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ABSTRACT 

The increasing global population continues to be a major threat to the world’s 

ecological resources including lakes and rivers as people continue to clear the 

environment to create settlement spaces. Effective monitoring and management of a 

country’s water resources is critical for sustainable water supply systems. Nonetheless, 

the conventional water quality monitoring (WQM) approach is laborious, time 

consuming, and costly. The main objective of this study was to evaluate the potential 

application of estimated water quality parameters (WQPs) from Landsat-8 OLI satellite 

data to determine the optimum coagulant dose for water treatment using Artificial 

Neural Network (ANN) models. The specific objectives of the study were: to estimate 

the concentration of Turbidity, total suspended solids (TSS), and Chlorophyll-a (Chl-

a) from Landsat-8 OLI in correlation with in situ water quality data using empirical 

multivariate regression modelling (EMRM); to assess the spatial distribution and 

variability of the estimated and in situ WQPs for the selected period, and to use ANN 

modelling in predicting treated WQPs, and for determining the optimum coagulant dose 

for a water supply treatment plant. The study used satellite images and EMRM to 

estimate Chl-a, TSS, and Turbidity concentrations at different points in a water supply 

reservoir using same season data. Ordinary Kriging was used in the development of 

spatial maps showing the distribution and variability of the Landsat-predicted and in 

situ WQPs. The extracted spectral reflectance values from satellite images were then 

used as input for the first ANN model to predict treated WQPs, and in the second ANN 

model to predict the optimum coagulant dose required for water treatment. The results 

of the study show that, for all the samples, Turbidity, TSS, and Chl-a were estimated 

with R2 values of 0.76, 0.81, and 0.81, respectively. The ANN model 1 for the 

prediction of treated WQPs had dependable accuracy with R2 values of 0.99, 1.00, and 

0.87 in predicting Turbidity, TSS, and Chl-a, respectively. Respectively, the in situ 

turbidity, TSS, and Chl-a for data collected in November 2020, December 2020 and 

January 2021 was (7.38 NTU, 7.08 NTU, and 8.62 NTU), (271.15 mg/L, 281.42 mg/L 

and 281.17 mg/L), and (37.17 mg/L, 50.86 mg/L and 44.75 mg/L) against a Landsat-

estimated turbidity, TSS, and Chl-a of (7.44 NTU, 6.25 NTU, and 7.99 NTU), (268.17 

mg/L, 279.89 mg/L 285.07 mg/L), (37.44 mg/L, 52.35 mg/L and 49.73 mg/L) for the 

specific months respectively. On the other hand, the ANN model 2 also had a high 

accuracy in predicting the optimum coagulant dose an R2 value of 0.99. The actual 

coagulant dose for all the sampling days was 40 mg/l against the second ANN model’s 

optimum coagulant dose of 39.95 mg/l for all the sampling days. Based on the results, 

the study concluded that satellite data products can be used for the retrieval of reservoir 

WQPs with reasonable accuracy. Furthermore, the ANN models also highlight the 

possibility of using extracted spectral reflectance values for water quality predictions, 

and optimizing water treatment plant operations. Since the study used same season data, 

it did not account for the temporal variability in WQPs. It is recommended that the 

model accuracies, and dependability be improved by using fairly extensive datasets 

collected at different seasons of the year. The concept will also increase the likelihood 

of using the models for water quality predictions in other reservoirs within, and outside 

the catchment. 

  

 

 



vi 
 

TABLE OF CONTENTS 

 

DECLARATION ........................................................................................................... ii 

DEDICATION ..............................................................................................................iii 

ACKNOWLEDGEMENT ............................................................................................ iv 

ABSTRACT ................................................................................................................... v 

TABLE OF CONTENTS .............................................................................................. vi 

LIST OF TABLES ........................................................................................................ ix 

LIST OF FIGURES ....................................................................................................... x 

ACRONYMS AND ABBREVIATIONS ..................................................................... xi 

CHAPTER 1: INTRODUCTION ............................................................................... 1 

1.1 Background Information .......................................................................................... 1 

1.2 Problem Statement ................................................................................................... 3 

1.3 Justification of the Study ......................................................................................... 4 

1.4 Objectives ................................................................................................................ 4 

1.4.1 Main Objective .................................................................................................. 4 

1.4.2 Specific Objectives ............................................................................................ 5 

1.5 Research Questions .................................................................................................. 5 

1.6 Scope and Limitations of the Study ......................................................................... 5 

CHAPTER 2: LITERATURE REVIEW................................................................... 7 

2.1 Introduction .............................................................................................................. 7 

2.2 Water Quality Monitoring........................................................................................ 8 

2.2.1 Water Quality Monitoring of Reservoirs .......................................................... 9 

2.2.2 Turbidity .......................................................................................................... 10 

2.2.3 Total Suspended Solids ................................................................................... 11 

2.2.4 Chlorophyll-a .................................................................................................. 12 

2.3 Estimating the Concentration of WQPs from Landsat-8 OLI in Correlation with in 

situ Water Quality Data using EMRM................................................................... 12 

2.4 Assessment of Spatial Distribution and Variability of Estimated and Predicted 

WQPs ..................................................................................................................... 15 

2.5 Remote Sensing and ANN Model Approach for Predicting Water Quality 

Parameters .............................................................................................................. 17 

2.6 Use of ANN Models to Determine Optimal Coagulant Dose for Water Treatment

................................................................................................................................ 19 



vii 
 

2.7 Gaps in Knowledge to be Filled by the Study ....................................................... 21 

CHAPTER 3:MATERIALS AND METHODS ...................................................... 23 

3.1 Area of Study ......................................................................................................... 23 

3.1.1 Water Sampling and Testing ........................................................................... 24 

3.2 Retrieval of Water Quality Parameters from Landsat-8 OLI and Correlation 

Analysis.................................................................................................................. 28 

3.3 Spatial Mapping of Water Quality Parameters ...................................................... 32 

3.4 ANN Model Training, Validation, Testing, and Application ................................ 33 

3.4.1 Selection of Network Architecture .................................................................. 34 

3.4.2 Number of Layers and Neurons ...................................................................... 34 

3.4.3 Selection of Network Functions ...................................................................... 35 

3.4.4 Normalization .................................................................................................. 35 

3.4.5 Data Division and Pre-Processing ................................................................... 35 

3.4.6 Model Performance Evaluation Functions ...................................................... 36 

3.5 Model 1- Prediction of Treated Water Quality Parameters ................................... 37 

3.6 ANN Model 2- Prediction of Optimum Coagulant Dose for Water Treatment .... 38 

CHAPTER 4: RESULTS AND DISCUSSION ....................................................... 41 

4.1 Estimation of turbidity, TSS, and Chl-a in Correlation with in situ Water Quality 

Data using EMRM ................................................................................................. 41 

4.1.1 Estimation of Turbidity ................................................................................... 41 

4.1.2 Estimation of Total Suspended Solids ............................................................ 43 

4.1.3 Estimation of Chlorophyll-a............................................................................ 46 

4.1.4 Validation of Predicted Water Quality Parameters with in situ Measurements

 ........................................................................................................................ 49 

4.2 Spatial Distribution and Variability of Estimated and Predicted Water Quality 

Parameters .............................................................................................................. 55 

4.2.1 Spatial Distribution and Variability of Turbidity ............................................ 55 

4.2.2 Spatial Distribution and Variability of TSS .................................................... 57 

4.2.3 Spatial Distribution and Variability of Chlorophyll-a .................................... 58 

4.3 ANN Model 1 – Prediction of Treated Water Quality Parameters ........................ 60 

4.4 ANN Model 2 – Prediction of Optimum Coagulant Dose ..................................... 63 

4.5 Summary ................................................................................................................ 65 

CHAPTER 5: CONCLUSION AND RECOMMENDATIONS ............................ 67 

5.1 Conclusion ............................................................................................................. 67 



viii 
 

5.2 Recommendations .................................................................................................. 68 

REFERENCES ............................................................................................................ 70 

APPENDICES ............................................................................................................. 78 

Appendix A: Raw Landsat-8 images used for the study .......................................... 78 

Appendix B: Surface Reflectance and Top of Atmosphere (TOA) Reflectance 

values .................................................................................................. 81 

Appendix C: Remote sensing reflectance (Rrs) ....................................................... 83 

Appendix D: Spatial distribution and variability of in situ turbidity on 25/11/2020, 

11/12/2020, and 28/01/2021 respectively. ......................................... 85 

Appendix E: Spatial distribution and variability of Landsat-estimated turbidity on 

25/11/2020, 11/12/2020, and 28/01/2021 respectively. ..................... 88 

Appendix F: Spatial distribution and variability of in situ TSS on 25/11/2020, 

11/12/2020, and 28/01/2021 respectively. ......................................... 91 

Appendix G: Spatial distribution and variability of Landsat-estimated TSS on 

25/11/2020, 11/12/2020, and 28/01/2021 respectively. ..................... 94 

Appendix H: Spatial distribution and variability of in situ Chl-a on 25/11/2020, 

11/12/2020, and 28/01/2021 respectively. ......................................... 97 

Appendix I: Spatial distribution and variability of Landsat-predicted Chl-a on 

25/11/2020, 11/12/2020, and 28/01/2021 respectively. ................... 100 

Appendix J: Antiplagiarism Report from CERMESA ........................................... 103 

 

 
 

 

 

 

 

 

 

  



ix 
 

LIST OF TABLES 

Table 3.1: RS bands and band combinations for estimation of water quality 

parameters .................................................................................................. 31 

Table 4.1: In situ and estimated turbidity for the specific sampling days ................... 41 

Table 4.2: Regression equations and associated errors for turbidity estimation .......... 42 

Table 4.3: In situ and estimated TSS for the specific sampling days .......................... 44 

Table 4.4: Regression equations and associated errors for TSS estimation ................ 45 

Table 4.5: In situ and estimated Chl-a for the specific sampling days ........................ 47 

Table 4.6: Regression equations and associated errors for Chl-a estimation .............. 47 

Table 4.7: Validation results for predicted and in situ water quality measurements ... 49 

Table 4.8: ANN Model 1 results .................................................................................. 61 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 



x 
 

LIST OF FIGURES 

Figure 3.1: Two Rivers Dam Reservoir and selected sampling points ........................ 23 

Figure 3.2: Grid system used for the selection of sampling points .............................. 25 

Figure 3.3: Schematic diagram of the input and output layers of ANN model 1. ....... 37 

Figure 3.4: Schematic diagram of the input and output layers of ANN model 2. ....... 38 

Figure 3.5: Flow diagram of the summarized methodology. ....................................... 40 

Figure 4.1: Variations between prediction and validation results for turbidity, TSS, 

and Chl-a (25/11/2020). ............................................................................. 52 

Figure 4.2: Variations between prediction and validation results for turbidity, TSS, 

and Chl-a (11/12/2020). ............................................................................. 53 

Figure 4.3: Variations between prediction and validation results for turbidity, TSS, 

and Chl-a (28/01/2021). ............................................................................. 54 

Figure 4.4: Spatial distribution of measured and estimated turbidity. ......................... 56 

Figure 4.5: Spatial distribution of measured and estimated TSS. ................................ 58 

Figure 4.6: Spatial distribution of measured and estimated Chl-a............................... 60 

Figure 4.7: ANN Model 1 predictions of treated water quality parameters. ............... 61 

Figure 4.8: ANN Model 2 predictions of optimal coagulant dose. .............................. 63 

 

 

 

 

 

 

 

 

 

 
 

 



xi 
 

ACRONYMS AND ABBREVIATIONS 

ANN                                     Artificial Neural Network 

CFNN                                   Cascade Feedforward Neural Network 

Chl-a                                     Chlorophyll-a 

DNs                                      Digital Numbers 

DOS                                      Dark Object Subtraction 

EMRM                                  Empirical Multivariate Regression Modelling 

FFBP                                     Feed Forward Back Propagation 

FFNN                                    Feed Forward Neural Network 

FLAASH                               Fast Line-of-sight Atmospheric Analysis of Hypercubes 

GRNN                                   Generalized Regression Neural Network 

IDW                                       Inverse Distance Weighting  

MLP                                       Multi-Layer Perceptron 

MSI                                        Multispectral Instrument 

NTU                                       Nephelometric Turbidity Unit 

OLI                                        Operational Land Imager 

RBFNN                                  Radial Basis Function Neural Network 

Rrs                                         Remote Sensing Reflectance 

ROI                                        Region of Interest 

TIRS                                      Thermal Infrared Sensor  

TM                                          Thematic Mapper 

TOA                                       Top of Atmosphere 

TSS                                        Total Suspended Solids 

USGS                                     United States Geological Survey 

WQM                                     Water Quality Monitoring 



xii 
 

WQPs                                     Water Quality Parameters 

WQIs                                      Water Quality Indices 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



1 
 

CHAPTER 1: INTRODUCTION 

1.1 Background Information 

The increasing global population continues to be a major threat to the world’s 

ecological resources including lakes and rivers as people continue to clear the 

environment to create settlement spaces (Black, 2016). Continuous watershed 

monitoring is crucial for the sustainable use of the world’s freshwater resources 

(Emelko et al., 2011). Furthermore, there is also a need for water quality assessment at 

the source of the specific water treatment plants since this influences the type and cost 

of chemicals used to treat the water (Li et al., 2021).  

Eldoret town in Kenya is one of the country’s fastest growing towns with an estimated 

urban population of 475,716 based on the 2019 census (KNBS, 2019). The town relies 

on Chebara Water Treatment Works, Sosiani Water Treatment Works, Kapsoya Water 

Treatment Works, and Ellegerini Water Treatment works with a production capacity of 

28,000 m3/day, 14,959 m3/day, and 7,500 m3/day respectively (Mwaniki, 2018). 

According to Eldoret Water and Sanitation Company (ELDOWAS) the demand for 

water to Eldoret Municipality is estimated at 60,000 m3/day, against a production of 

36,400 m3/day (Kimutai et al., 2018). According to Kibii et al (2021) mismanagement 

in the catchment is partly responsible for the huge disparity between demand and supply 

due to recent conversion of forested land into subsistence agriculture. This has led to 

flash floods, erosion and sedimentation which decrease the quality of surface water.  

Water is a finite and vulnerable resource essential for sustaining life and development 

(Benson et al., 2020). The deteriorating water quality experienced in the catchment in 

recent years is mainly attributed to climate change, increasing population, and poor 

agricultural practices. According to a report by the World Health Organization (2017) 

an increase in turbidity necessitates higher disinfectant doses or more contact time for 
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the desired disinfection efficiency in drinking water treatment to be realized. Population 

growth has also increased the demand for water among diverse users with negative 

impacts on water quality in the water supply reservoir. 

