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ABSTRACT 

Experiments that involve a mixture of ingredients are usually associated with 

investigating optimal proportions of several factors used. Optimal designs lower the 

costs of experimentation by allowing statistical models to be estimated with fewer 

experimental runs. Thus, appropriate designs for experiments that allow for 

parameter estimation without bias and with minimum variance are desirable. The 

purpose of this study was to obtain optimal weighted centroid designs for maximal 

parameter subsystem for third degree Kronecker model mixture experiments with 

the assumption that errors are independent and identically distributed with mean 

zero and common variance. The general objective was to obtain optimal weighted 

centroid designs for maximal parameter subsystems for third degree Kronecker 

model mixture experiments. The specific objectives of the study were to: Identify 

the coefficient matrix 𝐾  and the associated parameter subsystem of interest; 

determine optimal moments and information matrix for two, three, four, and 

generalized to m factors; derive optimal weighted centroid designs for third degree 

Kronecker model for mixture experiments for A-, D- and E-optimality criteria and 

finally, compute numerical optimal weighted centroid designs for the maximal 

parameter subsystem. The Kronecker model approach was used to obtain the 

coefficient matrix 𝐾 and, consequently, the optimal moments. A set of weighted 

centroid designs for the maximal parameter subsystem of interest was obtained by 

the use of unit vectors and characterization of feasible weighted centroid designs 

for the parameter subsystem. Information matrices based on maximal parameter 

subsystem were also obtained for the two, three, four, and generalized to m factors. 

Kiefer-Wolfowitz equivalence theorem was used to derive weights for the 

respective weighted centroid designs for D-, A- and E- Optimality. Optimal weights 

and values were computed numerically using Wxmaxima and R software. The 

results obtained indicated that: Coefficient matrix  obtained had a full column 

rank and helped in the identification of the linear parameter subsystem; the optimal 

moments obtained reflected the statistical properties of designs and were useful in 

finding the information matrix; the information matrix was important in obtaining 

optimality criteria and with
)(

1

p and  
)(

2

p  being the weights, for the average-

variance criterion (A- criterion)  and the optimality criteria were both dependent on 

the information matrix, as the number of  m  factors increases, 
)(

1

p  decreases 

while 
)(

2

p  increases and the value of the maximum criterion decreases. For the 

determinant criterion (D-criterion), as the number of  m factors increase,
)(

1

p  

decreases while 
)(

2

p  increases and the value of the maximum criterion decreases. 

For the smallest eigenvalue criterion (E-criterion) as the number of m factors 

increases,
)(

1

p  increases while 
)(

2

p  decreases and the value of the maximum 

criterion decreases.  This indicates that the maximal parameter design reflects well 

the statistical properties due to increasing symmetry as the number of factors 

increases. In conclusion, based on the maximal parameter subsystem third degree 

mixture model with two, three, four, and generalized to m factors for D-, A- and E-

optimal weighted centroid designs for the parameter subsystem exists. The study 

thus recommends the application of the designs obtained by experimenters in 

designing of experiments to yield Optimal results in technological fields. This study 

concentrated on optimal weighted centroid designs for maximal parameter 

subsystem for third degree Kronecker model mixture experiments.   

K

https://en.wikipedia.org/wiki/Statistical_model
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CHAPTER ONE 

INTRODUCTION 

1.0 Introduction 

This chapter covers the background information, statement of the problem, justification 

of the study, objectives of the study, significance of the study, and finally, the scope of 

the study. 

1.1 Background of the Study 

A mixture experiment is an experiment where proportions of two or more components 

are mixed to yield a product and are connected with the investigation of factors that are 

thought to affect the response through the proportions at which they are mixed together. 

According to Cornell (1990), the measured response in the general mixture problem is 

thought to simply depend on the relative proportions of the components present in the 

mixtures, not the amount of the combination.  

Most kinds of products usually involve a mixture of ingredients and are dependent on 

the investigation of a mixture of several factors. In many technological fields, most 

experimenters struggle to optimize the output of the end product since the predictor 

variables always have an impact on the general response of interest. The end product 

has the required properties that are of interest to the experimenter. Every experimenter 

wants to obtaining optimal results for an experiment; thus their major objective is to 

estimate the absolute response or the parameters of a model that shows the link between 

the response and the factors. When examining regression equations relating to the 

response and the controllable component, an experimenter's goal is to; Identify whether 

some combination of factors can be said to be the best in some way and also, to learn 



2 

 

 

more about the functions played by the various system factors in order to comprehend 

the system as a whole. 

Suppose that a mixture consists of m factors. Let 𝑡𝑖 represent the proportion of the ith 

ingredient in the mixture. Then, 𝑡1, 𝑡2, …… , 𝑡𝑚are coded such that 𝑡𝑖 ≥ 0 subject to 

restriction  ∑ 𝑡𝑖 = 1. A simple regular-sided shape with m vertices in m-1 dimensions 

serves as the experimental region for the mixture problem. Scheffe’ (1958) set the 

framework for development of mixture tools (design and models). 

Let 𝐼𝑚 = (1…1)′ ∈ 𝑅𝑚 be the unity vector .The standard probability simplex 𝑇𝑚 is the 

experimental domain. The experimental response, designated as 𝑌𝑡 , is the outcome 

under experimental condition  mTt  of an experiment that is taken as a real-valued 

random variable with an unknown parameter ,  for the regression function for the 

mixture experiments called the Kronecker models. Change in experimentation 

condition has a great impact on the experimental response. Thus, a mixture experiment 

involves varying the components of the mixture, and monitoring the variations that 

occur in the responses of the end products.  

Replications under responses from distinct conditions for conducting experiments as 

well as identical conditions for conducting experiments, are therefore assumed to have 

equal (unknown) variance,𝜎2  and to be uncorrelated. On the experimental  domain 𝑇𝑚, 

the experimental design 𝜏 is the probability measure with a finite number of support 

points . If τ assigns weights w1, w2, ... to its points of support in  𝑇𝑚 , the  experimenter 

is then directed to draw proportions w1, w2, ... of all the observations under various 

experimental settings. Draper and Pukelsheim (1998) came up with a set of regression 

functions for mixture experiments called Kronecker or K-models. The models are based 
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on Kronecker algebra. Let )',.....,(
1 m

ttt   be a 1m vector to represent the factors in 

a mixture. Kronecker square tt   arranges the same numbers as a long 12 m  vector 

and arranges the Kronecker product cube ttt  as a long 13 m  vector and list of 

triple products jii ttt  in lexicographic order. K-models have compact representation 

and good symmetries attained as a result of duplication of terms. Symmetry is attained 

along with a replication of terms. 

Mixture experiments are common problems in many disciplines, such as the chemical 

industries, food and processing industries. An example of a mixture experiment is of 

cake formulations where the mixture ingredients are; sugar, flour, water, eggs and 

baking powder, the interest of the experimenter is on the fluffiness of the cake, in that 

the cake fluffiness is associated with the ingredient proportions on the mixture. 

Similarly, in building construction concrete formed by mixing sand, water, and one or 

more types of cement building, then the desired property is the hardness or compression 

strength of the concrete, where the hardness is a function of the percentages of cement, 

sand, and water in the mix and Fruit punch consisting of juices from apples, pineapple 

,bananas ,mangoes and  orange ,where the fruitiness flavor of the punch, which depends 

on the percentages of apples, pineapple, bananas, mangoes, and orange that are 

present in the punch. Cornell (1990) lists numerous examples and provides a thorough 

discussion of both theory and in practice. Therefore, a mixture experiment 

involves varying the proportions of two or more ingredients, called components of the 

mixture, and studying the changes that occur in the measured properties (responses) of 

the resulting end product. The objectives of the experiment may include determining: 

which variables are most influential on the response, where to set the independent 
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variables so that the response is almost near the desired nominal value, where to set the 

influential factors so that variability in response is small and where to set the 

controllable factors so that the effects of uncontrollable factors are minimized. 

1.1.1 Simplex Centroid Designs 

Simplex centroid designs are described as mixture designs with which the coordinates 

are zero or equal to each other as introduced by Scheffe (1963). The center (centroid), 

mid-edges, and vertices of a triangle serve as the points of support in a simplex centroid 

design. In general, an m-component simplex-centroid design typically specifies the 

number of support points as 12 m
 . The support  points correspond to m permutations 

of (1,0,0, … ,0 ) or pure blends, the permutations  of 







0,...,0,0,

2

1
,

2

1
  or  binary 

mixtures, the 








3
 

m
| permutations of 








0,...,0,0,

3

1
,

3

1
,

3

1
 , and finally, the overall centroid 










mmm

1
,...,

1
,

1
 . Every non-empty subset of the m components is included in the design, 

and the components are only mixed together in the same proportions. 

The mixture can be found at the centroids of the lower dimensions’ simplexes included 

within the (m— l)-dimensional simplex, which is where the (m— l)-dimensional 

simplex is located. Data on the response are gathered at the simplex-centroid design's 

points, and a polynomial fit with the same number of parameters that must be estimated 

as those at the related design's points is made, (Muriungi et al, 2017). 

1.1.2 Weighted Centroid Designs 

Simplex centroid designs were introduced by Scheffe` (1963). The jth elementary 

centroid design j ,  mj ,......,1 , 2m  is the uniform distribution on all points with  
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the form .
1

1





j

i

mij Te
j

A convex combination 



m

j

jj

1

)(  with

mm  )',...,( 1   is called a weighted centroid design with a weight vector and is 

restricted by 



m

i

i

1

1 .Hence, )(  denote sets of all weighted centroid designs. 

Weighted centroid designs were created using the vertex design points 
1 and the 

overall centroid design 2  as follows; 
2211

)(  n with weights 0, 21   and

121  . 

1.1.3 Maximal Parameter Subsystem 

An experimenter may be interested in studying s out of total k components instead of 

studying all the components or a single one. The study becomes possible through the 

study of linear parameter subsystems that has the form of some  sk   matrix K  ; K is 

termed as the coefficient matrix of the parameter subsystem K  . 

Let M  be a set of moment matrices .A parameter subsystem K  is estimable within 

M  if and only if the set M  and the feasibility cone have a non-empty intersection, that 

is,  )(KAM  .Let   MrankMrM :max , be the maximal rank within . 

The coefficient matrices 







 



2

13 m
m

K  of parameter subsystems K  that are estimable 

within M  satisfy MrKrank  . Consider the extreme case
MrKrank  , which 

highlights the concept of estimating as many parameters as possible within a given 

collection of M moment matrices. The parameter subsystem K  is called a maximal 

parameter subsystem for M  if and only if; 

 (i)  )(KAM  and 
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 (ii) MrKrank  .In this specific study, we have 






 


2

1m
rM  and 𝐾 is called a 

maximal coefficient matrix for  .M  

1.2 Statement of the Problem 

Planning and designing of experiments is key before performing any experiment to cut 

the associated costs. Experimenters usually encounter a high cost of experimentation 

due to poor experimental designs, thus appropriate designs for an experiment that 

allows for parameter estimation without bias and with a minimum variance are 

desirable. Prediction variance distribution should be very evenly distributed over the 

design space. 

Optimal weighted centroid designs for maximal parameter subsystem for third degree 

Kronecker model mixture experiments have not been studied. Kiplagat, (2014), showed 

optimal designs for second degree Kronecker model mixture experiments for maximal 

parameter subsystem. The second degree maximal parameter subsystem provides 

inadequate information leading experimenters to use more resources.  Hence there was 

need to extent the work to third degree in order to get more information and reduce the 

cost. Since the larger the matrix  the larger the information and the more optimal the 

design, the more optimal it carries. 

 The general design problem was to obtain a design for a parameter subsystem with 

maximum information. The full parameter subsystem cannot be estimated, to make it 

estimable, the coefficient matrix of interest was then chosen. By dividing the factors 

interacting with a total number of interacting parameters in the model, the whole 

parameter subsystem was made estimable, thus making it possible to estimate as many 
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parameters as possible. The study sought to develop useful improved optimal designs 

to be used in designing experiments. 

1.3 Objectives of the Study  

The study was guided by the following objectives: 

1.3.1 General Objective 

The general objective of the study was to generate optimal weighted centroid designs 

for maximal parameter subsystem for third degree Kronecker model mixture 

experiments. 

1.3.2 Specific Objectives 

The specific objectives of the study were to: 

1. Identify the coefficient matrix  𝐾  and the associated parameter subsystem of     

interest. 

2. Determine optimal moments and information matrix for two, three, four  and 

generalize to m factors. 

3. Derive optimal weighted centroid designs for third degree Kronecker model for 

mixture experiments for A-, D- and E-Optimality criteria. 

4. Compute numerical Optimalp   weighted centroid designs for the maximal     

parameter subsystem. 

1.4 Justification of the Study 

In a mixture experiment, the factors which are under study are the proportions of factors 

of a mixture. There are many problems that deal with investigating a mixture of several 

factors which influences the response through the ratios or the proportions which are 

mixed together. A precise response prediction is required before experimentation for 
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any mixture experiment to be successful. The purpose is to establish the effect that a 

factor or independent variable has on dependent variable. The A-optimality seeks to 

minimize the average variance of the regression coefficients, D-optimality maximizes 

the determinant of the information matrix and E-optimality maximizes the minimum 

Eigenvalue of the information matrix. This optimizes the responses over the 

experimental region. 

1.5 Significance of the Study 

This study is significant as it identifies optimal weighted centroid designs for 

maximizing parameter subsystems in third-degree Kronecker model mixture 

experiments. In practical terms, these optimal experiments reduce experimentation 

costs.
 

1.6 Scope of the Study 

A class of weighted centroid designs is essentially complete, Klein (2004). Due to 

completeness result, the study was limited to weighted centroid designs third degree 

Kronecker model as put forward by Draper and Pukelsheim (1998). A group of 

weighted centroid designs and characterized by feasible weighted centroid designs for 

the maximal parameter subsystem for the mixture regression equation with two or more 

factors was used to obtain the coefficient matrix. Optimal moments and information 

matrices of the designs were obtained based on the coefficient matrix of interest. 

Consequently, the unique D-, A- and E-optimal weighted centroid designs for third 

degree kronecker model were then derived from the information matrices with the aid 

of the use of the equivalence theorem. 
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CHAPTER TWO 

LITERATURE REVIEW 

2.0 Introduction 

This chapter reviews the relevant literature for this specific study and the theoretical 

discussions. The research gaps on A-optimality, D-optimality and E-optimality designs 

were identified for the study. 

2.1 Mixture Experiments 

Mixture experiments were first discussed in Quenouille (1953). Later on, Scheffe’ 

(1958) made a systematic study and laid a strong foundation. Pukelsheim (1993) and 

Gaffke and Heiligers (1996) gave a review of the general design environment on 

mixture experiments. Klein (2004) and Cheng (1995) showed that the class of weighted 

centroid designs is essentially complete for 𝑚 ≥ 2  for the Kiefer ordering. As a 

consequence, the search for optimal designs may be restricted to weighted centroid 

designs for most criteria particularly applied to mixture experiments, Kiefer (1959, 

1975, 1978, 1985) and Galil and Kiefer (1977). Klein (2004) and Kinyanjui (2007) 

showed how invariance results can be applied to analytical derivations of optimal 

designs. 

Piepel G. F and Cornell J.A. (1994). Studied mixture experiment approaches: examples, 

discussion and recommendation A mixture of factors impacts the response through the 

proportion in which they are mixed. The response is a measurable quality or property 

of interest in the product. In this study, the assumption is made that the quantities of 

factors in the mixture can be accurately measured by the experimenter. London, Griffin. 

Scheffe’, H. (1958). Experiments with mixtures. The assumption is also made that, the 

outcomes are always functionally related to the mixture composition and through 
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variation of the composition by changing the number of ingredients, the responses will 

as well vary. When examining regression equations relating to the response and the 

controllable component, an experimenter's goal is to; Identify whether some 

combination of factors can be said to be the best in some way and also, to learn more 

about the functions played by the various system factors in order to comprehend the 

system as a whole. 

Galil and Kiefer (1977) showed how optimal designs can be restricted to weighted 

centroid designs and applied to mixture experiments. A weighted Centroid design is 

essentially complete for 2m  factors or kiefer ordering, Klein (2004). The search for 

the best designs can therefore be limited to weighted centroid designs for the majority 

of criteria, especially when applied to mixture experiments. The study was limited to 

weighted centroid designs, with the third degree Kronecker model as put forward by 

draper and Pukelsheim (1998).
 

