0.107 

8 TG 0.08 

9 TOF 0.007 

 

 

Table 5.2 Sensitivity to WB Error 

Rank  Parameter Max. change in  

WB error 

1 Lmax 107 

2 TIF 29.7 

3 CKBF 28.4 

4 Umax 25.2 

5 TG 22.2 

6 CQOF 19.7 

7 CKIF 14.3 

8 TOF 2.1 

9 CK1,2 0 
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Figure 5.3 Parameter Sensitivity Plots  



94 
 

 

The results indicate that NAM model parameters have different sensitivities to the two 

different objective functions. The ranking on Table 5.1 indicates that the Lmax and the 

CQOF parameters are the most sensitive and vital in terms of the models ability to 

account for the variations in observed river flows (indicated by the R2 value). Lmax 

which conceptually represents the spatially averaged maximum root zone storage 

capacity is key in determining how quick the response is to a rainfall event. This is 

because a smaller value of Lmaxwill represent a lower capacity in the basin to store 

water from infiltration meaning runoff will be generated faster. CQOF which is the 

overland flow coefficient, values on the other hand control the overland flow volumes 

generated in the basin.  Similarly Lmax is also sensitive to the overall water balance due 

to its role in affecting the available water in the root zone that can be lost through 

evapotranspiration. TIF which is the threshold value for interflow to occur, controls the 

movement of the water in the root zone or the lateral flow of water. Higher thresholds 

for this value mean that more water is kept in the soil before lateral flow can occur thus 

affecting the overall water balance. CK1, 2 is the timing constant for overland flow and 

does not affect the volumes generated thus a very low sensitivity value to Water 

Balance Error (Table 4.2). CK1, 2 rather affects the fit or the overland flow hydrograph 

recession slopes. This makes it more sensitive to the response of quick flows and the 

Coefficient of Determination (R2) objective function. 

 

5.3.2 NAM Model calibration and Validation 

 The NAM model was calibrated by both manual and automatic methods and the final 

parameter estimations are shown in Table 5.3. 
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Table 5.3 Calibrated parameters 

Parameter 

Range 

Final Value 

Lower Upper 

Umax 5 35 23 

Lmax 50 400 237 

CQOF 0 1 0.7 

CK1,2 3 72 39.4 

TOF 0 0.99 0.933 

TIF 0 0.99 0.5 

TG 0 0.99 0.536 

CKBF 500 5000 1030 

CKIF 200 2000 229.7 

 

For validation of the model the same parameters were used with an independent set of 

data inputs from the period 1982 to 1984. The model output was also evaluated against 

the observed discharge, with the model being accepted as satisfactorily calibrated based 

on the statistical indices attained. 

5.3.3 NAM goodness of fit statistics 

For evaluation of model performance during calibration, the Coefficient of 

Determination (R2), Percent Bias (PBIAS), Nash and Sutcliffe Model Efficiency (NSE), 

the Index of Agreement (IA), RSR and Pearson’s correlation coefficient (r) were used 

in this study. Tables 5.4 and 5.5 represent these indices attained during the calibration 

and validation periods for the NAM model for both daily and monthly time steps. 
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Table 5.4 Goodness of fit statistics for the calibration period 

Goodness of fit Statistic Daily time step Monthly time step Range Optimal 

NSE 0.811 0.945 -∞ - 1 1 

PBIAS 1.805% 1.633% -∞ - +∞ 0 

RSR 0.435 0.24 0 - +∞ 0 

IA(d) 0.943 0.985 0-1 1 

R2 0.810 0.946 0-1 1 

r 0.902 0.972 0-1 1 

 

Table 5.5 Goodness of fit statistics for the validation period 

Goodness of fit Statistic Daily time step Monthly time step Range Optimal 

NSE 0.781 0.941 -∞ - 1 1 

PBIAS 0.648% 0.309% -∞ - +∞ 0 

RSR 0.470 0.243 0 - +∞ 0 

IA(d) 0.945 0.987 0-1 1 

R2 0.801 0.965 0-1 1 

r 0.896 0.982 0-1 1 

 

The NAM model can be said to have attained a “very good” performance rating in both 

the calibration and validation periods.This is because, NSE≥ 0.75, PBIAS ≤ ± 10% and 

0 ≤ RSR ≤ 0.50.  and thus are within the recommended range (Table 3.3). 