The conventional water quality monitoring (WQM) methodology involves in situ 

sampling followed by a physical, chemical, and biological analysis of samples in the 

laboratory (Gholizadeh et al., 2016). However, the approach is laborious, and cannot 

be used to effectively assess the spatial-temporal variations of the water quality indices 

(Gholizadeh et al., 2016). Moreover, dependence on traditional methods in addition to 

geographical restrictions, and inadequate regional spatial-temporal data also limits 

WQM and management of large water bodies (Duan et al., 2013). 

Remote sensing techniques have continuously advanced over the decades and found 

wider applications in WQM (Papenfus et al., 2020). The techniques provide an avenue 

for WQM over larger temporal and spatial scales which help to understand and 

determine the water quality changes in line with the increasing water demands, high 

turbidity, and algal blooms (Papenfus et al., 2020). The method can also be used for 

water quality parameters (WQPs) estimations at different locations which are essential 

for monitoring and assessment of water quality at these locations. Artificial Neural 

Networks (ANNs) are useful in this regard for monitoring non-linear environmental 

processes since they are capable of modeling non-linear geophysical transfer functions 

(Chiappini et al., 2020). Remote sensing can be applied in combination with ANNs to 

overcome the challenges of in situ sampling and laboratory analysis by predicting 

WQPs at unsampled locations in the reservoir based on the extracted spectral 

reflectance values from remote sensing imaging. This concept was used to create a 

system for determining the optimum coagulant dose that is adaptive to real-time 

changes in raw water quality. 
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1.2 Problem Statement 

The conventional method of WQM involves collection of samples followed by a 

physical, chemical, and biological analysis in the laboratory. The approach only gives 

an estimate of the parameters at specific points in time and space. In this regard, 

obtaining the spatial-temporal water quality variations for such extensive water bodies 

is virtually impossible using in situ sampling and analysis techniques (Gholizadeh et 

al., 2016).  

Coagulation is an essential factor in portable water treatment that helps to maintain the 

turbidity of treated water within the acceptable range while helping to realize economic 

plant operation (Haghiri et al., 2018). The existing practice of determining coagulant 

dose based on the prevailing raw and settled water quality is not ideal since errors are 

bound to occur hours after dosing and these cannot be handled promptly by operators 

(Zhang & Stanley, 1999). 

Previous researchers like Haghiri et al. (2018) and Kote and Wadkar (2019) have 

explored the possibility of developing a completely predictive water treatment plant 

model but the focus has been from the inlet of the water treatment works to the final 

point of treatment. However, there is need to incorporate information from the 

catchment since there are various catchment processes that contribute to deteriorating 

water quality. The WQM aspect can then be combined with predictive models for 

running the water treatment plants. Modelling helps in the prediction of treated WQPs 

based on process inputs mainly the optically active chlorophyll-a (Chl-a) and 

suspended particulate matter (SPM) that can be derived from remote sensing data. This 

helps to stabilize the treatment plant operation through a real time assessment of the 

optimal coagulant dosage. 
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1.3 Justification of the Study 

The increasing demands for fresh water and environmental waste water discharge 

necessitates continuous surface WQM. Remote sensing is a fast, programmed, low-cost 

technology for monitoring aquatic environments (Garaba et al., 2015). Furthermore, 

remote sensing also allows for the identification of the optically active WQPs 

depending on their interaction with light and the ensuing energy change of the reflected 

incident radiation from the water surface (Garaba et al., 2015). Thus, remote sensing 

can avail a means for routine and accurate monitoring in line with sustainable water 

resource management. 

The extracted WQPs from remote sensing can be used to inform ANN models for 

determining the optimal coagulant dose for water treatment. ANNs are one of the 

machine learning methods that can model the non-linear and multifaceted connections 

between WQPs since they can learn the temporal system dynamics with limited input 

data and to solve multifaceted problems efficiently (Ouma et al., 2020). The completely 

predictive water treatment plant model that begins from the catchment is crucial in 

helping to understand the efficiency of portable water treatment plants under adverse 

water quality conditions. The predictive model could also help to determine bottlenecks 

and ensure that the water treatment plant is operated at maximum efficiency. The 

machine learning methods will also reduce the sampling frequency while minimizing 

the costs associated with laboratory analysis.  

1.4 Objectives 

1.4.1 Main Objective 

The purpose of this study was to evaluate the potential application of estimated WQPs 

from Landsat-8 OLI to determine the optimum coagulant dose for water treatment using 

Artificial Neural Network (ANN) models. 
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1.4.2 Specific Objectives 

i. To evaluate the concentration of turbidity, TSS, and Chl-a from Landsat-8 OLI 

in correlation with in situ water quality data using EMRM. 

ii. To determine the spatial distribution and variability of the Landsat-estimated 

and in situ WQPs for the selected period. 

iii. To train, validate, test, and apply an ANN model to predict treated water quality 

parameters. 

iv. To train, validate, test, and apply an ANN model to determine the optimum 

coagulant dose for a water supply treatment plant. 

1.5 Research Questions 

i. How do the extracted spectral reflectance values compare to the laboratory 

derived water quality values? 

ii. How sufficient is the information gathered on the distribution of WQPs in 

understanding and deducing accurate water quality forecasts in the entire 

water body? 

iii. What is the efficiency of ANN in predicting water quality parameters? 

iv. Can ANN be applied to determine the optimum coagulant dose for a water 

supply treatment plant? 

1.6 Scope and Limitations of the Study 

The study was carried out at Two Rivers Dam in Uasin Gishu County. Sampling was 

done between November 2020 and January 2021 which is a dry period. Therefore, the 

models developed were calibrated and validated using same season data and they can 

only be applied for the Two River Dam system or in other reservoirs within the same 

geographical location for the specific season under investigation. 
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Sampling dates were prefixed based on the Landsat-8 OLI acquisition tool. Landsat-8 

OLI has a 16-day repeat cycle and this means that the satellite acquires images of a 

specific area after every 16 days (USGS EROS Archive, 2018). The 16-day repeat cycle 

also limits intra-seasonal monitoring specifically in regions frequently covered by 

clouds since it could be difficult to relate the WQP characteristics with the optically 

active water constituents extracted from the satellite sensor (Amin et al., 2022). Two 

Rivers Dam is also highly silted and the increased water levels during the rainy season 

coupled with the lack of a motorized boat (a rowboat was used) made it difficult to 

collect samples during the rainy season when the water turbidities are expected to be 

higher. 
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CHAPTER 2: LITERATURE REVIEW 

2.1 Introduction 

This section presents a review of remote sensing techniques used in estimating WQPs 

in different water bodies. Water quality monitoring (WQM) of reservoirs is discussed 

in line with remote sensing techniques for extracting WQPs from satellite images, and 

discussions comparing extracted spectral reflectance values from satellite imagery and 

in situ WQPs. Literature on spatial distribution and variability of estimated and 

predicted WQPs is also presented. This section also highlights ANN techniques used in 

making water quality predictions and predicting the optimum coagulant dose for water 

treatment. 

Inland water bodies are some of the valuable ecosystems that serve multiple functions 

including transport, hydropower generation, recreation, and providing irrigation water 

(Brooks et al., 2016). However, an increase in nutrients from urban development, 

forestry, and agriculture has greatly contributed to the increasing observed algal blooms 

in inland water bodies which are harmful to both human and animal life (Wurtsbaugh 

et al., 2019). Therefore, frequent monitoring of inland water bodies is thus a necessity. 

WQM using remote sensing has continued to gain popularity in WQM projects by 

reinforcing the abilities of decision makers and researchers to effectively monitor water 

bodies (Brooks et al., 2016). The approach is mainly used to measure the qualitative 

WQPs including colored dissolved organic matter, total suspended solids (TSS), 

turbidity, and chlorophyll-a (Chl-a) (Brooks et al., 2016).  

The use of imaging to detect WQPs is based on the notion that water pollutants absorb 

and scatter the incident solar radiation thus enabling the correlation of water quality 

with the optical qualities of the water columns including color (Gholizadeh, 2016). Chl-

a and suspended particulate matter (SPM) are optical WQPs that can be derived from 
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remote sensing data. The suspended particles are responsible for scattering light 

particles while Chl-a and dissolved or colored particulate matter is responsible for the 

absorption of light particles (Torbick et al., 2018). Algal blooms are directly related to 

the concentration of Chl-a in freshwaters which is essential for photosynthesis and it 

also influences the concentration of dissolved oxygen (Wernand et al., 2013). Turbidity 

is also an optical WQP that depends on the quantity of SPM in water. The more the 

SPM, the higher the reflectance value and consequently the turbidity of the water 

sample. 

2.2 Water Quality Monitoring 

WQM is critical in integrated watershed management in helping decision makers to 

understand, interpret, and use the information to support watershed management 

activities (Behmel et al., 2016). The WQM aspect entails sampling and analysis of 

water conditions and constituents including point pollutants such as metals, oils, and 

pesticides (Mustafa et al., 2021). Furthermore, WQM is also used to evaluate the 

concentration and effects of naturally occurring constituents such as nutrients, bacteria, 

and dissolved oxygen which can be affected by anthropogenic activities (Behmel et al., 

2016). One of the main goals of WQM is to establish whether the water is meeting the 

core needs of its competing users. For instance, if the chemical concentration exceeds 

the required threshold, then, the water may not support beneficial uses such as fishing, 

and domestic uses for which it has been designated (Mustafa et al., 2021). Therefore, 

WQM is critical in comparing the concentration of the chemicals found in the streams, 

rivers, or reservoirs to the national standards to establish whether the water quality 

aligns with the standards required for different uses (Behmel et al., 2016). WQM is also 

critical in identifying the types, and sources of pollutants in order to create a framework 

for WQM in line with catchment preservation, and management practices (Behmel et 
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al., 2016). WQM can also help to assess the pollution trends over time, and the key 

WQPs to be monitored over time. 

2.2.1 Water Quality Monitoring of Reservoirs 

The point sampling approach for WQM in reservoirs is mainly limited by the variable 

spatial distribution of suspended sediment, dissolved material, and algae (Gholizadeh 

et al., 2016). Remote sensing overcomes this limitation by providing the spatial-

temporal water quality distribution information (Gholizadeh et al., 2016). Thus, remote 

sensing can also be used to estimate the clarity or turbidity of the water. Even though 

there are several WQPs that can be monitored in a reservoir, the main constituents that 

affect water clarity are the colored segment of dissolved organic material, the algae 

cells, and non-algal particles that form the suspended matter (Mustafa, 2018). These 

optically active water constituents cause scattering and absorption of light through the 

water column thus affecting light penetration (Mustafa, 2018). Consequently, the 

optically active water constituents can be used to estimate other WQPs, and they also 

informed the decision to specifically focus on turbidity, TSS, and Chl-a.  

According to Najafzadeh and Ghaemi (2021) water quality indices are crucial in 

describing the essential characteristics of water pollutants. Therefore, there is need for 

accurate predictions of water quality indices in order to gain insights on the patterns of 

pollutants in natural streams (Najafzadeh & Ghaemi, 2021). Furthermore, Najafzadeh 

et al. (2021) also notes that one of the most difficult issues in the in studies of water 

quality specifically, surface water resources, is getting an accurate estimate of WQIs. 

Even though there are numerous conventional methodologies for evaluating the WQIs, 

the limitations that exist among the traditional models have brought the need to employ 

Data-Driven Models in assessing the WQIs of natural streams.  
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Portable water is mainly required to be free from disease causing organisms and it 

should contain no chemicals that could adversely affect human health (WASREB, 

2008). The water should also have low turbidity and it should contain no compounds 

that could impart an unpleasant taste or smell (WASREB, 2008). Generally, surface 

water sources must be adequately treated for them to meet these requirements.  

2.2.2 Turbidity 

Turbidity is an optical water characteristic that defines the relative liquid clarity by 

measuring light quantity either scattered or absorbed by the water column when light 

shines through it (Pier & Mateo, 2020). The particles also provide attachment sites for 

bacteria and other metals and this means that turbidity measurements are an indicator 

of potential water pollution (Poonam et al., 2013). Thus, high turbidity creates 

conducive environment for the regrowth of pathogens in water bodies and this can lead 

to an outbreak of waterborne diseases (Farrell et al., 2018). Turbidity is a significant 

parameter in portable water treatment since it facilitates the growth of pathogenic 

microorganisms (Zhang et al., 2021). The particulate matter can shelter pathogens from 

disinfection processes and also serve as food sources for the microorganisms (Farrell et 

al., 2018). For drinking water treatment plants, rapid turbidity fluctuations impact 

negatively on the operational performance of the plant due to a lag in process parameter 

adjustments (Zhang et al., 2021). Thus, safe drinking water can only be guaranteed if 

these risks are managed. The turbidity measurements also form the basis of the jar test 

experiments which are done to determine the coagulant dose needed to bring the 

turbidity level in water treatment to an acceptable level. The turbidity requirement for 

drinking water is less than 5 NTU (WASREB, 2008). 
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2.2.3 Total Suspended Solids 

The total suspended solids (TSS) denote water particles with a size in excess of two 

microns (Lintern et al., 2018). A surge in TSS levels in surface waters result from 

different factors including erosion of river banks and streams which result in the 

suspension of soil and other particles across the water (Adjovu et al., 2023). Human 

activities like farming and fishing also contribute to a high TSS through dissolved 

pollutants like pathogens and heavy metals that attach to suspended particles in water 

or through the re-suspension of settled particles (Lintern et al., 2018). The algae also 

contribute to the TSS since the death of these organisms releases organic matter into 

the water thus adding on to the bulk of suspended matter while reducing the oxygen 

levels in the water (Adjovu et al., 2023). 

A high TSS in water reduces the dissolved oxygen concentration and increases the 

water temperature (Rahmanian et al., 2015). The concept reduces the survival rate of 

organisms living in the water (Rahmanian et al., 2015). TSS also limits the penetration 

of sunlight in the water body which in turn halts the process of photosynthesis and 

reduces the survival rate of aquatic plants (Rahmanian et al., 2016). TSS also has 

detrimental effects on human health. For instance, the consumption of algae and 

bacteria may cause gastrointestinal issues while heavy metals may cause poisoning and 

even death (WASREB, 2008). TSS in treated water may cause corrosion and 

deterioration of pipes, plumbing, and fittings used for water supply (WASREB, 2008). 

