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ABSTRACT 

The theory of optimal experimental designs is concerned with the construction of designs 

that are optimum with respect to some statistical criteria. These criteria include the 

alphabetic optimality criteria such as; D-, A-, E-, T-, G- and C- criterion. Compound 

optimality criteria are those that combine two or more alphabetic optimality criteria. 

Design optimality criteria have specific desired properties that are sufficient in one design 

and at the same time inadequate in another design. Thus, a compound optimality criterion 

gives a balance when any two or more alphabetic optimality criteria are combined. The 

purpose of this study was to obtain compound optimality criteria for second order 

rotatable designs constructed using Balanced Incomplete Block Designs (BIBDs).  The 

objectives of the study were to determine C-optimality criteria for the designs with 32, 64 

and 112 points in three, four and five dimensions respectively; to obtain compound 

optimality criteria and to evaluate the efficiencies for both the alphabetic and compound 

optimality criteria. The C- criterion was achieved through minimizing the variance of the 

information matrix, whereas the compound optimality criteria were obtained from the 

alphabetic criteria using the specified formulae. The efficiencies were determined by 

comparing the specific design optimality criteria to the optimal design Criterion. C-

optimality criteria for designs with 32, 64 and 112 points were obtained with the optimal 

values as 7197.76, 36.63 and 75.33 respectively. The compound optimality criteria CD-, 

DT- and CDT-criterion and the respective efficiencies for the selected points were 

evaluated. In conclusion, the compound optimality criteria obtained provided better 

design characteristics in terms of minimizing variances for parameter estimates and 

model selection. Efficiencies for compound optimality criteria were found to be higher 

relative to the corresponding alphabetic optimality criteria counterparts. The study 

recommended that compound optimality to be used in the selection of designs that are 

used in performing experiments in order to achieve optimal response. It recommends 

further research to be done on U- Criterion that combines D-criterion, A-criterion and E-

criterion by using other designs such as Central Composite Designs.  
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 CHAPTER ONE  

INTRODUCTION 

This chapter covers the background, the statement of the problem, the scope, the 

objectives and the justification of the study. 

1.1Background of the study 

In many life sciences, optimal designs are required in order to cut on the cost of 

experimentation. An experimenter is therefore advised to make the choice of a design to 

be used prior to carrying out any experiment. Response surface methodology (RSM) is a 

collection of statistical and mathematical techniques that are useful in analyzing, 

developing, improving and optimizing processes. According to Box and Draper (1959), 

RSM is either used to explore response surfaces or to estimate the parameters of a model. 

Bose and Draper (1959) point out that the technique of fitting a response surface is one 

widely used to help in the statistical analysis of experiments where the response of an 

output depends on some unknown level of a factor on one or more controllable variables. 

A specific selection of settings or factor levels at which observations are to be taken is 

called a design. Designs are usually chosen to satisfy some desirable criteria chosen by 

the experimenter.   

The proper meaning of optimal designs depends on the situation and can include cost 

effective, minimum variance and minimum bias. The commonly used classical optimality 

criteria which were introduced and widely discussed by Pukelsheim (1993) includes; the 

Determinant criterion (D-), the average variance criterion (A-), the smallest Eigen value 

(E-) and the trace criterion (T-). Many results on optimal designs of experiments are 



2 

 

 

derived under the assumption that the statistical model is known at the design stage. 

However, rarely it is known in advance which model is the most appropriate. Box and 

Hunter (1957) introduced rotatable designs in order to explore the response surfaces. 

They developed second order rotatable designs through Schlaflian vectors and matrices. 

According to Draper (1960), a second order rotatable design aids the fitting of a second 

order surface and provides spherical information contours and a third order rotatable 

design aids the fitting of a third order surface. Thus, the goal of an experiment should be 

dual: to choose an appropriate design and an adequate model. 

 Unfortunately, a design which is optimum for parameter estimation may be inappropriate 

for model discrimination and vice versa. Model adequacy has been a serious problem, 

thus, many authors have developed optimality criteria which are applicable to the dual 

problem of model discrimination and parameter estimation. Thus, this study evaluated the 

C-optimality criteria and further used it to combine with already evaluated classical 

alphabetic criteria to obtain compound optimality criteria and then checked their 

efficiency by determining their relative efficiencies. Relative efficiency shows how good 

a design is when compared with another (Kuhfeld et al 1994). 

The study presents existing designs of order two in three, four and five dimensions 

constructed by Rambaei (2014). Here the alphabetic optimality of designs for the reduced 

parameter system of interest, with respect to the determinant criterion and the trace 

criterion but never considered C- criterion. The C- criterion provides a geometrical 

interpretation for finding C- optimal designs. This thesis introduces optimal 

characteristics for designs with selected points in 32, 64 and 112 points, in particular, the 

C- optimality criterion, the compound optimality criteria and their efficiencies. 
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1.2 Definitions 

1. Optimal designs: These are designs that are constructed on the basis of certain 

optimality criterion that pertains to the closeness of the predicted response surface. 

2. BIBD: A Balanced Incomplete Block Design (BIBD) may be defined as a pair (V, B) 

where V is a v ≥ 2 element set and B is a family of b > 0 subsets of V, called blocks, such 

that each block is of order k < v, each element of V is contained in exactly r > 0 blocks, 

and each pair of elements in V is contained in exactly λ > 0 blocks. The values {v, b, k, r, 

λ} are called the parameters of the design. 

3. RSM: This is a collection of mathematical and statistical techniques useful for 

analyzing problems in which several independent variables influence a dependent 

variable and the goal is to optimize the dependent variable. 

4. Rotatability: The design D is said to be rotatable if the prediction variance is constant 

at all points that are equidistant from the design center, where variance is only a function 

of  ρ2 = x1
2+x2

2+⋯+ xn
2, where ρ2 is the distance from the center of the design. 

5. D- Optimal: This is a criterion that maximizes the determinant of the design matrix 

X/X or it minimizes the size of confidence region on the vector of parameters in the 

model. 

6. T- Optimal: This is the criterion that maximizes the trace of a design matrix X/X. 

7. C- Optimal: This is a criterion that minimizes the variance of the best linear unbiased 

estimate for a given linear combination of the model parameters. 
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1.3 Statement of the Problem  

Optimal designs are classified into three main groups depending on their uses. There are 

those designs useful either for parameter estimation, model discrimination or both. 

However, it is common that most experts who design experiments are interested with the 

optimality criteria for parameter estimation. The optimality criteria for parameter 

estimation include; D-, A- and E- optimality criteria whereas those for model 

discrimination include C- and T- optimality criteria. From the existing literature, it was 

evident that designs criteria for parameter estimation can be inadequate for model 

discrimination and at the same time criteria for model discrimination may be sufficient 

for parameter estimation. This has created a great need to design experts who are 

interested in designs in parameter estimation property and at the same time optimality 

criteria for model discrimination. This study, therefore, seeks to evaluate compound 

optimality criteria and their efficiencies for the existing second order rotatable designs 

constructed using Balanced Incomplete Block Designs. 

1.4 Objectives of the Study 

1.4.1 General Objective 

The main objective of the study was to evaluate compound optimality criteria for second 

order rotatable designs constructed using Balanced Incomplete Block Design. 

1.4.2 Specific Objectives 

The specific objectives were to; 

1. Determine C-optimality criteria for second order rotatable designs constructed 

using specific Balanced Incomplete Block Designs. 
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2. Obtain compound optimality criteria by combining two and three alphabetic 

optimality criteria for designs with 32, 64 and 112 points.  

3. Examine the efficiencies for both the alphabetic and compound optimality 

criteria. 

1.5 Significance of the Study 

This study determined compound optimality criteria for designs with 32, 64 and 112 

points. A Compound optimality criterion contains two statistical properties that are of 

great importance to any design expert interested in the dual properties. This study, 

therefore, was applicable to the dual problem of model discrimination and parameter 

estimation. The combinations of DT-, CD- and CDT- for designs become handy to 

researchers who are interested in designs with both desirable properties for optimal 

response. 
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CHAPTER TWO 

LITERATURE REVIEW 

2.1 Introduction 

In this section, we trace the various streams of thought which have contributed to what is 

now call compound optimality criteria. 

2.2 Optimal Designs 

Different kinds of designs may be engaged in many life sciences such as in the military, 

the engineering field, the agricultural field, the marketing field, manufacturing industries 

and in medicine world. One needs some optimal information on the various designs that 

may be of interest to a particular field. Optimal design is an essential area that deserves 

special attention from researchers who are interested in data analysis that involve a 

statistical model with several parameters. By “design”, we mean the synthesis of a 

suitable experiment to test, estimate and develop a current conjectured model (Box and 

Draper, 1987).  

 Optimal designs are experimental designs that are generated based on a particular 

optimality criterion and are generally optimal only for a specific statistical model. Smith 

(1918) introduced the concept of how a criterion can be used to arrive on optimal designs 

for regression problems. 

Fisher (1935) expounded on the development and applications of experimental designs in 

response surface methodology. Box and Wilson (1951) described the result of their study 

extending over few years concerning various experimental designs that they were 
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investigating. Again in the same year, the two discussed experimental designs whose 

purpose is to find optimality using the smallest possible number of observations. They 

also introduced the concept of central composite designs (CCDs) to generalize the well-

known factorial principle of experimental design making it applicable in the response 

surface methodology. Further, they discussed steepest ascent or descent in the search for 

the near stationary region around the optimum representing the models using Taylor 

series expansion and devised the coded level convention. Box (1952) wrote a paper on 

multifactor designs of First order; again Box (1954) explored response surfaces technique 

by considering general examples. Box and Youle (1955) illustrated the link between the 

fitted surface and the basic mechanism of the system. They gave remarks that the process 

of fitting the response surface can be complex and tedious if done haphazardly. Thus, 

Box and Hunter (1957) expanded the use of rotatable designs. They constructed rotatable 

designs through geometrical configurations and obtained several second order rotatable 

designs. They also examined that a second order rotatable design aids in the fitting of the 

second surface. 