5.3.4 Hydrograph plots 

For visual inspection, observed and simulated flow hydrographs for the calibration and 

validation periods were plotted for the daily time step as shown in Figure 5.4 and 5.5, 

and the same was also done for the monthly time step in Figure 5.6 and 5.7. 
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Figure 5.4 Daily observed and simulated flow hydrograph, calibration period 

 

 

Figure 5.5 Daily observed and simulated flow hydrographs, validation period 

 

For the daily time step the NAM model generally underestimated the peak flows,this 

trend has been captured by other researchers including (El-Nasr, et al., 2011) and (Anh 

et al., 2008). The monthly time step hydrographs reveal a better representation of the 

peaks as also supported by the goodness of fit statistics. This result shows that the 

model represents the hydrology in the catchment better on a monthly time scale than on 

the daily scale.  
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Figure 5.6 Observed and Simulated Mean Monthly flow (calibration period) 

 

 

Figure 5.7 Observed and Simulated mean monthly flow (validation period) 
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visual comparison of the cumulative runoff discharges are represented in Figure 5.8(a 

and b) 

Cumulative daily flows (calibration period) 

 

Cumulative flows (validation period) 

 

(a) (b) 

Figure 5.8 Cumulative flows, calibration (a), validation (b) periods 

 

5.4 TheSWAT model results 

 

5.4.1 SWAT sensitivity analysis 

The results of the sensitivity analysis for the first round of calibration is represented in 

Figure 5.9 and ranked in Table 5.6. the sensitive paramaters indicate which processes 

key to representing the hydrology of the basin using the SWAT model structure. These 

processess include surface runoff, run off lag time, channel flow and soil water balance. 

Q [m3s] 
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Figure 5.9 Parameter Sensitivity Analysis 

Table 5.6 Parameter rank and description 

Parameter Rank Description 

Cn2 1 SCS runoff curve number 

Surlag 2 Runoff lag time  

Ch_N2 3 Manning's n value for the main channel. 

Alpha_Bf 4 Base flow alpha factor (days). 

Esco 5 Soil evaporation compensation factor. 

Ch_K2 6 Effective hydraulic conductivity in main channel alluvium. 

Gwqmn 7 Threshold depth of water in the shallow aquiferfor return flow. 

Sol_Awc 8 Available water capacity of the soil layer. 

Canmx 9 Maximum canopy storage. 

Sol_Z 10 Depth from soil surface to bottom of layer. 

Blai 11 Max Leaf Area Index 

Gw_Delay 12 Groundwater delay (days). 

Gw_Revap 13 Groundwater revap coefficient. 

Epco 14 Plant uptake compensation factor. 

Slsubbsn 15 slope length 

 

Based on the ranks assigned to the parameters with respect to their sensitivity, the 10 

most sensitive parameters were selected and used for  manual and automatic 

calibration. 
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5.4.2 SWATmodel calibration and validation 

The SWAT model was calibrated using 1975 to 1979 data with 1975 as the warm up 

period. The SWAT model was calibrated using both manual and automated approaches. 

Table 5.7 shows the fitted calibrated parameters. For validation of the model the same 

parameters were used with an independent set of data inputs from the period 1981 to 

1984 with 1981 taken as a warm up period. 

Table 5.7 Calibrated SWAT parameters 

Parameter Name. file Final value 

Range 

Min Max 

CN2.mgt -18.28% -25% 25% 

ESCO.hru 0.104 0 1 

SOL_AWC.sol -20.59% -25% 25% 

GW_DELAY.gw 412.048 0 500 

GW_REVAP.gw 0.049 0.02 0.2 

RCHRG_DP.gw 0.507 0 1 

EPCO.hru 0.885 0 1 

SOL_Z .sol 7.49% -10% 10% 

GWQMN.gw 2570.89 0 5000 

REVAPMN.gw 178.723 0 500 

SURLAG.bsn 0.549 0.05 24 

ALPHA_BF.gw 0.890 0 1 

CH_N2.rte 0.205 0.01 0.3 

CH_K2.rte 338.530 0.01 500 

SLSOIL.hru 130.207 0 150 

LAT_TIME.hru 179.256 0 180 

SOL_K.sol 4.15% -10% 10% 

OV_N.hru 0.015 0.01 30 

 

5.4.3 SWAT goodness of fit statistics 

Similar to the NAM model the same statistical indices were used in the evaluation of 

the SWAT model. These are the Coefficient of Determination (R2), Percent Bias 

(PBIAS), Nash and Sutcliffe Model Efficiency (NSE), the Index of Agreement (IA), 

RSR, and Pearson’s correlation coefficient (r) were used. The model statistical 
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evaluation indices attained during the calibration and validation periods for the SWAT 

model for both daily and monthly time steps are shown in Table 5.8 and 5.9. 