As a result, a lot of money is wasted in replacement of plumbing and fixtures used for 

water supply and other appliances in the home. The guidelines for water quality and 

effluent monitoring state that drinking water should have no suspended matter 

(WASREB, 2008). 
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2.2.4 Chlorophyll-a 

Chlorophyll-a (Chl-a) is the main photosynthetic pigment in algae and is largely used 

as a proxy algae biomass indicator to assess the trophic status of inland water bodies, 

and the extent and severity of algal blooms (Liu & Georgakakos, 2021). High levels of 

Chl-a in water mainly results from eutrophication which leads to excessive growth of 

algae (Liu & Georgakakos, 2021). The negative implications of Chl-a in drinking water 

manifests through higher levels of trihalomethane precursors, increased levels of 

cyanotoxins, taste and order problems, and increased levels of turbidity at the water 

source (Watson et al., 2015). The excess nutrients in the water bodies create conducive 

environment for cyanobacteria which are highly toxic and potentially harmful to both 

humans and animals to thrive (KDHE, 2011). The concentration of Chl-a provides a 

good assessment of the algal activities or primary production a water body (Knight, 

2017). In essence, algal blooms are often linked to increased total nitrogen and/or total 

phosphorous in the water body (Knight, 2017). The increased frequency and severity 

of algal blooms increases the turbidity of the inland water body which in turn produces 

harmful toxins to both animals and humans while also lowering the levels of dissolved 

oxygen (Liu & Georgakakos, 2021).  

2.3 Estimating the Concentration of WQPs from Landsat-8 OLI in Correlation 

with in situ Water Quality Data using EMRM 

To correlate extracted spectral reflectance values from Landsat images and laboratory 

derived water quality data of Chl-a (Nalban Lake of East Kolkota Wetland, India), Patra 

et al. (2016) used Landsat Operational Land Imager (OLI) images and in situ water 

quality data to estimate the concentration of Chl-a. Pearson correlation analysis was 

then done between in situ Chl-a concentrations, and the possible OLI bands, and band 

ratios from the study points to determine the most suitable band ratio for estimating 
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Chl-a (Patra et al., 2016). The band ratio of OLI5/OLI4 was found to have the highest 

correlation coefficient with an R2 value of 0.85 (Patra et al., 2016). The prediction 

model was then developed by applying regression analysis between the band ratio 

OLI5/OLI4 and Chl-a concentration of the study points (Patra et al., 2016). The 

reflectance ratios of the validation points were given as input on the prediction model 

and the model output was considered as predicted Chl-a values of the validation points 

(Patra et al, 2016). The validation was used to check the efficiency of the prediction 

model (Patra et al., 2016). A high correlation with an R2 value of 0.78 was established 

between laboratory-derived and model-fitted Chl-a values (Patra et al., 2016). 

González-Márquez et al. (2018) used Landsat-8 data together with empirical models to 

determine the spatial-temporal variations of WQPs including turbidity, TSS, and 

electrical conductivity in Playa Colorada Bay in Mexico. Multiple regression analysis 

was then done between in situ WQPs and the reflectance of the pixels corresponding to 

the sampling stations. The developed water quality models achieved R2 values that 

ranged between 0.64 and 0.96 and this showed the feasibility of the Landsat-8 images 

in the estimation of the WQPs in the entire bay. The effectiveness of Landsat-8 in the 

assessment of reservoir water quality was also established by Bonansea et al. (2019) 

through the estimation and mapping of secchi disk transparency in Cassaffousth 

Reservoir in Cordoba, Argentina. Ground observations, and a dataset of four Landsat 8 

and four Sentinel-2A images were used to create and validate models to estimate secchi 

disk transparency in the reservoir (Bonansea et al., 2019). The selected algorithms were 

used to obtain graphic representations of water clarity. Landsat-8 OLI estimated the 

secchi disk transparency with an R2 value of 0.9 (Bonansea et al., 2019). The study 

showed the importance of Landsat-8 data in spatio-temporal water quality analysis 
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particularly in developing nations where conventional WQM programs are limited 

(Bonansea et al, 2019). 

Pizani et al. (2020) paralleled the performance of Landsat-8 OLI and Sentinel-2 

MultiSpectral Instrument (MSI) in developing multiple regression models for the 

optically active and optically non-active WQPs in a hydroelectric reservoir in Brazil. 

The physical and chemical WQPs were measured in situ using sensors, and also 

analyzed in laboratory (Pizani et al., 2020). The sampling date corresponded to the 

simultaneous overflight of Sentinel-2B, and Landsat-8 satellites which provided a 

means to perform a fair comparison of the two sensors (Pizani et al., 2020). Four 

optically active WQPs were considered: chlorophyll-a, Secchi disk depth, turbidity and 

temperature, and other six optically non-active parameters were also considered (Pizani 

et al., 2020). The multiple regression models used the spectral reflectance bands from 

both sensors (separately) as predictors, and the reflectance values were based on 

averaging kernels of 30 m and 90 m (Pizani et al., 2020). Both Landsat-8 OLI and 

Sentinel-2 MSI performed well in the estimation of optically active constituents 

specifically, turbidity, Chl-a, and secchi disk depth with R2 values greater than 0.6.  

Meng et al. (2022) used the EMRM algorithm to estimate the concentration of Chl-a, 

algae density, and turbidity using Landsat 8-9 OLI and Sentinel-2 MSI images in 

Shanmei Reservoir in Fazhou City.  This study collected and sorted the water quality 

data measured at the site in 2020 to 2022, and Landsat 8-9 OLI and Sentinel-2 MSI 

images, simulated the chlorophyll-a (Chl-a) concentration, algae density, and turbidity 

using empirical multivariate regression (Meng et al., 2022). The researchers also 

explored the relationship between different WQPs using correlation analysis and 

principal component analysis (Meng et al., 2022).  Landsat performed better that 

Sentinel-2 MSI with R2 values of 0.70, 0.81, and 0.80 for Chl-a, algal density, and 
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turbidity respectively. Similarly, Ouma et al. (2020) related the performance of 

Landsat-8 OLI and Sentinel-2A/ MSI in the retrieval of optically active WQPs 

including turbidity, TSS, and Chl-a in reservoirs based on an EMRM algorithmic 

approach. In the development of the EMRM, ten of the sampling point data were used 

in the regression modelling in model calibration and the remaining five sampling points 

that were not used in model development were used in the validation of the model 

(Ouma et al., 2020). Both sensors estimated the reservoir WQPs with R2 values greater 

than 0.7 and this showed the validity with which the developed algorithms can retrieve 

WQPS from satellite imagery.  

2.4 Assessment of Spatial Distribution and Variability of Estimated and Predicted 

WQPs 

Bresciani et al. (2019) used Landsat-7, Landsat-8 OLI, and Sentinel-2 data from 2013 

to 2018 on two freshwater dammed reservoirs named Mulargia and Aposelemis situated 

in Sardinia (Italy) and Crete (Greek) respectively. Physically based models were used 

on 400 cloud-free images to retrieve Chl-a concentration, turbidity, and secchi disk 

depth. The derived estimates were effectively validated using the lower Pearson 

correlation value r which gave a value of 0.88 for Chl-a. The multi-temporal analysis 

results showed a reduction of sechi disc depth due to an increase in turbidity in Mulargia 

or an increase in Chl-a in Aposelemis. Thus, both lakes were assigned mesotrophic 

conditions based on the satellite-derived trophic state index. 

In another study, Keith et al. (2018) examined the possibility of using Landsat-8 OLI 

imagery to estimate and map the spatial Chl-a distribution in Jordan Lake, North 

Carolina. Using the provisional Land Surface Reflectance product and in situ Chl-a 

concentrations from drinking water monitoring programs in North Carolina, and Rhode 

Island, the study compared five established approaches for estimating chl-
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a concentrations using spectral data (Keith et al., 2018). The relationship between 

individual OLI bands reflectance values and the in situ concentration of Chl-a was used 

to isolate bands sensitive to Chl-a (Keith et al., 2018). Optical-band based equations 

were developed and the relationship between the ratio-based spectral index and the in 

situ Chl-a from various points derived (Keith et al., 2018). Spatial maps showing the 

distribution of Chl-a were also developed (Keith et al., 2018). From the study it was 

established that there was a substantial link between the spectral reflectance values from 

Landsat images and Chl-a concentration in the lake (Keith et al., 2018). 

Silveira et al. (2020) used different spatial interpolation techniques including inverse 

distance weighting and random forest to develop spatial distribution maps for in situ 

and Landsat-estimated water quality variables in two study areas. Two case studies in 

distinct water bodies were performed, each using different spatial resolution data from 

Sentinel-2 spectral images and unmanned aerial vehicles together with laboratory 

analysis data (Silveira et al., 2020). In consonance with the methodology, supervised 

machine learning algorithms were trained to predict the concentration of TSS and Chl-

a (Silveira et al., 2020). The predictions were evaluated separately in both study areas, 

where both TSS and Chl-a models achieved R2 values above 0.8 (Silveira et al., 2020). 

The spatial maps developed for each of the WQPs demonstrated that the spatial 

distribution was consistent with the expected results from in situ measurements. Based 

on this, it was concluded that it is possible to generate spatial distribution water quality 

maps using interpolation techniques, and this could help in generating additional data 

points for improved training of machine learning algorithms for predicting WQPs 

(Silveira et al., 2020). 

According to Ouabo et al. (2020) suitable interpolation techniques can be applied on 

correctly sampled data in order to make inferences on the distribution and variability of 
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the WQPs at the unsampled locations. However, there is a need to have detailed 

information on the distribution of WQPs in the reservoir so as to make precise water 

quality predictions for a specific point in the reservoir (Ouabo et al., 2020). In this study, 

ordinary Kriging and inverse distance weighting were used for spatial analysis and 

surface mapping and ordinary Kriging performed better than inverse distance weighting 

method (Ouabo et al., 2020). Ouma et al. (2020) developed spatial distribution maps of 

both in situ and Landsat-8 OLI estimated WQPs including turbidity, TSS, and Chl-a 

for Chebara Dam in Kenya using ordinary Kriging. It was observed that the distribution 

trend for both Landsat-8 OLI and in situ measurements were closely correlated since 

most of the high and low concentration regions coincided with slight variations in 

concentration at some spatial locations (Ouma et al., 2020). 

2.5 Remote Sensing and ANN Model Approach for Predicting Water Quality 

Parameters 

ANN is a computing system that mimics the human brain in analyzing and processing 

information in order to solve complex problems (Mohamed, 2019). Artificial neural 

networks are made up of a set of simple elements; the artificial neurons are motivated 

by the biological nervous systems Gurney, 2018). The self-learning capabilities of the 

ANNs enable them to improve their performance as more data becomes available. 

According to Mohamed (2019) the performance accuracy of ANN models is dictated 

by the correctness of the data used and the model architecture selected. Additionally, 

modelling is an empiric approach and the model accuracy is influenced by the precision 

of the input data (Mohamed, 2019). The hidden layers in the ANNs are used to 

transform data and produce an output by applying weights to the layers (Jorgensen & 

Gromiec, 2016). Despite the complexity involved in developing ANN models, accurate 

correlations are guaranteed to a great extent. 
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Panda et al. (2004) applied ANNs to indirectly determine the concentration of Chl-a 

and SPM in Beaver Reservoir, Northwest Arkansas. An ANN-radial basis function was 

developed and spectral reflectance values from Landsat Thematic Mapper (TM) used 

as input with Chl-a or suspended matter concentration as output (Panda et al., 2004). 

Chl-a and suspended matter concentrations were predicted with a coefficient of 

determination R2 of 0.55 and 0.90 respectively for the actual and predicted values 

respectively (Panda et al., 2004). 

Ribeiro et al. (2008) studied the feasibility of WQM in large reservoirs using remote 

sensing and ANNs as an indirect method of estimating Chl-a concentrations in Tucurui 

Reservoir. An ANN, radial basis function model was developed to estimate Chl-a 

concentration. The spectral data from the satellite images was used as input to the neural 

network while Chl-a concentration was used as the output (Ribeiro et al., 2008). To 

train and validate the model the researchers used data from the years 1987, 1988, 1995, 

1999, 2000 and 2004 (Ribeiro et al., 2008). The model estimated Chl-a concentration 

with a correlation coefficient of 0.92 implying that the model is useful for Chl-a 

predictions (Ribeiro et al., 2008). 

Kennedy et al. (2015) developed four ANN models at the Akron Water Treatment Plant 

in Ohio, USA to predict treated water turbidity and dissolved organic material based on 

variable raw WQP values and coagulant doses. ANN models were built using 

operational data to predict each of the fluorescence components and turbidity after 

coagulation based on variable raw water quality and chemical doses (Kennedy et al., 

2015). The final turbidity was predicted with a correlation coefficient of 0.91 (Kennedy 

et al., 2015). The results suggested that the models are useful in predicting treated water 

turbidity as a function of the raw water quality and coagulant dose (Kennedy et al., 

2015). 
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Setshedi et al. (2021) used an ANN technique to develop a model for predicting WQPs 

using ANN-radial basis function (RBF) and ANN-Multi-Layer Perceptron (MLP) using 

data obtained from three district municipalities in South Africa. Two input combination 

models were trained, verified, and tested for their predictive performance ability, and 

their physicochemical prediction accuracy was compared by using each model’s 

observed data with the predicted data (Setshedi et al., 2021). The MLP model achieved 

accuracies denoted by a mean square error of 39.07 and R2 of 0.99 for the in situ and 

predicted water quality (Setshedi et al., 2021). Based on the accuracies achieved, it was 

recommended that the models be scaled up and used to make water quality predictions 

for waste water treatment plants (Setshedi et al., 2021). 

2.6 Use of ANN Models to Determine Optimal Coagulant Dose for Water 

Treatment 

Sengul and Gormez (2013) used ANN models to predict treated WQPs and optimal 

coagulant dose in using operation data from a water treatment plant in Istanbul, Turkey. 

ANN was used to estimate non-linear relationships between inputs and outputs in the 

dataset. Several architectures with one hidden layer and hidden neurons were built to 

obtain the right and proper ANN model. The multilayer ANN model showed that the 

model is efficient in predicting treated WQPs and the optimal coagulant does that is 

adaptable to real-time raw water quality changes. Furthermore, ANN models can also 

be used as a fast and efficient method of optimizing coagulant dosage. 

Haghiri et al. (2018) developed an MLP-ANN with one hidden layer and used it to 

model jar test experiments for determining the optimal coagulant dose in drinking water 

treatment processes for a water treatment plant located in Ardabil Province in Iran. To 

evaluate the performance of the model, the mean squared error (MSE) and correlation 

coefficient (R2) parameters were used (Haghiri et al., 2018). The model accomplished 
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reasonable accuracy in predicting the optimal coagulant dose with R2 value of 0.95 and 

MSE of 0.12 mg/l (Haghiri et al., 2018). The concept established that MLP-ANN 

models have a reasonable accuracy in estimating WQPs and the optimal coagulant dose 

(Haghiri et al., 2018). 