Box and Hunter (1957) denoted k coordinates as a set of points in the experimental space 

of a random vector X =(x i i=1,2,…,n). More so, they developed the moment and non-

singularity conditions for the existence of first and second order rotatable designs. Kiefer 

(1959) developed useful computational procedures for finding optimum designs in 

regression problems of statistical inference.  These designs ensure equal precision on the 

response estimates. Bose and Draper (1959) constructed second order rotatable designs in 

three dimensions. Gardner et al (1959) gave the moment and the non-singularity 

conditions for third order response surface designs. 
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 Box and Draper (1963) managed to construct designs for second and third order response 

models. Draper and Beggs (1971) approximate the true relationship by a function, linear 

in some unknown parameters to be estimated and of some selected order in the 

independent variables. Draper and Beggs (1971) continued reiterating  that under  

tentative assumption of the validity  of this linear model(which can be justified on the 

basis  of a Taylor expansion of the response function ), this brought a sound pillar of 

performing experiments, fit the model using regression techniques and  applied standard  

statistical procedures  to determine whether  this  model appears adequate. 

Extensive research opened up on how to ensure that the models constructed tend to be 

adequate and valid. Mead  and Pike (1975) further stated that  the theory of optimal 

design produced very strong reactions and the division between theoretical statisticians  

researching  into the theory of optimal  designs  and practical  statisticians  designing  

experiments  for applied research  workers  is still very  wide because  the assumptions  

in the theory of  design  have been restrictive as linear models  are assumed  almost  

exclusively  and  optimality criterion is  based  on the generalized  variance of the 

parameter  estimates. However, this restrictiveness undoubtedly explains some of the 

reluctance of practical statisticians to try to produce optimal designs for practical 

problems.  
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2.3 Optimality Criteria 

An optimality criterion is that which summarizes how good a design is, and it is 

maximized or minimized to obtain an optimal design. There are many statistical 

properties issues to consider in the design of an empirical study. Among the problems are 

the control of unwanted variation and the internal validity of the study. How can we be 

sure that a study is internally valid? In other words, how can we be sure that the treatment 

effect is attributed to the variables that are manipulated and not mainly influenced by 

unwanted variation? (Cox,1958).  

This led to the rise of optimal design theory which was initiated by Kiefer (1985). 

According to him, the experimental design is a discrete probability measure defined by 

the set of various experimental conditions and weight coefficients corresponding to them. 

The coefficients show how many experiments (with respect to their total amount) should 

be performed under the condition. Here, the optimality criteria are represented as various 

functions defined on the set of information matrices and possessing some statistical 

sense. A design at which such a functional attains its extreme is called the optimal one. 

A Criterion is based on how well parameters or a response are estimated or researched. 

The research on how a design can attain its extreme led to the development of design 

optimality criteria. Design optimality criteria are primarily concerned with optimal 

properties of the design matrix for the model matrix X. 

By studying the optimality criteria, the design expert can determine the adequacy of a 

proposed experimental design prior to running it. Although a design may be best among 

several designs properties by one optimality criteria again the same design may perform 
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poorly when evaluated by a different optimality criterion. Hence, the choice of a design 

will itself depend upon the choice of the evaluation criteria.  

Mutiso (1998) developed the theory for the optimum estimation of the free parameters in 

the rotatable design point sets, which were first considered by Draper (1960) for which 

Kosgei (2002) obtained alphabetic optimality criteria on the same. Monsef et al (1998) 

deduced in their paper that an optimality criterion showed how good a design is on either 

a set of statistical properties or on a particular property. Further, they classified various 

optimality criteria in the practical fields; alphabetical optimality criteria can be grouped 

into four major types; information-based criteria, distance-based criteria, compound 

design criteria and other criteria. 

There are essentially two ways for the construction of design criteria in (DOE) which 

incorporate different purposes of the experiment. One approach is the construction of 

new optimality criteria by averaging several competitive design criteria. Alternatively 

one could try to maximize one primary optimality criteria subject to constraints for 

specific minimum efficiencies of other criteria, (Dette and Franke, 2000). 

According to Pukelsheim (2006), real optimality criteria are functions with such 

properties as are appropriate to measure largeness of information matrices. The purpose 

of the experiment is to find out about the model and how adequate it is. Experiments can 

be designed to answer a variety of questions. Often, estimates of the parameters of 

interest together with the predictions of the response from the fitted model. The variances 

of the parameter estimates and predictions depend on the particular experimental design 

used and should be as small as possible. In most cases poorly designed experiments waste 
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resources by yielding unnecessarily large variances and imprecise predictions (Atkinson 

et al, 2007).  

2.4 Compound Optimality Criteria 

  An experimental design allows the allocation of individual units in experiments 

(Atkinson and Donev, 1992). Optimal design is a class of experimental designs which are 

oprimal with respect to some statistical criterion (Pukelsheim, 1993). Further studies on 

optimal design gave rise to optimality criteria. Keifer (1985) optimality criteria are 

simply taken to be the mean of order P of the positive Eigen values of moment matrix. 

Draper and Pukelsheim (1994) gave a mathematical approach to optimality criteria for 

various designs, where he derived the alphabetic optimality criteria. The information 

based criteria are used for parameter estimation and they include the D- criterion, A- 

criterion, and E-criterion while the distance based criteria that are used for model 

discrimination include C-criterion and T- criterion. 

 Research on optimality criteria for model discrimination began early where; C–

optimality was defined by Elfving (1952) as criterion that minimizes the variance of the 

best linear unbiased estimate for a given linear combination of the model parameters. C- 

Criterion provides a geometrical interpretation for finding C-optimal designs and more 

development on this criterion was investigated by (Silvey and Titterington, 1973). The 

following year Fellman (1974) justified that at most linearly independent support points 

are needed for a C-optimal design and the same idea was furthered by 

(Titterington,1975). By using the technical knowledge of support points, Pukelsheim and 

Torsney (1991) gave a method for computing C-optimal weights given various support 

points. It is true that many authors have developed optimality criteria which are 
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applicable to the dual problem of model discrimination and parameter estimation. 

Atkinson et al. (2007) discussed C-optimum designs for three features of a three-

parameter compartmental model for the concentration of theophylline in the blood of a 

horse. C-optimum designs, for example, that for estimation of the area under a curve, all 

had either one or two points of support and so provided no information on the values of 

the parameters in the model. The optimum design theory provides designs of known 

properties with a specified balance between parameter estimation, discrimination and 

estimation of a parametric function such as the area under a curve.  

 Atkinson (2008) stated that the goal of an experiment should be dual: to obtain an 

adequate model and to estimate the parameters of the selected model efficiently. 

Unfortunately, this has never been the case a design which is optimum for parameter 

estimation may be inadequate for model discrimination and vice versa. A common 

strategy to solve this problem is through combining two alphabetic optimality criteria for 

model validation with another for parameter estimation in one design. 

Dette (1993) proposed the use D1-criterion for model discrimination and the D-criterion 

for precise estimation of the parameters. The resulting compound criterion gave a 

weighted geometric mean of D1- and D-efficiencies) and it was called DD1-criterion. 

After various scrutiny of this criterion researchers like Zen and Tsai (2004) have 

generalized the DD1-criterion to the case of nested regression models which differ by 

more than one parameter by replacing the D1-criterion with the Ds-one (with s > 1). The 

criterion changed to be called the DDs-criterion. Atkinson 𝑒𝑡 𝑎𝑙(2007) defined compound 

criterion as a weighted product of the efficiencies that is to be maximized and they 
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introduced DT- and CD-optimality criteria. A year later Atkinson (2008) considered the 

T-criterion as a measure of discrimination, hence combined it to yield the DT-criterion. 

Many results on optimal designs of experiments are derived under the assumption that the 

statistical model is known at the design stage. However, rarely it is known a prior which 

model is the most appropriate. Thus in the quest of trying to fill this gap design experts 

are in the pursuit of ensuring we have a balance between the model validation criteria that 

can suit in parameter estimation. Tommasi (2009) proposed the DKL-optimality criterion, 

which is a compound criterion given by the weighted geometric mean of KL- and D-

efficiencies. Considered the D-criterion as a measure of precision in parameter estimation 

and KL- as a measure of discrimination, however, (López-Fidalgo et al, 2007) stated that 

KL- is useful for model discrimination in a more general context than in nested 

regression models with Gaussian homoscedastic errors. 

From the underlying historic literature nonlinear models are common in 

pharmacokinetics and pharmaco dynamics. Compound criterion is formed by maximizing 

a weighted product of efficiencies. Optimum designs for discrimination between models 

introduced by Fedorov (1975) and Atkinson (2008) they considered discrimination 

between two linear polynomial regression models. There is a long history of papers that 

seek to find a balance between model discrimination and parameter estimation, at least 

from Hill and Robatson (1968) to Biswas and Chaudhuri (2002) and Waterhouse et al. 

(2004). A specific and sequential rotatable design in three, four and five dimensions was 

constructed by (Mutiso, 1998) but did not identify their optimality criteria. Kosgei (2002) 

evaluated the optimality criteria for the second order rotatable designs in three 

dimensions for the sequential rotatable designs. Koske et al (2011) constructed a new 



14 

 

 

third order rotatable design in five dimensions through Balanced Incomplete Block 

Designs.  Mutai et al (2012) discussed optimal designs for mixture experiments and their 

application in agricultural research. Koske et al (2012) constructed a practical optimum 

second order rotatable design in three dimensions. Again Mutai et al (2013) gave a new 

method of constructing third order rotatable designs. 

In the same year, Kosgei et al (2013) constructed a five level modified third order 

rotatable design using a pair of balanced incomplete block design and Eliud (2013) gave 

E-optimal designs for second-degree kronecker model mixture experiments. Kipkemoi et 

al (2014) constructed some new three associate class partially balanced incomplete block 

designs in two replicates. Rambaei (2014) gave a generalized optimality criterion for 

second order rotatable design in k dimensions where she utilized a reduced parameter 

system to obtain the information matrix. Cheruiyot (2015) gave the efficiencies for the 

second order rotatable designs in three dimensions, by efficiency we consider how 

effective or good a design is (Kuhfeld et al, 1994). Design are said to be good depending 

on the requirement of the experimenter or the researcher. D- Efficient designs are 

preferred in case the experimenter is interested in minimizing the content of the 

ellipsoidal confidence region for the parameter of the model. In case the researcher is 

interested in a design which minimizes the sum or the average of the variance of the 

parameter estimate A-optimal design is ideal.  

Seyamet et al (1999) stipulated that some design experts may require the desirability of 

two or more properties in a single design. Such designs are obtained when the optimality 

criteria are combined and they include DT-, CD- and CDT-Criteria.  
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To date, most work in design in this area has concentrated on parameter estimation rather 

than in model discrimination. Here, the idea of optimization of both parameter estimation 

and model selection. However, experimental designs that provide powerful 

discrimination between a pair of competing model structures are rarely efficient in terms 

of estimating the parameters of each model. Conversely, designs which are efficient for 

parameter estimation may not provide suitable power to discriminate between the models 

(Waterhouse et al, 1994). This has posed a great challenge to a statistician who may want 

to utilize the two properties in one design. 