On mixture experiments, a review was given for the general design environment, 

pukelsheim (1993). Draper and Pukelsheim (1998) proposed the K-models, a group of 

mixture models. Kiefer (1959, 1975, and 1978) and Galil and Kiefer (1977) provided 

criteria applied to mixture experiments. Blend experiment strategy procedures are 

presented by Cornell (2002) for simplex and polyhedral regions. Subsequent to 

selecting appropriate design and performing mixture experiments, is fitting models 

used to screen the components, predict response(s), determine ingredients effects on the 

response(s), or optimize the response(s) over the experimental region. Scheffé (1958) 

came up with linear mixture model in which the coefficient estimate for a component 

is the predicted value of the response for that pure component. Darroch and Waller 

(1985) presented D-optimal axial designs for quadratic and cubic additive 



11 

 

 

mixture models. Draper and Pukelsheim (1999) showed that for first degree Kronecker 

model vertex point designs are unique optimal designs under the Kiefer Ordering. 

Alternative representation of mixture models based on Kronecker algebra of vectors 

and matrices is offered by k-models. Gaffke, N., (1987). Further characterizations of 

design optimality and admissibility for partial parameter estimation in linear regression.  

It was assumed that every observation made during an experiment would have the same 

variance 𝜎2 ∈ (0,∞)   and unrelated. Draper, Heiligers, and Pukelsheim (2000) 

demonstrated design improvement in terms of obtaining a large moment matrix under 

Loewner ordering and improving symmetry, defining kiefer design. Majority of design 

problems have symmetry features, remaining unchanged when subjected to a set of 

linear transformations. Therefore, using invariant design for homogenous symmetric 

K-models, aids in obtaining the key characteristics of effective experimental designs, 

namely symmetry and balance.  The Kronecker representation has more benefits which 

entails; compact notation, useful invariance features and the regression terms being 

homogeneous, Draper and Pukelsheim (1998) and Prescott, et al (2002). 

Kinyanjui (2007) adopted General equivalence theorem in Pukelsheim (1993) to 

investigate the ∅𝑝 − 𝑜𝑝𝑡𝑖𝑚𝑎𝑙 weighted centroid designs for 'k  as well as deriving 

general forms for unique D-optimal, A-optimal and E-optimal designs for 'k .
 

The class of weighted centroid designs is essentially complete for 𝑚 ≥ 2  for Kiefer 

ordering, Klein (2002).The general design environment was  given in Pukelsheim 

(1993).Kinyanjui, Koske, and Korir (2008) showed  how optimal designs in the second-

degree Kronecker model for mixture experiment with three ingredients was applied to 

a simplex centroid design. Ngigi ,(2009) showed the optimality criteria for 

optimalp   weighted centroid designs for K  in the second-degree model with  
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𝑚 ≥ 2  ingredients and how the general forms for the unique A-optimal, D-optimal and 

E-optimal designs for K  are derived. 

Cherutich (2012) showed how information matrices for non-maximal parameter 

subsystems for second-degree mixture experiments were derived. Kiplagat, (2014), 

showed optimal designs for second degree kronecker model mixture experiments for 

maximal parameter subsystem. All the authors mentioned focused on the second degree 

kronecker model. 

 The work done by Draper and Pukelsheim, (1998) was extended to polynomial 

regression model for third degree mixture model. For third-degree mixture models, 

Kiefer ordering of simplex designs was demonstrated by Korir (2008).  The work is 

further extended to third degree kronecker model by making use of equivalent theorem 

when calculating weights. Kerich, (2012) showed optimal designs for third degree 

Kronecker model mixture experiments. Cheruiyot, (2017) studied optimal designs for 

third degree Kronecker model mixture experiments with application in blending of 

chemicals for control of mites in strawberries.  

The present work uses Kiefer’s  ∅𝑝  function as optimality criteria to weighted centroid 

designs for maximal parameter subsystem for third degree Kronecker model mixture 

experiments, where the moment matrix was improved to give more information in terms 

of enhancing symmetry and generating a large moment matrix under Loewner ordering 

yielding optimal values as desired. 

2.2 Model and Notation 

The linear model , 𝑦 = 𝑓(𝑡)′𝜃 + 𝜀. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (1)  
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An experimental condition t  is selected from the experimental domain mT with a real 

valued response y , a regression function 
k

mTy : ,an unknown parameter vector

and centered error term, ℰ  , Draper and Pukelsheim,(1993). In any experiment, 

it is assumed that errors are uncorrelated with a mean of zero and unknown variance 𝜎2 

. Our attention is focusing on estimation of a system of linear function, 𝑘′𝜃  of the 

parameter subsystem ,where the coefficient matrix 
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m

K  is assumed to 

have full column rank.  

If and only if there is at least one linear unbiased estimator for  the parameter subsystem 

𝑘′𝜃 under a design  𝜏, then the parameter subsystem 𝑘′𝜃 with the entire column rank 

coefficient matrix  𝑘 is estimable. A necessary and sufficient condition for estimability 

of 𝑘′𝜃  under 𝜏   is that the range of 𝐾  is included in the range of 𝑀(𝜏), ℜ(𝑘) ⊆

ℜ(𝑀(𝜏)) 

Thus, any moment matrix, )(kNNDA  with ℜ(𝑘) ⊆ ℜ(𝐴)  is called feasible for 𝑘′𝜃. 

The set 𝐴(𝑘) = {𝐴 ∈ 𝑁𝑁𝐷(𝑘):ℜ(𝐾) ⊆ ℜ(𝐴)} is called the feasibility cone for 𝑘′𝜃.  

Let M be a collection of moment matrices, then a parameter subsystem 𝑘′𝜃 is estimable 

within M if and only if there is a non-empty intersection between the set M and the 

feasibility cone,.  That is,    KAM . 

Let   MrankMrM :max , be the maximal rank within  . The coefficient 

matrices
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m

K  of the parameter subsystems K  that are estimable within M  

satisfy MrKrank  . As a result, have a look at the extreme scenario MrKrank  , 

k

k
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which illustrates the concept of estimating as many parameters as possible using a given 

set of moment matrices. 

Definition 

The parameter subsystem K  is called a maximal parameter subsystem for M  if and 

only if; 

 (i)  )(KAM  and 

     (ii) MrKrank  . In this specific study, we have 






 


2

1m
rM  and  𝐾 is called         

maximal coefficient matrix for  M ,Draper and Pukelsheim (1998).The whole 

parameter vector 𝜃, or any regular transform of it, is a maximal parameter subsystem 

for the set  M  if it contains regular moment matrices. Hence, assume the set M to be 

convex. Then, there is a matrix 𝑀0 ∈ 𝑀, with maximal range, that is, ℜ(𝑀) ⊆

ℜ(𝑀0) for all 𝑀0 ∈ 𝑀, Pukelsheim (1993). There may be many matrices 𝑀0with this 

property, the maximal range ℜ𝑚 = ℜ(𝑀0)  is unique, Then, dim 𝑅𝑚 = 𝑟𝑀 .This 

construction is analogous to that of a minimal null space given by LaMotte (1977). 

2.3 General Design Problem 

According to Pukelsheim (1993), any design that solves the problem (2) below for a 

fixed p  (-∞, 1] is called optimal
P
  for K  in T. For all p  (-∞, 1], the 

existence of optimalP   design for K  is guaranteed in Pukelsheim (1993).The 

problem of finding a design with maximum information on the parameter subsystem

'K  was formulate as, 

    Maximize p (Ck (M (τ))) with τТ 
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    Subject to  𝐶𝐾 (M (τ))𝑃𝐷(𝑠)τТ……………………………………….(2) 

Where, Tm represents a collection of all designs and denoted by T. According to 

Pukelsheim (1993), the side condition )())(( sPDMCk  is the same as the 

availability of an unbiased estimator for K  under 𝜏.  The design 𝜏  is said to be 

feasible for K . The formulation makes it easier to estimate maximal parameter 

subsystem which is unbiased.  

2.4 Coefficient Matrix  and the Parameter Subsystem of Interest 

A coefficient matrix is a rectangular array of numbers that represents the coefficients 

of a system of linear equations Searle & Khuri, (2017). The rows of the matrix 

correspond to the equations in the system, and the columns correspond to the variables 

in the system. Each entry in the matrix is the coefficient of the corresponding variable 

in the corresponding equation. In linear algebra, a coefficient matrix is a matrix 

consisting of the coefficients of the variables in a set of linear equations. The matrix is 

used in solving systems of linear equations Lyche, (2020).  

 The coefficient matrix K is the m × n matrix with the coefficient a_{ij} as the (i, j)th 

entry. The system of equations is inconsistent if the rank of the augmented matrix (the 

coefficient matrix augmented with an additional column consisting of the vector b) is 

greater than the rank of the coefficient matrix. If the ranks of these two matrices are 

equal, the system must have at least one solution. The solution is unique if and only if 

the rank r equals the number n of variables. Otherwise, the general solution has n – r 

free parameters, indicating an infinitude of solutions Bai & Wu, (2021). 

The coefficient matrix is a fundamental concept in system identification, linear algebra, 

and control systems, and it plays a crucial role in representing and analyzing systems 
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of linear equations and dynamic systems Qi, Tao & Jiang, (2019). The associated 

parameter subsystems and coefficient matrices are used in modeling, simulation, and 

control system design. 

In the field of control systems, the coefficient matrices A and B are fundamental to the 

controllability of a system. The condition of controllability depends on these coefficient 

matrices, as described by a theorem in the context of system dynamics Buedo-

Fernández & Nieto,( 2020)  

The coefficient matrix K provides a bridge between the parameter subsystem of interest 

and the optimal weighted centroid designs for maximal parameter subsystems Lu, 

Hydock, Radlińska & Guler, (2022). By understanding the structure of K, helps in 

identifying feasible designs and apply optimality criteria to select the most efficient 

design for their specific experimental objectives. 

In the context of optimal design for mixture experiments, the coefficient matrix K plays 

a crucial role in determining the parameter subsystem of interest and identifying 

optimal weighted centroid designs for maximal parameter subsystems Wang, Fan & 

Qiang, (2023). The parameter subsystem of interest represents a subset of the full 

parameter space that is considered relevant for the specific experimental objectives. 

Maximal parameter subsystems are those that encompass the largest possible subset of 

parameters that can be estimated with the given experimental design. 

To understand the relationship between the coefficient matrix K and the parameter 

subsystem of interest, consider the third-degree Kronecker model mixture experiment 

Sitienei, (2019). In this model, the response is assumed to be a polynomial function of 

the mixture proportions up to the third degree. The coefficient matrix K, denoted as 
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K_3, is a matrix that encodes the linear relationships between the third-degree 

polynomial terms and the mixture proportions. 

The parameter subsystem of interest for the third-degree Kronecker model is typically 

defined to include all the linear, quadratic, and cubic terms, as well as some of the 

interaction terms Wambui, Joseph & John,( 2021). The specific choice of terms depends 

on the experimental objectives and the properties of the response surface. 

Optimal weighted centroid designs for maximal parameter subsystems are designs that 

maximize the amount of information available for estimating the parameters of interest 

Karatina, (2021). These designs are constructed using weighted centroid points, which 

are points in the mixture space that represent mixtures of the components. The weights 

associated with the centroid points determine the relative proportions of the components 

in each mixture. 

The coefficient matrix K plays a key role in determining the optimal weights for the 

centroid points Gou, Sun, Du, Ma, Xiong, Ou, & Zhan, (2022). By analyzing the 

structure of K, it is possible to identify a set of feasible weighted centroid designs that 

satisfy the maximal parameter subsystem condition. These feasible designs can then be 

evaluated using optimality criteria, such as A-optimality or D-optimality, to select the 

design that provides the most efficient estimation of the parameters of interest. 

The application of the coefficient matrix K in real-life situations involves using it to 

identify feasible designs and apply optimality criteria to select the most efficient design 

for specific experimental objectives. This is particularly relevant in the context of 

optimal design for mixture experiments. This concept has practical applications in 

various fields, such as pharmaceuticals, food science, and material engineering. 
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In pharmaceutical research, the development of drug formulations often involves 

mixture experiments to optimize the composition of active pharmaceutical ingredients, 

excipients, and other components Janczura, Sip & Cielecka-Piontek, (2022).. The 

coefficient matrix K can be used to identify the optimal weighted centroid designs for 

maximal parameter subsystems, ensuring that the experimental design provides the 

most efficient estimation of the parameters of interest, such as drug potency, stability, 

and bioavailability. 

In food science, the formulation of food products often requires the optimization of 

ingredient proportions to achieve desired sensory attributes, nutritional content, and 

shelf stability Janczura, Sip & Cielecka-Piontek, (2022). By utilizing the coefficient 

matrix K, researchers can identify the parameter subsystem of interest and design 

optimal weighted centroid experiments to maximize the information available for 

estimating the parameters related to taste, texture, and nutritional quality. 

In material engineering, the development of composite materials involves blending 

different components to achieve specific mechanical, thermal, and electrical properties 

Hsissou, Seghiri, Benzekri, Hilali, Rafik, & Elharfi, (2021). The coefficient matrix K 

can be applied to identify the optimal weighted centroid designs for maximal parameter 

subsystems, ensuring that the experimental design provides the most efficient 

estimation of the parameters related to material performance and durability. 

By understanding the structure of the coefficient matrix K, researchers and practitioners 

in these fields can effectively identify feasible designs and apply optimality criteria to 

select the most efficient design for their specific experimental objectives, ultimately 

leading to the development of high-quality products and processes. 
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2.5 Moment and Information Matrices  

According to  Pukelsheim (1993),for  any design 𝜏, with the  moment matrix M, the 

information matrix for K   with 𝑘 × 𝑠 coefficient matrix 𝑘 of column rank s  can be 

defined as MCk
in that, the mapping 

kC from the cone NND(𝑘) into the space 

𝑠𝑦𝑚(𝑠) is given by; 

    )3(....................,:min sNNDILKLLLAAC
s

ks

k
 

 

Pukelsheim (1993) demonstrated that the Loewner ordering is taken into account when 

calculating this minimum across all left inverses 𝐿 of 𝐾 on the space 𝑠𝑦𝑚(𝑠) of ss    

symmetric matrices, defined by BA    if and only if  B − A ∈ NND(s),for 𝐴, 𝐵 ∈

𝑠𝑦𝑚(𝑠) and that this minimum exists and also it is unique. The information matrix  

  MCk
 of a design 𝜏 with a moment matrix captures the amount of information 

that 𝜏 contains on K , Pukelsheim, (1993) and defined, 

  krMKKKL



1

0 ,…………………………………………………. (4) 

With Mrk
K


 being maximal coefficient matrix for the convex set M, Pukelsheim 

(1993). Then the information matrix mapping    Mk rsymkNNDC :  satisfies, 

00 LALCk
 for all  kNNDA  with   mRA  . Hence, kC   is a linear mapping 

on M and enjoys the inversion property   KAKCA k
  for all  kNNDA with

  mRA  , (Kinyanjui, 2007).  
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If K  is a subsystem with any number of parameters and   kNNDA  a given 

matrix, there is a left inverse �̃� = �̃�(𝐴)  and is separate from A with   mRA   such 

that 𝐶𝑘(𝐴) = �̃�(𝐴)�̃�′, Pukelsheim (1993). The linearity of   MCk
 as a function of 

 M  entails linearity of   MCk
 as a function of  𝜏. Additionally, the linearity 

of kC is a generalization of the obvious identity   AAC
kI   for all  kNNDA , 

It claims that information matrices for the entire parameter vector are moment matrices. 

Information matrices should therefore be viewed as modified moment matrices with the 

matrix 
krML


0 ,considering the model:  

   )5....(............................................................
0

 


 tfLy

 

With the same experimental domain ,mT the regressions function

Mr

mTfL :0 , parameter vector Mr and the moment matrix 

 M
~

of a design 𝜏. Then, for every design 𝜏 on mT with   mRA  , we then have 

     MCM k
~

 and the set       Mk rNNDMMCM  ;
~
  

is a convex set of moment matrix. Thus, the full parameter vector  is estimable within  

M
~

,(Kinyanjui, 2007).  

We then construct an information function    ,0: sNND  to examine design 

problems for a parameter subsystem K .That is,  ,is non-constant, it is upper semi-

continuous, positively homogenous, and super additive with regard to the Loewner 

ordering. Instead of optimal designs, it is sufficient to think about optimal moment 
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matrices. Let   be a subset of moment matrices, a moment matrix, MM 1
is 

called optimal for K   in  if and only if it solves the design problem,   

         Maximize    MCk  with M  

         Subject to   kAM  . 

The optimal moments and information matrix depend on the number of moment 

conditions specified for the model. For two moment conditions, the optimal moments 

are the sample averages of the moment conditions, and the optimal information matrix 

is the inverse of the sample covariance matrix of the moment conditions.  

In general, the optimal moments are the sample averages of the moment conditions, and 

the optimal information matrix is the inverse of the sample covariance matrix of the 

moment conditions Schennach & Starck,( 2022).  