Table 5.8 Goodness of fit statistics for the calibration period 

Goodness of fit Statistic Daily time step Monthly time 

step 

Range Optimal 

fit 

NSE 0.697 0.873 -∞ - 1 1 

PBIAS 15.110% 15.217% -∞ - +∞ 0 

RSR 0.550 0.356 0 - +∞ 0 

IA(d) 0.901 0.962 0-1 1 

R2 0.704 0.902 0-1 1 

r 0.844 0.950 0-1 1 

 

Table 5.9 Goodness of fit statistics for the validation period 

Goodness of fit Statistic Daily time step Monthly time 

step 

Range Optimal 

fit 

NSE 0.648 0.856 -∞ - 1 1 

PBIAS -11.822% -11.801% -∞ - +∞ 0 

RSR 0.600 0.379 0 - +∞ 0 

IA(d) 0.897 0.965 0 - 1 1 

R2 0.653 0.858 0 - 1 1 

r 0.813 0.934 0 - 1 1 

 

The SWAT model can also be said to have attained a “Good” performance rating in 

both the calibration and validation periods, given that, NSE ≥ 0.65, PBIAS ≤ ±15% and 

RSR ≤ 0.60, which is within the recommended ranges (Table 3.3). 

 



103 
 

 

5.4.4 Hydrograph plots 

The visual representation of the observed and simulated flow hydrographs for the 

calibration and validation periods were plotted for both the daily time step and the 

monthly time step as shown by Figures 5.10 to 5.13.  

 

Figure 5.10 Daily observed and simulated flows, calibration period. 

 

 

Figure 5.11 Daily observed and simulated flows, validation period. 
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Both the daily flow hydrographs for the calibration and validation periods (Figures 5.10 

and 5.11) show an underestimation of the simulated peak flow values. The recession of 

the base flow in the dry periods is better represented although what is poorly captured 

is the catchment’s response to the rainfall events both at the inception of the rainy 

season and during the rainy periods. This could be due to the models poor accounting 

of the soil water balance. The plots of the observed and simulated discharges also 

reveal that some flow peaks are not captured at all. This can be attributed to the weak 

representation of rainfall stations in the catchment, indicating that information on some 

rainfall events are not captured in the rainfall data input records. 

 

Figure 5.12 Mean monthly observed and simulated, calibration period 

 

Figure 5.13 Mean monthly observed and simulated flows, validation period. 
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The monthly plots (Figures 5.12 and 5.13) reveal a better agreement of the monthly 

averaged outputs of the SWAT model as the peaks are better captured than in the daily 

time steps both in the calibration and validation periods. The cumulative plots on the 

other hand reveal how the SWAT model underestimates the volumes generated at the 

basin outlet in the calibration period (Figure 5.14a) while overestimating the same in 

the validation period (Figure 5.14b).  

  

(a) (b) 

Figure 5.14 Cumulative Plots for the calibration (a) and validation (b) periods. 

 

5.5 Box cox transformation 

 

In order to ensure the model residuals are homoscedastic and that the peak and low 
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Figure 5.15 Model Residual plot (Box Cox Transformation) high flows 

 

 

Figure 5.16 Model Residual plot (Box Cox Transformation) Low flows 
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less cluster between the standard deviation bands. The mean deviation line shows a 

positive bias and thus a systemic over prediction or overestimation of the low flows by 

both models.These results indicate that although the model prediction confidence 

interval bands were relatively narrow in both the high and low flow cases, both models 

are not highly accurate in capturing extreme flows. 