Hence, the current study introduces the evaluation of the compound optimality criteria for 

the existing second order rotatable designs in three, four and five dimensions, specifically 

the study evaluated the DT-criterion, CD-criterion, and CDT-criterion using designs 

constructed by (Rambaei, 2014).  
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CHAPTER THREE 

METHODOLOGY 

3.1    Introduction 

 In this chapter; the method for determining C-optimality, obtaining the compound 

optimality and evaluating design efficiencies for designs with 32, 64 and 112 points were 

outlined. Existing second order rotatable designs constructed using BIBDs in three, four 

and five dimensions were considered.  

3.2 Determining C- Optimality Criterion for Second Order Rotatable Designs 

Constructed Using BIBDs. 

3.2.1 Second order model 

The study focuses on the Balanced Incomplete Block Design for second order rotatable 

designs in three, four and five dimensions. Hence the second degree response model with 

k factors is represented as follows; 

𝑦 =  𝛽0 +  


 jiij

k

ji

iii

k

i

ii

k

i

xxxx
2

11

                                             (3.1) 

where  

 𝛽𝑜 is the intercept  

𝛽𝑖 is the linear coefficient for the ith factor  

𝛽𝑖𝑖 is the quadratic coefficient for the ith factors 

𝛽𝑖𝑗 is the cross product coefficient for the ith and jth factors 
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3.2.2   Evaluation of C-Criterion 

The C-criterion for the second order rotatable design in 𝑘- dimensions was obtained 

through minimizing the variance of the linear unbiased estimator of the integral 

function 𝑤/(𝑋/𝑋)−1𝑤. Thus, the C- Criterion by Elfying (1952) was given as; 

𝐶- Criterion =∬…∫ 𝑤/(𝑋/𝑋)−1w 𝑑𝑥1𝑑𝑥2 …𝑑𝑥𝑘.                                                        (3.2) 

where  

𝑤/ = (1,
1

𝑘
(𝑥1

2, 𝑥2
2, 𝑥3

2,⋯ , 𝑥𝑘
2) , 𝑥1, 𝑥2, 𝑥3, . . . , 𝑥𝑘 ,

1

[𝑘2]
(𝑥1𝑥2, 𝑥1𝑥3 , 𝑥2𝑥3, . . . , 𝑥𝑘−1𝑥𝑘)               (3.3) 

3.2.2.1 Design Matrix 

The generalized design matrix  𝑋 for the second order rotatable design is given by  

𝑋 =

[
 
 
 
 
 
 
𝑥𝑜1  𝑥11

2 …𝑥𝑘1 
2 𝑥11 . . . 𝑥𝑘1  𝑥11𝑥21 …𝑥(𝑘−1)1𝑥𝑘1

𝑥𝑜2  𝑥12
2 … 𝑥𝑘2  

2 𝑥12 . . . 𝑥𝑘2   𝑥12𝑥22 …𝑥(𝑘−2)2𝑥𝑘2

.

.

.
𝑥𝑜𝑛  𝑥1𝑛

2 …𝑥𝑘𝑛  
2 𝑥1𝑛 . . . 𝑥𝑘𝑛 𝑥1𝑛𝑥2𝑛 …𝑥(𝑘−𝑛)𝑛𝑥𝑘𝑛]

 
 
 
 
 
 

                                                    (3.4)    

                        

 

The vector in (3.3) was partitioned in the following order; the pure quadratic, the linear 

and the interaction effects by Rambaei, (2014). Consequently, the moment matrix was 

also partitioned as shown below. 

 

              

1

2

0 0

0 0

0 0

 
 


 
  

B

M A

A
                                                                                           (3.5) 
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where 

 

2 2 2 2

2 4 4 4 4

2 4 4 4 4

2 4 4 4 4

2 4 4 4 4

1

3

3

3

3

 
 
 
 

  
 
 
 
  

B

   

    

    

    

    
[k +1] x [k +1],                  

                           

 

 

2

2

1 2

2

0 0 0

0 0 0

0 0 0

0 0 0

 
 
 
 
 
 
  

A








[k]x[k],             

and

                                                        

 

4

4

2 4

4

0 0 0

0 0 0

0 0 0

0 0 0

 
 
 
 
 
 
  

A








     

                                                                  

 

The inverse of (3.5) is; 

𝑀−1=    





























1

2

1

1

1

00

00

00

                                                                                                         (3.6) 
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where, 

𝐵−1= 
1

∆1









































[𝑘+1]×[𝑘+1].

                                                                      (3.7) 

 

In which; 

∝ = 2(k+2)𝜆4
2,   𝛽 = −2𝜆2𝜆4,  𝜇 = - (𝜆4-𝜆2

2),   𝛾 = (k+1)𝜆4 - (k-1)𝜆2
2  and  

 ∆1=2[(k+2)𝜆4
2 –k𝜆2

2𝜆4]; 

𝐴1
−1 =

1

𝜆2























1000

0100

0010

0001











[𝐾]𝑋[𝐾],

                                                                               (3.8) 

and 

𝐴2
−1 =

1

𝜆4























1000

0100

0010

0001











.

                                                                             (3.9)  
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3.2.2.2 Coefficient Matrix 

The coefficient matrix 𝐾′ is determined from a reduced parameters system which was 

obtained by Rambaei (2014) where the reduced pure quadratic and the interaction effect 

is that; 

0

1

1

2

1,2,...,

k

ii

i

i

k

ij

i j

k

K

k

i k












 

 
 
 
 
 
 
 

   
 
 
  
  
  
 
 





                                                                                                     (3.10)

 

where 

 
/

0 11 22 1 2 12 1,, , ,..., , , ,..., , ,...,kk k k k            

is the full parameter system and is the coefficient of the second order model

2 2 2

0 11 1 22 2 1 1 2 2 12 1 2 1, 1,... ... ... ,u u kk ku u u k ku u u k k k u kuy x x x x x x x x x x                    

and /K  defined as 

/

1 0 0 0 0 0 0 0 0 0

1 1 1
0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0

1 1 1
0 0 0 0 0 0 0

2 2 2

k k k

K

k k k

 
 
 
 
 
 
 

  
 
 
 
 
      
      

       .

                (3.11) 



21 

 

 

is generalized coefficient matrix of the parameter system of interest. 

The coefficients of w/ in (3.3) are the diagonal elements of a k matrix in the parameter 

system of interest. 

 3.2.2.3 Information Matrix 

Rambaei (2014) used the moment matrix for second order model to determine the 

information matrix for the parameter system of interest. Its information matrix C is 

determined by 

𝐶𝑘(𝑀) = [𝐾𝑘
′𝑀𝑘

−1𝐾𝑘]
−1 

where 𝑀 = 
1

𝑁
𝑥′𝑥 and 𝑘 is the number of factors and 𝑋 is as defined in (3.4)  

  

𝐶𝑘(𝑀)

 

  

2

2 4

2

2

2

4

3 3

1 0 0 0 0

2 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 0 0
2

k k

k

k k k

k



 









 

 
 


 
 
 
 
 
 
 
 
 
  
  

  
 .                      

 

Using the elements of the inverse of the moment matrix in (3.7), (3.8) and (3.9) 

respectively (3.3) was obtained. 

The computation for the C- criterion was portioned into three parts; the linear effects the 

pure quadratic and the interaction effects which were denoted as βij. For the 32 points the 
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parts are β11, β12 and β13, for the 64 points β21, β22 and β23 and lastly the 112 points 

β31, β32 and β33 with the help of matlab software. 

The respective parameters the for designs with 32, 64 and 112 points evaluated by 

(Rambaei, 2014) were considered and were given as follows; 

2 0.034  𝜌2   and  4 0.0008  𝜌4                                                                            (3.12) 

2

2 0.233258   and  
4

4 0.06251 
                 

                                                    (3.13)                      

2

2 0.196433 
 
 and   

4

4 0.049111                                                                   (3.14) 

3.3 Obtaining Compound Optimality Criteria for SORD 

3.3.1 Compound Optimality Criteria for two combined Alphabetic Optimality 

Criteria 

In this section, the DT- and CD- criteria were obtained by combining two alphabetic 

optimality criteria. The alphabetic optimality criteria D-and T- for the Balanced 

Incomplete Block Designs in three, four and five dimensions evaluated by Rambaei 

(2014) were considered and the C-criterion evaluated in this study was utilized for 

determining the compound optimality criteria CD- and CDT-. 

3.3.1.1 DT- Optimality 

This study combined two alphabetic optimality criteria D- and T- by using the concept 

that was introduced by Atkinson (2008), where DT optimality criterion is a combination 

of D-optimality criterion for parameter estimation with the T-optimality criterion for 

discriminating between models. D-optimality is essentially a parameter estimation 
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criterion (Wald, 1943). Mandal (2000) considered the construction of D–optimal designs 

in a variety of examples. D–optimality is defined as:   

  logdet ,M M 
 
if M is non-singular 

    , otherwise 

The determinant criterion  C  differs from the determinant  det C  by taking the sth 

root. 

   
1

det sC C 
 .                                                                                                          

(3.15) 

T–optimal design is a plan where the optimality is obtained by discriminating between 

two or more models, one of which is true. Atkinson and Fedorov (1975:1, 2) introduced 

experimental designs for discriminating between two models and also between several 

models. 

The evaluation of the trace criterion is given by 

 
1

trace C
s

 
.                                                                                                        

(3.16) 

The DT- criterion provides a specified balance between model discrimination and 

parameter estimation.  

The Generalized Determinant and Trace Criteria were given by Rambaei (2014) 

respectively as; 

   

1

3
2

0 2 4 4 22
2

k
k

k

k
C M k k k    

  
       

                                                              (3.17)

 

   1 4 2 4

1
1 2

23
k

k
C M k k k

k
   

  
      

                                                             (3.18) 
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From (Rambaei, 2014), The alphabetic optimality criteria D- and T- for the design with 

32, 64, and 112 points were considered and given as follows;  

D- CRITERION: 

∅0𝐶3(𝑀)= 0.02306464706                                                                                          (3.19) 

∅0𝐶4(𝑀)= 0.3541807443                                                                                            (3.20) 

∅0𝐶5(𝑀) = 0.3194073098                                                                                        (3.21) 

T-CRITERION: 

∅1𝐶3=0.1860666667                                                                                                  (3.22) 

∅1𝐶4 = 0.5440474286                                                                                               (3.23) 

∅1𝐶5(𝑀) = 0.52402                                                                                                   (3.24) 

The DT- criterion was introduced by Atkinson (2008) as; 

∅2
𝐷𝑇(𝜀) = (1-k) log ∆1(𝜀) + (

𝑘

𝑝1
) log|𝑚1(𝜀)|.                                                                (3.25) 

where ∅2
𝐷𝑇(𝜀) is a convex combination of two design criteria, the first criterion is log 

∆1(𝜀)  which is the logarithm of  T- optimality and the second log  |𝑚1(𝜀)| is also the 

logarithm of D- optimality. 