In a mixture experiment, the experimenter is interested in the response of a mixture of 

two or more components as the proportions of the components are varied. Weighted 

centroid designs (WSCDs)  are a popular choice for mixture experiments because they 

are efficient and easy to implement Husain & Hafeez,( 2023). 

There are a number of different criteria that can be used to assess the optimality of a 

WSCD. One common criterion is A-optimality. An A-optimal design is a design that 

minimizes the determinant of the Fisher information matrix Hajibabaei, Seydi & 

Koochari, (2023). This means that an A-optimal design provides the most precise 

estimates of the model parameters. 

In the context of third-degree Kronecker model mixture experiments, a maximal 

parameter subsystem is a parameter subsystem that contains as many parameters as 
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possible Sitienei, (2019). A WSCD for a maximal parameter subsystem is a WSCD that 

allows for the estimation of as many model parameters as possible. 

Optimal WSCDs for maximal parameter subsystems in third-degree Kronecker model 

mixture experiments have been studied by a number of researchers. Kerich et al. (2014) 

developed a method for constructing A-optimal WSCDs for maximal parameter 

subsystems in third-degree Kronecker model mixture experiments. They found that the 

A-optimal WSCDs for maximal parameter subsystems are highly efficient and can be 

used to estimate a large number of model parameters. 

WSCDs are a valuable tool for mixture experiments. They are efficient, easy to 

implement, and can be used to estimate a large number of model parameters. Optimal 

WSCDs for maximal parameter subsystems are particularly useful in third-degree 

Kronecker model mixture experiments (Kinyanyui, Kungu, Ronoh, Korir, Koske & 

Kerich, 2014).) 

2.6 Feasibility Cone  

According to Pukelsheim (1993),the most important case occurs if the full parameter 

vector    is of interest, that is, if kIk   and  since the unique left inverse L of k  is 

then the identity matrix kI , the information matrix for   reproduces the moment 

matrix M,  

  MMC
kI  ………………………………………………………………(6) 

According to Pukelsheim (1993), if the matrix M lies in the feasibility A(C), Gauss-

Markov Theorem provides the representation, 

    11  cMcMCc ………………………………………………………...… (7) 
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Here the information matrix for 𝐶′𝜃 is the scalar    11  cMc ,in contrast to the moment 

matrix M. The goal of information minimization seems acceptable. The feasibility cone  

𝐴(𝑘) for a parameter subsystem 𝐾′𝜃 is defined by;  

𝐴(𝑘) = {𝐴 ∈ 𝑁𝑁𝐷(𝑘); 𝑟𝑎𝑛𝑔𝑒𝑘 ⊆ 𝑟𝑎𝑛𝑔𝑒 𝐴}. 

A matrix  𝐴 ∈ 𝑠𝑦𝑚(𝑘) is called feasible for 𝐾′𝜃 when  𝐴 ∈ 𝐴(𝑘);a design 𝜉 is called 

feasible for 𝐾′𝜃 when 𝑀(𝜉) ∈ 𝐴(𝑘). If 𝑘 is of full rank, the representation is provided 

by the Gauss-Markov theorem as     11  kAkACk
, information matrices in 

statistical inference assume this form, Pukelsheim, (1993). 

2.7 Kiefer Optimality  

The optimality properties of designs are determined by their moment matrices 

Pukelsheim (1993). We compute optimal design for the polynomial fit model, the third 

degree Kronecker model. This involves searching for the optimum in a set of competing 

exchangeable moment matrices, Gregory et al, (2014). For mixture models on the 

simplex, a better design is obtained, by matrix majorization that yields a larger moment 

matrix due to increase of symmetry and Loewner ordering. The two criteria together 

constitute the Kiefer design ordering and any such criteria single out one or a few 

designs that are Kiefer optimal, Pukelsheim, (2006). In view of the initial 

symmetrization step, it suffices to search for improvement in the Loewner ordering 

sense, among exchangeable moment matrices only. First,obtain the exchangeable 

moment matrices, then find the necessary and sufficient conditions for two 

exchangeable third-degree K-moment matrices to be comparable in the Loewner matrix 

ordering. The comparison of moment matrix inequalities reduces to the comparison of 

individual moment inequalities which is part of the condition. 
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A minimum complete class of designs for the kiefer ordering is the set of weighted 

centroid designs. Completeness of a collection of weighted centroid designs (C) 

indicates that for each design 𝜏 that is not included in the set of weighted centroid 

designs, there exist a member  𝜉 in C which is kiefer better than  𝜏 . To mean that, it 

must be shown that 𝜉 has more information than 𝜏.Μ(𝜉) > Μ(𝜏), and thus the two  

moments are not kiefer equivalent. It must be shown that, weighted centroid design  

satisfies Μ(𝜉) > Μ(𝜏) ,which in turn satisfies the kiefer optimality of  Μ(𝜉). 

The assumption  Μ(𝜉) ≥ Μ(𝜏)   cannot be true, as demonstrated by Draper and 

Pukelsheim (1998), making the class C minimum complete. Thus, increased symmetry 

and Loewner ordering can always be added to designs that are not weighted centroid.   

2.8 Polynomial Regression 

Scalar responses 𝑌𝑡 are applicable to response surface models under the presumption 

that observations made under same or dissimilar experimental conditions 𝑡,  share a 

common (unknown) variance,  𝜎2  , and are uncorrelated. Additionally, the models 

operate under the presumption that the anticipated response     ,tnYE t  permits 

fitting by a low-degree polynomial in t. According to Draper and Pukelsheim (1998),by 

the  use of the Kronecker product, we have  the third-degree model as ,
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Each of the components is usually interpreted with 0 as  the grand mean. The 1m

vector     mi  ,.....,1 consist of the main effects i .The 13 m   vector 

    mmmiij  .....,, 112111 consists of interaction effects of pure cubic  effects iii  and 

the three-way interaction effects iij with third degree restrictions jiiiij    for all i,j 

and the  regression function  tft   conforms to the parameter vector   and is, in 

turn  
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On the experimental domain 𝑇𝑚  ,an experimental design 𝜏 is the probability measure 

with a finite number of support points. Suppose the supports points are mttt ,....., 21  and 

τ allocates weights w1, w2, ... to the support points in 𝑇𝑚 , hence the experimenter is 

thus instructed to draw the proportions w1, w2, ... of all observations under the relevant 

experimental settings. For a linear model with regression function 𝑓(𝑡), the statistical 

properties of a design, 𝜏  are captured by its moment matrix, 

          )8......(............................................................
1




dtftftftfwM
jj

j
j





 



  

in Draper and Pukelsheim (1998). Any such moment matrix that has been over 

parameterized is rank deficient, and the least squares estimator's for   dispersion 

matrix is no exception. Consequently, the normal matrix inverses are unfortunately 

nonexistent. This results in the generalized inverses being invoked, which also has an 

equivalent performance. 
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2.9 Optimal Weighted Centroid Designs 

Smith, (1918) became the first to develop optimal designs for the regression problems, 

later on, Kiefer, (1959) developed important computational procedures which are 

important in finding optimum designs in regression problems of statistical inference. 

Pukelsheim, (1993) examines the general design environment. According to Klein, 

(2004) the class of weighted centroid designs for a design with at least two elements 

for the Kiefer ordering is fundamentally complete. 

The researcher showed that, in the second Kronecker model with ingredients 

 

𝑚 ≥ 2 for mixture experiments, for every design   and for every  𝑝 ∈ [−∞; 1] a 

weighted centroid design   exist with  ).)(())((  MCMC kpkp  
 
There are 

two steps followed for Kiefer design ordering. The ordering process for Kiefer designs 

involves two parts. The majorization ordering comes first. The next step is to improve 

the Loewner matrix ordering within a class of exchangeable moment matrices, Draper 

and Pukelsheim (1998). For every design   there exist a weighted centroid design

  whose moment matrix   𝑀(𝑛)  becomes better upon M (  ) according to Kiefer 

ordering, with the moment matrices M (  ) and M (  ), as seen in Draper and 

Pukelsheim, (1998). In the Kiefer ordering, a moment matrix M has better information 

than a moment N, if M is better than or equal to some intermediate matrix F under 

Loewner ordering and F majorized by N in a group that leaves invariant problem. 

 M >> NM >> F≺N for some matrix F. 

Moment matrix M is kiefer better than N if M>>N, but not when M and N are the same. 

The moment matrices M and N are kiefer equivalent when M>>N and N>>M. If 

symmetry is increased and a big moment matrix is obtained under Loewner ordering, a 
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design can be enhanced to provide additional information. The two criteria demonstrate 

that the acquired information is, thus, Kiefer optimum for the parameter subsystem. The 

implication of the above is that any design which does not consist of a mixture of 

elementary centroid designs can be improved upon,in terms of symmetry and Loewner 

ordering, by using an appropriate combination of elementary centroid designs. 

Other criteria within the class of weighted centroid are needed for more improvement, 

for instance the average variance criterion, and determinant criterion as proposed by 

Draper and Pukelsheim, (1998). The introduction of optimal designs was done by 

Scheffe’ (1963). Exchangeable weighted centroid designs are those that are invariant 

under permutations, Klein (2002). 

 Klein (2004) affirmed the benefits of the weighted centroid designs for the Kronecker 

model thus summarizing the work done in theorem 6.4 and 7.4 by Draper, Heiligers 

and Pukelsheim (1999).  

Weighted centroid designs are used in the context of optimal experimental design, 

particularly for mixture experiments involving a maximal parameter subsystem. The 

weighted centroid design aims to optimize the precision of estimating model parameters 

Shah, Zhe, Yin, Khan, Begum, Faheem & Khan, (2018). The computation of numerical 

weighted centroid designs for the maximal parameter subsystem involves determining 

the optimal values based on specific optimality criteria. The literature on this topic 

discusses the computation of optimal designs for a maximum subsystem of parameters 

in second-degree Kronecker model mixture experiments. It also addresses the 

derivation of E-optimal weighted centroid designs based on maximal and non-maximal 

parameter subsystems for various numbers of ingredients. Additionally, a well-defined 
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coefficient matrix is used to select a maximal parameter subsystem for the model, as its 

full parameter space is inestimable Kung’u, Koske & Kinyanjui, (2020). 

For specific numerical computations and algorithms related to weighted centroid 

designs for maximal parameter subsystems, consulting the referenced literature and 

academic papers would provide detailed methodologies and approaches Wang, Fan & 

Qiang, (2023). The first step in computing numerical weighted centroid designs is to 

compute the information matrix of the design. The information matrix is a matrix of 

second-order partial derivatives of the log-likelihood function with respect to the 

parameters. The diagonal elements of the information matrix are the variances of the 

parameter estimates. 

The second step is to use the information matrix to compute the D-optimal, A-optimal, 

and E-optimal designs. The D-optimal design is the design that minimizes the average 

variance of the parameter estimates. The A-optimal design is the design that minimizes 

the trace of the information matrix. The E-optimal design is the design that minimizes 

the maximum eigenvalue of the information matrix Shahmohammadi & McAuley, 

(2018). The third step is to compute the weights of the points in the design. The weights 

are determined by the relative importance of the parameters. The weights can be 

computed using a variety of methods, such as least squares or maximum likelihood 

Mannarswamy, (2018). The final step is to evaluate the performance of the design. This 

can be done by comparing the design to other designs, or by comparing the design to a 

theoretical benchmark Bu, Majumdar & Yang, (2020). 

Weighted centroid designs have various applications in real-life situations. One 

application is in optimal experimental design, specifically for mixture experiments 

involving a maximal parameter subsystem Özbek & Eker, (2020). The goal of weighted 
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centroid designs in this context is to optimize the precision of estimating model 

parameters. This can be useful in industries such as pharmaceuticals or materials 

science, where accurate parameter estimation is crucial for product development and 

optimization. 

In another real-life application, weighted mean centroids are computed for latitude and 

longitude points, taking into account the spheroid ,Abd El-Sattar, Sultan, Kamel, 

Khurshaid & Rahmann,( 2021). This can be useful in geographic analysis or navigation 

systems, where determining the center or average location of a set of points is important. 

To compute numerical weighted centroid designs, several steps are involved. First, the 

information matrix of the design needs to be computed, which consists of second-order 

partial derivatives of the log-likelihood function with respect to the parameters Zhu, 

Zhu & Au,( 2023). This matrix provides information about the variances of the 

parameter estimates. 

Next, different optimality criteria such as D-optimal, A-optimal, and E-optimal designs 

can be computed using the information matrix ,Gichuki, Joseph & John, (2020). These 

designs aim to minimize the average variance, trace, or maximum eigenvalue of the 

information matrix, respectively. The weights of the points in the design are then 

computed based on the relative importance of the parameters ,Marks et al., (2023). This 

can be done using methods like least squares or maximum likelihood. Finally, the 

performance of the design is evaluated by comparing it to other designs or theoretical 

benchmarks. This allows for the selection of the most suitable design for the specific 

application. 
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2.10 Optimality Criteria   

The function   is  an optimality criterion  from the closed cone of non-negative definite 

ss  matrices (Csxs) onto  real line  : NND(s) → R, with the properties that gives the 

idea of whether an information matrix can be  large or small. For one to make a good 

decision, on the best model to be selected, some set are to be employed. There are 

widely used optimality criteria used in statistics, which comprises of; The smallest 

Eigen Value Criterion (E- Criterion), Average Variance Criterion (A- Criterion) and 

the Determinant criterion (D- Criterion). 

The need for the theory of optimal designs emerged from the requirement that an 

experimental design be properly chosen before the experiment. The aim of investigating 

the optimal theoretical designs is to provide a reliable benchmark for identifying the 

most efficient and useful solutions to a problem.  This was motivated by the fact the 

available resource is inadequate that are used to conduct field experiments, hence, 

making it sensible to get the most convenient way the optimal desired results could be 

obtained by making use of the limited resources available.  

Smith (1918) provided a criterion and also obtained optimal experimental designs for a 

given set of regression problems. Wald (1943) showed the criteria of maximizing the 

determinant of the matrix X’X and Kiefer and Wolfowitz (1959) referred to it as the D-

optimality criterion. The design optimality criteria always deal with the optimal 

properties of the given design matrix for a model matrix X.  

The D-Criterion is used in most commonly used as well as the A-optimality and E-

optimality criteria which were later on developed as the parameter estimation criteria.  

Additional developments in the generation of optimality criteria is found in the works 

done by Elfving (1952) and Chernoff (1953) who reduced the trace of (X’X)-1 to get 



31 

 

 

the regression designs. Ehrenfeld (1955) brought about the suggestion for minimizing 

the suggested that maximizing the smallest eigenvalue of X’X can as well be used as a 

criterion. 

The idea of optimum experimental design is as well explained by doing the relationship 

between the variance of the parameter estimates and that of the expected responses from 

different designs and models. The general equivalence theorem, which leads to the 

algorithms for the designs and models, is the outcome of the existing association 

between the two sets of variances. The general equivalence theorem is the central result 

where the dependence of the optimal design of experiments depends (Atkinson and 

Donev, 1992). The methods for construction and the verification of the optimal designs 

are offered, and the theorem is generally applied to a variety of given design 

requirements. The goodness of a design is shown by the optimality criterion on either a 

set of a given statistical properties or on a certain property. Here, the goal of 

investigating optimal theoretical designs is to provide a yardstick for determining which 

designs are the most effective and practicable. Pázman (1986) and Mandal (2000) 

concentrated more on the D- optimality and also, Yang (2008) demonstrated the use of 

an algebraic technique for constructing an A-optimal designs in generalized linear 

models. Pukelsheim (1993) gave a comprehensive mathematical discussion which 

offered a method that is used to compute the optimality criteria, where he brought about 

the discussion on the D-optimality, and A- optimality criteria. 

Optimal weighted centroid designs for maximal parameter subsystem for third degree 

Kronecker model mixture experiments have not been studied. The general design 

problem was to obtain a design for a parameter subsystem with maximum information. 

The full parameter subsystem cannot be estimated, to make it estimable, coefficient 
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matrix of interest was then chosen, by dividing the factors interacting with the entire 

number of interacting parameters in the model, the full parameter subsystem was made 

estimable, making it possible to estimate as many parameters as possible. The study 

sought develop useful improved optimal designs that reduce the cost when used in 

designing of experiments. This study sought fill the knowledge gap. 

In the context of the third degree Kronecker model for mixture experiments, weighted 

centroid designs are considered as an essentially complete class. These designs are 

evaluated based on various optimality criteria such as A-, D-, and E-optimality Sitienei, 

(2019). The weighted centroid designs are obtained by considering the coefficient 

matrix and the associated parameter subsystem of interest using unit vectors. The 

information matrices associated with the parameter subsystem of interest are then 

generated for the corresponding factors, and the optimality criteria are applied to 

evaluate the designs. 