5.6 Extreme value analysis 

 

The output of both models were subjected to extreme value analysis. This was done to 

examine the suitability of the calibrated models in flood frequency prediction. Both 

models underestimated high flow values. The Figure 5.17 (a) shows an increasing 

underestimation for larger values.  On the other hand, extreme value analysis on low 

flows show that the SWAT model output increasingly underestimates these flow values 

while the NAM model overestimates them as shown by Figure 5.17 (b). This results 

implies the model output as calibrated exhibits a wrong tail of the extreme value 

distribution and may not be appropriate for extrapolation purposes. 

 
 

(a) (b) 

Figure 5.17 Extreme value analysis on peak flows (a) and low flows (b) 
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Given the results presented both models can be said to be well calibrated as the model 

evaluation statistics show that:  

1. The relative magnitude of the residual variance is highly correlated to the 

measured or observed data variance as NSE values are greater or equal to 65%. 

2. The proportion of variability in the observed stream flows that is accounted for 

by the model is high as R2 values are greater than 65%. 

3. The simulated volumes are within acceptable ranges of observed flow volumes  

(PBIAS ± 15%). 

Graphical methods applied show a good visual representation of a reasonable 

agreement between the simulated and observed flows. The models can therefore be 

applied to the Sergoit basin to determine its water yield as the performance of both 

models, SWAT and NAM are considered to have attained a “Good” to “Very Good” 

performance rating respectively as shown in Table 3.3. 

5.7 SWAT and NAM model comparative assessment 

 

A comparative analysis of the SWAT and the NAM model is necessary to further give 

insight into each model’s performance. In terms of the model structure, the NAM 

model is a lumped conceptual model meaning it conceders the whole catchment as a 

single unit with singular inputs for each time step. While these assumptions may be 

more applicable to inputs like potential evapotranspiration in meso scale or micro scale 

catchments the same cannot be applied to other inputs like rainfall or basin 

characteristics which are highlyvariable both temporally and spatially. The averaging of 

rainfall over the whole watershed has merits especially areas with low rain gauge 

density as the NAM model will be able to make use of all the available information. 

Demeritsof the approach is that rainfall events that were highly localized will be 
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misrepresented as if they occurred throughout the catchment leading to simulated peaks 

that aren’t in the observed discharge. 

The answer to this problem is to have a discretized catchment and have a semi 

distributed model structure with sub basins as implemented in the SWAT model. This 

is carried out by having a sub basin’s rainfall input from the rain gauge closest to its 

centroid. This however does not solve the problem in catchments with unevenly 

distributed rain gauges like the Sergoit catchment, since the simulated hydrographs 

from the SWAT model show that it wasn’t able to capture a number of peaks present in 

the observed discharge data. 

The generation of runoff is a key difference between the models. Since the NAM model 

is a conceptual model it generates runoff based on a given fraction (coefficient of 

overland flow-CQOF) that is determined during calibration or from prior knowledge of 

the catchment processes.  The physically based SWAT model on the other hand 

generates runoff based on the empirical curve number method which relies on the 

physical characteristics of the catchment like land use soil properties and slope. 

Another key difference between the models is that the NAM model does not include a 

routing component while the SWAT model routes the HRU output through the basin 

streams channels. 

In terms of data requirements the SWAT model has higher data requirements that need 

a lot of preprocessing before it can be used as input. The number of model parameters 

are high thus complicating the calibration processas also noted by Borah and Bera, 

(2004). To undertake calibration it was necessary to carry out sensitivity analysis in 

order to isolate and use the most sensitive model parameters in calibration. The SWAT 

user also has to have an intermediate to advanced skill level GIS processing as there is 



110 
 

 

a large number of input files needed to run the model that are generated through the 

ArcGIS interface. The NAM model however has lower data requirements and fewer 

parameters which makes it easier to set up and calibrate. These differences are 

summarized in Table 5.10. 