Designs maximizing (3.25) are called DT-optimum. The quantities in (3.19) and (3.22) 

were substituted in (3.25) to obtain the DT-optimality criterion. 
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3.3.1.2 CD-Optimality 

The CD-optimality that combines C-optimality for a model selection and D-optimality 

for parameter estimation which was introduced by Atkinson 𝑒𝑡 𝑎𝑙 (2007), provides a 

specified balance between model discrimination and parameter estimation. The criterion 

to be maximized was; 

∅3
𝐶𝐷(𝜀) = (

𝑘

𝑝1
) log |𝑚1(𝜀)|- (1-k) log 𝑤𝑇𝑀−1(𝜀)𝑤 .                                                           (3.26) 

where∅3
𝐶𝐷(𝜀) is a convex combination of two design criteria, the first criterion is log 

|𝑚1(𝜀)| which is the logarithm of  D- optimality and the second log 𝑤𝑇𝑀−1(𝜀)𝑤 is the 

logarithm of C- optimality. 

The designs maximizing (3.26) are called CD-optimality. The quantities in (3.19) and 

(3.2) were substituted in (3.26) to obtain the CD-optimality criterion. 

3.3.2 Compound Optimality Criteria for Three Combined Alphabetic Optimality 

Criteria 

3.3.2.1 CDT-Optimality 

The CDT-optimality combines three alphabetic optimality criteria at once. These are T- 

criterion for model discrimination, D- criterion for parameter estimation and C- criterion 

for estimation of parametric function such as the area under the curve. Thus, the criterion 

to be maximized was introduced by El- Monsef et al (2011) and is given by; 

∅4
𝐶𝐷𝑇(𝜀) =

(𝑘−1)2

𝑝
 log |𝑚(𝜀)| – k (1-k) log 𝑤𝑇𝑀−1(𝜀)𝑤 + k log ∆1(𝜀).                     (3.27) 
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Where ∅4
𝐶𝐷𝑇(𝜀) is a convex combination of three design criteria. The first criterion is log 

|𝑚1(𝜀)| which is the logarithm of D- optimality, the second log 𝑤𝑇𝑀−1(𝜀)𝑤  is the 

logarithm for the C-optimality and the third log ⧍1 (ε) is the logarithm for T- optimality. 

Designs maximizing (3.27) are called CDT-optimum. The quantities in (3.19), (3.22) and 

(3.2) were substituted to (3.27) to obtain the CDT-optimality criterion. 

3.4 Examining Relative Efficiency of Designs 

The relative efficiency for the alphabetic D-, T- and C- with their compound counterpart 

DT-, CD- and CDT- were evaluated for designs with 32, 64 and 112 points. Normally a 

design with the highest percentage of the ratio of the optimality criteria is considered to 

be of higher efficiency than the other. 

3.4.1 Relative D-efficiency 

 The Relative D-efficiency of a design was defined by Burgess (2004) as; 

|
M(ε)

M(ε∗)
|.                                                                                         (3.28) 

where 

M(ε) is the value of particular D- criterion of designs and 

M(ε∗) is the numerical value of D-optimal design. 

3.4.2 Relative T-efficiency 

  The Relative T- efficiency of any designs was introduced by Cooke (1979) as;  

   
⧍1(εT

∗ )

⧍1(ε)
 .                                                                                                                    (3.29) 
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where 

∆1(εT
∗ ) is the value of the optimal design and ∆1(ε) is the value of a specific T- design. 

3.4.3 Relative C-efficiency 

(Cook et al, 2012) defined the Relative C- efficiency of a design as;    

 [
𝑤𝑇𝑀−1(𝜀𝑐

∗)𝑤

𝑤𝑇𝑀−1(𝜀)𝑤
].                                                                              (3.30) 

where 

𝑤𝑇𝑀−1(𝜀𝑐
∗)𝑤 is the value of the C-optimal design and 𝑤𝑇𝑀−1(𝜀)𝑤 is the value of the C- 

design. 

 3.4.4 Relative DT-efficiency 

The Relative DT-efficiency of any design introduced by Deb (1991) is given by; 

 [
(1−k) log ∆1(𝜀) + (

𝑘

𝑝1
) log |𝑚1(𝜀)|.   

(1−k) log ∆1(𝜀∗) + (
𝑘

𝑝1
) log |𝑚1(𝜀∗)|.  

].                                                                      (3.31) 

where 

(1 − k) log ∆1(𝜀)  +  (
𝑘

𝑝1
) log |𝑚1(𝜀)| is the value of a specific DT- design and 

 (1 − k) log ∆1(𝜀
∗)  + (

𝑘

𝑝1
) log |𝑚1(𝜀

∗)| is the value of the DT- optimal design. 
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3.4.5 Relative CD-efficiency 

The Relative CD- efficiency of any design was defined by Atkinson et al (2008) as; 

 [
(

𝑘

𝑝1
) log |𝑚1(𝜀∗)|− (1−k) log 𝑤𝑇𝑀−1(𝜀∗)𝑤

(
𝑘

𝑝1
) log |𝑚1(𝜀)|− (1−k) log 𝑤𝑇𝑀−1(𝜀)𝑤

].                                                        (3.32)  

where 

(
𝑘

𝑝1
) log |𝑚1(𝜀

∗)| − (1 − k) log 𝑤𝑇𝑀−1(𝜀∗)𝑤 is the value of the CD-optimal design and 

(
𝑘

𝑝1
) log |𝑚1(𝜀)| −  (1 − k) log 𝑤𝑇𝑀−1(𝜀)𝑤 is the value of a specific CD-design. 

3.4.6 Relative CDT-efficiency 

(El-Monsef et al, 2011) introduced the Relative CDT- efficiency of a design was as; 

 [

(𝑘−1)2

𝑝
 log |𝑚(𝜀∗)|– k (1−k) log 𝑤𝑇𝑀−1(𝜀∗)w + k log∆1(𝜀∗).  

(𝑘−1)2

𝑝
 log |𝑚(𝜀)|– k (1−k) log 𝑤𝑇𝑀−1(𝜀)w + k log∆1(𝜀).

]                                      (3.33)   

Where 

(𝑘−1)2

𝑝
 log |𝑚(𝜀∗)|–  k (1 − k) log 𝑤𝑇𝑀−1(𝜀∗)w +  k log∆1(𝜀

∗) is the value of the CDT- 

optimal design and 

(𝑘−1)2

𝑝
 log |𝑚(𝜀)|–  k (1 − k) log 𝑤𝑇𝑀−1(𝜀)w +  k log∆1(𝜀) is the value of a specific 

CDT- design. 

 

 



29 

 

 

CHAPTER FOUR 

RESULTS AND DISCUSSIONS 

4.1The Optimality Criteria 

In this chapter, the specific optimality criteria for optimal second order rotatable designs 

were evaluated. The result on the C-criterion, the two combined alphabetic optimality 

that yielded DT- and CD- criteria and the three combined alphabetic optimality that gave 

CDT- criterion were given. The relative efficiencies for both alphabetic and compound 

optimality criteria counterparts were evaluated and discussed.  

4.2 C-Criterion for Second Order Rotatable Design in Three, Four and Five 

Dimension using BIBD 

4.2.1 C- Criterion for the 32 Points in Three Dimensions 

Using the C-criterion formula given in (3.2) and by substituting 𝜆2 and 𝜆4 given in (3.12) 

to (3.7) yielded the information matrix as; 

𝐵−1   =



























20.104320.41820.418900.63

20.41820.104320.418900.63

20.41820.41820.1043900.63

900.63900.63900.63500.7

                                                                         (4.1) 

The vector 𝑤 given in (3.10) was expanded to include all terms of a reduced second order 

rotatable design in three dimensions is given as; 

𝑤 ′= [1,
1

3
𝑥1

2,
1

3
𝑥2

2,
1

3
𝑥3

2, 𝑥1, 𝑥2, 𝑥3,
1

3
𝑥1𝑥2,

1

3
𝑥1𝑥3,

1

3
𝑥2𝑥3]                                                 (4.2) 
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Taking only the pure quadratic terms from (4.2) then; 

𝑤 ′= [1,
1

3
𝑥1

2,
1

3
𝑥2

2,
1

3
𝑥3

2]                                                                                                    (4.3) 

[1  
1

3
𝑥1

2 1

3
𝑥2

2 1

3
𝑥3

2 ][

7.500 − 63.900   − 63.900 − 63.900        
−63.900    1043.20  418.20  418.20  

−63.900   418.20    1043.20    418.20         
−63.900    418.20    418.20   1043.20        

]

[
 
 
 
 
 

1
1

3
𝑥1

2

1

3
𝑥2

2

1

3
𝑥3

2
]
 
 
 
 
 

, 

 

Substituting (4.1) and (4.3) to the integral function given in (3.2) where the limits were 

the maximum and minimum values from the experimental runs gave; 

𝛽11 = ∭ [7.500 − 21.3𝑥1
2 − 21.3𝑥2

2 − 21.3𝑥3
2 − 21.3𝑥1

2 + 115.9111𝑥1
4 +

1.316

−1.316

46.4667𝑥1
2𝑥2

2 + 46.4667𝑥1
2𝑥3

2 − 21.3𝑥2
2 + 46.4667𝑥1

2𝑥2
2 + 115.9111𝑥2

4 +

46.4667𝑥2
2𝑥3

2 − 21.3𝑥3
2 + 46.4667𝑥1

2𝑥3
2 + 46.4667𝑥2

2𝑥3
2 + 115.9111𝑥3

4]𝑑𝑥1𝑑𝑥2𝑑𝑥3                                      

= 1269.0568.                                                                                                                   (4.4) 

The value of λ2 given in (3.12) is substituted to (3.8) to obtain; 

𝐴1
−1 = (𝑥 ′𝑥)−1   =

















4118.2900

04118.290

004118.29

,                                                     (4.5)     

Taking only the linear terms in (4.2) as; 