Optimal weighted centroid designs for the third-degree Kronecker model for mixture 

experiments can be determined using A-optimality, D-optimality, and E-optimality 

criteria Sitienei, Okango, & Otieno, (2019). A-optimality minimizes the average 

variance of the parameter estimates, D-optimality maximizes the determinant of the 

information matrix, and E-optimality minimizes the maximum eigenvalue of the 

variance matrix.To determine the optimal weighted centroid designs for the third-

degree Kronecker model, the following steps can be followed. Define the third-degree 

Kronecker model where the third-degree Kronecker model is a second-order model that 

includes third-order interactions between the mixture components.  

Define the optimality criterion where the optimality criterion is a measure of the 

efficiency of a design. The three most common optimality criteria are A-optimality, D-
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optimality, and E-optimality. A-optimality minimizes the average variance of the 

parameter estimates. D-optimality maximizes the determinant of the information 

matrix. E-optimality minimizes the maximum eigenvalue of the variance matrix. 

Find the optimal weights for the weighted centroid design. The optimal weights for the 

weighted centroid design can be found using numerical optimization techniques. The 

optimal weights will depend on the optimality criterion and the number of mixture 

components.. 

Apply the design to the mixture experiment. The optimal weighted centroid design can 

be applied to the mixture experiment by selecting the mixture proportions according to 

the weights of the design. The response can then be measured and used to estimate the 

model parameters. 

The optimal weighted centroid design for the third-degree Kronecker model will 

depend on the optimality criterion, the number of mixture components, and the specific 

mixture experiment. However, the optimal design will always provide more efficient 

parameter estimates than a non-optimal design. 

The application of weighted centroid designs involves defining the third-degree 

Kronecker model, selecting the optimality criterion, finding the optimal weights for the 

design, evaluating the efficiency of the design, and applying the design to the mixture 

experiment. The optimal weighted centroid design for the third-degree Kronecker 

model depends on the optimality criterion, the number of mixture components, and the 

specific mixture experiment. However, it always provides more efficient parameter 

estimates than a non-optimal design. These designs are used to optimize mixture 

experiments and are evaluated based on various optimality criteria, making them a 

valuable tool in the field of mixture experiments. 
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For example, in the field of pharmaceuticals, when developing a new drug formulation, 

it is important to determine the optimal proportions of different ingredients to achieve 

the desired therapeutic effect. By using the weighted centroid designs, researchers can 

systematically vary the proportions of the ingredients and evaluate the response of the 

drug formulation. This can help in determining the optimal formulation that maximizes 

the desired effect while minimizing any potential side effects. The optimality criteria 

such as A-, D-, and E-optimality can be used to evaluate the efficiency of the designs 

and select the most optimal one. This application can save time and resources by 

providing a systematic approach to optimizing mixture experiments and improving the 

effectiveness of drug formulations. 
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CHAPTER THREE 

RESEARCH METHODOLOGY 

3.1 Introduction 

Mixture experiments are associated with the investigation of several factors, which are 

assumed to influence the response only through proportions in which they are mixed. 

The mixture factors 𝑡1, 𝑡2, …… , 𝑡𝑚are coded in such a way that 𝑡𝑖 ≥ 0 subject to 

restriction ∑ 𝑡𝑖 = 1. A major impact of this constraint being that the linear models do 

not have an intercept otherwise the regression coefficients cannot be estimated 

uniquely. 

Let 𝐼𝑚 = (1…1)′ ∈ 𝑅𝑚 be the unity vector .The standard probability simplex 𝑇𝑚 is the 

experimental domain given as  𝑇𝑚 = {𝑡 = (𝑡1,,………, 𝑡𝑚)
′
∈ [0,1]′; 𝐼𝑚

′ 𝑡 = 1} 

The experimental response 𝑌𝑡 is the response under experimental condition  mTt   

taken as real valued random variable with an unknown parameter  . The outcome of 

the experiment 𝑌𝑡 is the response under experimental conditions mTt    and is used as 

a real valued random variable with the unidentified parameter ,

3

),...,,( 112111

m

mmm   . 

Replications under responses from different experimental conditions and also the same 

experimental condition are under the assumption of having equal (unknown) 

variance,𝜎2  and are uncorrelated. The probability measure on the experimental domain 

𝑇𝑚  is the experimental design 𝜏, and it has a finite number of support points. 

 Early seminar work was done by Scheffe’ (1958) who suggested and analysed 

canonical model forms when the regression function for the expected response is a 
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polynomial of degree one, two, or three. We refer to these as the S-polynomial or S-

models. In this paper, the alternative representation of mixture models is used to 

investigate the third-degree mixture models with three factors. This version is based on 

the Kronecker product algebra of vectors which was introduced by Draper 

and Pukelsheim (1998). The Kronecker algebra gives rise to homogeneous model 

function and moment matrices. We refer to the corresponding expressions as K-models 

or K-polynomials. 

Thus, the polynomial regression model for the third-degree mixture model is extended 

to the work done by Draper and Pukelsheim (1998). Where, expected response and the 

S-polynomial takes the following form, 

𝐸[𝑌𝑡] = 𝑓(𝑡)′𝜃 = ∑ 𝑡𝑖𝜃𝑖
𝑚
𝑖=1 + ∑∑ 𝑡𝑖

𝑚
𝑖<𝑗 𝑡𝑗𝜃𝑖𝑗 . . . . . . . . . . . . . . . . . . . . . . . . . . . ……… . . . . (9)  

The expected response of a regression function when it is homogenous third-degree k-

Polynomial, takes the following form; 

𝐸[𝑌𝑡] = 𝑓(𝑡)′𝜃 = ∑ ∑ ∑ 𝑡𝑖
𝑚
𝑗=1

𝑚
𝑖=1 𝑡𝑖𝑡𝑗𝜃𝑖𝑖𝑗 = (𝑡 ⊗ 𝑡 ⊗ 𝑡)′𝜃𝑚

𝑖=1 …………… . . . . . . (10)  

where the Kronecker powers )1(),( 33  mtttt Vectors. Consist of  the three-

way and pure cubic interactions of components of 𝑡 in lexicographic order of subscripts 

with ijjjijjjijiiijiiij  
 
for all i, j being the  third degree restrictions. 

According to Draper and Pukelsheim (1998), the advantages of the Kronecker model 

includes; its more compact notation, practical invariance qualities, and homogeneity of 

the regression terms. In an experiment, it is assumed that every observation has a 

common variance 𝜎2 ∈ (0,∞)  and is uncorrelated. 𝑚(𝜏) = ∫𝑓(𝑡)𝑓(𝑡)′𝑑𝜏  is the 
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moment matrix for the Kronecker model, with homogeneous elements of degree six.  

The moment matrix 𝑚(𝜏) reflects a design's statistical characteristics. 

3.1.1 Kronecker Products 

Draper and Pukelsheim (1998) proposed a set of mixture experiment models referred 

to as K-models or Kronecker models. Kronecker model is another representation of 

mixture models. The models are based on the vector and matrix algebra of Kronecker. 

The expected responses for any mixture experiments studied using the kronecker 

models, are homogeneous in factors. The mixture factors it , may be written as a  1m  

vector, ),.....,( 1 mttt  . Orthogonality is an important property that kronecker product 

should preserve. If two matrices A and B are the orthogonal matrices, then, their 

Kronecker product BA  are also  said to be an orthogonal matrix .Kronecker product  

bases third degree  polynomial regression in the m variables )',.....,(
1 m

ttt  on  matrix 

of all the cross products. 

1 2

2
1 1 2 11

2
2 2 1 2 2

2
1 2

                                     m

m

m

m
m m m

t t t

t t t t tt

t t t t t t
tt

t t t t t t

 
 
 

   
 
 
   

Instead of reducing the Box –hunter minimal set polynomials )....,,,....,,(
121

22

1 mmm
tttttt



.Some of the benefits enjoyed include: Transformational principles become 

straightforward using the conformable matrix R. The kronecker model extends to third 

degree polynomial regression and different terms are recurred depending on how many 

times they arise.
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Given a matrix A and B with  mk    and nl   respectively, where mnkl  is the block 

matrix and the definition of their Kronecker product is given as BA . Where,

 



















BaBa

BaBa

BA

kmk

m







1

111

 

Given a vector ms   and also another vector nt  their Kronecker product is a 

special case. 

orderhiclexicograpin
njmiji

m

mnts

ts

ts

ts




















,...,1,,...,1

1

)(

 

One of the key properties of Kronecker product is the product rule 

)()())(( BtAstsBA  .This has a good implication for transposition,

)()()( BABA  ,for Moore-Penrose inversion, )()()(   BABA  and for 

the regular inversion )()()( 111   BABA .The other properties of Kronecker product 

are  (𝐴⨂𝐵)⊗ 𝐶 = 𝐴⊗ (𝐵⊗ 𝐶)  for associativity, (𝐴 + 𝐵)⊗ 𝐶 = (𝐴 + 𝐶)⊗

(𝐵 ⊗ 𝐶)  for distributive property. Trace (𝐴⨂𝐵) = 𝑡𝑟𝑎𝑐𝑒(𝐵 ⊗ 𝐴) =

𝑡𝑟𝑎𝑐𝑒 (𝐴)⨂𝑡𝑟𝑎𝑐𝑒 (𝐵)  

And 'tt  assembles the cross products jitt  in an mm   array. In second degree, a 

representation of Kronecker square tt   arranges same numbers as long 12 m  vector. 

And arranges the Kronecker product cube ttt  as a long 13 m  vector and a list of 

triple products jii ttt  in lexicographic order, as suggested by Draper and pukelsheim 

(1998).Transformation with conformable matrix R amounts to 
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))(()()( ttRRRtRt   for second degree Kronecker model and  

))(()()()( tttRRRRtRtRt   for third degree Kronecker model. 

This greatly helps to facilitate the calculations in applying the Kronecker product to 

response surface. 

The first-degree K-model was of the following form, 

𝐸(𝑌𝑡) = 𝑓(𝑡)′𝜃 ==∑𝜃𝑖𝑡𝑖

𝑚

𝑖=1

. . . . . . . . . . . . . . . . . . ………… . . . . . . . . . . . . . . . . . . . . . . . . . (11) 

The second degree Kronecker model was given as follows,  

𝐸(𝑌𝑡) = 𝑓(𝑡)′𝜃 = (𝑡 ⊗ 𝑡)′𝜃 =∑𝜃𝑖𝑖𝑡𝑖
2

𝑚

𝑖=1

+ ∑(𝜃𝑖𝑗 + 𝜃𝑗𝑖)𝑡𝑖𝑡𝑗 ……………… . . (12)

𝑚

𝑖,𝑗=1
𝑖<𝑗

 

and  the third degree model is of the following form; 𝐸(𝑌𝑡) = 𝑓(𝑡)′𝜃 = (𝑡 ⊗ 𝑡 ⊗

𝑡)′𝜃 = ∑ 𝜃𝑖𝑖𝑖𝑡𝑖
3𝑚

𝑖=1 + ∑ 𝜃𝑖𝑖𝑗𝑡𝑖
2𝑡𝑗

𝑚
𝑖,𝑗=1
𝑖≠𝑗

. . . . . . . . . . . . . . . . . . . . . . . . . ………… . . . . . . . . . . . . (13)  

where ttttf )(  is an unknown parameter vector and also a regression vector. In 

an experiment all the observations were made with an assumption that, they have 

identical unknown variance and are unrelated. The Kronecker product has been applied 

in this study to derive the exchangeable moment matrices since Kiefer design ordering 

does not depend on the coordinate system that is used to represent the regression 

function, though both Kronecker and the Scheffe’ are based on the same space of 

regression polynomials, but differ in their choice of representing this space. Draper and 

Pukelsheim, (1999) and Prescott, et. Al, (2002) put forward several 
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advantages of the Kronecker model such as, the homogeneity of the regression terms, 

great transparency, models have compact representation, more convenient invariance 

properties and good symmetries attained as a result of duplication of terms. The terms 

are replicated and the symmetry is achieved. We refer to the corresponding expressions 

as K-models or K-polynomials. In particular, polynomial regression model for mixture 

experiments as suggested by. Draper and Pukelsheim, ( 1999) in the first and second-

degree Kronecker mixture models in which they obtained the 

results for Kiefer design ordering of mixture experimental design were reviewed. Most 

of the designs enjoy the good symmetric properties, as they are unaffected by a set of 

linear transformations and remain invariant. As a result, for the homogeneous 

symmetric Kronecker models, invariant design is applied. it helps in attaining the 

characteristics of a successful and good experimental design, which is, symmetrical and 

also balanced. 

3.1.2 Space of Design Matrices 

3.1.2.1 Invariant symmetric block matrices for design of mixture experiments 

A quadratic subspace of symmetric 𝑛 × 𝑛 matrices is a linear subspace 𝜗 of 𝑠𝑦𝑚(𝑛) 

with added feature that 𝐶 ∈ 𝜗  implying that  𝐶2 ∈ 𝜗 . Rao, C.R.and Rao, M.B. (1998). 

Matrix Algebra and its Application to Statistics and Economics. Which  gave a brief 

introduction to the subset and a few of its statistical uses. When specific invariance 

characteristics of the information matrices used in the design are taken into 

consideration, quadratic sub-spaces of symmetric matrices emerge. A specific quadratic 

subspace case is examined, and the application of the analysis's findings to the designs 

of the mixture experiment's third degree polynomial regression model is shown for 
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 𝑚 ≥ 2  factors. The canonical unit vectors in ℜ𝑚  is denoted by 𝑒1,𝑒2, …… , 𝑒𝑚.The  

canonical unit vectors in ℜ
(
𝑚
2
)
 are denoted by 𝐸𝑖𝑖𝑗 with lexicographically ordered 

index pairs (i,j),1 ≤ 𝑖 < 𝑗 ≤ 𝑚.Let 𝜗𝑚 be  the symmetric group which is of  degree 

m, and also, let 𝑝𝑒𝑟𝑚(𝑚) be the group of 𝑚 ×𝑚 permutation matrices. 

 Define,    𝐻 = {𝐻𝜋 = (
𝑅𝜋 0
0 𝑆𝜋

) : 𝜋 ∈ 𝜗𝑚}  with  

)(
1

)( mpermeeR i

m

i
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mij

m
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i
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m
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)),((  where, 

 )(),( ji   is the pair of indices )(),( ji   in ascending order. The set 𝐻 

is the subgroup of 
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perm  and likewise is isomorphic  to 𝜗𝑚. And it acts on 

the space 
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sym  through the transformation of congruence   HHCCH ,  

and induces the subspace,
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of symmetric H-

invariant matrices. Given that the orthogonal group's subgroup is H, space 





















 
H

m
sym ,

2

2
 is the quadratic subspace as given in Pukelsheim (1993). One of the 

major components of our research is the quadratic subspace. Moment matrices that 

are invariant under a finite subgroup of the orthogonal group, including permutations 

and sign changes, were considered by Gaffke and Heiligers in (1996). 
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While Galil and Kiefer (1977) treatment of the H-invariance is less formal and does not 

mention the quadratic subspace, their numerical approach to the best mixture 

experiment designs is guided by the structure and makes use of the eigenvalues of H-

invariant symmetric matrices. The invariance results can be extended to the analytical 

derivations of optimal designs, as demonstrated by Klein (2004) and Kinyanjui (2007). 

The eigenvalues and eigenvectors of invariant symmetric matrices are obtained by 

spectral analysis. 

3.1.2.2 Cubic Sub-Space 

In a design problem, all information matrices lie under the cubic sub-space ),( Hssym  

( 






 


2

1m
s )as shown in Klein (2004), where optimality criteria was a guide for 

analysis and the analysis of  the cubic sub-space helped in solving design problem. In 

a rotatable cubic model, 

 Draper, N. R., Heiligers, B. and Pukelsheim, F. (1998). Studied Kiefer ordering of    

simplex designs for second-degree mixture models with four or more ingredients 

demonstrated how to determine numerically optimal designs.   

H is a sub-group of permutation matrix group-invariance of a matrix  )(ssymc
, 

means certain entries of C coincide. Invariant symmetric matrix has seven distinct 

entries at most, Lemma 3.1 in Klein (2004).  
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Lemma 3.1 

The identity matrices are defined as follows; mIU 1  
and 
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1 m
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m
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m
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………………………………….………………………………………….………. (14) 

A matrix  HssymC ,  can be uniquely represented as follows, 
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with  the coefficients gdcba ,.....,,,, . The terms that contain  V2, W2 and W3 only 

occur for 3m  and for  4m  respectively. 