In order to overcome the limitations of the jar test experiment and to enable water 

treatment plant operators to save time and money, Baouab and Cherif (2018) developed 

ANN models for predicting optimal coagulant dose using data from three water 

treatment plants. ANN technique was applied in the study to large databases of three 

treatment plants with different processes in order to build models to predict the optimal 

dose of coagulant (Baouab & Cherif, 2018). Pre-modeling techniques, like data scaling 

and training database choice, were used to guarantee models with the lowest errors 

(Baouab & Cherif, 2018). Two models were then selected, with turbidity, conductivity, 

and pH as inputs for both raw, and treated water. The first model, L45-MOD, was 

specific to raw water with less than 45.5 NTU turbidity, or else the second model ATP-

MOD would be adopted (Baouab & Cherif, 2018).  The two models developed 

performed great when used on several databases with R2 greater than 0.8 and a mean 

absolute error greater than 5.4g/m3 (Baouab & Cherif, 2018). The study also highlighted 

the possibility of extrapolating and adopting such models for use in treatment plants 

that rely on coagulation (Baouab & Cherif, 2018). 

Kote and Wadkar (2019) also developed models to estimate optimum coagulant and 

chlorine doses for Maharashtra Water Treatment Plant in India. Separate models for 

coagulant and chlorine doses were developed and the possibility of applying feed-

forward neural network (FFNN), radial basis function neural network (RBFNN), 

cascade feed forward neural network (CFNN), and generalized regression neural 

network (GRNN) explored (Kote & Wakdar, 2019).  For modeling, daily water quality 
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data of the last four years was collected from the plant laboratory of the water treatment 

plant in Maharashtra, India (Kote & Wakdar, 2019). To improve the performance of 

the models, the models were developed by varying input variables, hidden nodes, 

training functions, spread factor, and epochs (Kote & Wakdar, 2019). The best models 

were then selected based on the comparison of performance measures (Kote & Wakdar, 

2019).  The best performing coagulant dose model was the CFNN model with Bayesian 

regularization training function with an R2 value of 0.947 (Kote & Wakdar, 2019). 

Similarly, the best performing chlorine dose model was the RBFNN model with an R2 

value of 0.999 (Kote & Wakdar, 2019). 

2.7 Gaps in Knowledge to be Filled by the Study 

This section mainly reviewed literature on estimation of WQPs from Landsat-8 images 

in correlation with in situ water quality data in addition to literature on spatial 

distribution and variability of estimated and in situ WQPs. The use of ANNs in water 

quality predictions and the estimation of optimum coagulant dose for water treatment 

was also highlighted. 

Based on the literature review, the gap in knowledge stems from the need to have a 

completely predictive water treatment plant model that begins from the reservoir to the 

final point of treatment. Previous researchers like Haghiri et al. (2018) and Kote 

&Wadkar (2019) have explored this possibility with the focus being from the inlet of 

the water treatment works to the final point of treatment. The information from the 

catchment is what is used to inform the treatment plant processes in terms of the choice 

of chemicals mainly for the coagulation processes. Thus, having a model that starts 

from the reservoir may prove to be an effective tool to determine bottlenecks and make 

quick decisions to maximize the efficiency of treatment. 
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Previous researchers have also not explored the possibility of combining WQM with 

the predictive models for running the water treatment plants. The optimum coagulant 

dose to be used for treatment has mainly been determined based on the characteristics 

of the input water to the treatment plants. There are various processes in the catchment 

that contribute to deteriorating water quality. Thus, combining the monitoring aspect 

using remote sensing will help to give a better estimate of the optimum coagulant dose 

based on the changes in the catchment. 
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CHAPTER 3: MATERIALS AND METHODS 

3.1 Area of Study  

Two Rivers Dam Reservoir is situated in Uasin Gishu County, Kenya at a longitude of 

35° 35' 14" and latitude of 0° 46' 88" (Figure 3.1).  

 

Figure 3.1: Two Rivers Dam Reservoir and selected sampling points 

 

The water abstracted from the dam for treatment and subsequent distribution is 14,959 

m3/day. The water is treated at Sosiani Treatment Plant before it is supplied to Eldoret 

municipality and its environs. Increased agricultural activities and soil erosion have 

resulted in increased turbidity in the reservoir and an overall loss of water quality. There 

is an eminent presence of algal bloom especially during the dry season which 

necessitates pre-chlorination of raw water to oxidize the organic matter at the beginning 

of the treatment process. Generally, turbidity ranges between 50-200 NTU thus 

necessitating the use of poly aluminium chloride as a coagulant before the subsequent 
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processes of sedimentation, sand filtration, and chlorination. The presence of algal 

blooms is an indication of increased nutrient transport in the catchment.  

3.1.1 Water Sampling and Testing  

To monitor the water quality of Two Rivers Dam Reservoir, thirteen (13) stratified and 

coordinated sampling stations were set up at distances approximately 150 meters apart 

(Figure 3.2). The selection of the sampling points was influenced by the physical 

characteristics of the area with more points being located in areas where the influent 

streams (R. Endoroto and R. Elligirini) enter the dam, and regions close to the point 

where R. Sosiani exits the dam to capture the changing influent and runoff 

characteristics (Wilde et al., 2005). At the mid-section of the reservoir few points were 

selected since the flow is uniform, there is a stable bottom contour, and the water 

constituents are well mixed along the cross section (Wilde et al., 2005). More points 

were also located close to the edges where the water quality variability is highly likely 

to be high (Wilde et al., 2005). A mesh grid was drawn over the reservoir and based on 

a systematic sampling approach and the above guiding criteria, the 13 sampling points 

were selected. 
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Figure 3.2: Grid system used for the selection of sampling points 

 

Water samples (1500 ml) were then collected at 0.5 meter depths and the concentration 

of turbidity, TSS, and Chl-a determined following the standard laboratory protocols. 

The duplicate samples were collected at each of the 13 sampling points for each of the 

pre-determined sample collection dates. The duplicate samples for determining the 

concentration of turbidity, TSS, and Chl-a were collected using dark bottles at each of 

the 13 sampling points. The sample containers were completely filled and capped to 

prevent aeration, and each of these containers was then labeled and transported to the 

laboratory using a cooler box. The containers were then stored in a dark place prior to 

testing. Since Chl-a is a key requirement for photosynthesis, the water samples were 

collected in the photic zone which is close to the surface of the reservoir because, for 

stratified lakes or reservoirs, the epilimnion or the top layer mostly coincides with the 

photic zone of the water body (KDHE, 2011). Furthermore, for case I waters such as 

Two Rivers Dam the optical properties mainly detected by Landsat-8 OLI are mainly 

determined by phytoplankton and related colored dissolved organic matter, and detritus 
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degradation products (Gholizadeh et al., 2016).  Thus, for meaningful inference 

between laboratory and satellite-derived WQPs (specifically, turbidity and TSS) to be 

made, sampling was done at 0.5 meter depth where the concentration of phytoplankton 

and related colored dissolved organic matter were likely to be highly concentrated.  

Turbidity measurements were done in the lab using LaMotte turbidity meter (Model 

2008 Code 1790, USA). The water sample was placed in a cylindrical vial to a volume 

of 10 ml as marked on the vial. A second vial was then filled to the 10 ml mark using 

distilled water which was the standard solution. The turbidity meter was then blanked 

using the standard solution after which the sample turbidity measurement was then 

taken. 

TSS was determined by gravimetric method (APHA). Dry and clean filter papers were 

first weighed to obtain their masses. The sample solution was filtered using sintered 

glass lined with the 45µm filter paper by use of a filter pump. The filter papers were 

then dried in a desiccator and the new weights recorded. The concentration of TSS was 

then obtained as the difference between the weight of the clean, dry filter paper and the 

used filter paper divided by the sample volume. 

                       𝑇𝑆𝑆 (
𝑚𝑔

𝐿
) =

(𝐴−𝐵)∗1000

𝑆𝑎𝑚𝑝𝑙𝑒 𝑉𝑜𝑙𝑢𝑚𝑒(𝑚𝑙)
                                                           (1) 

Where: 

A: Dry weight of residue and filter paper (mg) 

B: Dry weight of the filter (mg) 

Chl-a was determined by the spectrophotometric method where the optical density of 

the extracted Chl-a was measured at four wavelengths (750, 663, 645, and 630nm) and 

the resulting concentration determined based on the SCOR-UNESCO’s equations 

(SCOR-UNESCO, 1966). The chlorophyll pigments from the water sample were 
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extracted using acetone by filtering the water sample through a 45µm filter. The filter 

was then placed in a test tube and 5 ml of acetone at 90% concentration added to the 

tube. The samples were then stored in a refrigerator for 24 hours after which 3 ml of 

the filtrate was drawn and placed in a spectrophotometer cell from which the 

transmittance was obtained and used to compute the chlorophyll-a concentration based 

on equation 2. 

𝐶ℎ𝑙 − 𝑎 =
26.7∗(664𝑏−665𝑎)∗𝑉𝑒

𝑉𝑠∗𝐿
                                                         (2) 

Where: 

Ve: Volume of extract (L) 

Vs: Volume of sample used (m3) 

L: Light path of the cuvette 

A GPS receiver was used to locate the sampling points during sample collection thus 

enabling meaningful seasonal inferences to be made for the specific locations. The 

sampling locations were located using a GPS receiver.  

The timing for in situ sampling coincided with the satellite overpass schedule, 

specifically, the satellite image acquisition dates to within ±1 day for best calibration 

results to be realized. In essence, the Landsat acquisition tool was used to view the paths 

scheduled for image acquisition on any day from which the sampling dates were 

selected. 

The coagulant dose for water treatment for the specific sampling days was determined 

at the water treatment plants based on jar test experiments. Aluminum sulfate was the 

main coagulant used for the jar test experiments, and water treatment. The stock 

solution for the coagulant was made by mixing 20 grams of alum in 20 liters of water. 
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A constant dose of 40 liters of the stock solution was used in water treatment for each 

of the three days that the water samples were collected. 

3.2 Retrieval of Water Quality Parameters from Landsat-8 OLI and Correlation 

Analysis 

 

The Landsat-8 Operational Land Imager (OLI) and thermal infrared sensor (TIRS) is a 

push broom sensor with nine bands. That is, band 1-7 and band 9 at 30 m spatial 

resolution and band 8, which is a panchromatic band, at 15 m spatial resolution. It also 

has two Thermal Infrared bands with a spatial resolution of 100 m. The satellite has a 

16-day repeat cycle and a swath width of 185 km (USGS EROS Archive, 2018). 

The Landsat images used for the study were acquired between November 2020 and 

January 2021 in line with the satellite image acquisition schedules (Appendix A). The 

images were downloaded from United States Geological Survey (USGS) earth explorer 

(https://earthexplorer.usgs.gov/). 

The procedures for the retrievals of WQPs from Landsat-8 OLI are outlined in the 

steps below. 

a) Determination of Radiance and Reflectance 

The Fast Line-of-sight Atmospheric Analysis of Hypercubes (FLAASH) model 

was used to process the Landsat-8 OLI images where radiometric calibration 

was done to convert the digital numbers (DNs) to top of atmosphere (TOA) 

radiance (Appendix B). For a given wavelength, the TOA radiance is obtained 

from the following equation. 

𝐿𝜆 = 𝐺𝜆 ∗ 𝐷𝑁 + 𝑂𝜆                                                                                  (3) 
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Equation (1) can also be written as: 

𝐿𝜆 = {
𝐿𝑚𝑎𝑥𝜆−𝐿𝑚𝑖𝑛𝜆

𝐷𝑁𝑚𝑎𝑥
} ∗ 𝐷𝑁 + 𝐿𝑚𝑖𝑛𝜆                                                           (4) 

Where𝐿𝜆 is the TOA radiance given in units of (𝑊𝑚−2𝑆𝑟−1 µ𝑚−1),𝐺𝜆is the gain 

or multiplicative scaling factor (𝑊𝑚−2𝑆𝑟−1 µ𝑚−1)/𝐷𝑁 and 𝑂𝜆is the offset or the 

rescaled bias (𝑊𝑚−2𝑆𝑟−1 µ𝑚−1), 𝐿𝑚𝑖𝑛𝜆is the spectral radiance scaled to 

𝐷𝑁𝑚𝑖𝑛(Wm-2Sr-1μm-1),𝐿𝑚𝑎𝑥𝜆 is the spectral radiance scaled to 𝐷𝑁𝑚𝑎𝑥 , 𝐷𝑁𝑚𝑎𝑥 is 

the maximum DN and DN is the quantized calibrated pixel values in DN specific 

to a sample point. 

Atmospheric correction was then done to convert TOA radiance to TOA 

reflectance after which Dark Object Subtraction (DOS) was done to convert TOA 

reflectance to surface reflectance (Ouma et al. 2018). The extraction of the region 

of interest was then done and the resulting images used in the ensuing processing 

stages. The surface reflectance values were then divided by π to convert them into 

remote sensing reflectance (Moses et al. 2012) (Appendix C). 

b) Correlation of Reflectance with Laboratory Water Quality Parameters 

The 13 sampling points were then overlaid on each of the image’s regions of 

interest (ROIs) and the spectral profile for each specific point used to determine 

the TOA reflectance for each of the bands from band 1-7. To reduce the errors 

in sample site locations and geometric corrections, and to correlate the 

reflectance and WQPs, an average spectral reflectance of 3 × 3 pixel 

neighborhood configuration was used (Reddy, 1997). It was appropriate to use 

the 3 x 3 pixel window for each of the sampling points in this study since most 

of the sampling was done close to the edges of the reservoir where water quality 
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variability is high (Reddy, 1997). Thus, the 3 x 3 window could include the 

shallow water near the banks. 

c) WQPs Estimation Using Empirical Regression Modeling 

The study used the Empirical Multivariate Regression Modeling (EMRM) 

approach for multivariate correlations between the reflectance from the different 

sensor bands and the WQPs measured in situ as described in Ouma et al. (2018). 

In this case, the retrieval objects were turbidity, TSS, and Chl-a and the different 

band combinations used for retrieval. The EMRM algorithm is useful in 

predicting WQPs from spectral features of satellite images. According to Aiman 

et al. (2014), standard multiple regression makes it possible to establish how 

well the dependent variables (WQPs) can be predicted by each independent 

variable (the spectral reflectance values). The main water quality retrieval 

algorithms used are single band, band ratios, linear band combinations, and 

mixed-band combinations (Meng et al., 2022). However, regression models 

with spectral ratio are more robust and dependable compared to regression 

models with single bands (Aiman et al., 2014). 

Field data was first correlated with remote sensed data from which the equations 

for water quality retrieval were developed.  Regression analysis was then carried 

out to determine the relationship between in situ and satellite-derived water 

quality data. Eight (8) points were used to calibrate the empirical multivariate 

regression model algorithms (EMRM) and five (5) points used for algorithm 

validation. Table 3.1 presents the remote sensing band combination(s) 

considered for the EMRM analysis of Landsat-8 OLI data in the estimation of 

water quality parameters. 
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Table 3.1: RS bands and band combinations for estimation of water quality 

parameters 

Type of Band 

Combination 

Band Combination 

Single Band B1, B2, B3, B4, B5, B6, B7 

Band Ratio B2/B1, B3/B1, B1/B3, B4/B3, B1/B4, B4/B1, B3/B2, B4/B2 

Linear 

Combination 

B1+B2, B1+B3, B1+B4, B2+B3, B2+B4,  

B3+B4, B1+B2+B3, B2+B3+B4, B3+B4+B1, B4+B1+B2 

Mixed 

Combination 

(B1/B3)+B1,(B1/B4)+B1,(B1/B4)+B2,(B1/B3)+B2,(B1/B3)+B3, 

(B4/B1)+B4 

 

The regression analysis was done by comparing the predicted and lab-measured water 

quality values and the equations with the highest R2 values chosen (Ouma et al., 2018).  