𝑤 ′= [𝑥1, 𝑥2, 𝑥3]                                                                                                                              (4.6)                                                                                     

Using (4.5) and (4.6) in (3.2) gave; 

𝛽22=∭ [29.4118𝑥1
21.316

−1.316
+29.4118𝑥2

2+29.4118𝑥3
2] 𝑑𝑥1𝑑𝑥2𝑑𝑥3 

= 232.18212.                                                                                                                   (4.7) 
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The value of λ4 given in (3.12) is substituted to (3.9) to obtain; 

𝐴2
−1 = (𝑥 ′𝑥)−1   =

















125000

012500

001250

,                                                                              (4.8)     

 

Taking only the interactions terms of vector 𝑤 in (4.2) we have; 

𝑤 ′= [
1

3
𝑥1𝑥2,

1

3
𝑥1𝑥3,

1

3
𝑥2𝑥3],                                                                                           (4.9)  

Using (4.8) and (4.9) in (3.2) gives; 

𝛽33=∭ [ 1250𝑥1
2𝑥2

21.316

−1.316
+ 1250𝑥1

2𝑥3
2 + 1250𝑥2

2𝑥3
2]𝑑𝑥1𝑑𝑥2𝑑𝑥3 

= 5696.5246.                                                                                                                 (4.10) 

The C-criterion for a design with 32 points was obtained by summing the elements in 

(4.4), (4.7) and (4.10) to obtain;  

= 7197.7633.                                                                                                                (4.11) 

4.2.2 C- Criterion for the 64 Points in Four Dimension 

Substituting 𝜆2 and 𝜆4  given in (3.13) to (3.7) yields the information matrix given as; 

 

𝐵−1   =

































5871.74116.04116.04116.04817.1

4116.05871.74116.04116.04817.1

4116.04116.05871.74116.04817.1

4116.04116.04116.05871.74817.1

4817.14817.14817.14817.13825.2

                                    (4.12) 

 

The vector 𝑤 given in (3.10) was expanded to include all terms of a second order 

rotatable design in four dimensions was given by, 
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𝑤 ′=[1,
1

4
𝑥1

2,
1

4
𝑥2

2,
1

4
𝑥3

2,
1

4
𝑥4

2, 𝑥1, 𝑥2, 𝑥3, 𝑥4,
1

6
𝑥1𝑥2,

1

6
𝑥1𝑥3,

1

6
𝑥1𝑥4,

1

6
𝑥2𝑥3,

1

6
𝑥2𝑥4,

1

6
𝑥3𝑥4] 

                                   (4.13) 

Taking only the pure quadratic terms from (4.13) then we have; 

𝑤 ′= [1,
1

4
𝑥1

2,
1

4
𝑥2

2,
1

4
𝑥3

2,
1

4
𝑥4

2]                                                                                          (4.14) 

= [1 
1

4
𝑥1

2 1

4
𝑥2

2 1

4
𝑥3

2 1

4
𝑥4

2]

[
 
 
 
 
2.3825 − 1.4817 − 1.4817 − 1.4817 − 1.4817
−1.4817 7.5871 − 0.4116 − 0.4116 − 0.4116
−1.4817 − 0.4116  7.5871 − 0.4116 − 0.4116
−1.4817 − 0.4116 − 0.4116 7.5871 − 0.4116
−1.4817 − 0.4116 − 0.4116 − 0.4116 7.5871]

 
 
 
 

[
 
 
 
 
 
 

1
1

4
𝑥1

2

1

4
𝑥2

2

1

4
𝑥3

2

1

4
𝑥4

2
]
 
 
 
 
 
 

, 

 

Substituting (4.12) and (4.14) to integral function in (3.2) gave 

𝛽21 =∬∬ [2.3825 − 0.3704𝑥1
2 − 0.3704𝑥2

2 − 0.3704𝑥3
2 − 0.3704𝑥4

21

−1
− 0.3704𝑥1

2 +

0.4742 − 0.02573𝑥1
2𝑥2

2 − 0.02573𝑥1
2𝑥3

2 − 0.02573𝑥1
2𝑥4

2 − 0.3704𝑥2
2 −

0.02573𝑥2
2𝑥1

2 + 0.4742𝑥2
4 − 0.02573𝑥2

2𝑥3
2 − 0.02573𝑥2

2𝑥4 
2 -0.3704𝑥3

2-0.02573𝑥1
2𝑥3

2 −

0.02573𝑥2
2𝑥3

2 + 0.4742𝑥3
4 − 0.02573𝑥3

2𝑥4
2 − 0.3704𝑥4

2 − 0.02573𝑥1
2𝑥4

2 −

0.02573𝑥2
2𝑥4

2 − 0.02573𝑥3
2𝑥4

2 + 0.4742𝑥4
4]𝑑𝑥1𝑑𝑥2𝑑𝑥3𝑑𝑥4 

  =3.8586.                                                                                                                     (4.15) 

The value of  λ2  given in (3.13) is substituted to (3.8) to obtain; 

𝐴1
−1  =



















2871.4000

02871.400

002871.40

0002871.4

,                                                                     (4.16)     

Taking only the linear terms in (4.13) the outcome was; 

𝑤 ′= [𝑥1, 𝑥2, 𝑥3, 𝑥4] .                                                                                                      (4.17)      
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Using (4.16) and (4.17) in (3.2) gave; 

𝛽22=∫∭ [ 4.2871𝑥1
21

−1
+4.2871𝑥2

2 +4.2871𝑥3
2 + 4.2871𝑥4

2] 𝑑𝑥1𝑑𝑥2𝑑𝑥3𝑑𝑥4 

= 11.43232.                                                                                                                  (4.18) 

 

The value of λ4 given in (3.13) was substituted to (3.9) to obtain; 

𝐴2
−1   =



























9974.1500000

09974.150000

009974.15000

0009974.1500

00009974.150

000009974.15

,                      (4.19)   

 

Taking only the interactions terms of vector 𝐶 in (4.13) we have; 

𝑤 ′= [
1

6
𝑥1𝑥2,

1

6
𝑥1𝑥3,

1

6
𝑥1𝑥4,

1

6
𝑥2𝑥3,

1

6
𝑥2𝑥4 ,

1

6
𝑥3𝑥4 ]                                                              (4.20)     

Substituting (4.19) and (4.20) to the integral function in (3.2) gave; 

𝛽23=∫∭ [15.9974𝑥1
2𝑥2

2 + 15.9974𝑥1
2𝑥3

2 + 15.9974𝑥1
2𝑥4

2 + 15.9974𝑥2
2𝑥3

2 +
1

−1

15.9974𝑥2
2𝑥4

2 + 15.9974𝑥3
2𝑥4

2] 𝑑𝑥1𝑑𝑥2𝑑𝑥3𝑑𝑥4 

= 21.33.                                                                                                                         (4.21) 

 The C-criterion for a design with 64 points was obtained by summing the elements in 

(4.15), (4.18) and (4.21) to obtain;  

 

=36.62092                                                                                                                   (4.22) 
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4.2.3 C- Criterion for the 112 Points in Five Dimensions 

Substituting 𝜆2 and 𝜆4 given in (3.14) to (3.7) yielded the information matrix given by, 

 

𝐵−1   =







































4707.97104.07104.07104.07104.03022.1

7104.04707.97104.07104.07104.03022.1

7104.07104.04707.97104.07104.03022.1

7104.07104.07104.04707.97104.03022.1

7104.07104.07104.07104.04707.93022.1

3022.13022.13022.13022.13022.12790.2

                               (4.23)     

 

The vector 𝑤 given in (3.10) was expanded to include all terms of a second order 

rotatable design in five dimensions is given by, 

𝑤 ′= (1,
1

5
𝑥1

2,
1

5
𝑥2

2,
1

5
𝑥3

2,
1

5
𝑥4

2,
1

5
𝑥5

2, 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 

1

10
𝑥1𝑥2,

1

10
𝑥1𝑥3,

1

10
𝑥1𝑥4,

1

10
𝑥1𝑥5,

1

10
𝑥2𝑥3,

1

10
𝑥2𝑥4,

1

10
𝑥2𝑥5,

1

10
𝑥3𝑥4,

1

10
𝑥3𝑥5,

1

10
𝑥4𝑥5)  (4.24) 

 

Taking only the pure quadratic terms from (4.24) then we have; 

𝑤]=[1,
1

5
𝑥1

2,
1

5
𝑥2

2,
1

5
𝑥3

2,
1

5
𝑥4

2,
1

5
𝑥5

2]                                                                                   (4.25) 
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[1,
1

5
𝑥1

2,
1

5
𝑥2

2 1

5
𝑥3

2 1

5
𝑥4

2 1

5
𝑥5

2]

[
 
 
 
 
 
2.2790 − 1.3022 − 1.3022 − 1.3022 − 1.3022 − 1.3022
−1.3022 9.4707 − 0.7104 − 0.7104 − 0.7104 − 0.7104
−1.3022 − 0.7104 9.4707 − 0.7104 − 0.7104 − 0.7104
−1.3022 − 0.7104 − 0.7104 9.4707 − 0.7104 − 0.7104
−1.3022 − 0.7104 − 0.7104 − 0.7104 9.4707 − 0.7104
−1.3022 − 0.7104 − 0.7104 − 0.7104 − 0.7104 9.4707 ]

 
 
 
 
 

[
 
 
 
 
 
 
 
 

1 
1

5
𝑥1

2

1

5
𝑥2

2

1

5
𝑥3

2

1

5
𝑥4

2

1

5
𝑥5

2
]
 
 
 
 
 
 
 
 

 

Using (4.23) and (4.25) in (3.2) gave; 