Proof 

The block structure of the matrices in H allows for the partitioning of any symmetric 

matrix  HssymC , , that is, 













2212

1211

CC

CC
C ………………………………………………………………… (16) 

with  msymC 11
, 

m
m

C










2

21  and 






















2
22

m
symC  

},{ 2111 UUspanC  , },{ 2121 VVspanC   and },,{ 32122 WWWspanC  . 

In equation (16),  a unique  representation  of this, follows from the linear independence 

of  sets },,{},{},,{ 3212121 WWWandVVUU . The structure of   Hssym ,  is then 

turned , that is, the additional attribute that  Hssym ,  closes when matrix powers are 

formed.  In equation (16), the block representation implied that, the powers of H-

invariant symmetric matrices involve the products of Ui, ,Vj and Wk. Multiplication 

table for the matrices are presented by the following lemma. 

Lemma 3.2 

The results of multiplication of information matrices Ui, Vj and Wk  are: 
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(i)  Products in },{ 21 UUspan  
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(ii) Products in },{ 21 VVspan  
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(iii) Products in },,{ 321 WWWspan  
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Proof
 

Verification of elementary calculations were done using the following identities;
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With lemma (3.1), by use of symbolic manipulation and multiplication of scalars, 

products of matrices in  Hssym ,  can be calculated . From this result, calculations that 

are involved in the design problem can be performed. Additionally, the multiplication 

table can be simply integrated into a computer algebra system, as a side result of lemma 

(3.1) and the 0322  traceWtraceWtraceU , the basis matrices; 
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As given in lemma (3.2) form an  orthogonal basis of  Hssym ,  in reverence  to the 

Euclidean matrix scalar product (𝐴, 𝐵) ↦ 𝑡𝑟𝑎𝑐𝑒𝐴𝐵 .With respect to  lemma (3.2), 

results on Moore-Penrose inverses has the following implication, denoted by a 

superscript + sign and also on schur compliments: 

Corollary 3.1  

For all  𝑚 ≥ 2 factors, supposing that  the matrix  HssymC , ,is then  partitioned 

with diagonal blocks 2211 ,CC and off diagonal block 21C . Thus we have,

 2111 ,UUspanC 
,  212122

'

2111 ,UUspanCCCC  
,  32122 ,, WWWspanC   and 

 321

'

2111222 ,, WWWspanCCCC    

Proof 
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The affirmations on 


11C  and 


22C follow from  Hssym
C

C
,

0

0

22

11








and  that 

quadratic sub-spaces are closed under Moore-Penrose inversion, (Rao, et al.1998, 

corollary 13.2.3). Together with lemma (3.2), the implication of these results claims on 

the schur complements of 11C  and 22C . 

3.1.3 Equivalence Theorem 

The equivalence theorem thus provides the necessary and sufficient conditions for the 

existence of  optimalP   designs. As shown in Pukelsheim (1993), the design  is 

called feasible for K  .Suppose )( satisfies the side condition Ck (M (τ))  PD(s) 

and Cj=Ck (M ( j )) for j= (1, 2… m) and ]1,[p .Then, )(n  is p -optimal  for 

K  in T if and only if, 

𝑡𝑟𝑎𝑐𝑒𝐶𝑗𝐶𝑘(𝑀(𝜂(𝛼)))
𝑝−1 (

= 𝑡𝑟𝑎𝑐𝑒𝐶𝑘(𝑀(𝜂(𝛼)))
𝑝 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑗 ∈ 𝜕(𝛼)

≤ 𝑡𝑟𝑎𝑐𝑒𝐶𝑘(𝑀(𝜂(𝛼)))
𝑝 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

. . . . . . . (17) 

Equivalence theorem is mostly used in checking the optimality of given designs. To 

prove the equivalence theorem, sufficient conditions available from the following two 

theorems are applied: 

Theorem 3.1 

Let 𝛼 ∈ 𝑇𝑚 be a weight vector of the weighted centroid design )( and  is feasible 

for K  and also, let 𝜕(𝛼) = {𝑗 = (1,2, …𝑚: 𝛼𝑗 > 0)}  , be a set of active indices. 

Additionally, let  )))((( MCC k  and )1,(p .Then )(  is p -optimal for 

K  in T if and only if, 



48 

 

 

.
)(1









otherwisetraceC

jallfortrace
CtraceC

p

p
p

kj



 

Proof 

Kinyanjui (2007), gives the elaborate proof. 

Theorem 3.2 

Let )1,(p and )(  with mT be the weighted centroid design which is 

optimalp   for K  in T. Then the following assertions hold: 

If }2,1{)(   , then there is no further design T  that is optimalp   for K  in 

T, that is, )(  is unique. 

If },3,2,1{)(    then there is no further exchangeable design T that is 

optimalp   for K  in T.   

If there is a non-exchangeable design which is optimalp  for K , then all its 

support points are centroids of depths 1, 2 or 3. 

The proof of this Theorem is found in Kinyanjui, Koske, and Korir (2008) and Klein 

(2004). A consequence of this theorem to this study is that we restricted the work to the 

first two centroids 1  and  
2 , hence derived optimal weighted designs that are 

unique.  

3.1.4 E-Optimal Weighted Centroid Design 

The following theorems were made use in deriving  the weighted centroid design for 

the smallest eigenvalue criterion,  ,that is E-optimality criteria. The  three 



49 

 

 

theorems in Pukelsheim (1993) were adopted, which specifically focuses on E-

optimality. 

 Theorem 3.3 

Assume the set   of competing moment matrices and  convex, and intersects the 

feasibility cone )(cA . Then a competing moment matrix M  is optimal for c  in 

  if and only if  M  lies in the feasibility cone )(cA  and there exists a generalized 

inverse G  of M  such that   AallforcMcGAGcc . 

Theorem 3.4 

Let , be a weight vector for the weighted centroid design ),( and  is feasible 

for  and also, let  be the set of active indices, ( ).  

Let and . Then the following assertions hold 

The weighted centroid design   is E-optimal for  in T if and only if there is a 

matrix satisfying 

and .…… (18) 

where , symbolizes the smallest eigenvalue of C. 

Suppose is E-optimal for  in T and E is a matrix satisfying the optimality 

condition for   given in (i). Furthermore, let  be a further weighted design 

which is E-optimal for  in T. then the information matrix  

mT

K )( }0:...,,1{)(  jmj 

)))((( MCC k ]1,(p

)( K

)(),( sNNDHssymE 

1traceE








otherwiseC

jallforC
EtraceC j

)(

)()(

min

min





)(min C

)( K

)( )(

K
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, satisfies  

 

Then the following theorem dictates on the choice of the matrix E of theorem (3.4) 

above. 

Theorem 3.5 

Let MM    be a competing moment matrix which is feasible for 'k  and let sz   

be an eigenvector matching to the information matrix's )(MC
k

 smallest eigenvalue. 

Then , M  is optimal
p
  for 'k  in M  and the matrix 

2
z

zz
E


 satisfies the 

normality inequality of theorem (3.4) if and only if M is optimal for kz   in M . 

If the smallest eigenvalue of )(MC
k

 has multiplicity 1, then M  is optimal
p
  for 

'k   in M if and only if M is optimal for kz   in M . 

Proof 

Normality inequality shows that  optimality


  coincides with that theorem (3.3) for 

scalar optimality. With 
2

z

zz
E


 ,the normality inequality of theorem (3.4) reads, 

))((
min

2

MC

z
AGKzGkz

k


 , for all MA . 

The normality inequality of theorem (3.3) is cMcAGcGc   for all MA  

)))(((
~

MCC k

ECKC )(
~

min
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with Kzc  , The right hand side and left hand sides are identical because of 

,
))((

min

2

MC

z
zCzKzMKzcMc

k


 
 

If the smallest eigenvalue of )(MC
k

 has multiplicity 1, then the only choice for E is 

2
z

zz
E


  

Therefore, for the weighted centroid design, acquire the least eigenvalue and its 

corresponding eigenvector of the information matrix in order to obtain the best designs 

for the E-criterion. The information matrices used in our design can be uniquely 

partitioned as follows, based on equation (16). 













2212

1211

CC

CC
C ………………………………………………………..………… (19) 

for   

)20....(..................................................).........,(
12221

21111 Hssym
WCC

CUC
C 
























 

Consequently, the characteristic polynomial is denoted by, 

    
21

1

1112112211
det)det()det()( CUCCWCICIC

ssc
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where the matrix     
21

1

11121122
CUCCWC 


  is the schur complement of  

111
UC   and lies in the span  .321 WWW  The eigenvalues of the information 

matrix C make up the roots of this polynomial, which are computed as follows: 

Lemma 3.3 

Let a,….., g   with d, f and g occurring only when 3m  and for 4m  respectively. 

Moreover, define, 

        2
2

1
2212

2

2
221 dmcmg

m
fmebmaD 















 
 ….. (21) 

       22

2
2414 dcmgmfmebaD  …………………….. (22) 

Then, in the case of 4m ,the matrix C has eigenvalues 

gfe  2
1
 ………………………………………………………………… (23) 

    















 


13,2 2

2
321

2

1
Dg

m
fmebma  …………………... (24) 

    
25,4

34
2

1
Dgmfmeba  …………………………..…. (25) 

with the multiplicities: ,
2

)3( mm
1 and )1( m respectively. 

In the case of m=2, only the eigenvalues 
432

,,  ,whereas for m=3 there are four 

eigenvalues 5432 ,,  and . 
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The proof of this lemma is provided in Klein (2004). 

3.2 Coefficient matrix 

The coefficient matrix was computed using the parameter subsystem of interest. The 

Kronecker regression function's maximum parameter subsystem was chosen with the 

aid of the coefficient matrix. The Kronecker model’s full parameter vector 
3m  is 

not estimable, it was made estimable through the study of  a linear parameter subsystem 

of interest ,K   the focus was to estimate a system of linear function, K  of the 

parameter subsystem 
3m , where the coefficient matrix 








 



2

13 m
m

K  was 

regarded as possessing full column rank. 

Let e1, e2…em  denote the unit vectors  in m   and 
iijE  denote the canonical unit vectors  

that are ordered lexicographically according to their indices  3
,...2,1, mji    with   

 𝑖 < 𝑗  and the unit vectors iije  is for this study the Kronecker product of the unit vectors 

ii ee , and je ,that is, the set ,jiiiij eeee  for i<j, i, j= {1 2… m}. 

The maximal coefficient matrix K  which has a full column rank, which aided in the 

selection of the maximal parameter subsystem for the Kronecker regression function 

with a fixed number of factors, was  then defined as; 

𝐾 = (𝐾1; 𝐾2) ∈ ℜ
𝑚3×(

𝑚+1
2

)
. . . . . . . . . . . . . . . . . . . . . . ………… . . . . . . . . . . . . . . . . . . . . . . . . (26) 

where 

'
1

1 



m

i

iiiieeK 𝐾2 =
1

6
{∑ (𝑒𝑖𝑖𝑗 + 𝑒𝑖𝑗𝑖 + 𝑒𝑗𝑖𝑖 + 𝑒𝑗𝑗𝑖 + 𝑒𝑗𝑖𝑗 + 𝑒𝑖𝑗𝑗)

𝑚
𝑖,𝑗=1
𝑖≠𝑗

} . . . . . . . . . . . (27)
 

and  



54 

 

 

The matrix K  is of  full column rank. The parameter subsystem which was considered 

in this study was denoted by the following: 








 









































 

2

1

,1

1

),(

6

1

)(

'

m

mjiijjjijjjijiiijiiij

miiii

K 



 For all 𝜃 ∈ ℜ𝑚
3
. . . . (28) 

where,𝐾 = (𝐾1; 𝐾2) ∈ ℜ
𝑚3×(

𝑚+1
2

)
. . . . . . . . . . . . . . . . . . . . . . . . . . . … . . . . . . . . . . . . . . . . . . . . (29) 

The relevant subsystems are represented by the vectors on the right hand. In the full 

parameter model, the parameter subsystem of interest is a maximal parameter sub-

system. 

3.3 Optimal Moments and Information Matrix 

Kronecker product was utilized to obtain the moments; R software was used to derive 

the numeral values. The moment matrix reflected well the statistical properties of the 

design  . The moment matrix is given as, 

𝑀(𝜏) = ∫ 𝑓(𝑡)𝑓(𝑡)′𝑑𝜏
𝜏

∈

𝑁𝑁𝐷(𝑚3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (30) 

where an entry of M (τ) is the sixth moments of a design τ, the regression function 

 f (t) is purely cubic and NND (m3) is the cone of non-negative definite m3×m3 matrices. 

A design   is the experimental domain's probability measure with a set number of 

support points. The experimenter is instructed to take a percentage T ({t}) of all 

observations made under experimental condition F by the Ssupp (τ)  of each support 

point. In a simplex centroid design, the moment matrix can be partitioned into sub-

moments in the following ways , 
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𝑚(𝑛) = 𝛼1𝑚(𝑛1) + 𝛼2𝑚(𝑛2)+. . . . . . . . . . . +𝛼𝑚𝑚(𝑛𝑚)………………… . . . . . . . (31) 

)(MCk  is the information matrix for K  with SK coefficient matrix K  and full 

column .S K  maximal coefficient matrix was defined in equation (26 ) as; 

𝐾 = (𝐾1; 𝐾2) ∈ ℜ
𝑘 ×𝑠. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . …… . . . . . . . . . . . . . . . (32)  

L was defined as; 𝐿 = (𝐾
′𝐾)−1𝐾′. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . …… . . . . . . . . (33) 

Where L is the coefficient matrix's left inverse, such that, 

LLMMCk
 )())((  ∈ NND . . . . . . . . . . . . . . . . . . . . . . . . . . ………………… . . . . . . . (34)  

The entire parameter vector
3m   of the Kronecker model was not estimable , the 

parameter subsystem K  was then considered to fit the model, where .skK   

The information matrix then records the quantity of information a design 𝜏 has on 

K . 

  MCk =min   ,;:

2

1

2

13























 








 


m

m
m

ILKLLLM   is the information matrix for 

the jth centroid. Where 







 

2

1m
I denotes the 







 







 

2

1

2

1 mm
 identity matrix and L is the 

left inverse of K. With regard to Loewner ordering on the space 



















 

2

1m
sym  of 

symmetric 






 







 

2

1

2

1 mm
 matrices , the aforementioned minimum is understood.  

The information matrix ))(( MCk  is the precision matrix of the best linear unbiased 
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estimator for K under the design  𝜏 ,Pukelsheim (1993). The linear transformation 

of moment matrices yields the information matrices for K .                   

3.4 Optimal Weighted Centroid Designs 

The set of competitors in a design problem, may be greatly diminished. In a mixture 

experiment with m factors, the jth elementary centroid design j   , j{1, …, m}, 𝑚 ≥

2 is the uniform distribution on all points taking the form 



j

i

mk Te
j 1

1
 with 1 ≤ 𝑘1 <

𝑘2 < ⋯ < 𝑘𝑗 ≤ 𝑚 . There is m elementary centroid designs j  for the m factors, 

placing equal weights 










j

m

1
on the points having j out of their m components equal to 

j

1
 and zeros elsewhere. 

The vertex design points 
1  and the overall centroid design 

2  was then used to 

construct weighted centroid designs as follows; for the weights 0, 21   with

121  , the design 
2211

)(  n is  a weighted centroid design.  

The collection of weighted centroid designs in the third-degree mixture model with 𝑚  

factors, }),...,(;...{)(
111


mmm

n   is a convex and serves as the kiefer 

ordering's minimal complete class. Convex combination 



m

j

jj

1

)(  with 

mm  )',...,( 1   is called a weighted centroid design with a weight vector  and 

is limited by 



m

j

j

1

1 . Regarding the aim function of the design problem, the 

collection of weighted centroid designs represents a nearly complete class of designs. 
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In other words, there is a weighted centroid design 𝑛 ∈ 𝑇𝑚 for each design 𝜏 ∈ Τ  with

      MCnMC kpkp   . 

Hence, the design problem reduces to , maximize  nMCkp   with 𝛼 ∈ 𝑇𝑚 

                      subject to      sPDnMCk   

The necessary and sufficient conditions for the existence of  optimalP   designs are 

provided by the equivalence theorem. As shown in pukelsheim (1993), the design  is 

called feasible for K  .Suppose )( satisfies the side condition Ck (M (τ)) PD(s) 

and Cj=Ck (M ( j ))  for  j= (1, 2… m) and ]1,[p .Then, )(n  is p -optimal for 

K  in T if and only if, 

.
)))(((

)()))(((
)))(((

1












otherwiseMtraceC

jallforMtraceC
MCtraceC

p

p

kp

kj
k 




 

With   {𝑗 ∖ 𝛼𝑗 > 0} . The case p  , E-optimality, thus, has the same 

optimality criterion, Klein (2001). The aforementioned optimality criteria are difficult 

to solve in the absence of knowledge of the information matrices. But the invariance 

arguments will help to make the issue simpler. The general explanation of invariance 

strategies in experimental design was provided by Pukelsheim,( 1993). Weighted 

centroid designs are interchangeable and invariant under permutation ingredients, Klein 

(2002). 