Table 5.10 Characteristics of the SWAT and NAM models 

Model Characteristics SWAT NAM 

Structure Two divisions 

i. Land phase 

ii. Routing phase 

Four interrelated storages 

i. snow storage,  

ii. surface storage, 

iii.  root zone storage 

(subsurface) 

iv.  groundwater storage 

Temporal scale Continuous  

(daily/monthly/annual) 

Continuous (daily) 

Climate data 

requirements 

i. Rainfall 

ii. Temperature (Max  

and Min) 

iii. Solar radiation 

iv. Relative humidity 

v. Wind speed 

i. Rainfall 

ii. Potential 

Evapotranspiration 

Other data sets i. Land cover map 

ii. Soils map 

i. Catchment Area 

 

Model parameterization i. GIS processing 

ii. Calibration 

i. Calibration 

 

Calibration  i. Manual calibration 

ii. Automatic 

calibration 

i. Manual calibration 

ii. Automatic calibration 

Availability Open source/public domain   Commercial  

 

Based on these differences,the two modelling approaches yielded the results 

summarized in Table 5.11. 
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Table 5.11 Results summary 

Model SWAT NAM 

Model performance rating “Good” “Very Good” 

NSE 0.697 (0.87)* 0.81 (0.95)* 

R2 0.704 (0.902)* 0.81 (0.94)* 

IA 0.89 (0.96)* 0.94 (0.95)* 

PBIAS 15.11 (15.21)* 1.80 (0.95)* 

RSR 0.6 (0.37)* 0.43 (0.24)* 

r 0.81 (0.93)* 0.90 (0.97)* 

(* monthly time step evaluation statistics) 

5.8 Estimation of catchment yield 

Rainfall-Runoff modelling is the first step in water resources management since it is the 

only way to simulate the hydrological behavior of a basin so as to have a good 

evaluation of its potential in terms of water production.  In this study the SWAT and 

the NAM models were both calibrated and validated. Table 5.12 shows the Sergoit 

catchment’s annual water yields from the observed data and model simulations for the 

calibration and validation periods. 

Table 5.12 Observed and model simulated catchment water yields 

Period Year 
Observed Yield 

[MCM] 

SWAT simulated 

yield [MCM] 

NAM simulated 

yield [MCM] 

C
al

ib
ra

ti
o
n
 

p
er

io
d

 1976 30.46 31.42 37.41 

1977 201.16 153.02 173.79 

V
al

id
at

io
n
 

p
er

io
d

 

1982 61.04 79.21 61.09 

1983 90.51 75.35 95.57 

1984 7.02 22.60 10.24 
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Given that both models attained satisfactory performance on evaluation, they were 

applied by preparing the necessary inputs to obtain the synthetic daily discharge 

hydrographs as shown in Figure 5.18. 

 

Figure 5.18 Simulated rainfall and flow hydrographs for 2005-2009. 

 

 From the hydrograph plots (Figure 5.18) both models seem to capture a similar trend 

in response to rainfall input. The SWAT model however fails to represent some peaks 

that are captured by the NAM model. The SWAT model also generates lower baseflow 

values thatn the MIKE11-NAM model. This is responsible for the low yields generated 

by the SWAT model for some years especially in the year 2008.  From the estimation 

of the basin yields generated by the models and a plot of total annual rainfall for the 

study period(Figure 5.19), it can be observed that in the dry years, 1976, 1984, 2005 

and 2009 the water yields are closer while a greater variation is observed in the wet 

years. The SWAT model however underestimates the catchment yields especially in the 

wet years. A similar observation was noted by Borah and Bera, (2004)where the SWAT 

model didn’t perform well in the wet months with big or extreeme storm events. 
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Figure 5.19 Total annual rainfall and mean catchment yield 

 

The annual catchment yields for the years 2005 to 2009 is given in Table 5.13 as 

simulated form the SWAT and NAM models. The mean annual yield for this period as 

generated by the SWAT and the NAM models are 69.62 and 94.8 million cubic meters 

(MCM) respectively, a difference of 26%. 

Table 5.13 Sergoit basin Mean Annual water yields 

Period Year 
SWAT simulated yield 

[MCM] 

NAM simulated yield 

[MCM] 

A
p
p
li

ca
ti

o
n
 P

er
io

d
 

2005 29.50 29.60 

2006 88.91 116.37 

2007 177.48 239.31 

2008 28.49 62.48 

2009 23.74 26.25 

Mean annual yield 69.62 94.80 
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The model application period had a number of data gaps and of the six rainfall stations 

used in the calibration and validation periods, half of them had no data for this period. 

Investigating further into why the SWAT model simulates lower yields than the NAM 

model reveals that the SWAT model does not select station number 2, (Table 5.14) due 

to its distance from any of the sub-basin centroids since rainfall input is at the sub-basin 

level from the nearest station(Neitsch et al.,2004). 