𝛽31=∬∬ 2.279 − 1.3022𝑥1
2 − 1.3022𝑥2

2−1.3022𝑥3
2 − 1.3022𝑥4

21

−1
− 1.3022𝑥5

2 −

−1.3022𝑥1
2 + 9.4707𝑥1

4 − 0.7104𝑥1
2𝑥2

2 − 0.7104𝑥1
2𝑥3

2 − 0.7104𝑥1
2𝑥4

2 −

0.7104𝑥1
2𝑥5

2 − 1.3022𝑥2
2 − 0.7104𝑥2

2𝑥1
2 + 9.4707𝑥2

4 − 0.7104𝑥2
2𝑥3

2 − 0.7104𝑥2
2𝑥4

2 −

0.7104𝑥2
2𝑥5

2 − 1.3022𝑥3
2-0.7104𝑥1

2𝑥3
2 − 0.7104𝑥2

2𝑥3
2 + 9.4707𝑥3

4 − 0.7104𝑥3
2𝑥4

2 −

0.7104𝑥3
2𝑥5

2 − 1.3022𝑥4
2 − 0.7104𝑥1

2𝑥4
2 − 0.7104𝑥2

2𝑥4
2 − 0.7104𝑥3

2𝑥4
2 + 9.4707𝑥4

4 −

0.7104𝑥4
2𝑥5

2 − 1.3022𝑥5
2 − 0.7104𝑥1

2𝑥5
2 − 0.7104𝑥2

2𝑥5 
2 − 0.7104𝑥3

2𝑥5
2 −

0.7104𝑥4
2𝑥5

2 + 9.4707𝑥5
4]𝑑𝑥1𝑑𝑥2𝑑𝑥3𝑑𝑥4𝑑𝑥5 

  =12.7664.                                                                                                                 (4.26) 

The value of λ2 given in (3.14) is substituted to (3.8) to obtain; 

𝐴1
−1   =























0908.50000

00908.5000

000908.500

0000908.50

00000908.5

                                                     (4.27)    

  

Taking only the linear terms in (4.24) we have; 

𝑤 ′= [𝑥1, 𝑥2, 𝑥3, 𝑥4 , 𝑥5]                                                                                                  (4.28)     
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Using (4.27) and (4.28) in (3.2) gives; 

𝛽32=∫∭ [ 5.0908𝑥1
21.1

−1.1
+5.0908𝑥2

2 +5.0908𝑥3
2 + 5.0908𝑥4

2 +

 5.0908𝑥5
2]𝑑𝑥1𝑑𝑥2𝑑𝑥3𝑑𝑥4𝑑𝑥5 

= 16.9691.                                                                                                                     (4.29) 

The value of λ4 given in (3.14) was substituted to (3.9) to obtain; 

𝐴2
−1   =







































3620.20000000000

03620.2000000000

003620.200000000

0003620.20000000

0000362020.2000000

000003620.200000

0000003620.20000

00000003620.2000

000000003620.200

0000000003620.20

                 (4.30)  

Taking only the interactions terms of vector 𝑤 in (4.24) we have; 

𝑤 ′= 

[
1

10
𝑥1𝑥2

1

10
𝑥1𝑥3

1

10
𝑥1𝑥4

1

10
𝑥1𝑥5

1

10
𝑥2𝑥3

1

10
𝑥2𝑥4

1

10
𝑥2𝑥5

1

10
𝑥3𝑥4

1

10
𝑥3𝑥5

1

10
𝑥4𝑥5]         (4.31) 

Using  (4.30) and (4.31) in (3.2) gives; 

𝛽33==∫∭ [20.362𝑥1
2𝑥2

2 + 20.362𝑥1
2𝑥3

2 + 20.362𝑥1
2𝑥4

2 + 20.362𝑥1
2𝑥5

2 +
1

−1

20.362𝑥2
2𝑥3

2 + 20.362𝑥2
2𝑥4

2 + 20.362𝑥2
2𝑥5

2 + 20.362𝑥3
2𝑥4

2 + 20.362𝑥3
2𝑥5

2 +

20.362𝑥4
2𝑥5

2] 𝑑𝑥1𝑑𝑥2𝑑𝑥3𝑑𝑥4𝑑𝑥5 

= 45.5889.                                                                                                                     (4.32) 
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 The C-criterion for a design with 112 points was obtained by summing the elements in 

(4.26), (4.29) and (4.32) to obtain;  

=75.3244.          (4.33) 

The C-optimal values obtained were found to be 7197.7633, 36.6261 and 75.3344 for a 

design with 32, 64, 112 points. The 32 points in three dimensions were found to be non-

homogenous followed by the 112 points in five dimensions and the most homogenous 

were the 64 points in four dimensions. The smaller the optimality value the more 

desirable it was. The design with 64 points had the smallest value hence it was optimal. 

4.3 Compound Optimality Criteria for Two and Three combined Alphabetic 

Optimality Criteria. 

4.3.1 Compound Optimality Criteria for two combined Alphabetic Optimality 

Criteria 

Two alphabetic optimality criteria are combined to give compound optimality criterion. 

The determinant criterion is combined with the trace criterion to give DT-Criterion; the 

C-Criterion is combined with the determinant criterion to give CD-criterion.  

4.3.1.1 DT- criterion for 32 points in three dimension 

The Determinant criterion was given in (3.19) and the trace criterion in (3.22) for k= 3 

using the compound formula stated in (3.25) yielded the DT- compound optimality 

criteria as; 

∅1
𝐷𝑇(𝜀) = 0.6421362517.                                                                                              (4.34) 
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4.3.1.2 DT- criterion for 64 points in four dimension 

For k=4, the determinant criterion was given in (3.20) and the trace criterion in (3.23) 

substituting it in the compound formula given in (3.25) results to the DT-compound 

optimality criteria given as; 

∅𝟐
𝑫𝑻(𝜺) = 0.5355039691.                                                                                           (4.35) 

4.3.1.3 DT- criterion for 112 points in five dimension 

.Substituting the determinant criterion given in (3.21) and the trace criterion given in 

(3.24) to the compound formula given in (3.25), for the design with k = 5, it gave; 

∅1
𝐷𝑇(𝜀) = 0.8128240809.                                                                                              (4.36) 

The DT-optimal values were 0.6421362517, 0.5355039691 and 0.8128240809 for a 

design with 32, 64 and 112 points respectively. The 112 points in five dimensions were 

non-homogenous in terms of optimality value followed by the 32 points in three 

dimensions and the homogenous among them was the design with 64 points. 

This implies that the smaller the value the more desirable a criteria were. The DT-optimal 

values for the four dimension lie between the D- optimal value and the T-optimal value in 

the 64 points for both cases. There was a balance between parameter estimation and 

model discrimination. 
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4.3.1.4 CD- criterion for 32 points in three dimension 

The Determinant criterion was given in (3.19) and the C criterion in (4.11) for k= 3 using 

the compound formula stated in (3.26) yielded the CD- compound optimality criterion as; 

∅1
𝐶𝐷(𝜀) = 6.8958868188.                                                                                              (4.37) 

4.3.1.5 CD- criterion for 64 points in four dimension 

The Determinant criterion was given in (3.20) and the C criterion in (4.22) for k= 4 using 

the compound formula stated in (3.26) to yield the CD- compound optimality criterion as; 

∅1
𝐶𝐷(𝜀) = 4.4336.                                                                                                          (4.38) 

4.3.1.6 CD- criterion for 112 points in five dimension 

The Determinant criterion was given in (3.21) and the C criterion in (4.33) for k= 5 using 

the compound formula stated in (3.26) yielded the CD- compound optimality criterion as; 

∅1
𝐶𝐷(𝜀) = 7.197958256.                                                                                                (4.39) 

The CD-optimal values were found to be 6.8958868188, 4.4336 and 7.197958256 for the 

32, 64 and 112 points respectively. The 112 points in five dimension were non-

homogenous in terms of optimality followed by the 32 points in three dimensions and the 

preferred homogenous was the 64 points.  

The CD-optimal values for the three, four and five dimensions lies between the C- 

optimal value and the D-optimal value for all points. There was a balance between 

parameter estimation and model discrimination. 
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4.3.2 Compound Optimality Criteria for Three Combined Alphabetic Optimality 

Criteria 

4.3.2.1 CDT- criterion for 32 points in three dimension 

The C criterion was given in (4.11), the determinant criterion given in (3.19) the trace 

criterion in (3.22) were combined using the compound formula stated in (3.27) to yield 

CDT criterion as; 

∅1
𝐶𝐷𝑇(𝜀) = 16.8608223.                                                                                                 (4.40) 

4.3.2.2 CDT- criterion for 64 points in four dimension 

The C criterion was given in (4.22), the determinant criterion given in (3.20) with the 

trace criterion in (3.23) were combined using the compound formula stated in (3.27) to 

obtain CDT criterion as; 

∅1
𝐶𝐷𝑇(𝜀) = 17.12773013.                                                                                         (4.41) 

4.3.2.3 CDT- criterion for 112 points in five dimension 

The C criterion was given in (4.33), the determinant criterion was given in (3.21) and the 

trace criterion in (3.24) using the compound formula stated in (3.27) to give CDT 

criterion as; 

∅1
𝐶𝐷𝑇(𝜀) = 35.12951441.                                                                                               (4.42) 
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The CDT-optimal values obtained were found to be 16.8608223, 17.12773013 and 

35.12951441 for 32, 64 and 112 points respectively. The 112 points in five dimensions 

were the non-homogenous in terms of optimality followed by the 64 points in four 

dimensions and the homogenous among them was the 32 points. 

This implies that the lesser the number of factors in a design the better the CDT- 

optimality criteria. The CDT-optimal values for the three, four and five dimensions lies 

between the C- optimal value, the D-optimal value and the T-optimal value for all points. 

Table 4. 1 Summary of the optimality criteria for the BIB designs in thirty two, 

sixty-four and one hundred and twelve points 

Number 

of 

points 

D- criterion T-criterion C-

criterion 

DT-

criterion 

CD- 

criterion 

CDT-

criterion 

32 0.02306465 0.1860666 7197.7633 0.6421363 6.8958868 16.860822 

64 0.35418074 0.5440474 36.62092 0.5355039 4.4336 17.127730 

112 0.31940731 0.52402 75.3244 0.8128241 7.1979582 35.129514 

 

From Table 4.1, all the designs under consideration are D-optimal. Each of the C-, D-, T-, 

DT-, CD- and CDT- optimality criteria demands a specific statistical property. From the 

table above the smaller the criterion numerical value the more desirable it was. The 

alphabetic optimality criteria D- and T- for the 32 points design was the smallest, 

however, this was not the case for the C-optimality criterion. From the two combined 

optimality criteria DT- and CD- in both cases, the design with 64 points was the found to 
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be the most homogenous. The three combined optimality criterion CDT- it was found that 

the lesser the number of factors the better the design. 