The regression equations were developed based on data from eight (8) sampling 

locations and equations with the highest Coefficient of Determination (R2) values 

selected and then tested on the five sampling points not used in model development to 

establish their accuracy in deriving the WQPs. The accuracy of the WQPs derived from 

the sensor-based empirical models was determined using R2, Bias, and Normalized 

Root Mean Square Error (NRMSE) error estimators shown in Equations 3-5 below. 

1. Coefficient of Determination (R2)  

𝑟 =
𝑛(∑ 𝑥𝑦)−(∑ 𝑥)(∑ 𝑦)

√[𝑛 ∑ 𝑥2−(∑ 𝑥)
2

][𝑛 ∑ 𝑦2−(∑ 𝑦)
2

]

                                                                 (5) 

Where: 

n - Number of pairs of values 

∑xy - Sum of the products of x and y values 

∑x -Sum of x values 

∑y - Sum of y values 
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∑x2 - Sum of the squared x values 

∑y2 - Sum of the squared y values 

 

2. Bias 

𝐵𝑖𝑎𝑠 =
1

𝑛
∑ ⌊𝑋𝑖 − 𝑌𝑖⌋𝑛

𝑖=1                                                                    (6) 

Where: 

Xi - Estimated water quality for the ith sample point 

Yi - Lab measured value for the ith sample point 

n- Total number of sample points 

 

3. Normalized Root Mean Square Error (NRMSE) 

𝑁𝑅𝑀𝑆𝐸 =  
𝑅𝑀𝑆𝐸

𝑦𝑖𝑚𝑎𝑥−𝑦𝑖𝑚𝑖𝑛
                                                                      (7) 

Where: 

RMSE= Root Mean Square Error 

𝑅𝑀𝑆𝐸 = √
∑ (𝑥𝑖−𝑦𝑖)2𝑛

𝑖=1

𝑛
 

2

                                                                    (8) 

xi - estimated water quality for the ith sample point 

yi - lab measured value for the ith sample point 

n - Total number of sample points 

ymax – maximum estimated water quality value 

ymin – minimum estimated water quality value 

3.3 Spatial Mapping of Water Quality Parameters 

Spatial mapping of the WQPs is crucial in understanding how the different parameters 

are distributed in a reservoir and in predicting the concentration of a given WQP at a 

specific location (Adusei et al., 2021). The approach can be used to overcome the 
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limitations of point sampling particularly in large water bodies where sample collection 

and analysis at every point is virtually impossible (Adusei et al., 2021). Although a 

variety of deterministic and geostatistical interpolation methods can be used to estimate 

variables at unsampled locations, accuracies vary widely among methods (Ouma et al., 

2018). While there are several types of Kriging used in geostatistical data interpolation 

such as Ordinary Kriging, Universal Kriging, and median polish, ordinary Kriging is 

the basis of geostatistics and gives the optimal data predictions (Ouma et al., 2012). The 

main assumption for ordinary Kriging is that the process is second-order stationary with 

normal distribution (Ouma et al., 2012). Murphy et al. (2010) related the performance 

of inverse distance weighting (IDW), and Kriging-based methods for spatial mapping 

of WQPs. The Kriging-based methods achieved higher accuracies compared to the 

IDW method (Murphy et al., 2010). Therefore, this study used Kriging to estimate the 

WQPs. 

3.4 ANN Model Training, Validation, Testing, and Application 

There are different architectures and models for ANN, namely, multi-layer perceptron 

(MLP), adaptive neuro fuzzy inference system (ANFIS), recurrent neural network 

(RNN), generalized regression neural network (GRNN), and radial basis function 

network (RBFN). These ANN models can be categorized into feedforward neural 

networks and recurrent neural networks. MLP neural networks, trained with a 

backpropagation learning algorithm, are the most popular feedforward neural networks 

(FFNNs) and have been widely used in hydrologic forecasting models (Da Silva et al., 

2017; Singh et al., 2014; Sumi et al., 2012). The advantage of FNN is that with as few 

as a single hidden layer and arbitrary bounded and smooth activation functions, the 

system can approximate a continuous nonlinear function (Da Silva et al., 2017).  
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3.4.1 Selection of Network Architecture 

The ANN architecture used in this study consisted of a MLP which is an example of a 

FFNN where the inputs are sent from one layer to the next by one-way weights (Haghiri, 

2018). The choice to use feed forward back propagation (FFBP) MLPs was informed 

by the concept that MLPs have been used to successfully predict optimal coagulant 

doses (Baouab & Cherif, 2018; Haghiri, 2018). This study had few input data and the 

MLP-ANN network architecture was preferred in order to provide quick predictions 

with high accuracies. Even though MLP-ANN works well with large input data, the 

same accuracies can still be achieved even with small data sets (Jorgensen & Gromiec, 

2016). 

3.4.2 Number of Layers and Neurons 

The ANN models used in this study had three layers. That is an input, hidden, and 

output layers. The optimum number of hidden layers and the optimum number of nodes 

was found by trial and error. According to Leon-Luque et al. (2016), any continuous 

function can be approximated using one hidden layer given sufficient degrees of 

freedom. One can also get a decent performance by setting the number of hidden layers 

to one or setting it to an average of the neurons in the input and output layers without 

iterations (Kahani et al., 2018). In this case, the ANN model 1 for predicting the treated 

WQPs and ANN model 2 for predicting the optimal coagulant dose each had one hidden 

layer. This means that both models were shallow learning neural networks that 

depended on the input data to create the prediction model. The ideal number of nodes 

in the hidden layer was determined through trial and error by either increasing or 

decreasing the initial neural number until the models reached the desired performance; 

the performance was evaluated after each iteration (Jalali et al., 2019). The iterations 



35 
 

stopped when the change in the coefficient of determination (R2) was not considered 

significant anymore (Jalali et al., 2019). 

3.4.3 Selection of Network Functions 

The selection is governed by the characteristics of the available data and the learning 

type of the network (Hayou et al., 2018; Pratiwi et al., 2020). However, the linear and 

sigmoid functions are the most common activation functions (Hayou et al., 2018; 

Pratiwi et al., 2020).  

3.4.4 Normalization 

The normal distribution function was used to normalize the data before it was entered 

into the models. This helped to improve the system performance by preventing 

excessive fluctuations that could interfere with the learning function. According to 

Oostwal et al., (2021), scaling the input data linearly into 0 and 1 ensures that it is in 

agreement with the limits of the transfer function in the ANN output layer (sigmoidal). 

That is:  

                                            𝑍 =
(𝑥−�̅�)

𝑠
                                                                               (9) 

where x is the primary quantity, �̅� is the average of the data, and s the standard 

deviation. 

3.4.5 Data Division and Pre-Processing 

Two ANN models were calibrated, validated, and used. The default MATLAB data 

division was applied in splitting the data set for the sampling days. That is 70% for 

model training, 15% for model validation, and the remaining 15% for model testing. 

The first model was then applied to predict treated WQPs and the second model used 

to determine the optimum coagulant dose. 
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a) Training phase: Training algorithms were selected to facilitate ANN learning 

by changing the weights of the nodes. The main objective of the training was to 

reduce the mean squared error (MSE) which ultimately resulted in the 

successful construction of the model (Ahmed et al., 2018). Training also 

allowed the model to see and learn from the data. 

b) Validation phase: Model validation after training was then done. The 

prediction of the accuracy and the trained model’s performance were evaluated. 

The network’s ability to generalize was also be measured by checking whether 

the variance between the predicted and the actual values of the outputs had been 

minimized (Ahmed et al., 2018). 

c) Testing phase: This was done to evaluate the learning progress made by the 

network thus optimizing the structure of the ANN. It also helped to establish 

when to cease training and to ensure that the model gave an accurate prediction 

on any data that is outside the training set (Chen et al., 2020; Dawood et al, 

2021). This also helped the model to predict instead of giving values based on 

the memorized input pattern (Ahmed et al., 2018). 

d) Application: The first model was then used to predict treated WQPs actively 

controlled by coagulant dose (that is turbidity, Chl-a, and total suspended solids) 

and the second model was used to predict the optimum coagulant dose based on 

the input WQPs. 

3.4.6 Model Performance Evaluation Functions 

The performance of both models was evaluated to establish the cumulative values 

between the target output values and created outputs by the network. Different 
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statistical methods including mean absolute error (MAE) or bias, the coefficient of 

determination (R2), and root mean square error (RMSE) were used. 

3.5 Model 1- Prediction of Treated Water Quality Parameters 

The model for predicting treated WQPs was first prepared. A schematic of the model 

inputs and outputs is shown in Figure 3.3.  

 

Figure 3.3: Schematic diagram of the input and output layers of ANN model 1. 

 

In this case, the raw WQPs were the process inputs, the alum dose was the process 

control parameter, and the process outputs being modelled were the treated water 

quality parameters. From the EWRM, the regression equations with the highest R2 

values were used for estimating the values of turbidity, TSS, and Chl-a from the 

Landsat-8 OLI band combinations. The normalized values of estimated Landsat-8 OLI 

measurements together with the coagulant doses for each of the specific sampling days 

were the inputs for training, validating, and testing the ANN model while the 

corresponding treated WQPs were the targets as shown in Figure 3.4. The input data 

was normalized and an ANN-MLP with a single hidden layer and 10 neurons developed 
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and used. The output of this model was the desired treated WQPs (turbidity, Chl-a, and 

TSS). The model development was done using MATLAB software. 

3.6 ANN Model 2- Prediction of Optimum Coagulant Dose for Water Treatment 

A second model was used to anticipate the amount of coagulant necessary depending 

on the values of the raw WQPs and the desired treated WQPs values. An MLP-ANN 

with one hidden layer and 10 neurons was developed and used. The input data consisted 

of normalized values of: raw water turbidity, TSS, and Chl-a (estimated from Landsat-

8 OLI) and treated water turbidity, Chl-a, and TSS (based on laboratory experiments) 

and the model output was the optimal coagulant dose (Figure 3.4).  

 

Figure 3.4: Schematic diagram of the input and output layers of ANN model 2. 
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Similar to case model 1, regression equations with the highest R2 values were also used 

for estimating the values of turbidity, TSS, and Chl-a from the Landsat-8 OLI band 

combinations. The normalized values of Landsat-estimated raw water turbidity, TSS, 

and Chl-a and treated water turbidity, Chl-a, and TSS (based on laboratory experiment) 

for each of the specific sampling days were the inputs for training, validating, and 

testing the ANN model while the corresponding optimal coagulant dose was the output. 
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Figure 3.5: Flow diagram of the summarized methodology. 
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CHAPTER 4: RESULTS AND DISCUSSION 

4.1 Estimation of turbidity, TSS, and Chl-a in Correlation with in situ Water 

Quality Data using EMRM 

4.1.1 Estimation of Turbidity 

The turbidity values based on the lab measurements ranged between 4-10 NTU, 4-13 

NTU and 3-17 NTU for data collected in November 2020, December 2020, and January 

2021, respectively as shown in Table 4.1. The estimated turbidity measurements ranged 

between 5-10 NTU, 4-13 NTU and 5-17 NTU for data collected in November 2020, 

December 2020 and January 2021, respectively as shown in Table 4.1.  

Table 4.1: In situ and estimated turbidity for the specific sampling days 

Sampling 

Station  

In situ Turbidity (NTU) Estimated Turbidity (NTU) 

25/11/2020 11/12/2020 28/01/2021 25/11/2020 11/12/2020 28/01/2021 

1 7.0 4.0 5.0 7.3 4.0 5.4 

2 8.0 6.0 8.0 10.1 4.6 6.8 

3 5.0 5.0 4.0 6.4 4.4 6.6 

4 9.0 10.0 10.0 9.1 6.8 7.7 

5 8.0 8.0 10.0 8.0 7.1 9.0 

6 8.0 7.0 10.0 4.5 6.5 9.0 

7 4.0 5.0 7.0 4.9 5.2 6.4 

8 5.0 5.0 3.0 8.8 4.7 6.2 

9 7.0 8.0 10.0 4.9 5.6 9.0 

10 10.0 6.0 8.0 10.1 6.3 5.4 

11 9.0 13.0 17.0 6.0 12.9 16.9 

12 6.0 5.0 10.0 7.5 6.4 6.9 

13 10.0 10.0 10.0 9.0 6.8 8.7 

 

Generally, the turbidity in the reservoir was observed to be low mainly because of low 

sediment inflows throughout the sampling duration and plain sedimentation taking 

place in the reservoir. The sampling was done between November and January which 

is a dry period meaning there was no sediment inflow from rainwater discharge into the 
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reservoir. Sediment loads could have also reduced as a result of plain sedimentation 

which refers to the quiescent settling of water in a lake, basin, or reservoir for extended 

durations without the aid of chemicals particularly when the water source is polluted or 

highly turbid (Mehdinejad et al., 2012). The concept is more like natural water 

treatment that results in the settlement of suspended solids, removal of color, hardness 

reduction, breakdown of organic chemicals, and unfavorable conditions that lead to the 

death of pathogens (Mehdinejad et al., 2012). The band combinations and ratios from 

the Landsat data that gave the best estimate of the turbidity based on the remote sensing 

reflectance (Rrs), the regression equations and associated errors are shown in Table 4.2. 

Table 4.2: Regression equations and associated errors for turbidity estimation 

 Regression Equation  Band 

Combination 

R2 nRMSE 

 (NTU) 

Bias 

(NTU) 

25/11/2020 y = -1169x2+3694x-2908 (B1/B4)+B2 0.797 0.257 0.084 

 y = -996.8x2+2853x-2031 B1/B4 0.680 0.308 -0.792 

 y = -1552x2+2831x-1280 B4/B2 0.729 0.286 0.554 

11/12/2020 y = 68165x2-

15713x+908.2 

B3+B4+B1 0.757 0.631 -1.572 

 y= 67304x2-11390x+484.4 B2+B3+B4 0.736 0.571 -1.608 

 y = 87184x2-8803+226.4 B2+B4 0.726 1.060 -1.342 

28/01/2021 y = 29.02In(x)+117.7 B4 0.688 0.364 -0.402 

 y = 712.1x2-704.5x+175.2 B3/B1 0.736 0.355 -1.796 

 y = 130x2-493.6x+471.4 (B1/B3)+B2 0.736 0.360 -1.80 

The reflectance from the visible bands based on the polynomial regression models 

highlighted in Table 4.2 yielded the highest correlation coefficient between the 

laboratory and satellite-derived data with R2 values of 0.797, 0.757, 0.736 for the 
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specific data collection dates. The findings in this study for turbidity regressions are 

also supported by the results of Ouma et al. (2020) which showed the viability of using 

visible Landsat-8 OLI bands for turbidity estimations. The results from Lotfi et al. 