Table 5.14  Completeness of Rainfall records 

No Station ID\Year 2005 2006 2007 2008 2009 % Complete 

1 8935133 67 100 100 67 0 66.7 

2 8935181 41 100 100 100 100 88.2 

3 8935170 33 100 100 67 0 59.9 

 % Ave. complete/yr 47 100 100 78 33 72 

 

This demonstrates the SWAT models sensitivity to the quality of data in terms of how 

representative it is over the whole catchment. The reduced spatial detail in the input of 

rainfall in the SWAT model led to underestimation of the catchment rainfall shown in 

Table 5.15. The spatial averaging of rainfall input in the NAM model on the other hand 

was an advantage in this instance as all the available information was used to generate 

runoff. 

Table 5.15 Annual mean water balancecomponents 2005-2009 

Model Rainfall (mm) AET (mm) PET (mm) Gw Recharge (mm) Runoff (mm) 

NAM 1173.62 962.32 1505.1 73.1 135.42 

SWAT 1113.96 933.35 1506.9 82.28 100.71 

 



115 
 

 

A concern encountered in the application of SWAT model in this study was the 

unavailability of required data in the necessary spatial detail. The coverage of rain 

gauge stations in the basin is not evenly distributed as only two gauges were located 

within the basin boundaries.Additionally, only one rainfall station had a complete 

record within the study period, while only one station is a climate station having 

temperature, wind, precipitation, and humidity data. This rendered the ability of the 

SWAT model to capture the spatial variation of other climatic variables other than 

rainfall quite weak. This situation was mentioned by Arnold, et al., (2012) where it was 

noted that there is in general, insufficient observed data to enable a fullspatial 

calibration and validation at the watershed scale. They further attributed the inadequate 

spatial coverage of precipitation input due to an inadequate number of rain 

gaugesthatfailed to capture the spatial detail of available rainfall data in 

simulatedwatersheds to poorsumulation results (Arnold, et al., 2012).  The user in such 

a case, has to make use of a combination of data sets from different sources, this 

involves combining locally gathered data from local agencies and global data sets from 

global databases to overcome the data challenges. Lack of detailed physical data like 

soils and land use in high resolutions is another challenge to overcome. The soils and 

land use maps that are availablehave a coarse resolution of 1:1,000,000, which is not 

optimal for use on a meso scale catchment where smaller land use or soils classes may 

not be adequately represented. It has to be appreciated that the unavailability of these 

data sets could have an effect on the modelling results. Extra effort is required to ensure 

that the input weather, land use and soil data sets are of high quality while spatial data 

should be of high resolution for better hydrological prediction. A possible reason for 

both models underestimating peak flow values is the temporal detail of the input 

rainfall data as average daily rainfall values omit details that occur during storm events. 
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6. CHAPTER 6: CONCLUSIONS AND RECOMMENDATIONS 

6.1 Conclusions 

 

The understanding of hydrological processes and the development of suitable models 

for a watershed is the most essential aspect in water resource development and 

management programmes. These watershed based hydrologic simulation models are 

likely to be used for the assessment of the quantity and quality of water. The 

assessment of performance and applicability of these models is thus important in this 

respect. 

The main objective of this study was to set up and evaluate comparatively the 

performance of a lumped conceptual model MIKE 11-NAM and a semi distributed 

physically based model SWAT, in estimating the catchment water yield of the Sergoit 

catchment given by the two models.The models were successfully calibrated and 

applied. The following conclusions were therefore arrived at; 

a) The SWAT and NAM models were successfully calibrated, validated and 

applied to determine the Catchment water yield for the Sergoit catchment.The 

MIKE 11-NAM model was calibrated with data from 1975 to 1977 and 

validated using 1982 to 1984 data. On the other hand the SWAT model was 

calibrated with 1975 to 1979 data with 1975 used as the warm up period. 