3.5 Optimality Criteria 

Due to the weighted centroid designs' completeness result, the optimal design problem 

was significantly diminished, results of theorem 3.2 of Draper, Heiligers and 
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Pukelsheim (2000). The optimality criteria are represented by a variety of functions that 

are specified on the set of the information matrices and have some statistical 

significance. Thus, if such a function reaches its maximum, designs are said to be at 

their best. 

Moment matrices determine the properties of optimal designs as shown in Pukelsheim 

(1993). Polynomial fit model optimal designs are then computed. In the design of 

experiments, the optimal is sought among a collection of contending moment matrices. 

Prominently optimality criteria are: the average-variance criterion  -1, the determinant 

criterion 0  and the smallest eigenvalue criterion (E-criterion) and corresponds to 

parameter values -1, 0 and−∞  respectively.  These are particular cases of the matrix 

means p  with the parameter 𝑝 ∈ [−∞; 1]. 

The D-optimality criterion, which looks for designs that maximize the determinant of 

the information matrix, is the most frequently used optimality criterion to choose the 

designs. D- optimality's objective is essentially a parameter estimation criterion. 

The maximization of the information matrices' determinant is equivalent to the 

minimizing of the dispersion matrices' determinant.  The D-optimality is then given by, 

The determinant criterion, D-, sCC

1

0 )(det)(   , where 






 


2

1m
s  

The D-criterion has an important property in optimal designs because it minimizes the 

variances and also the covariance of the parameter estimates and for the smallest Eigen 

value criterion, it also, minimizes the largest Eigen value of the dispersion matrix and 

is given as follows, 
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The smallest eigenvalue criterion, E-,  .)( min CC    

The Eigen value criterion  is one extreme member of the matrix means p

corresponding to the parameter   . And the average variance criterion minimizes 

the average variances and is given by,  

The average variance criterion, A-, 

1

1

1

1
)(





 







 traceC

s
C  .

 

In this study, the information function matrix means 
p

 was used, as expressed in 

Pukelsheim (1993).Kiefers p -criteria provides an amount of information inherent 

to,𝐶𝐾 (M (τ))𝑃𝐷(𝑠) with 𝐶𝐾 (M (τ))𝑃𝐷 (
𝑚 + 1
2

), the set of 






 

2

1m







 


2

1m
are 

positive definite matrices. Defined as follows, 

   

,

0\1;

2

1

1

0)det(

)(

)(
2

1

1
min
















































 













 

piftraceC
m

pifC

pifC

C
P

P

m

p



  

For all C in 𝑃𝐷(𝑠), the set of positive definite  ss  matrices ,where  C
min

  refers to 

the smallest eigenvalue of C.by definition, )(C
p

  is a scalar measure which is a 

function of the eigenvalues of C for all  ,1,p (Pukelsheim, 1993). And Kiefers 

p -criteria provides an amount of information inherent to  𝐶𝐾 (M (τ))𝑃𝐷(𝑠). 
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3.6 Numerical Optimal Weighted Centroid Designs 

The weighted centroid designs' optimal weights and values were then generated 

numerically using the R and Wxmaxima software. These were based on the general 

expressions for the weight vectors and the optimal values for each case of a design with 

m factors. 
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CHAPTER FOUR 

RESULTS AND DISCUSSION 

4.0 Introduction 

Results and analysis of the study objectives as stated in the research methodology are 

presented in this chapter. This chapter contains optimal moments and information 

matrices and the derivations of A- , D- and E-optimal weighted centroid designs under 

study for 2m , 3m , 4m and generalized to m factors.   

4.1 Optimal Moments and Information Matrices 

Coefficient matrix 𝐾  was first defined, which was used in the identification of the 

parameter subsystem  'K  of interest. The moment matrices were then generated and 

information matrices Ck  obtained. Starting with m=2, 3, 4 and generalized to m factors. 

The information matrices obtained was then used to obtain the optimality criteria. 

4.1.1 Optimal Moments and Information Matrices For M=2 Factors. 

Table 4.1: Simplex Centroid Design For M=2 Factors 

Design points  t1 t2 

1   1 0 

2   0 1 

3   
2

1
 

2

1

 

with the elementary centroid designs given below, 



























1

0
,

0

1
1  and 
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1
2

1

2  
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Lemma 4.1, 

The corresponding coefficient matrix 𝐾  for the  m=2 factors is as follows; 
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1
00

6

1
00
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1
00

6

1
00

6

1
00

6

1
00

001

,
21

KKK  

Proof, 

'

2222

'

1111

2

1

1 ' eeeeeeK
i

iiii 


 and

 

𝐾2 =
1

6
∑ (𝑒𝑖𝑖𝑗 + 𝑒𝑖𝑗𝑖 + 𝑒𝑗𝑖𝑖)
2
𝑖,𝑗=1
𝑖≠𝑗

=
1

6
(𝑒112 + 𝑒121 + 𝑒122 + 𝑒211 + 𝑒212 + 𝑒221). . (35)

  

and  

The matrix K  is of  full column rank. The parameter subsystem which was considered 

in this study was denoted by the following:
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K 



 For all 𝜃 ∈ ℜ𝑚
3
 

 where ,𝐾 = (𝐾1; 𝐾2) ∈ ℜ
𝑚3×(

𝑚+1
2

)
 



63 

 

 

The relevant subsystems are represented by the vectors on the right hand. In the full 

parameter model, the parameter subsystem of interest is a maximal parameter sub-

system. 

define jiiiij eeee  , ijiiji eeee 

 
and iijjii eeee  i, j=1, 2, 3,  
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hence, 
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  ,,)00000100121


e

 

 ,)00001000122
e

 

  ,,)00010000211


e

 

  ,,)00100000212


e

 

  ,,)01000000221


e

 

  ,,)10000000222


e

 

substituting these in equation (35) gives, 
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1K  ,𝐾2 =

(

 
 
 
 
 
 
 
 
 

0
1

6
1

6
1

6
1

6
1

6
1

6

0
)

 
 
 
 
 
 
 
 
 

. 

hence, the coefficient matrix is given as,  
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𝐾 = [𝐾1, 𝐾2] =

[
 
 
 
 
 
 
 
 
 
 
1 0 0

0 0
1

6

0 0
1

6

0 0
1

6

0 0
1

6

0 0
1

6

0 0
1

6

0 1 0]
 
 
 
 
 
 
 
 
 
 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (36) 

Theorem 4.1 

The information matrix )))((( MCk  for a mixture design )( with m=2 factors is 

then given by, 
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nMCC kk  

Proof

 Consider the moment matrix for m=2 factors which is given by, 
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where the sixth moments are defined as,

 

  dt
6

16 )( ,     dttdttdtt 3
2

3
133

2
2

4
1422

5
151 )(,)(,)( . 

there are m elementary centroid designs j  , for m factors,  placing equal weights 










j

m

1

on the points having j out of their m components equal to 
j

1
 and zeros elsewhere. 

 A convex combination 



m

j

jj

1

)(   with mm T )...,,,( 21   is called a 

weighted centroid design with the  weight vector   such that 1
1




m

j

j .In a case of 

two factors the weighted centroid design is given as follows,  

)38........(....................1,)0,0,,(;)( 212212211

2

1




 T
j

jj

with 
221 )0,0,,( T   and 121  . 

 

The sixth order moments are:  

mj
j 56

1
)(    and

)1(

1
)()()(

5334251





mmj

j
jjj  for j= (1, 2,…, m). 

 when m=2 factors, the moments are given as: 

2

1
)( 16  , 0)()()( 133142151   , 

64

1
)( 26  and

64

1
)()()( 233242251   . 
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hence, the moment matrices for a  given designs 
1  and are: 
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the designs 1 and 2  information matrix is then obtained as follows, 
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)( 1
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the information matrix for the design 1 , is then  given by, 

2
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000
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2
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00
2
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)( 111 nMCLnLMC k

























 

And information matrix  for the design 2  is given by, 
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finally, for the design )( , the information matrix is given as; 

))(())(()))((( 2211  MCMCMC kkk  . 

replacing 1C  and 2C  yields, 
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Which is the desired information matrix for m=2 factors. 

4.1.2 Optimal Moments And Information Matrices For M=3 Factors. 

Table 4.2: Simplex Centroid Design For Three Factors 

Design points  t1 t2 t3 

1   1 0 0 
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2   0 1 0  

3   0 0 1 

4   
2

1
 

2

1

 
0
 

5   

1

2  
0
 

1

2  

6   
0
 

1

2  

1

2  

7   

1

3  

1

3  

1

3  

with the elementary centroid designs given as, 
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Lemma 4.2 

The coefficient matrix K for m=3 factors is as follows; 
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Proof, 

'''' 333322221111

3

1

1 eeeeeeeeK
i

iiii 


, and 

𝐾2 =
1

6

{
 
 

 
 

∑ (𝑒𝑖𝑖𝑗 + 𝑒𝑖𝑗𝑖 + 𝑒𝑗𝑖𝑖+̶𝑒𝑗𝑗𝑖 + 𝑒𝑗𝑖𝑗 + 𝑒𝑖𝑗𝑗)

3

𝑖
𝑖,𝑗=1
𝑖≠𝑗 }

 
 

 
 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . (44) 

 

 

=
1

6
[

𝑒112 𝑒121 𝑒211 𝑒221 𝑒212 𝑒122

𝑒113 𝑒131 𝑒311 𝑒331 𝑒313 𝑒133

𝑒223 𝑒232 𝑒322 𝑒332 𝑒323 𝑒233
] 

 

and  

The matrix K  is of  full column rank. The parameter subsystem which was considered 

in this study was denoted by the following: 








 









































 

2

1

,1

1

),(

6

1

)(

'

m

mjiijjjijjjijiiijiiij

miiii

K 



 For all 𝜃 ∈ ℜ𝑚
3
 

where,𝐾 = (𝐾1; 𝐾2) ∈ ℜ
𝑚3×(

𝑚+1
2

)
 

The relevant subsystems are represented by the vectors on the right hand. In the full 

parameter model, the parameter subsystem of interest is a maximal parameter sub-

system. 
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define, jiiiij eeee   for i,j=1,2,3 , 
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1e , 
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2e  and 
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Thus, 

  ,000000000000000000000000001111


e  

  ,000000000000000000000000010112


e  

  ,000000000000000000000000100113


e  

  ,000000000000000000000001000121


e  

  ,000000000000000000000010000122


e  

  ,000000000000000000000100000123


e
 

  ,000000000000000000001000000131


e

 

  ,000000000000000000010000000132


e
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  ,000000000000000000100000000133


e

 

  ,000000000000000001000000000211


e

 

  ,000000000000000010000000000212


e

 

  ,000000000000000100000000000213


e

 

  ,000000000000001000000000000221


e

 

  ,000000000000010000000000000222


e

 

  ,000000000000100000000000000223


e

 

  ,000000000001000000000000000231


e

 

  ,000000000010000000000000000232


e
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e

 

  ,000000001000000000000000000311


e

 

  ,000000010000000000000000000312


e

 

  ,000000100000000000000000000313


e

 

  ,000001000000000000000000000321


e

 

  ,000010000000000000000000000322


e

 

  ,000100000000000000000000000323


e

 

  ,001000000000000000000000000331


e

 

  ,010000000000000000000000000332


e
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  ,100000000000000000000000000333


e

 

Substituting the above in equation 44 gives,
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therefore, the coefficient matrix  𝐾 is given as ,  

………………………………………………………………………………... (45) 

Theorem 4.2 

The information matrix )))((( MCk  for a mixture design )( with m=3 factors is given by, 
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Proof, 

Thus, consider the moment matrix for m=3 factors which is then given by, 

   )46.........(................................................................................
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where, 
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F  

where the sixth moments are defined as follows,  

  dt
6

16 )( ,   dtt 2

5

151 )( ,   dtt 3

2

3

133 )( ,   dtt 2

2

4

142 )( ,

  dttt 32

4

1411 )( ,   dttt 3

2

2

3

1321 )( ,   dttt 2

3

2

2

2

1222 )(  

there are m elementary centroid designs j , for m factors,  ,placing equal weights 










j

m

1

on the points having j out of their m components equal to 
j

1
 and zeros elsewhere. 

In a case of three factors, the weighted centroid design is given as,  
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The sixth order moments are: 
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)()()(
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mmmj

jj
jjj  , for j= (1, 2,…, m). 

when m=3, the moments are:  

3

1
)( 16  , 0)()()( 133142151   , 0)()()( 122213211411   , 

96

1
)( 26  ,

192

1
)()()( 233242251   and 0)()()( 222223212411    

for designs
1 ,the moment matrices are given as, 
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for designs 𝜂2,the moment matrices are given as, 
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for the designs 1  and 2  ,the information matrix is obtained as follows,
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the information matrix for the design
1 , is given by, 
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while  the information matrix for the design 
2  is given by, 
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.… (50) 

finally, for the design )(  ,the information matrix is  then given as; 

))(())(()))((( 2211  MCMCMC kkk  . 
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replacing 1C  and 2C  yields, 
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…………………………………………………………………………………... (51) 

This is the desired information matrix for three factors. 

4.1.3 Optimal Moments And Information Matrices For M=4 Factors. 

Table 4.3: Simplex Centroid Design For Four Factors 

Design points  t1 t2 t3 t4 

1   1 0 0 0 

2   0 1 0 0  

3   0 0 1 0 

4   0 0 0 1
 

5   1/2 1/2 0 0 

6   1/2 0 1/2 0 

7   1/2 0 0 1/2 
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8   0 1/2 1/2 0
 

9   0 1/2 0 1/2 

10   0 0 1/2 1/2 

11   1/3 1/3 1/3 0 

12   1/3 1/3 0 1/3 

13   1/3 0 1/3 1/3 

14   0 1/3 1/3 1/3 

15   1/4 1/4 1/4 1/4 

with the elementary centroid designs given as, 
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Lemma 4.3
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The coefficient matrix K, for m=4 factors is given as follows; 

),( 21 KKK   

Proof, 

for m=4 

''''' 4444333322221111

4

1

1 eeeeeeeeeeK
i

iiii 


, and

 

𝐾2 =
1

6

{
 
 

 
 

∑ (𝑒𝑖𝑖𝑗 + 𝑒𝑖𝑗𝑖 + 𝑒𝑗𝑖𝑖 + 𝑒𝑗𝑗𝑖 + 𝑒𝑗𝑖𝑗 + 𝑒𝑖𝑗𝑗)

4

𝑖
𝑖,𝑗=1
𝑖≠𝑗 }

 
 

 
 

. . . . . . . . . . . . … . . . . . . . . . . . (52) 

=
1

6

{
 
 

 
 
𝑒112 + 𝑒121 + 𝑒211 + 𝑒212 + 𝑒122 + 𝑒221
𝑒113 + 𝑒131 + 𝑒311 + 𝑒331 + 𝑒313 + 𝑒133
𝑒114 + 𝑒141 + 𝑒411 + 𝑒441 + 𝑒414 + 𝑒144
𝑒223 + 𝑒232 + 𝑒322 + 𝑒332 + 𝑒323 + 𝑒233
𝑒224 + 𝑒242 + 𝑒422 + 𝑒442 + 𝑒424 + 𝑒244
𝑒334 + 𝑒343 + 𝑒433 + 𝑒443 + 𝑒434 + 𝑒344}

 
 

 
 

define, jiiiij eeee  , i,j=1,2,3,4 , 
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Thus, 
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Therefore, substituting equation 52 gives the coefficient matrix as, 
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Theorem 4.3 

For a mixture design )( ,the information matrix )))((( MCk   with m=4 factors is given by, 
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Consider the moment matrix for m=4 factors which is given by,    
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where the sixth moments are defined as, 
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there are m elementary centroid designs j  for m factors ,placing equal weights 
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for a case of four factors, the weighted centroid design is given as follows,  
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for a case when m=4, these moments are given as: 
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for the designs 1  and 2 , the information matrix  is obtained as follows 
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the information matrix for the design 1  is given by, 
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while the information matrix for the design 2  is given by,
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finally, for the design )( ,  the information matrix is given as follows; 
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replacing 1C  and 2C  yields, 
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which is the desired information matrix for four factors. 