(2019) also highlighted the usefulness of the visible Landsat-8 OLI bands in estimating 

in situ turbidity. The significance of the red and blue band in estimation of turbidity is 

also emphasized in a study by Kalele (2019) where the model that gave the best results 

combined the reflectance values of the red and blue bands and it achieved R and RMSE 

values of 0.841 and 0.828 respectively. The model validation dataset gave R2 and 

RMSE values of 0.832 and 0.430 respectively. Furthermore, the nRMSE and Bias 

values shown in Table 4.2 were lower than the smallest and the average in situ turbidity 

values and this is an indication of less variation between laboratory and satellite-derived 

values. Thus, the model is suitable for estimating turbidity in inland waters. 

4.1.2 Estimation of Total Suspended Solids 

The TSS values based on the lab measurements ranged between 250.6 – 300.4 mg/L, 

247.6 -314.1 mg/L and 250.8-321.3 mg/L for data collected on 25th November 2020, 

11thDecember 2020 and 28th January 2021 respectively as shown in Table 4.3. The 

estimated TSS measurements ranged between 253.63 – 300.67 mg/L, 200.02 -333.88 

mg/L and 207.85-308.58 mg/L for data collected on 25th November 2020, 

11thDecember 2020 and 28th January 2021 respectively as shown in Table 4.3.  
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Table 4.3: In situ and estimated TSS for the specific sampling days 

Sampling 

Station  

In Situ TSS (mg/l) Estimated TSS (mg/l) 

25/11/2020 11/12/2020 28/01/2021 25/11/2020 11/12/2020 28/01/2021 

1 273.1 267.2 253.0 270.3 270.7 269.5 

2 274.5 271.4 276.2 254.9 271.9 282.3 

3 254.7 247.6 250.8 266.1 264.7 287.5 

4 263.4 270.2 269.7 282.1 285.6 296.4 

5 271.4 290.8 273.2 272.0 298.1 308.3 

6 273.0 291.3 314.2 255.6 292.3 308.0 

7 250.6 299.2 298.0 253.8 278.1 282.0 

8 252.1 287.6 284.8 274.8 270.1 280.0 

9 293.2 302.2 313.6 254.7 288.7 308.6 

10 300.4 205.8 303.2 300.7 200.0 278.9 

11 276.5 349.4 207.6 259.5 333.9 207.9 

12 260.8 261.6 289.6 268.2 291.7 290.2 

13 281.2 314.1 321.3 273.5 292.8 306.4 

 

The band combinations and ratios that gave the best estimate of TSS, the regression 

equations and associated errors are shown in Table 4.4. TSS concentration was notably 

high at areas where River Ellegerini and River Endoroto flowed into the reservoir 

because the inflow from these two rivers caused sediment resuspension.  
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Table 4.4: Regression equations and associated errors for TSS estimation 

 Regression Equation Band 

Combination 

R2 nRMSE 

(mg/l) 

Bias  

(mg/l) 

25/11/2020 y = -5340In(x) + 2754 B3/B2 0.788 0.704 -9.981 

 y = 7930x – 9457 (B1/B4)+B2 0.804 0.493 0.242 

 y = 17955x2 – 47361x +33603 (B1/B3) + B2 0.808 0.729 -7.835 

11/12/2020 y = 635.9e53.65x B4 0.853 0.376 2.660 

 y = 4640x2-23267x+31152 (B1/B4) + B2 0.801 0.293 4.201 

 y = 77928x2-64825x+15537 (B4/B1) + B4 0.818 0.292 3.505 

28/01/2021 y = -6131x2+ 25640x – 23721 (B1/B4) + B1 0.757 0.497 15.862 

 y = -6139x2 +25265x – 22910 (B1/B4) + B2 0.757 0.496 15.704 

 y = -79430x2 + 83798x – 

18978 

(B4/B1)  + B4 0.766 0.543 16.546 

 

Table 4.4 shows that the logarithmic, exponential, and polynomial regression models 

gave the best estimate of TSS with R2 values of 0.808, 0.853, and 0.766 respectively 

for the specific data collection dates. The visible bands (coastal aerosol, blue, green, 

and red) proved to be the optimal bands for TSS estimation in this reservoir. 

The results from the logarithmic model in Table 4.4 based on the band ratio between 

B3 (green) and B2 (blue) gave an R2 value of 0.788. Similar results were obtained by 

Jaelani et al. (2016) in which the logarithmic model developed from the Rrs band ratio 

of B2 (blue) and B3 (green) resulted in an R2 value of 0.79. The viability if the single 

B4 (red) for TSS estimation from Landsat imagery is also demonstrated by Yanti et al. 

(2016) where TSS estimation using B4 and a linear regression model yielded an R2 

value of 0.543. Ouma et al. (2020) also achieved an R2 value of 0.9249 based on B3 

(green) and B2 (blue) ratio using a linear regression model. In comparison with the 
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other studies, Yanti et al. (2016) concluded that the red band alone is not that 

informative in the retrieval of TSS. However, in this study, the red band alone was quite 

informative in the retrieval of TSS from the reservoir. However, just like Yanti et al. 

(2016) suggested, combining the red band and other visible bands proved to be quite 

effective in the estimation and mapping of the WQPs in this reservoir. Generally, the 

nRMSE and Bias errors for this study were also lower compared to the TSS values 

measured in situ and this proves that the method is sufficient for estimating TSS 

concentration of inland waters. 

4.1.3 Estimation of Chlorophyll-a 

The Chl-a values based on the lab measurements ranged between 23.08 – 59.42 mg/L, 

31.36 -83.40 mg/L and 24.22-80.86 mg/L for data collected on 25th November 2020, 

11thDecember 2020 and 28th January 2021, respectively as shown in Table 4.5. The 

estimated Chl-a measurements ranged between 23.58 – 60.67 mg/L, 31.87 -83.15 mg/L 

and 29.52-76.22 mg/L for data collected on 25th November 2020, 11thDecember 2020 

and 28th January 2021, respectively as shown in Table 4.5.  
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Table 4.5: In situ and estimated Chl-a for the specific sampling days 

Sampling 

Station  

In Situ Chl-a (mg/l) EMRM Estimated Chl-a (mg/l) 

25/11/2020 11/12/2020 28/01/2021 25/11/2020 11/12/2020 28/01/2021 

1 27.16 37.44 24.22 30.11 40.65 40.65 

2 43.01 31.36 33.16 47.49 38.96 38.96 

3 35.14 34.39 39.78 33.97 31.87 41.55 

4 23.08 39.11 28.07 24.8 57.02 57.02 

5 38.2 43.8 45.86 31.05 65.73 65.73 

6 32.35 72.8 80.86 60.67 58.57 76.22 

7 59.42 69.75 75.42 45.49 44.46 32.91 

8 45.2 41.41 25.4 23.58 38.96 30.3 

9 43.34 57.84 48.79 56.8 58.91 58.91 

10 28.65 43.4 40.39 27.53 42.86 29.52 

11 52.52 83.4 30.4 40.42 83.15 56.20 

12 30.04 37.38 38.86 37.63 60.50 45.56 

13 25.09 69.08 70.51 27.19 58.90 72.96 

 

The band combinations and ratios that gave the best estimate of Chl-a, the regression 

equations and associated errors are shown in Table 4.6.  

Table 4.6: Regression equations and associated errors for Chl-a estimation 

 Regression Equation Band 

Combination 

R2 nRMSE 

(mg/l) 

Bias 

(mg/l) 

25/11/2020 y = 21293x2 – 32118x + 

12136 

B3/B1 0.799 0.238 3.674 

 y = 7820x2 – 20734x + 13767 B1/B3 0.802 0.227 3.092 

 y = 16746x2 – 53631x + 

42964 

(B1/B4) + B1 0.807 0.406 -3.696 

11/12/2020 y = 8797x2 – 7585x + 1658 B4/B1 0.68 0.493 10.344 

 y = 7556x2 – 6881x + 1591 (B4/B1) +B4 0.682 0.525 10.966 

28/01/2021 y = -8121x2 + 8983x – 2389 (B4/B1) + B4 0.920 0.716 16.886 

 y = -9145x2 + 9639x – 2444 B4/B1 0.926 0.676 16.234 
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Farming is one of the key economic activities in the catchment. Therefore, the notably 

high Chl-a concentrations could be attributed to the inflow of fertilizer leachate into the 

reservoir. The highest concentration of Chl-a specifically in December 2020 and 

January 2021 was noted in the same locations where TSS concentration was high. The 

inflow of water from River Endoroto and River Ellegerini increases the concentration 

of particulate matter and nutrients at these points. This is because farming is the leading 

economic activity around the reservoir and this means that the observed Chl-

a concentrations can be linked to diffuse pollution by fertilizer leachate from the nearby 

farms, specifically, an influx of total phosphorous and total nitrogen which are the main 

variables that contribute to nutrient enrichment. Consequently, the concentration of 

Chl-a which is the response variable increases. The problem is further worsened by the 

rainy season which facilitates significant nutrient runoff followed by a dry season, 

which provides perfect conditions for algae incubation (KDHE, 2011). Furthermore, 

the increased concentration of particulate matter provides attachment sites for the algae 

and this enables the algal bloom concentration to be propagated (KDHE, 2011). Thus, 

this led to the observed high concentration of both TSS and Chl-a in the same regions. 

The remote sensing reflectance (Rrs) based on second order polynomial regression 

models for band ratios and mixed band combinations gave the best estimate of Chl-a. 

The visible bands B1, B3, and B4 (coastal aerosol, green, and red) gave the highest R2 

values of 0.802, 0.682, 0.926 for the specific data collection dates between the 

laboratory and satellite-derived Chl-a values (Table 4.6). Jaelani et al. (2016) also 

obtained comparable results using band ratios (B1, B2, B3, B4) in developing retrieval 

algorithms for Chl-a with the accuracy denoted by R2>0.5. As opposed to the study by 

Lai et al. (2021) which states that the best band combination for the retrieval of Chl-a 

is that which includes the blue and near infrared bands, the near infrared band is not 
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that informative in the retrieval of Chl-a in this reservoir. Regardless, Lai et al. (2021) 

also acknowledges that if only the near infrared and blue bands are used for Chl-a 

retrieval, then the correlation is not ideal. Therefore, the performance evaluation 

confirmed that the most appropriate algorithms for the retrieval of Chl-a in the reservoir 

using Landsat-8 OLI are those developed from band combinations of B2, B3, and B4 

(Table 4.6).  

4.1.4 Validation of Predicted Water Quality Parameters with in situ 

Measurements 

Five (5) sampling stations were used to validate the regression equations developed. 

The validation results are presented in Table 4.7 with inclusion of data from the 

sampling locations used in model calibration. 

Table 4.7: Validation results for predicted and in situ water quality measurements 

25/11/2020 Water 

Quality 

Parameter 

Data 

Source 

Sampl

e (n) 

Min. Max. Med. Avg. SD CV 

(%) 

SE 

Turbidity In situ 13 4.00 10.00 8.00 7.38 1.94 26.25 0.54 

 Landsat

-8 OLI 

13 4.50 10.13 7.49 7.44 1.96 26.31 0.54 

TSS In situ 13 250.6 300.4 273.00 271.15 15.04 5.55 4.17 

 Landsat
-8 OLI 

13 253.75 300.67 268.23 268.17 13.37 4.99 3.71 

Chl-a In situ 13 23.08 59.42 35.14 37.17 11.04 29.71 3.06 

 Landsat

-8 OLI 

13 23.58 60.67 33.97 37.44 12.08 32.26 3.35 

11/12/2020 Turbidity In situ 13 4.00 13.00 6.00 7.08 2.63 37.15 0.73 

 Landsat

-8 OLI 

13 4.02 12.90 6.27 6.25 2.24 35.92 0.62 

TSS In situ 13 205.80 349.40 287.60 281.42 34.57 12.29 9.59 

 Landsat

-8 OLI  

13 200.02 333.88 285.62 279.89 29.82 10.66 8.27 

Chl-a In situ 13 31.36 83.40 43.40 50.86 17.38 34.17 4.82 

 Landsat
-8 OLI  

13 31.87 83.15 57.02 52.35 14.16 27.06 3.93 

28/01/2021 Turbidity In situ 13 3.00 17.00 10.00 8.62 3.55 41.18 0.98 

 Landsat

-8 OLI 

13 5.38 16.86 6.89 7.99 2.97 37.22 0.82 

TSS In situ 13 207.60 321.30 284.80 281.17 31.56 11.23 8.75 

 Landsat

-8 OLI  

13 207.85 308.58 287.54 285.07 26.64 9.35 7.39 

Chl-a In situ  13 24.22 80.86 39.78 44.75 19.19 42.88 5.32 

 andsat-8 

OLI 

13 29.52 76.22 45.56 49.73 15.89 31.94 4.41 
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The EMRM algorithm used for the prediction of WQPs is a data-driven model and data 

driven models have been frequently used to assess the water quality index (WQI) for 

natural streams (Najafzadeh et al., 2021). Based on the results shown in Table 4.7 the 

variation in concentration was highest for TSS then Chl-a, and lastly Turbidity. The 

standard deviation (SD), coefficient of variation (CV), and standard error (SE) metrics 

in Table 4.7 show that Landsat-8 OLI mostly underestimated the concentration of the 

WQPs nonetheless with a small margin as denoted by the small difference in the CV 

values achieved for both in situ and Landsat-predicted WQPs. For instance, the 

coefficient of variation for in situ turbidity and Landsat-estimated turbidity are 26.25% 

and 26.31% respectively, which is notably a low difference. This means that both 

Landsat and laboratory measurements can reliably give accurate results.  

The accuracies obtained based on the EMRM model can be compared to the results 

obtained by (Najafzadeh et al., 2021) who used four well-known DDMs including 

Evolutionary Polynomial Regression (EPR), M5 Model Tree (MT), Gene-Expression 

Programming (GEP), and Multivariate Adaptive Regression Spline (MARS) for the 

prediction of the WQI in Karun River, Iran. The number of DDMs feeding-input 

variables were controlled through techniques like Forward Selection (FS), and Gamma 

Test and the FS-M5 MT gave the best estimate of the WQI. 

Figure 4.1, Figure 4.2, and Figure 4.3 present the laboratory-measured and Landsat-

predicted results for turbidity, TSS, and Chl-a. Figure 4.2 shows that some Landsat-

predicted values matched the in situ measurements. For instance, Landsat-predicted and 

in situ TSS measurements mostly coincided and the CV between the values was 11%. 