4.4 Relative Efficiency 

Relative efficiencies of any arbitrary designs show how good a design is in relation to 

another design. The higher the percentage output the better the design under 

consideration. Efficiencies for D-, T-, DT-, CD- and CDT- criteria were; 

4.4.1 Relative D-efficiency for 32 points 

 From the formula given in (3.28), the D-efficiency for k=3 is stated as 

D-efficiency=
)(

)(





M

M
,                     

where M(ε∗) = 0.02306464706 is the value of the optimal to itself. Hence; 

 = 
0.02306464706  

0.02306464706
× 100 = 100%                                                                                   (4.43) 

 

4.4.2 Relative D-efficiency for 64 points 

From the formula given in (3.28), the D-efficiency for k=4 is stated as 

D-efficiency=
)(

)(





M

M
,                     

where M(ε∗) = 0.02306464706 is the value of the optimal design and M(ε)= 

0.3541807443 is the value of the specific design. Hence;                                                              

= 
0.3541807443

0.02306464706 
× 100 = 15.356% .                                                                              (4.45) 
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4.4.3 Relative D-efficiency for 112 points 

Last using the formula given in (3.28) for k=5 is as follows 

D-efficiency=
)(

)(





M

M
,         

where M(ε∗) = 0.02306464706 is the value of the optimal design and M(ε) = 

0.3194073098 is the value of the specific design. Hence;                                                                          

= 
0.3194073098

0.02306464706
× 100 = 13.84835%                                                                            (4.46) 

The D- optimality for the 32 points was selected as the optimal value and was used to 

determine the D-efficiency for design with 64 and 112 points and was found to be 

15.356%, and 13.84835%. 

4.4.4 Relative T-efficiency for 32 points 

From the formula given in (3.29), the T-efficiency for k=3 is stated as 

   
⧍1(εT

∗ )

⧍1(ε)
  

where ⧍1(εT
∗ ) = 0.18606667 is the value of the optimal design and by taking relative 

efficiency; 

=
0.18606667

0.186066667
× 100=100.00%                                                                                      (4.47) 
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4.4.5 Relative T-efficiency for 64 points 

From the formula given in (3.29), the T-efficiency for k=4 is stated as 

   
⧍1(εT

∗ )

⧍1(ε)
  

where ⧍1(εT
∗ ) = 0.18606667 is the value of the optimal design and ⧍1(ε)= 0.5440474286 

is the value of the specific design. Hence; 

=
0.186066667

0.5440474286
× 100 = 34.20%                                                                                     (4.48) 

4.4.6 Relative T-efficiency for 112 points 

Again, using the formula given in (3.29) for k=5 is as follows 

   
⧍1(εT

∗ )

⧍1(ε)
  

where ⧍1(εT
∗ ) = 0.18606667 is the value of the optimal design and ⧍1(ε)= 0.52402 is the 

value of the specific design. Hence; 

=
0.186066667

0.52402
× 100 = 35.51%                                                                                       (4.49) 

The T- optimality for the 32 points was selected as the optimal value and was used to 

determine the T-efficiency for design with 64 and 112 points and was found to be 34.2%, 

and 35.51%. 
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4.4.7 Relative C-efficiency for 32 points 

Using the formula given in (3.30), the relative efficiency for C- criterion for k=3 is as; 

Relative T-efficiency = [
𝑤𝑇𝑀−1(𝜀𝑖

∗)𝑤

𝑤𝑇𝑀−1(𝜀)𝑤
] 

where numerator value = 36.62092 is the value of the optimal design and the 

denominator = 7193.76332 is the value of the specific design. Hence; 

36.62092

7193.76332
× 100 = 0.51  %                                                                                           (4.50) 

4.4.8 Relative C-efficiency for 64 points 

Using the formula given in (3.30), the relative efficiency for C- criterion for k=3 is as; 

Relative T-efficiency = [
𝑤𝑇𝑀−1(𝜀𝑖

∗)𝑤

𝑤𝑇𝑀−1(𝜀)𝑤
] 

where numerator value = 36.62092 is the value of the optimal design and the 

denominator is the same value of the specific design. Hence; 

36.62092

36.62092
× 100 = 100 %                                                                                                (4.51) 

 

4.4.9 Relative C-efficiency for 112 points 

Again, using the formula given in (3.30) for k=5 is as follows 

Relative T-efficiency = [
𝑤𝑇𝑀−1(𝜀𝑖

∗)𝑤

𝑤𝑇𝑀−1(𝜀)𝑤
] 

where numerator value = 36.62092 is the value of the optimal design and the 

denominator = 75.3244 is the value of the specific design. Hence; 

𝟑𝟔.𝟔𝟐𝟎𝟗𝟐

𝟕𝟓.𝟑𝟐𝟒𝟒
× 100 = 48.62 %                                                                                            (4.52) 
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The C- optimality for the 64 points was selected as the optimal value and was used to 

determine the C-efficiency for design with 32 and 112 points and was found to be 0.51%,  

and 48.62%. 

4.4.10 Relative DT-efficiency for 32 points 

Using the formula given in (3.31), the relative efficiency for DT- criterion for k=3 is as; 

Relative DT-efficiency = [
(1−k) log ∆1(𝜀) + (

𝑘

𝑝1
) log |𝑚1(𝜀)|.   

(1−k) log ∆1(𝜀∗) + (
𝑘

𝑝1
) log |𝑚1(𝜀∗)|.  

] 

where denominator value = 0.535503991 is the value of the optimal design and the 

numerator = 0.6421362517 is the value of the specific design. Hence; 

= 
0.6421362517

0.5355039691
× 100 = 119.9125%                                                                              (4.53) 

4.4.11 Relative DT-efficiency for 64 points 

Using the formula given in (3.31), the relative efficiency for DT- criterion for k=4 is as; 

Relative DT-efficiency = [
(1−k) log ∆1(𝜀) + (

𝑘

𝑝1
) log |𝑚1(𝜀)|.   

(1−k) log ∆1(𝜀∗) + (
𝑘

𝑝1
) log |𝑚1(𝜀∗)|.  

] 

where denominator value = 0.535503991 is the value of the optimal design and the 

numerator is the same value of the specific design. Hence; 

= 
0.5355039691

0.5355039691
× 100 = 100%                                                                                       (4.54) 
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4.4.12 Relative DT-efficiency for 112 points 

Again, using the formula given in (3.31) for k=5 is as follows 

Relative DT-efficiency = [
(1−k) log ∆1(𝜀) + (

𝑘

𝑝1
) log |𝑚1(𝜀)|.   

(1−k) log ∆1(𝜀∗) + (
𝑘

𝑝1
) log |𝑚1(𝜀∗)|.  

] 

where denominator value = 0.535503991 is the value of the optimal design and the 

numerator = 0.8128240809 is the value of the specific design. Hence; 

= 
0.8128240809

0.5355039691
× 100 = 151.7867%                                                                              (4.55) 

The DT- optimality for the 64 points was selected as the optimal value and was used to 

determine the DT-efficiency for design with 32 and 112 points and was found to be 

119.91%, and 151.79%. 

4.4.13 Relative CD-efficiency for 32 points 

Using the formula given in (3.32), the relative efficiency for CD- criterion for k=3 is as; 

Relative CD-efficiency = [
(

𝑘

𝑝1
) log |𝑚1(𝜀∗)|− (1−k) log 𝐶𝑇𝑀−1(𝜀∗)𝐶

(
𝑘

𝑝1
) log |𝑚1(𝜀)|− (1−k) log 𝐶𝑇𝑀−1(𝜀)𝐶

] 

where numerator value = 4.4336 is the value of the optimal design and the denominator = 

6.8958868188 is the value of the specific design. Hence; 

=
4.4336

6.8958868188
×100 = 64.29%                                                                                     (4.56) 
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4.4.14 Relative CD-efficiency for 64 points 

Again, using the formula given in (3.32) for k=4 is as follows; 

Relative CD-efficiency = [
(

𝑘

𝑝1
) log |𝑚1(𝜀∗)|− (1−k) log 𝐶𝑇𝑀−1(𝜀∗)𝐶

(
𝑘

𝑝1
) log |𝑚1(𝜀)|− (1−k) log 𝐶𝑇𝑀−1(𝜀)𝐶

] 

where numerator value = 4.4336 is the value of the optimal design and the denominator is 

the same value of the specific design. Hence; 

=
4.4336

4.4336
×100 =100%                                                                                                  (4.57) 

4.4.15 Relative CD-efficiency for 112 points 

Again, using the formula given in (3.32) for k=5 is as follows; 

Relative CD-efficiency = [
(

𝑘

𝑝1
) log |𝑚1(𝜀∗)|− (1−k) log 𝐶𝑇𝑀−1(𝜀∗)𝐶

(
𝑘

𝑝1
) log |𝑚1(𝜀)|− (1−k) log 𝐶𝑇𝑀−1(𝜀)𝐶

] 

where numerator value = 4.4336 is the value of the optimal design and the denominator = 

7.197958256 is the value of the specific design. Hence; 

=
4.4336

7.197958256
×100 = 61.59%                                                                                      (4.58) 

The CD- optimality for the 64 points was selected as the optimal value and was used to 

determine the CD-efficiency for design with 32 and 112 points and was found to be 

64.29%, and 61.59%. 
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4.4.16 Relative CDT-efficiency for 32 points 

From the formula given in (3.33), the CDT-efficiency for k=3 is stated as; 

CDT-efficiency=[

(𝑘−1)2

𝑝
 log |𝑚(𝜀∗)|– k (1−k) log 𝐶𝑇𝑀−1(𝜀∗)C + k log∆1(𝜀∗).  

(𝑘−1)2

𝑝
 log |𝑚(𝜀)|– k (1−k) log 𝐶𝑇𝑀−1(𝜀)C + k log∆1(𝜀).

] 

where numerator value = 16.8608223 is the value of the optimal design and the 

denominator is the same value of the specific design. Hence; 

  = 
16.8608223

16.8608223
× 100 = 100%                                                                                     (4.59) 

 

4.4.17 Relative CDT-efficiency for 64 points 

From the formula given in (3.33), the CDT-efficiency for k=4 is stated as; 

CDT-efficiency=[

(𝑘−1)2

𝑝
 log |𝑚(𝜀∗)|– k (1−k) log 𝐶𝑇𝑀−1(𝜀∗)C + k log∆1(𝜀∗).  

(𝑘−1)2

𝑝
 log |𝑚(𝜀)|– k (1−k) log 𝐶𝑇𝑀−1(𝜀)C + k log∆1(𝜀).

] 

where numerator value = 16.8608223 is the value of the optimal design and the 

denominator = 17.1277013 is the value of the specific design. Hence; 

  = 
16.8608223

17.1277013
× 100 = 98.44%                                                                                     (4.60) 

4.4.18 Relative CDT-efficiency for 112 points 

Again, using the formula given in (3.33) for k=5 is as follows; 

CDT-efficiency=[

(𝑘−1)2

𝑝
 log |𝑚(𝜀∗)|– k (1−k) log 𝐶𝑇𝑀−1(𝜀∗)C + k log∆1(𝜀∗).  