Validation was done using data from 1981 to 1984. 

b) The performance evaluation of each model was done using both goodness of fit 

statistics and graphical methods. The overall results from the goodness-of-fit 

statistics shows differences in performance and overall behaviour of the two 

models. MIKE 11-NAM model performed better than SWAT model during the 

calibration period with an NSE, R2, IA, and PBIAS of 0.81, 0.81, 0.94 and 1.80 
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for the NAM model and 0.69, 0.70, 0.89, and 15.11for the SWAT model. The 

validation period marked a slight performance drop with an NSE, R, IA, and 

PBIAS of 0.78, 0.80, 0.95and 0.65 for the MIKE 11-NAM and 0.65, 0.65, 0.90 

and -11.82 for the SWAT model respectively.  

c) The graphical evaluation plots revealed a general tendency to underestimate the 

peak values in both models. On the basis of an extreme value analysis MIKE 

11-NAM model performs better than the SWAT model as it is closer to the 

extreme value distribution of the observed flows. The general underestimation 

however increases for larger values, indicating poor extrapolation capabilities in 

both models. The cumulative plots show that both models underestimate flow 

volumes although the NAM model is closer to the observed. The B.C 

transformations show that despite the model prediction confidence interval 

bands being relatively narrow in both the high and low flow, there is a systemic 

negative bias (under prediction) for the extreme high flows and a systemic 

positive bias (over prediction) of extreme low flows in both model simulations. 

Both models therefore are not highly accurate in capturing extreme flows. 

d) The semi-distributed nature of the SWAT model and the large number of model 

parameters and inputs, results in difficult calibration, whereas the lumped nature 

of NAM model and limited number of model inputs and parameters makes it 

easier to calibrate and allows for a better overall goodness-of-fit. 

e) Despite its better performance, theNAM model has the disadvantage that its 

model structure has really simplified the hydrological system in the catchment 

with the main aim of capturing the discharge at the outlet. Important effects of 

vegetation on evapotranspiration which a major component in the hydrologic 
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cycle affecting the water balance and the effect of channel routing arenot 

captured in the model’s conceptual structure. 

f) The SWAT model is sensitive to the quality and quantity of data, thus missing 

data greatly impacts the results of the simulated values.  

g) The ability to simulate the dominant hydrological processes of the system in a 

physical sense is the more appealing characteristic of the SWAT model. It can 

serve as a research tool to investigate both the interactions and best 

management practices in the study area. 

h) The mean catchment water yields for the calibration period, from the observed 

data, NAM and SWAT model simulations are 106.2 mcm/year, 90.16 mcm/year 

and 105.1 mcm/year, while for the validation period, the yields were, 86.2 

mcm/year, 78.49 mcm/year and 86.56 mcm/year respectively.For the years 

2005 to 2009, the mean annual catchment yield of the Sergoit basinas given by 

the SWAT and NAM models are 69.62 mcm/year and 94.8mcm/year. 

i)  Given the results of the model performance evaluation the NAM model is 

preferred based on the better performance as shown by the statistical and 

graphical evaluation criteria as well as the generated yields during the 

calibration and validation periods. 

6.2 Recommendations 

 

Based on this study that represented the hydrology of the Sergoit catchment using two 

different hydrological modelling approaches, it is recommended that: 

a. A Further comparative evaluation of the performance of the NAM modelwith 

other hydrological modelling approaches including stochastic, parametric and 

non-parametric models. 
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b. Installation of additionalclimate stations within the Sergoit basin to improve the 

representation of rainfall within the catchment as the current distribution is not 

even. 

c. Installation of a properly sited river gauging station near or at the catchment 

outlet. 

d. A detailed land use study in the catchment is recommended toasses changes in 

land use that may affect the basin water yields. 

e. A study on the effects of climate change is recommended as changes in rainfall 

and temperature affects the hydrological system in the catchment and thus has 

an impact on the basin’s water yield. 
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Appendices 

Appendix A: Administrative regions about Sergoit Basin 

 

 

Appendix B : Thiessen weights of rain gauge stations used 

No Station ID Latitude Longitude 

Altitude 

(m) Thiessen weight 

1 8935133 0.567 35.3 2156 0.441943 

2 8935181 0.533 35.283 2137 0.022445 

3 8935170 0.633 35.05 1817 0.127711 

4 8935134 0.65 35.517 2151 0.048288 

5 8935164 0.5 35.483 2438 0.22421 

6 8935016 0.766667 35.18333 1969 0.135403 
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Appendix C : Homogeneity tests of rainfall data for the stations used 

 

 

 