4.1.4 Generalized  Moments And  Information Matrices For 2m  Factors. 

Theorem 4.4 

For a mixture experiment, the information matrix for m factors is given by; 
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Proof, 
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With the coefficients gedcba ...,,,,,, . The terms containing V2, W2, and W3 only 

occur for 3m  and also for 4m , respectively. 

For a given symmetric matrix )(ssymC  ,  partitioning can be made  according to the 

block structure of matrices , that is  
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finally, for the design )(  , the information matrix is then  given as; 
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replacing 1C  and 2C  yields, 
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 … (62) 

Which is the generalized information matrix kC corresponding to the parameter 

subsystem of interest K . The information matrix kC so obtained was used to generate 

unique optimal weighted centroid designs. 

4.2 A-Optimal Weighted Centroid Design 

For the average variance criterion,
1 , optimal weighted centroid designs was obtained. 

This criterion minimizes the average variances. The general equivalence theorem was 

adopted. The theorem provides the necessary and sufficient condition which is 

applicable to the specific problem. 
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4.2.1 A-Optimal Weighted Centroid Design For M=2 Factors. 

Lemma 4.4 

In  third-degree Kronecker model for a mixture experiments with two factors, the 

unique A-optimal weighted centroid design for  the  K   is, 

 ( )
1 1 2 2 1 20.603283327 0.396716673A            

Where, 𝑛1  𝑖𝑠 𝑡ℎ𝑒 𝑣𝑒𝑟𝑡𝑒𝑥 𝑑𝑒𝑠𝑖𝑔𝑛 𝑝𝑜𝑖𝑛𝑡  𝑎𝑛𝑑 𝑛2 𝑖𝑠 𝑡ℎ𝑒 𝑜𝑣𝑒𝑟𝑎𝑙𝑙 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑 

The maximum value of  A-criterion for the K   in two factors is given by 

265585699.0)( 1 V  

Proof  

The inverse of equation 43 is then given by; 
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for j=1, the design is A-optimal if and only if, 
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which then reduces to, 

0377421 1

2

1   , 

solving this polynomial with 1 2 1    

yields 603283327.01   or 9205526196.2
1
  

take 603283327.01  since )1,0(1  . 

similarly, for j=2,  
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solving this polynomial with 1 2 1   . 

yields 920526196.1396716673.0
2

 or  

 take 2 0.396716673  since )1,0(2  . 

therefore,  

 ( )
1 1 2 2 1 20.603283327 0.396716673A          

 
is the unique A-optimal 

weighted centroid design for the K  in m=2 factors. 

The average variance -criterion is then given by, 
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The maximum value of the A-criterion for the K   in two factors is

265585699.0)( 1 V  

4.2.2 A-Optimal Weighted Centroid Design For M=3 Factors 

Lemma 4.5 

In  third-degree Kronecker model for the mixture experiments for the three factors, the 

unique A-optimal weighted centroid design for K   is, 

𝑛(𝛼(𝐴)) = 𝛼1𝑛1 + 𝛼2𝑛2 = 0.46502𝑛1 + 0.53498𝑛2 

Where, 𝑛1  𝑖𝑠 𝑡ℎ𝑒 𝑣𝑒𝑟𝑡𝑒𝑥 𝑑𝑒𝑠𝑖𝑔𝑛 𝑝𝑜𝑖𝑛𝑡  𝑎𝑛𝑑 𝑛2 𝑖𝑠 𝑡ℎ𝑒 𝑜𝑣𝑒𝑟𝑎𝑙𝑙 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑 

The maximum value of the A-criterion for K   in three factors is 

1192420.0)( 1 V  

Proof, 

The inverse of equation 51 for m=3 factors is given as, 
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the design is A-optimal, for j=1, if and only if 
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solving this polynomial with 1 2 1   for )1,0(1   yields 
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Therefore,𝑛(𝛼(𝐴)) = 𝛼1𝑛1 + 𝛼2𝑛2 = 0.46502𝑛1 + 0.53498𝑛2 

is the unique A-optimal weighted centroid design for the m=3 factors. 

The average variance -criterion is then given by, 
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=0.1192420.  Therefore, the maximum value of the A-criterion for K  in m=3 factors 

is, 

 )( 1V  0.1192420. 

4.2.3 A-Optimal Weighted Centroid Design For The M=4 Factors. 

Lemma 4.6 

In  third-degree Kronecker model for the mixture experiments with four factors,  unique 

A-optimal weighted centroid design for the K   is, 

  
212211

55628.044372.0 nnA    

Where, 𝑛1  𝑖𝑠 𝑡ℎ𝑒 𝑣𝑒𝑟𝑡𝑒𝑥 𝑑𝑒𝑠𝑖𝑔𝑛 𝑝𝑜𝑖𝑛𝑡  𝑎𝑛𝑑 𝑛2 𝑖𝑠 𝑡ℎ𝑒 𝑜𝑣𝑒𝑟𝑎𝑙𝑙 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑 

 

 maximum value of the A-criterion for K   in four factors is 

06491356.0)( 1 V .

 Proof, 

The inverse of equation 58 is given as,  
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cddedm 442 2   

the design is A-optimal, for j=1, if and only if, 
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solving this equation with 1 2 1    yields 
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which reduces to, 
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solving this equation with 1 2 1    yields 

 

 

72245.6155628.02 oror
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55628.02  for )1,0(2  . 

Therefore,   
212211

55628.044372.0 nnA   is the A-optimal weighted 

centroid design that is unique for K  in m=4 factors. 

The average variance -criterion is then given by, 
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Implying that,
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=0.06491356

 

Therefore, for  the A-criterion ,the maximum value for the K  in m=4 factors is 

 )( 1V 0.0649136. 
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4.2.4 Generalized A-Optimal Weighted Centroid Design For 2m   Factors 

Theorem 4.6 

In  third-degree Kronecker model for the mixture experiments with 2m  factors, 

unique A-optimal design for the  K  is given by; 

2211)(  A
. 

Where, 𝑛1  𝑖𝑠 𝑡ℎ𝑒 𝑣𝑒𝑟𝑡𝑒𝑥 𝑑𝑒𝑠𝑖𝑔𝑛 𝑝𝑜𝑖𝑛𝑡  𝑎𝑛𝑑 𝑛2 𝑖𝑠 𝑡ℎ𝑒 𝑜𝑣𝑒𝑟𝑎𝑙𝑙 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑 ,with 
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Supposing that  , )( is A-optimal for K  in T,also, let mT )0,...,0,,( 21   be a 

weight vector with }2,1{)(   .and let )))((()(  MCC k .The weighted centroid 

design )( is A-optimal for K  if and only if, 
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when polynomial (87) is solved, it yields values of 1  where we pick 1 in  that
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The actual value is then obtained by substituting the values of
1 and 

2 from the 

solutions of equations (87) and (90). 

4.3 D-optimal Weighted Centroid Designs 

For the determinant criterion 0 , optimal weighted centroid designs is derived, that is 

the , D-optimality criteria. The D- criterion has an important property in optimal designs 

because it minimizes the variance and the covariance of the parameters estimates.  

4.3.1 D-Optimal Weighted Centroid Design For M=2 Factors 

Lemma 4.7 

In  third-degree Kronecker model for the mixture experiments with the  two factors, the 

unique D-optimal design for  the K  is, 

2211

)( )(  D
.  

Where, 𝑛1  𝑖𝑠 𝑡ℎ𝑒 𝑣𝑒𝑟𝑡𝑒𝑥 𝑑𝑒𝑠𝑖𝑔𝑛 𝑝𝑜𝑖𝑛𝑡  𝑎𝑛𝑑 𝑛2 𝑖𝑠 𝑡ℎ𝑒 𝑜𝑣𝑒𝑟𝑎𝑙𝑙 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑 
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 The D-criterion maximum value for the K  in two factors is, 275160602.0)(
0
v

Proof, 

For 0p , )(  is optimal0  for K  in T if and only if the 
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Therefore, D-optimal weighted centroid design is the unique  for  the K  in two factors 

is 212211
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the D-criterion maximum value is then obtained as, 
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020833333.0][ kCDet .

 Hence, the optimal value for K  in two factors is

    275160602.0020833333.0)](det[)( 3

1

3

1

0   Cv . 

4.3.2 D-Optimal Weighted Centroid Design For M=3 Factors. 

Lemma 4.8 

In the third-degree Kronecker model for  the mixture experiments with three factors ,D-

optimal design is  unique for K  is, 

2211
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.  

Where, 𝑛1  𝑖𝑠 𝑡ℎ𝑒 𝑣𝑒𝑟𝑡𝑒𝑥 𝑑𝑒𝑠𝑖𝑔𝑛 𝑝𝑜𝑖𝑛𝑡  𝑎𝑛𝑑 𝑛2 𝑖𝑠 𝑡ℎ𝑒 𝑜𝑣𝑒𝑟𝑎𝑙𝑙 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑 

The D-criterion maximum value for the K  in three factors is 

125.0)( 0 v  

Proof, 

For 0p ,  )(  is optimal0  for K  in T if and only if 
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Thus, 



153 

 

 

)96(................................................................................
1

1




























edd

ded

dde

ccd

cdc

dcc

ccd

cdc

dcc

abb

bab

bba

CC k

where: 

1

1


a ,  

)64( 211

2








b   , 

)64(3

32

21  


c  , d=0 , e=0 

𝑡𝑟𝑎𝑐𝑒𝐶1𝐶(𝛼)
−1 =

1

𝛼1
+
1

𝛼1
+
1

𝛼1
+ 0 + 0 + 0 =

3

𝛼1
 

and 66

0  traceItraceCk . 

Thus, 4

1

1 )( traceICCtrace  6
3

1




, 
2

1
1  ………………….……………(97) 

similarly,  

)98........(......................................................................1

2



























ghh

hgh

hhg

eef

efe

fee

ccd

cdc

dcc

abb

bab

bba

CC k

where, 

,0a ,
)64(32 211

2








b ,0,

)64(3

1
,

)64(3

32

21212

1 






 edc




 

212211

2

64

1
,

1
,

)64(16

3













 hgf    



154 

 

 

Thus,  
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 CCtrace =
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𝛼2
 

6)( 6
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2  traceICCtrace  , 
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1
2  ……………………………………………………………………………(99) 

Therefore, D-optimal weighted centroid design is unique  for K  in m=3 factors is 

212211

)(

2

1

2

1
)(  D

as required.   

the D-criterion maximum value is then obtained as follows, 

 sCv
1

0 )](det[)(   , where 
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1m
s . 

For 3m ,  6

1

0
)](det[)(  Cv  . 

for a design with three factors, the information matrix is given as below, 
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…………………………………………………………………………………… (100) 

substituting for the values of 
1  and 

2  we get 

 

 

 

…………………………………………………………………………………… (101) 

and,   

  
0000038147.0][ kCDet  

hence the optimal value of the D-criterion for K  in three factors is given as,

    125.00000038147.0)](det[)( 6

1

6

1

0   Cv  

 

4.3.3 D-Optimal Weighted Centroid Design For M=4 Factors.  

Lemma 4.9 
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In the third-degree Kronecker model for the mixture experiments with four factors, 

 unique D-optimal design for K  is, 

2211

)( )(  D
, 

Where, 𝑛1  𝑖𝑠 𝑡ℎ𝑒 𝑣𝑒𝑟𝑡𝑒𝑥 𝑑𝑒𝑠𝑖𝑔𝑛 𝑝𝑜𝑖𝑛𝑡  𝑎𝑛𝑑 𝑛2 𝑖𝑠 𝑡ℎ𝑒 𝑜𝑣𝑒𝑟𝑎𝑙𝑙 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑 

The D-criterion  maximum value  for  the K  in four factors is 

07080.0)( 0 v  

Proof, 

For 0p ,  )(  is optimal0  for K  in T if and only if 
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Thus , 10
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2 )( traceICCtrace  10
6

2




 

5

3
2   

Therefore, the unique D-optimal weighted centroid design for K  in m=4 factors is 

expressed as 
212211

)(

5

3

5

2
)(  D  as required.   

The maximum value of the D-criterion is obtained as follows, 

 sCv
1

0 )](det[)(   , and 






 


2

1m
s . 

for 4m ,then,  10

1

0
)](det[)(  Cv  . 

for the design with four factors, the information matrix is given by, 
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substituting for the values of 
1  and 

2  gives the following, 

 

 

 

 

……………………………………………………………………………………(106)

03167640000000000.0][ kCDet  

Hence the maximum value for K  in m=4 factors is given as,

    07080.00381470000000000.0)](det[)( 10

1

10

1

0   Cv  

4.3.4 Generalized D-Optimal Weighted Centroid Design For 2m  Factors 

Theorem 4.7 
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In the third -degree Kronecker model for  the mixture experiments with 2m  factors,  

unique D-optimal design for K  is, 

2211

)( )(  D
. 

where, 

)3031(2
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mm

mmmmmm
  

and, 𝑛1  𝑖𝑠 𝑡ℎ𝑒 𝑣𝑒𝑟𝑡𝑒𝑥 𝑑𝑒𝑠𝑖𝑔𝑛 𝑝𝑜𝑖𝑛𝑡  𝑎𝑛𝑑 𝑛2 𝑖𝑠 𝑡ℎ𝑒 𝑜𝑣𝑒𝑟𝑎𝑙𝑙 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑 

The optimal value of  D-criterion for the K  in 2m  factors is given by, 
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Proof 

Let mT )0...,,0,,( 21   be a weight vector with }2,1{)(   and supposing that 

)(  is D-optimal for the K  in T.  

 Let )))((()(  MCC k .Equation (14) implies that for p=0, 
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from equation (24) a unique representation for  any matrix )(sSymC  ,  is given as 

follows, 
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with the coefficients dcba ,,, .

 

again, partitioning of any given symmetric matrix )(sSymC  , can be done in 

accordance  to the block structure of the  matrices in H , as shown below,  
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resulting in, 
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also for m  factors, 
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solving this polynomial together with 121   yields 
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again, from equations (61) and (83), we obtain 

)111........(............................................................)(

2

21
1

2


































mk IdVc

VcUbUa

CC   



163 

 

 

where,
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which reduces to, 

0)326432()26163()3031( 2

2

22

2

2  mmmmmm   

solving this polynomial together with 121  yields 



164 

 

 

)3031(2

)2527052268933162212033()26163(
2

2342

2





mm

mmmmmm


)1,0(2  . 

From equation (62), for a design with m factors, the information matrix is given by, 
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Thus the optimal value of the D-criterion for the K  in 2m  factors is given as, 
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where, 
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2
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s . 

lemma 4.7, 4.8 and 4.9 given earlier serves as particular examples for m=2, m=3, and 

m=4 factors. 
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4.4 E-Optimal Weighted Centroid Designs 

The optimal weighted centroid designs for the smallest eigenvalue criterion are 

calculated.  

4.4.1 E-Optimal Weighted Centroid Design For M=2 Factors 

Lemma 4.11 

In the third-degree kronecker model with two factors, the weighted centroid design 

 
212211

)( 46511.053488.0 nnnnn E    is the E-optimal for K  in T. 

Where, 𝑛1  𝑖𝑠 𝑡ℎ𝑒 𝑣𝑒𝑟𝑡𝑒𝑥 𝑑𝑒𝑠𝑖𝑔𝑛 𝑝𝑜𝑖𝑛𝑡  𝑎𝑛𝑑 𝑛2 𝑖𝑠 𝑡ℎ𝑒 𝑜𝑣𝑒𝑟𝑎𝑙𝑙 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑 .The 

maximum value of  E-criterion for the K  in m=2 factors is 

    209302.0
min




Cv   

Proof 

The information matrix for m=2 factors is given as: 
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A unique representation  of any matrix C ),( Hssym  is of  the form given below, 
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the information matrix     nMC
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 for m=2 factors,  is given as 
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from lemma (3.1), we have, 
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Hence, the information matrix is given by, 
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from lemma 3.3, the eigenvalue for two factors is computed as follows, 
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the eigenvalues are; 
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with multiplicity m-1, The eigenvalues that occur for m=2 are, 
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has multiplicity 1, where sz    is an eigenvector corresponding to the smallest 

eigenvalue of the information matrix )(MC
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now let  36112661161319
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 is the eigenvalue of C and corresponds to eigenvector, say z ,then, 
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giving the following equations, 
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and the matrix E is given as, 
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and from equation (41) 
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Substituting the values  
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Reduces the equation (121) to  

 

Solving this polynomial yields the roots; 
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For m=2 factors. The optimal E-criterion is  

    209302325.0
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4.4.2 E-Optimal Weighted Centroid Design For M=3 Factors 

Lemma 4.12 

In third-degree kronecker model with m=3 factors, the weighted centroid design 
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)( 40792.059208.0 nnnnn E   is the E-optimal for the K  in T. 