(𝑘−1)2

𝑝
 log |𝑚(𝜀)|– k (1−k) log 𝐶𝑇𝑀−1(𝜀)C + k log∆1(𝜀).

] 

where numerator value = 16.8608223 is the value of the optimal design and the 

denominator = 35.12951441 is the value of the specific design. Hence; 
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  = 
16.8608223

35.12951441
× 100 = 47.99%                                                                                    (4.61) 

The CDT- optimality for the 32 points was selected as the optimal value and was used to 

determine the CDT-efficiency for design with 64 and 112 points and was found to be 

47.99%, and 98.44%. 

Table 4.2 Summary of the relative efficiencies for the optimality criteria for the BIB 

designs with thirty-two, sixty-four and one hundred and twelve points. 

Number 

of 

points 

D- 

efficiency 

T-

efficiency 

C-

efficiency 

DT-

efficiency 

CD- 

efficiency 

CDT-

efficiency 

Average 

32 100% 100% 0.5% 119.91% 64.29% !00% 74.69% 

64 15.4% 34.2% 100% 100% 100% 98.44% 73.2% 

112 13.85% 35.51% 48.62% 151.79% 61.59% 47.99% 44.42% 

  

From the above table 4.2, for the 32 point design, it was interesting to note that a design 

can show both the two statistical properties; parameter estimation and model 

discrimination from D-efficiencies and T- efficiencies but at the same time when the 

design is subjected to the C-Criterion it becomes inadequate.  

In general, the design with 64 points performed better when it was subjected to the two 

combined alphabetic criteria. The three combined alphabetic optimality efficiency for 32 

points was higher as compared to 64 and 112 points. The relationship of efficiencies in 

the three designs was linear indicating that the fewer the factor in a design the better. 
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4.4.19 Hypothetical Example 

Suppose an experimenter considers utilizing a second order rotatable design points 

denoted by 𝑠(1,1,1,1) + 𝑠(1.414,0,0,0) + 𝑠(0,0,0,0) to investigate the effects of four 

poultry feeds ingredients on production of eggs. The design factors for the experiment are 

fish meal (X1), salt(X2), crab meal (X3) and cultured yeast (X4). The response variable 

(Y) is production of white meat in grams.              

Table 4. 3 Poultry feeds with coded variables 

 

  

 

x1 x2 x3 x4 Y 

1 1 1 1 27.6 
-1 1 1 1 22.4 
1 -1 1 1 18.6 

1 1 -1 1 21.4 

1 1 1 -1 24 
-1 -1 1 1 16.6 
-1 1 -1 1 17.4 
-1 1 1 -1 19 
-1 -1 -1 -1 12.6 
1 -1 -1 -1 13 
-1 1 -1 -1 14 

-1 -1 1 -1 15.6 

-1 -1 -1 1 14 
1 1 -1 -1 17.4 
1 -1 1 -1 17 
1 -1 -1 1 15.4 

1.414 0 0 0 23.4 
-1.414 0 0 0 20.6 

0 1.414 0 0 22.6 
0 -1.414 0 0 13.4 
0 0 1.414 0 20.6 
0 0 -1.414 0 15.6 
0 0 0 1.414 21 
0 0 0 -1.414 17.6 
0 0 0 0 22.6 
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This design contains 25 numbers of observations, 16 factorial points and 8 axial points 

with 1 center point. 

The analysis of variance for fitting the data to the second-order and contour plots helped 

to characterize the response surface of interest. 

Minitab version 17 was used to fit the data for the second-order model and       carry out 

the analysis of variance for production of white meat. 

4.4.19.1 Model fit for Poultry Feeds 

Table 4.4 below gives the coefficients, standard errors, t values and p values of the 

Poultry Feeds model. 

Table 4. 4 Model fit for poultry feeds 

 

 

Term Coef SE Coef T-Value P-Value 

Constant 21.463 0.434 49.48 0.000*** 

x1 1.892 229 8.27 0.000*** 

x2 3.776 0.229 16.52 0.000*** 

x3 3.017 0.229 13.2 0.000*** 

x4 1.811 0.229 7.92 0.000*** 

x1x1 0.821 0.511 1.61       0.139 

x2x2 -3.179 0.511 -6.22 0.000*** 

x3x3 -3.079 0.511 -6.02 0.000*** 

x4x4 -1.879 0.511 -3.68       0.004** 

x1x2 1.55 0.361 4.29       0.002** 

x1x3 0.55 0.361 1.52       0.159 

x1x4 0.3 0.361 0.83       0.426 

x2x3 1.25 0.361 3.46       0.006** 

x2x4 1 0.361 2.77       0.020* 

x3x4 -0.2 0.361 -0.55       0.592 
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From table 4.4, the fitted model therefore was given as; 

�̂� = 21.463 + 1.892𝑥1 + 3.776𝑥2 + 3.017𝑥3 + 1.811𝑥4 + 0.821𝑥1
2 − 3.179𝑥2

2

− 3.079𝑥3
2 − 1.879𝑥4

2 + 1.55𝑥1𝑥2 + 0.55𝑥1𝑥3 + 0.3𝑥1𝑥4 + 1.25𝑥2𝑥3

+ 1𝑥2𝑥4 − 0.2𝑥3𝑥4 

4.4.19.2 The analysis of variance for Poultry Feeds 

Table 4.5 below gives the output of analysis of variance 

Table 4. 5 Analysis of variance for poultry feeds 

Source DF Adj SS Adj MSS F Value P value 

Model 14 371.469 26.533 50.74 0.000*** 

   Linear 4 302.27 75.567 144.52 0.000*** 

   Pure Quadratic 4 47.609 11.902 22.76 0.000*** 

   Two way interactions 6 21.59 3.596 6.88  0.004** 

Error  10 5.229 0.523 

  Total 24 376.698 

    

 The analysis of variance indicates that there are significant interactions between the 

factors. The small p-values for linear and square terms also point out that their 

contribution is significant to the model. Since, there are no replicated center points; the 

software could not obtain a lack-of- fit. But, small p-values for the interactions and the 

squared terms suggest there is curvature in the response surface. Moreover, the main 
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effects can be referred to as significant at an individual .05 significant level. As a result, 

the final model for the response variable is concluded as follows: 

 

�̂� = 21.463 + 1.892𝑥1 + 3.776𝑥2 + 3.017𝑥3 + 1.811𝑥4 − 3.179𝑥2
2 − 3.079𝑥3

2

− 1.879𝑥4
2 + 1.55𝑥1𝑥2 + 1.25𝑥2𝑥3 + 1𝑥2𝑥4 

Table 4. 6 Model summary for the production of white meat 

Model Summary   

S R.sq R.sq (adj) 

0.723119         98.61%            96.67% 

 

The results for the adjusted 𝑅2 indicate that 96.67% (0.9667) of the variation in the 

response was explained by the model.  

Since the response surface is explained by the second-order model, it was necessary to 

analyze the optimum setting. The graphical visualization is very helpful in understanding 

the second-order response surface. Specifically, contour plots helps to characterize the 

shape of the surface and locate the optimum response approximately. The graphed 

contour plot for production of white meat was shown in Figure 4.1 and 4.2. 
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4. 1 Figure Contour plots for expected white meat production 

 

 

4. 2 Response surface plot for production of white meat 
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CHAPTER FIVE 

CONCLUSION AND RECOMMENDATIONS 

5.1 Introduction 

This chapter outlines the conclusion and the recommendation derived from the result of 

the study. Besides, the conclusions and the recommendations for both the alphabetic and 

compound optimality are the implications of these findings as well as future projections 

based on the study. 

5.2 Conclusion 

The C- Criterion obtained exhibited large numerical values relative to the other 

alphabetic optimality criteria. 

 For the two combined alphabetic optimality criteria, the compound optimality value lies 

in between the specific alphabetic optimality values and it also applies to three combined 

alphabetic optimality criteria. This implies that a balance has been achieved between 

parameter estimation and model discrimination.  

The compound optimality criteria obtained provides a better design characteristic in 

terms of minimizing variance for parameter estimates and model selection 

 The efficiencies for the compound optimality criteria were high as compared to the 

alphabetic counterparts.  
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5.3 Recommendation 

The study recommends that compound optimality to be used in the selection of designs 

that are used in performing experiments in order to achieve optimal response.  

This study also recommends the application of compound optimality criteria in designing 

of experiments for manufacturing products that involve more than one ingredient. For 

instance in the manufacture of a certain type of drug; here numerous kinds of factors are 

combined together in different amounts in order to obtain the most effective drug. 

For further research, the study suggests that the U-criterion that can be obtained by 

combining the D-criterion, A-criterion and E-criterion to be also considered using Central 

Composite Designs. 
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APPENDIX 1:  Production of white meat Experimental data 

 

                          

Natural 

values       

                              

Coded 

values       Response 

fish 

meal Salt 

Crab 

meal 

Culture 

yeast x1 x2 x3 x4 white meat 

15 10 98 25 1 1 1 1 27.6 

5 5 98 25 -1 -1 1 1 16.6 

15 5 92 25 1 -1 -1 1 15.4 

5 10 92 25 -1 1 -1 1 17.4 

15 5 98 15 1 -1 1 -1 17 

5 10 98 15 -1 1 1 -1 19 

15 10 92 15 1 1 -1 -1 17.4 

5 5 92 15 -1 -1 -1 -1 12.6 

15 5 98 25 1 -1 1 1 18.6 

5 10 98 25 -1 1 1 1 22.4 

15 10 92 25 1 1 -1 1 21.4 

5 5 92 25 -1 -1 -1 1 14 

15 10 98 15 1 1 1 -1 24 

5 5 98 15 -1 -1 1 -1 15.6 

15 5 92 15 1 -1 -1 -1 13 

5 10 92 15 -1 1 -1 -1 14.4 

17.07 7.5 95 20 1.414 0 0 0 23.4 

2.93 7.5 95 20 -1.414 0 0 0 20.6 

10 11.03 95 20 0 1.414 0 0 22.6 

10 3.97 95 20 0 -1.414 0 0 13.4 

10 7.5 99.24 20 0 0 1.414 0 20.6 

10 7.5 90.76 20 0 0 -1.414 0 15.6 

10 7.5 95 27.07 0 0 0 1.414 21 

10 7.5 95 12.93 0 0 0 -1.414 17.6 

10 7.5 95 20 0 0 0 0 22.6 

 