Additionally, the overestimated or underestimated Landsat-predicted values in most 

cases had a small margin of error. Even though in this study the number of input 

variables were not controlled because of their low numbers (only three inputs 
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specifically turbidity, TSS, and Chl-a), great accuracies were still achieved as shown 

through the validation results in Table 4.7. This shows that the EMRM approach is a 

reliable DDM for the estimation of WQPs from Landsat-8 OLI. 

In Figure 4.2, the actual and predicted values followed a similar trend line with most 

points coinciding for actual and predicted turbidity and TSS values. For Chl-a, notable 

variations were at points (4,5, and 12) and points (6 and 7) where Landsat-8 values were 

overestimated and underestimated respectively by a significant margin. Figure 4.3 

shows that there was a significant variation of the actual and predicted values 

specifically for turbidity and Chl-a. Landsat underestimated the turbidity values while 

Chl-a values were overestimated. However, there was a slight variation between 

Landsat-predicted and in situ TSS since Landsat estimated the TSS values with a 

coefficient of variation of less than 10%. 

The model results can be compared with the results from the study by Nafsin and Li 

(2022) which investigated the effectiveness of four stand-alone machine learning (ML) 

algorithms and six novel hybrid algorithms in predicting the 5-day BOD of Buriganga 

River, Bangladesh. The Random Forest-Support Vector Machine (RF-SVM), Artificial 

Neural Network-Support Vector Machine (ANN-SVM), and Gradient Boosting 

Machine-Support Vector Machine (GBM-SVM) achieved high prediction accuracies 

of 91%, 89.6%, and 88.8% respectively. This means that the ML algorithms, just like 

the EWRM algorithm, can also be used to improve the accuracy of water quality 

parameter predictions from satellite imagery. The high prediction accuracies could 

significantly reduce the coefficient of variation between in situ and Landsat-predicted 

WQPs. 
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Figure 4.1: Variations between prediction and validation results for turbidity, 

TSS, and Chl-a (25/11/2020). 
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Figure 4.2: Variations between prediction and validation results for turbidity, 

TSS, and Chl-a (11/12/2020). 



54 
 

 

Figure 4.3: Variations between prediction and validation results for turbidity, 

TSS, and Chl-a (28/01/2021). 

Generally, Landsat-8 OLI did great in the estimation of WQPs with realistic variations 

between the predicted and in situ measurements based on the metrics in Table 4.7. Even 

though the lowest variation was achieved in TSS estimation, the accuracy of WQM is 

highly dependent on the efficacy of atmospheric correction (Bonansea et al., 2019). 

Overall, Landsat-8 OLI avails a reliable and affordable technique for WQM, the 

effectiveness of which is dictated by the adequacy of the atmospheric and radiometric 

corrections. 
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The use of Landsat 8 OLI to estimate the influent water quality characteristics can be 

adapted to help maintain a stable performance of the water treatment plant. There is a 

significant relationship between the raw WQPs and the quantity of flocculants and 

coagulants used in water treatment. In practice, the influence WQP estimations are 

estimated based on the conventional sampling and laboratory analysis method. 

However, changing weather patterns such as rainfall events may cause large variations 

in the influent water quality characteristics, and this could reduce the efficiency of the 

water treatment plants. Therefore, using Landsat data can help anticipate and effectively 

plan for, and monitor the water treatment plant processes with reference to the types of 

chemicals to be used. 

4.2 Spatial Distribution and Variability of Estimated and Predicted Water Quality 

Parameters 

Ordinary Kriging was used in the development of spatial maps showing the distribution 

and variability of the Landsat-predicted and in situ WQPs. The spatial distribution maps 

gave a visual analysis of the spatial distribution of the WQPs in the reservoir based on 

data collected from the specific sampling points. 

4.2.1 Spatial Distribution and Variability of Turbidity 

Figure 4.4 shows that for dates 11/12/2020 and 28/01/2021 the spatial turbidity 

distributions for Landsat-estimated and laboratory measurements were closely related. 

The regression models developed based on the data collected for the entire sampling 

period estimated the reservoir turbidity with more than 70% accuracy. Thus, even 

though there are some discrepancies highlighted in the spatial distribution maps which 

indicate a mismatch between Landsat-predicted and in situ measurements at some 

specific sapling points, the differences could be attributed to overestimation or 

underestimations by Landsat-8 OLI. The difference is also evident in Figure 4.1 and 



56 
 

Figure 4.4 which show lower coincidence between the laboratory and validated results 

at these specific points. Overall, the Landsat-8 OLI estimations in this study are similar 

to the observations reported by Ouma et al. (2020) in that estimated results are closely 

correlated with in situ turbidity both in spatial location and aerial distribution. 

  

a) Measured and estimated turbidity measurements on 25th November, 2020 

  

b) Measured and estimated turbidity measurements on 11thDecember, 2020 

 
 

c) Measured and estimated turbidity on 28th January, 2021 

Figure 4.4: Spatial distribution of measured and estimated turbidity. 
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4.2.2 Spatial Distribution and Variability of TSS 

The TSS spatial distribution maps show that the in situ and Landsat-estimated 

measurements are highly correlated, Figure 4.5. For both Landsat-8 OLI and in situ 

measurements, high TSS values were registered at sampling locations L10, (L11 & 

L13), and (L4, L9, &L13) in November 2020, December 2020, and January 2021 

respectively. This shows that for the entire sampling period, the points with the highest 

TSS for both in situ and Landsat-estimated concentrations coincided. 

Notably, almost all the places that have a high TSS concentration also have high 

concentration of turbidity. This could be explained based on the findings by Lotfi et al. 

(2019) which confirmed that the total amount of suspended solids is a determining 

factor that contributes to an increase in turbidity. The spatial distribution and variability 

maps show that Landsat-8 OLI achieved great results in estimating TSS as indicated in 

Figure 4.1, Figure 4.2, and Figure 4.3 and in the statistical results in Table 4.4 and Table 

4.7. Therefore, Landsat-8 OLI is useful for estimation and mapping reservoir TSS. 
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a) Measured and estimated TSS on 25th November, 2020 

  

b) Measured and estimated TSS  on 12thDecember, 2020 

 
 

c) Measured and estimated TSS  on 28th January, 2021 

Figure 4.5: Spatial distribution of measured and estimated TSS. 

 

4.2.3 Spatial Distribution and Variability of Chlorophyll-a 

The spatial maps for Chl-a distribution for both the lab and in-situ measurements were 

closely correlated. For instance, points (L11 and L13) and point L8 for data collected 

in December and January respectively registered the highest Chl-a values, Figure 4.6. 
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However, in November, points L1, L4, and L10 had the lowest in situ and Landsat-

estimated Chl-a concentration. The regions where Chl-a concentrations are high are in 

close proximity to areas where River Endoroto joins the reservoir. The river introduces 

point and non-point pollutants from the adjoining catchment areas where the main 

economic activities are manufacturing, and agriculture. 

Sampling was done during the dry season and this means that there was decreased 

nutrient transport into the reservoir. However, Poddar et al. (2019) notes that 

phytoplankton blooms are expected during the dry season due to the favorable water 

temperatures and the existence of pre-deposited nutrients carried by the rivers during 

the rainy season. Consequently, high Chl-a is observed at these points close to where 

the rivers enter the reservoir.  The EMRM approach used in this study and the resultant 

models could be used to predict and map turbidity, Chl-a, and TSS in Two Rivers Dam 

reservoir and other reservoirs in the catchment. The near-real time monitoring approach 

allowed for the analysis of the selected physical WQPs based on laboratory 

measurements and Rrs values from Landsat-8 OLI. The models are only applicable to 

Two Rivers Dam and reservoirs in the region. However, the model constants should be 

tailored based on the hydrological characteristics of the reservoirs and the periodic 

changes in hydrological and climatic conditions (Ouma et al., 2020). 
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a) Measured and estimated Chl-a  on 25thNovember, 2020 

  

b) Measured and estimated Chl-a  on 12thDecember, 2020 

  

c) Measured and estimated Chl-a  on 28th January, 2021 

Figure 4.6: Spatial distribution of measured and estimated Chl-a. 

 

4.3 ANN Model 1 – Prediction of Treated Water Quality Parameters 

ANN model 1 results related to treated water turbidity, TSS, and Chl-a are shown in 

Figure 4.7, with the related R2 and Mean Squared Error (MSE) shown in Table 4.8.  
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Figure 4.7: ANN Model 1 predictions of treated water quality parameters. 

Table 4.8: ANN Model 1 results 

Model 1 Output R2 MSE 

Turbidity 0.9933 0.0026 NTU 

TSS 1 0 mg/l 

Chl-a 0.8665 0.0252 mg/l 

 

The model has dependable accuracy in predicting the treated WQPs with R2 values of 

0.99, 1.0, and 0.87 for turbidity, TSS, and Chl-a respectively (Table 4.8). The MSE for 

the predictions are also low. That is errors of 0.0026, 0, and 0.0252 for turbidity, TSS, 

and Chl-a respectively. An ANN-MLP model used by Haghiri et al. (2018) to predict 

treated WQPs based on the raw water turbidity, pH, alkalinity, and alum dose. The 
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ANN model also attained reasonable accuracy in predicting the treated WQPs with R2 

values of 0.85 to 0.94. The MSE values are low with an average of 0.11NTU, 0.01pH, 

and 26.31mg/l for turbidity, pH, and alkalinity respectively. Setshedi et al. (2021) also 

developed an ANN-MLP model to predict WQPs in three rivers located in three 

municipalities in the Eastern Cape Province of South Africa. The accuracy of the model 

was tested by comparing the observed results to the predicted values. Just like in this 

scenario, the model exhibited a great understanding of the data sets and it also gave a 

good predictive accuracy with an R2 of 0.99 and MSE of 39.07 (Setshedi et al., 2021).  

Kennedy et al. (2015) developed four ANN models to predict treated WQPs, 

specifically dissolved organic matter and turbidity at the Akron Water Treatment Plant 

in Ohio, USA. Even though the models were limited to turbidity and dissolved organic 

matter, the results highlight the validity of applying ANN models in the prediction of 

treated WQPs as a function of the raw WQPs and the coagulant dose. Similarly, Seo et 

al. (2016) also developed an ANN model for forecasting eight WQPs (total nitrogen, 

total phosphorous, electric conductivity, Chl-a, dissolved oxygen, temperature, pH, and 

turbidity) downstream of Cheongpyeong Dam in Seoul city. The average R2 values for 

seven of these parameters ranged between 0.881 to 0.998 with RMSE values ranging 

between 0.001 and 0. 360. The R2 value for turbidity was slightly lower at 0.638 with 

RMSE of 3.208.   

Unlike in the current study where the model was applied to a water treatment plant, the 

predictive capacity of the models by Setshedi et al. (2021), Kennedy et al. (2015), and 

Seo et al. (2016) was tested on dams and rivers. However, the accuracy with which the 

models predicted the WQPs shows the opportunities for using ANN as a predictive tool 

and the possibility of scaling up these models and using them for water quality 

predictions in water treatment plants.  
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4.4 ANN Model 2 – Prediction of Optimum Coagulant Dose 

Results for optimal coagulant dose obtained by using model 2 are shown in Figure 4.8.  

 

Figure 4.8: ANN Model 2 predictions of optimal coagulant dose. 

 

The model also has a high accuracy in predicting the optimum coagulant dose required 

for treatment with an R2 of 0.9987 and a MSE of 0 mg/l. A study by Kote and Wadkar 

(2019) used ANN to model chlorine and coagulant dose in a water treatment plant based 

on jar test experiments. The predicted coagulant doses were highly related to the actual 

doses with R2 of 0.81 and MSE of 5.47g/m3. The accuracy of the predictions indicates 

that ANN is capable of precisely modelling the coagulation process. This is also the 

case for the study done by Haghiri et al. (2018) which aimed at forecasting the optimum 

coagulant dose by using ANN to model jar test experiments. Just like in this study, 

Haghiri et al. (2018) developed an ANN-MLP with a single hidden layer to predict the 
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optimum coagulant dose for the water treatment process and the model also attained a 

reasonable accuracy with R2 of 0.93 and MSE of 0.37. Sengul and Gormez (2013) also 

developed an ANN-MLP to determine the optimum coagulant dose in drinking water 

treatment. The model also achieved reasonable accuracies with R2 value of 0.8 and 

RMSE of 12.51. Sengul and Gormez (2013) also worked with limited data just like in 

this study and they noted that the performance of the network is affected by the quality 

and completeness of the data. Regardless, the accuracies realized show the potential of 

ANN models in coagulant forecasting with the core focus being increasing the size of 

the dataset in order to improve the system’s performance. The value of large datasets 

in increasing ANN model accuracies was demonstrated by Baouab and Cherif (2018) 

who used data from large databases of three water treatment plants in developing ANN 

models to predict the optimal coagulant dose. The large datasets resulted in high 

accuracies and it also showed the possibility of model transfer for use in similar water 

treatment plants. 

Jayaweera and Aziz (2018) used a different ANN modelling approach by developing 

an extreme learning machine (ELM) single layer feed forward neural network, ELM-

radial basis neural network, and an ANN-MLP neural network for prediction of the 

optimum coagulant dosage. All the models developed performed well with R2 

exceeding 0.97. This study only used the MLP neural network modelling approach but 

the accuracies obtained are highly comparable. Even though the ELM-radial basis 

neural network gave better results than the ANN-MLP model used in this study, the 

prediction accuracy obtained with the ANN-MLP model is still highly accurate. Thus, 

the ANN-MLP can be used to efficiently determine the coagulant dose required for 

treatment. 
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4.5 Summary 

Models always carry a certain degree of error and this could limit the possibility of 

developing a completely predictive water treatment plant model. However, there are 

endless possibilities for using ANNs in water treatment by creating a system that runs 

in parallel with the main treatment plant processes. The results from this study 

highlights the usefulness of ANN models in simulating the processes that occur in jar 

test experiments depending on the training data range. Additionally, the values obtained 

are also within acceptable limits and this demonstrates the accuracy with which ANN 

models can be used to predict WQPs and the optimal coagulant dose. Therefore, the 

process models developed in this study are useful in understanding the coagulation 

process based on different factors that affect raw water quality. The process models can 

also be combined with operators’ experience to enhance coagulant dosing practices at 

water treatment plants. An analysis of the existing errors indicate that the ANN models 

performed even when model development was done with limited data. Generally, the 

model accuracy could be increased if the modelling process leveraged on more data 

since ANN modelling is a parametric method. The ANN models for use in water 

treatment plants can be combined with periodic water quality data from Landsat to help 

improve the efficiency of the treatment process, and to optimize the coagulant dosing 

practices. 

The study explored the possibility of a predictive water treatment plant model with the 

focus being from the inlet of the water treatment works to the final point of treatment. 