Where, 𝑛1  𝑖𝑠 𝑡ℎ𝑒 𝑣𝑒𝑟𝑡𝑒𝑥 𝑑𝑒𝑠𝑖𝑔𝑛 𝑝𝑜𝑖𝑛𝑡  𝑎𝑛𝑑 𝑛2 𝑖𝑠 𝑡ℎ𝑒 𝑜𝑣𝑒𝑟𝑎𝑙𝑙 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑 

The maximum value of the E-criterion for  the K  for m=3 factors is 

    07164.0
min




Cv   



172 

 

 

for third-degree kronecker model with m=3 factors, the information matrix 

   nMC
k

 is given  as, 
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A unique representation for any matrix C ),( Hssym is of the form  
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With the coefficients; a,…, g  , with the terms that contain 
22

, WV  and 
3

W  only 

occurring  for  𝑚 > 3 and for 𝑚 > 4 respectively. 

The information matrix    nMC
k

, for the case m=3 factors is written as follows, 
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m
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from lemma (3.1), 
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IIIU  
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EEEEEEEEEEEEW  

Thus the information matrix  
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fedc
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eff
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ffe

ccd

cdc

dcc
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cdc

dcc

abb

bab

bba

……………………………………………………. (124) 

0
16

3
,0,

32
,

192
,

96

32
22221








f

andedcba


 

From lemma 3.3, for the above matrix, the eigenvalues are computed as follows 

   
576

25114153
242 1

2

122

1





dcebaD  

   
36864

48251413013401
4 1

2

122

2





dcebaD  

The eigenvalues are 

   2511415353
48

1
2

2

1
1

2

1113,2
  Deba  

   482514130134013725
384

1

2

1
1

2

1125,4
  Deba  

The eigenvalues 
5432

,,,    that occur for m=3 are, 
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 2511415353
48

1
1

2

112
  , with multiplicity 1 

 2511415353
48

1
1

2

113
  , with multiplicity 1 

 482514130134013725
384

1
1

2

114
  , with multiplicity 2 and  

 482514130134013725
384

1
1

2

115
  , with multiplicity 2 

The smallest eigenvalue is  

 2511415353
48

1
1

2

113
  , with multiplicity 1 

get an eigenvector z that corresponds to the smallest eigenvalue of the matrix )(MC
k

. 

 , is the eigenvalue of a matrix C if, 

  0 zIC   or zzC   with 0z  

where  
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y
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y

y

z ,be the eigenvector of C that corresponds to   

Hence, as given in equation (124) 

 


 0
min

zIC   suggests that, 
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where
11

2

11
1,)25114153(925   qp and 

)25114153(13
1

2

11
 r  

giving the following equations, 

066
54321
 qyqyqyqypy  

06
64321
 qyqyqypypy  

066
65321
 qyqypyqyqy  

066
421
 ryqyqy  
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531
 ryqyqy  

066
632
 ryqyqy  

by solving these equations, the eigenvector corresponding to 
min

 is written as, 
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hence, 
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and the matrix E is given as follows, 
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a weighted centroid design )(n  is E-optimal for K   in T if and only if 

)(
min

CEtraceC
j
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EC ……………………………………………… (125) 

Where 
)4323(3 22

2

qr

r
a


 ,

)4323(3

12
22 qr

qr
b




  






















22

2

22

2

22

2

22

2

1 4323
0

)4323(3)4323(3)4323(3 qr

r

qr

r

qr

r

qr

r
EtraceC  

)(
min

CEtraceC
j

 , implies  

 2511415353
48

1

4323 1

2

1122

2





qr

r
……..……………………. (126) 

This simplifies to  

053766528026006450558454734433004888128
1

2

1

3

1

4

1

5

1

6

1
   

……………………………………………………….……………………… (127) 

substituting values of q and r and solving this polynomial yields the roots; 

71178.059208.014880.0
1

oror as the possible values of 
1

  

)1,0(
1
 and 

12
1    



179 

 

 

substituting
min

 , 

14880.0
1
  

  04302.02511415353
48

1
1

2

11min
   

when 59208.0
1
  

  07164.02511415353
48

1
1

2

11min
   

71178.0
1
  

  05234.02511415353
48

1
1

2

11min
   

Therefore, 
min

 is maximum when 59208.0
1


 
and 40792.0

2
  

as given in  Pukelsheim (1993), the smallest eigenvalue criterion     Cv
min

 


 

  07164.02511415353
48

1
1

2

11min
   

The optimal value for m=3 factors E-criterion is given as, 

    07164.0
min




Cv   

4.4.3 E-Optimal Weighted Centroid Design For M=4 Factors 

Lemma 4.13 

In third-degree kronecker model for m=4 factors, the weighted centroid design 
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212211

)( 361339.0638661.0 nnnnn E   is the E-Optimal for the K  in 

T. Where, 𝑛1  𝑖𝑠 𝑡ℎ𝑒 𝑣𝑒𝑟𝑡𝑒𝑥 𝑑𝑒𝑠𝑖𝑔𝑛 𝑝𝑜𝑖𝑛𝑡  𝑎𝑛𝑑 𝑛2 𝑖𝑠 𝑡ℎ𝑒 𝑜𝑣𝑒𝑟𝑎𝑙𝑙 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑 

The maximum value of the E-criterion for K  for m=4 factors is given by, 

    069741.0min  Cv   

Proof 

The information matrix for m=4 factors is as follows: 
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3
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0
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128
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384384384
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0
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384128
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384384

0
6464

00
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384

000
646464384384384128
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)))(((
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22221222
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MCC kk

 

where 
128

32
21

 
a ,

384

2


b ,
64

2


c , d=0, 
32

3
2


e ,f=0 and 

g=0…………......(128) 

a unique representation for any matrix C ),( Hssym is of  the form,  
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With the coefficients; a,…….,g  ,with  the terms that contain 
22

, WV  and 
3

W  

only occurring for 𝑚 > 3 and for  𝑚 > 4 respectively. 

The information matrix    nMC
k

 , for  m=4 factors, is given as follows, 
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from lemma (3.1), 























1000

0100

0010

0001

41
IU ,






































































0111

1011

1101

1110

1000

0100

0010

0001

1111

1111

1111

1111

4442
IIIU  



























1

1

1

1

)()(
4

1,
4321

14

ji
ji

i
eeeeeV  

Thus the information matrix, 
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Where 
128

32
21

 
a ,

384

2


b ,
64

2


c , d=0, 
32

3
2


e  ,f=0 and g=0 

from lemma (3.3), 
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2
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64
)2(4
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3

384128

32
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1

2
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the eigenvalues are, 
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1
2

2

1 1

2

1

113,2


 Deba  

   












 


36864
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1

2

1 1

2

1
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 Deba  

The eigenvalues 
54321

,,,,    that occur for m=4 are, 

,
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32

3
2 12

1





 gfe with the multiplicity 2 
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  with multiplicity 1 
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  with multiplicity 1 
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  with multiplicity 3 
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  with multiplicity 3 

The smallest eigenvalue is, 
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1 1

2
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  with multiplicity 1 

Then, an eigenvector z,  corresponding to the smallest eigenvalue of the matrix )(MC
k

.  , is an eigenvalue of a matrix C if  

  0 zIC   or zzC   with 0z  
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z  , be the eigenvector of C corresponding to   

Thus from equation (128) 
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MCC kk   

where
11

2

11
1,)25114153(311   qp and 

)25114153(521
1

2

11
 r  

giving the following equations, 

0666
7654321
 qyqyqyqyqyqypy  
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0666
9854321
 qyqyqyqyqypypy  

0666
10864321
 qyqyqyqypyqyqy  

0666
10974321
 qyqyqypyqyqyqy  

066
521
 ryqyqy  

066
631
 ryqyqy  

066
741
 ryqyqy  
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832
 ryqyqy  

066
942
 ryqyqy  

066
1043
 ryqyqy , 
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 by solving these equations gives the eigenvector that corresponds to 
min

 as,
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 …………………………………………………………… (131) 
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and the matrix E is given as, 
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r
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 ,
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q
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…………………………………………………………………………....… (132) 

a weighted centroid design )(n  is E-optimal for K   in T if and only if 

)(
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CEtraceC
j

 , 







































0000000000

0

0

0

000

000

000

000

000

000

000

000

000

0

0

000

000

000

000

000

000
1

bbbbbbaaaa

b

b

b

bbb

bbb

bbb

bba

bba

bba

aaa

aaa

aaa

EC .………………… (133) 

where
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EtraceC

)(
min

CEtraceC
j

 , implies that, 

 2511415379
128

1

8644 1

2

1122

2





qr

r
……..………………... (134) 

This simplifies to, 

046224552096202526431297922231280863136193194
1

2

1

3

1

4

1

5

1

6

1
 

……………………………………………………….………………….… (135) 

substituting values of q and r and Solving this polynomial yields the roots; 

369951.0172892.0638661.0
1

oror as the possible values of 
1

  

)1,0(
1
 and 

12
1    

substituting 
min

 when, 

638661.0
1
  

  069741.02511415379
128

1
1

2

11min
   

when 172892.0
1
  

  04230.02511415379
128

1
1

2

11min
   

when 369951.0
1
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  06553.02511415379
128

1
1

2

11min
   

Therefore, 
min

 is maximum when 638661.0
1
 and 361349.0

2
  

According to Pukelsheim (1993), the smallest eigenvalue criterion is given as 

   Cv
min

 


 

  069741.02511415379
128

1
1

2

11min
   

The optimal value for m=4 factors E-criterion is given as, 

    069741.0min  Cv   

4.4.4 Generalized E-Optimal Weighted Centroid Design For 2m  Factors 

Theorem 4.14 

In third degree kronecker model with m factors, the weighted centroid design is given 

as, 

 
2211

)( nnn E    

Where, 𝑛1  𝑖𝑠 𝑡ℎ𝑒 𝑣𝑒𝑟𝑡𝑒𝑥 𝑑𝑒𝑠𝑖𝑔𝑛 𝑝𝑜𝑖𝑛𝑡  𝑎𝑛𝑑 𝑛2 𝑖𝑠 𝑡ℎ𝑒 𝑜𝑣𝑒𝑟𝑎𝑙𝑙 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑 

The E-criterion maximum value for the 'K   with m factors is 

     Dmm
mm

Cv 





)17()3315(
)1(32

1
1min

  

where      28934307083063162256 2
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1

2  mmmmmmD   
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Proof, 

From lemma 3.1 ,a unique representation for any matrix ),( HssymC   is of the form  
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the information matrix    nMC  for  m factors,  can  be written as follows, 
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from lemma (3.1), 
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The information matrix    nMC  is then given by , 
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from lemma (3.3) for m factors, 
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The eigenvalues are:  

  Ddbma  1
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hence the smallest eigenvalue is  

 
    Dmm

mm
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1
13

  , let 
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1
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solving these equations for
1

z , 
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Where c=3 represents the even number for factors and c varies for  the odd numbers of 

factors as the eigenvector corresponds to 
min
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and from equation (60) 
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from theorem (3.4) a weighted centroid design  n  is E-optimal for K  in T if and 

only if  CEtraceC
j min
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Solving the polynomial using Wxmaxima software, the value of 
1

  

is then chosen  such that  ;1,0
1
 now substitute the value to 

min
 and get  the values 

that maximizes the 
min

 ,thus , the optimal E-criterion is, 
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Table 4.4: Summary of optimalp   weights for K , 4,3,2m  

m  p   
)(

2

p
  pv  

2 −∞ 0.534882 0.465110 0.209302 

  -1 0.603283 0.396716 0.265585 

  0 0.66666667 0.33333333 0.275160 

3 −∞ 0.592080 0.407921 0.071642 

  -1 0.465023 0.534982 0.1192420 

)(

1

p
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A numerical example using fruit blending experiment of three components 

mixture experiment 

The D optimal design for three factors can now be applied to three factor numerical 

example .Three fruits (Mangoes, passion,  and banana) were involved in the 

experiment. The response on a scale 1-7  was taken as the average score . The twenty 

one data values are from seven support points for the weighted centroid design each 

replicated three times. The points comprised the three pure blends, three binary blends, 

and the three fruits together in the mixture. 

Consider the following simplex centroid design for three factors as the initial 

design 

Design points  t1 t2 t3    Average score 

1   1 0 0     12.3 

   0 0.50000000 0.50000000 0.125000 

4 −∞ 0.638661 0.361339 0.06974 

  -1 0.443721 0.556281 0.064913 

   0 0.40000000 0.60000000 0.070800 
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2   0 1 0    10.5 

3   0 0 1     8.9 

4   
2

1
 

2

1

 
0     13.5

 

5   

1

2  
0
 

1

2     12.6 

6   
0
 

1

2  

1

2     12.8 

7   

1

3  

1

3  

1

3      11.8 

Where t1=passion,t2=passion and t3=Bananas 

From equation 97, 
2

1
1


 

And from equation 99 2

1
2 

 

The unique D-optimal weighted centroid design for K  in m=3 factors is 

212211

)(

2

1

2

1
)(  D

  

Therefore, the corresponding A-optimal for the above designs is as follows, 

Design points  t1 t2 t3    

1   
2

1
 0 0      

2   0 
2

1
 0  

3   0 0 
1

2
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CHAPTER FIVE 

CONCLUSION AND RECOMMENDATION 

5.0 Introduction 

This chapter presents conclusions, recommendation and recommendations for further 

research work for this study. 

5.1 Conclusion 

The study was done based on the selection of the optimality criteria. Kiefer-Wolfowitz 

equivalence theorem was then applied to each design. All considerations were limited 

to the weighted centroid designs due to the completeness result. The coefficient matrix 

𝐾   was obtained by use of unit vectors and characterization of feasible weighted 

centroid designs. Depending on the coefficient matrix K  of interest selected, the 

optimal moments and information matrices were then obtained. Consequently, unique 

A- , D- and E-optimal weighted centroid designs were obtained for the third degree 

Kronecker model with 𝑚 ≥ 2 factors. From the results obtained, the unique A- , D- and 

E-optimal weighted centroid designs for  the K  exists, for third-degree model with 

2m  factors for the selection of the coefficient matrix unique to this study. The 

weights
)(

1

p , 
)(

2

p  and the appropriate optimum value ))(( )( p

kpp MCv    for 
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respective factors were obtained numerically for selected values of ]1,[p .The 

results obtained indicated that: Coefficient matrix  obtained had a full column rank 

and  helped in identification of  the linear parameter subsystem; the optimal moments 

obtained reflected the statistical properties of designs and was useful in finding the 

information matrix; The average-variance criterion (A- criterion)  and the optimality 

criteria were both dependent on the information matrix, as the number of  m  factors 

increases, 
)(

1

p  decreases while 
)(

2

p  increases and the value of the maximum criterion 

decreases. For the determinant criterion (D-criterion), as the number of  m factors  

increases,
)(

1

p  decreases while 
)(

2

p  increases and the value of the maximum criterion 

decreases. For the smallest eigenvalue criterion (E-criterion) as the number of  m factors 

increases,
)(

1

p  increases while 
)(

2

p  decreases and the value of the maximum criterion 

decreases. This indicates that the maximal parameter design reflects well the statistical 

properties due to increasing symmetry as the number of factor’s increases unlike the 

other designs. In conclusion, results based on maximal parameter subsystem, third 

degree mixture model with two, three, four, and generalized to m factors for D-, A- and 

E-optimal weighted centroid designs for the parameter subsystem exist and thus the 

goal for this specific study was achieved. The study brought in improvement  in D-, A- 

and E-optimal designs as the study improved from second degree Kronecker model 

maximal parameter subsystem  to third degree Kronecker model maximal parameter 

subsystem  in which the information matrix obtained carries more information . The D-

optimality criterion, which looks for designs that maximize the determinant of the 

information matrix, is the most frequently used optimality criterion to choose the 

designs.  The D-optimality criterion has a very important property in optimal designs 

,it minimizes the variance and the covariance of the parameter estimates. 

K
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5.2 Recommendation 

In this study, the third degree mixture Kronecker model was considered adequate and 

reliable for use in estimation and prediction in mixture experiments to yield optimal 

results. The Kronecker model is useful in situations where decisions are made on the 

amounts of the various components have to be decided to give desired properties of the 

mixture. Therefore, the study recommends use of designs obtained by experimenters in 

designing of experiments to yield optimal results in technological fields. 

5.3 Recommendations for Further Research Work 

This study concentrated on optimal weighted centroid designs for maximal parameter 

subsystem for third degree Kronecker model mixture experiments. The study 

recommends that the third degree Kronecker model can be extended to fourth degree 

Kronecker model mixture experiments. The fourth degree will develop more improved 

designs, since the symmetric matrix will be larger than second and the third degree 

carrying more information and more optimal values. 
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