The knowledge gained is useful in informing decisions to develop a predictive water 

treatment plant model that starts from the reservoir. This may prove to be an effective 

tool to determine bottlenecks and make quick decisions to maximize the efficiency of 

treatment. The modelling aspect can also be combined with predictive models for 
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running the water treatment plants. Thus, combining the monitoring aspect using 

remote sensing will help to give a better estimate of the optimum coagulant dose based 

on the changes in the catchment. 
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CHAPTER 5: CONCLUSION AND RECOMMENDATIONS 

5.1 Conclusion 

The study aimed at evaluating the possibility of applying a smart monitoring approach 

using remote sensing and ANN to enhance the control of water treatment plant 

processes.  

From the study results, the following conclusions were drawn: 

1. A comparison of the extracted spectral reflectance values from Landsat-8 OLI 

satellite data and laboratory-derived water quality data of Chl-a, turbidity, and 

TSS established that Landsat-8 OLI availed an effective approach for reservoir 

water quality retrieval. For the retrieval of turbidity, the second-order 

polynomial regression models for dates 25/11/2020, 12/12/2020, and 

28/01/2021 respectively gave the best results with R2 values of 0.797, 0.757, 

0.736. TSS was best estimated by logarithmic, exponential, and polynomial 

regression models with R2 values of 0.808, 0.853, and 0.766 for the specific data 

collection dates. For the estimation of Chl-a, the Rrs values based on second 

order polynomial regression models performed best with R2 values of 0.802, 

0.682, 0.926 for the specific data collection dates. Furthermore, remote sensing 

could enable continuous WQM and/or management. 

2. The spatial distribution maps developed to highlight the distribution and 

variability of the estimated and predicted WQPs for the selected period were 

comparable to a great extent as evidenced by the almost similar values obtained 

at most of the sampling points. The regression models developed based on the 

data collected for the entire sampling period estimated the reservoir turbidity 

with more than 70% accuracy. This means that the sampling data obtained at 
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specific locations either through sampling or from satellite images can be used 

to interpret and infer water quality predictions in the entire water body. 

3. The ANN model developed for predicting treated WQPs based on the extracted 

spectral reflectance values from Landsat-8 OLI highlighted some of the 

possibilities for using ANNs in water treatment. The first ANN model 

developed to predict treated water quality parameters had a dependable 

accuracy with R2 values of 0.99, 1.0, and 0.87 for turbidity, TSS, and Chl-a 

respectively. The MSE for the predictions were 0.0026 NTU, 0 mg/l (meaning 

that the model has no error in predicting TSS), and 0.0252 mg/l for turbidity, 

TSS, and Chl-a respectively. The ANN model developed showed the possibility 

of using extracted spectral reflectance values from satellite images for water 

quality predictions and optimizing water treatment plant operations.  

4. The ANN model developed to determine the optimum coagulant dose required 

for water treatment had a high accuracy with R2 of 0.9987 and a MSE of 0 mg/l. 

This showed that even with limited data, the MLP-ANN can be used for 

optimizing the coagulant dosing estimations in water treatment plants. 

Furthermore, the accuracies achieved also highlight the possibility of 

developing ANN that are adaptive to changes in raw water quality in water 

treatment plants, even though the monitoring and predictive capacity of ANNs 

in combination with Landsat 8 and 9 data is presently limited to 8 day intervals. 

5.2 Recommendations  

1. To increase the efficacy and dependability of Landsat-8 OLI in WQPs retrieval, 

model coefficients should be developed using in situ data from a significant 

number of sampling locations for varied seasons. Furthermore, combining 

Landsat-8 and Landsat-9 will also reduce the revisit time for data collection to 
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8 days. This means that the model constants can be improved even further since 

the combination of these two satellites could allow for inter-seasonal 

monitoring. 

2. The empirical models developed are only applicable to Two Rivers Dam system 

and other reservoirs in the region. However, the development of model transfer 

functions should be done in line with the hydrological characteristics of the 

reservoirs and the seasonal changes in hydrological and climatic conditions to 

enable the developed models to be used for water quality predictions in other 

reservoirs within the catchment. 

3. Given that the MLP-ANN model is a parametric method, then the accuracy of 

the model depends on the quality and quantity of the collected data. Therefore, 

more studies should be done with fairly large data sets collected at different 

seasons of the year in order to test the accuracy of the model with highly variable 

input data. 

4. Models carry a certain margin of error and this makes it quite difficult to develop 

a completely predictive water treatment plant model. However, efforts should 

still be invested in developing completely predictive treatment plant models to 

run in parallel with the main treatment plant operations. This will help to 

understand the water treatment plant performance under different conditions 

thus helping to determine bottlenecks and influencing decision-making 

processes. Furthermore, the concept can also be used to maximize water 

treatment plants’ efficiency. 
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APPENDICES 

Appendix A: Raw Landsat-8 images used for the study 

 

 

Image acquired on 25/11/12/2020 
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Image acquired on 11/12/2020 
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Image acquired on 28/01/2021 
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Appendix B: Surface Reflectance and Top of Atmosphere (TOA) Reflectance 

values 

 

The TOA reflectance values are obtained from radiometric calibration in the FLAASH 

model which converts the digital numbers obtained from satellite images to TOA 

reflectance values. 

TOA Reflectance (25/11/2020) 

Sampling 

Point 

Band 

1 

Band 

2 

Band 

3 

Band 

4 

Band 

5 

Band 

6 

Band 

7 

L1 0.6546 0.4974 0.5049 0.4772 0.5288 0.4091 0.3495 

L2 0.6192 0.4663 0.4876 0.4352 0.5034 0.4129 0.3439 

L3 0.6462 0.4928 0.5013 0.473 0.5288 0.4144 0.3552 

L4 0.6821 0.5286 0.5197 0.494 0.5467 0.4288 0.3694 

L5 0.6716 0.5145 0.5188 0.4893 0.5418 0.4375 0.3818 

L6 0.6741 0.5142 0.5364 0.5007 0.5466 0.4559 0.3972 

L7 0.5966 0.4477 0.4688 0.4354 0.4947 0.3991 0.3404 

L8 0.5618 0.4204 0.4224 0.398 0.4723 0.3695 0.3204 

L9 0.6525 0.4945 0.5177 0.4815 0.5308 0.4438 0.3871 

L10 0.6402 0.4975 0.4747 0.4538 0.5244 0.4124 0.3643 

L11 0.6228 0.476 0.4869 0.4551 0.5115 0.4168 0.3526 

L12 0.6817 0.5259 0.5313 0.4997 0.5508 0.4398 0.3788 

L13 0.6455 0.4945 0.4951 0.4646 0.5226 0.4212 0.3616 

TOA Reflectance (11/12/2020) 

Sampling 

Point 

Band 

1 

Band 

2 

Band 

3 

Band 

4 

Band 

5 

Band 

6 

Band 

7 

L1 0.1786 0.0826 0.1124 0.085 0.0556 0.0386 0.0249 

L2 0.1803 0.0843 0.1133 0.0854 0.0321 0.0169 0.0119 

L3 0.1804 0.0849 0.114 0.0835 0.0343 0.0188 0.0132 

L4 0.1813 0.0854 0.1158 0.0893 0.0317 0.0145 0.0102 

L5 0.1805 0.0852 0.1165 0.0904 0.0315 0.0147 0.0099 

L6 0.1805 0.085 0.1157 0.0893 0.0314 0.0141 0.0095 
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L7 0.1798 0.0845 0.115 0.0864 0.0296 0.0138 0.0097 

L8 0.1788 0.0844 0.1158 0.0847 0.0316 0.016 0.0109 

L9 0.1788 0.0841 0.1155 0.0885 0.0385 0.0252 0.0156 

L10 0.1749 0.0776 0.0985 0.0671 0.0846 0.0763 0.0422 

L11 0.189 0.0932 0.1145 0.0971 0.1669 0.1645 0.1085 

L12 0.1797 0.0855 0.1163 0.0892 0.0336 0.0155 0.0108 

L13 0.1806 0.0852 0.1163 0.0894 0.0331 0.0154 0.0105 

TOA Reflectance (28/01/2021) 

Sampling 

Point 

Band 

1 

Band 

2 

Band 

3 

Band 

4 

Band 

5 

Band 

6 

Band 

7 

L1 0.1511 0.0459 0.0838 0.0655 0.0537 0.0273 0.0183 

L2 0.1546 0.05 0.0881 0.0687 0.0274 0.0152 0.0117 

L3 0.1516 0.048 0.0874 0.0682 0.0284 0.0151 0.0109 

L4 0.1543 0.0494 0.0899 0.071 0.0245 0.0106 0.007 

L5 0.1542 0.0502 0.093 0.0742 0.0245 0.0093 0.0071 

L6 0.1544 0.0506 0.0931 0.0742 0.0242 0.01 0.0068 

L7 0.1529 0.0483 0.088 0.0679 0.0242 0.011 0.0078 

L8 0.1524 0.0475 0.0874 0.0674 0.0257 0.0116 0.0077 

L9 0.1537 0.0498 0.0931 0.0741 0.0402 0.0182 0.0116 

L10 0.1485 0.0445 0.0867 0.0656 0.1094 0.0567 0.0338 

L11 0.1592 0.0557 0.1025 0.0973 0.1603 0.1739 0.1259 

L12 0.1524 0.0484 0.0881 0.069 0.0258 0.0115 0.0078 

L13 0.1539 0.0499 0.0928 0.0734 0.0265 0.0113 0.0073 
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Appendix C: Remote sensing reflectance (Rrs) 

The Rrs is obtained after dark object subtraction which converts TOA reflectance to 

surface reflectance. The surface reflectance values are then divided by π to obtain Rrs. 

Remote Sensing Reflectance (Rrs) (25/11/2020) 

Sampling 

Point 

Band 

1 

Band 

2 

Band 

3 

Band 

4 

Band 

5 

Band 

6 

Band 

7 

L1 0.2084 0.1583 0.1607 0.1519 0.1683 0.1302 0.1112 

L2 0.1971 0.1484 0.1552 0.1385 0.1602 0.1314 0.1095 

L3 0.2057 0.1569 0.1596 0.1506 0.1683 0.1319 0.1131 

L4 0.2171 0.1683 0.1654 0.1572 0.1740 0.1365 0.1176 

L5 0.2138 0.1638 0.1651 0.1557 0.1725 0.1393 0.1215 

L6 0.2146 0.1637 0.1707 0.1594 0.1740 0.1451 0.1264 

L7 0.1899 0.1425 0.1492 0.1386 0.1575 0.1270 0.1084 

L8 0.1788 0.1338 0.1345 0.1267 0.1503 0.1176 0.1020 

L9 0.2077 0.1574 0.1648 0.1533 0.1690 0.1413 0.1232 

L10 0.2038 0.1584 0.1511 0.1444 0.1669 0.1313 0.1160 

L11 0.1982 0.1515 0.1550 0.1449 0.1628 0.1327 0.1122 

L12 0.2170 0.1674 0.1691 0.1591 0.1753 0.1400 0.1206 

L13 0.2055 0.1574 0.1576 0.1479 0.1663 0.1341 0.1151 

Remote Sensing Reflectance (11/12/2020) 

Sampling 

Point 

Band 

1 

Band 

2 

Band 

3 

Band 

4 

Band 

5 

Band 

6 

Band 

7 

L1 0.0569 0.0263 0.0358 0.0271 0.0177 0.0123 0.0079 

L2 0.0574 0.0268 0.0361 0.0272 0.0102 0.0054 0.0038 

L3 0.0574 0.0270 0.0363 0.0266 0.0109 0.0060 0.0042 

L4 0.0577 0.0272 0.0369 0.0284 0.0101 0.0046 0.0032 

L5 0.0575 0.0271 0.0371 0.0288 0.0100 0.0047 0.0032 

L6 0.0575 0.0271 0.0368 0.0284 0.0100 0.0045 0.0030 

L7 0.0572 0.0269 0.0366 0.0275 0.0094 0.0044 0.0031 

L8 0.0569 0.0269 0.0369 0.0270 0.0101 0.0051 0.0035 

L9 0.0569 0.0268 0.0368 0.0282 0.0123 0.0080 0.0050 

L10 0.0557 0.0247 0.0314 0.0214 0.0269 0.0243 0.0134 
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L11 0.0602 0.0297 0.0364 0.0309 0.0531 0.0524 0.0345 

L12 0.0572 0.0272 0.0370 0.0284 0.0107 0.0049 0.0034 

L13 0.0575 0.0271 0.0370 0.0285 0.0105 0.0049 0.0033 

Surface Reflectance (28/01/2021) 

Sampling 

Point 

Band 

1 

Band 

2 

Band 

3 

Band 

4 

Band 

5 

Band 

6 

Band 

7 

L1 0.0481 0.0146 0.0267 0.0208 0.0171 0.0087 0.0058 

L2 0.0492 0.0159 0.0280 0.0219 0.0087 0.0048 0.0037 

L3 0.0483 0.0153 0.0278 0.0217 0.0090 0.0048 0.0035 

L4 0.0491 0.0157 0.0286 0.0226 0.0078 0.0034 0.0022 

L5 0.0491 0.0160 0.0296 0.0236 0.0078 0.0030 0.0023 

L6 0.0491 0.0161 0.0296 0.0236 0.0077 0.0032 0.0022 

L7 0.0487 0.0154 0.0280 0.0216 0.0077 0.0035 0.0025 

L8 0.0485 0.0151 0.0278 0.0215 0.0082 0.0037 0.0025 

L9 0.0489 0.0159 0.0296 0.0236 0.0128 0.0058 0.0037 

L10 0.0473 0.0142 0.0276 0.0209 0.0348 0.0180 0.0108 

L11 0.0507 0.0177 0.0326 0.0310 0.0510 0.0554 0.0401 

L12 0.0485 0.0154 0.0280 0.0220 0.0082 0.0037 0.0025 

L13 0.0490 0.0159 0.0295 0.0234 0.0084 0.0036 0.0023 
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Appendix D: Spatial distribution and variability of in situ turbidity on 25/11/2020, 

11/12/2020, and 28/01/2021 respectively. 
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Appendix E: Spatial distribution and variability of Landsat-estimated turbidity 

on 25/11/2020, 11/12/2020, and 28/01/2021 respectively. 
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Appendix F: Spatial distribution and variability of in situ TSS on 25/11/2020, 

11/12/2020, and 28/01/2021 respectively. 
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Appendix G: Spatial distribution and variability of Landsat-estimated TSS on 

25/11/2020, 11/12/2020, and 28/01/2021 respectively. 
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Appendix H: Spatial distribution and variability of in situ Chl-a on 25/11/2020, 

11/12/2020, and 28/01/2021 respectively. 
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Appendix I: Spatial distribution and variability of Landsat-predicted Chl-a on 

25/11/2020, 11/12/2020, and 28/01/2021 respectively. 
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Appendix J: Antiplagiarism Report from CERMESA 

 


