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ABSTRACT 

Demand uncertainty is eminent in many manufacturing industries giving a task of 

establishing the optimum manufacturing lot sizes in the production planning, leading 

to overstocking or understocking of the finished products. Different methods can be 

used in the reduction of these complexities and among these is modelling demand 

uncertainty of the production planning problem. The main objective was to develop 

an optimization model that predicts optimal manufacturing lot size in production 

planning under demand uncertainty. Specific objectives were: to characterize the 

existing production planning system with respect to manufacturing lot sizes, to define 

& formulate the manufacturing lot size problem in production planning under demand 

uncertainty at Movit products (U) Ltd, and to develop the manufacturing lot-size 

model under demand uncertainty that predicts optimal manufacturing lot sizes and 

then validating it. Two approaches were applied: Markov chains to formulate the 

possible states of demand under the condition of uncertainty; and stochastic goal 

programming to determine the number of units to be produced considering the over-

achievement or under-achievement of the manufacturing lot size priorities desired. 

Using a framework on quarterly basis, the study undertook a case study on a 

manufacturing facility that manufactures, distributes and sells skin care, hair & nail 

care products to apply the mathematical model developed and demonstrate the 

proposed decision-making framework. The priorities for the model were established, 

the objective function was defined and the goal constraints were formulated for each 

of the five products. The ‘stochastic goal programming’ model for ‘manufacturing lot 

size’ was then established for all the products. The developed model was solved using 

MATLABTM software where an optimal solution was obtained. Results from the 

study indicated optimal levels of manufacturing lot size  as 

demand changes from one state to another as 0, 2.3729, 0, 104.0840 for product A, 

6.7720, 0, 0, 109.6800 for B, 0, 1.7602, 0, 181.8117  for C, 0, 369.4800, 0, 4975.1000 

for D and 0, 13.3956, 0.6835, 6286.3000 for E. The under achievement was 

established as 8137.7000, 4555.6000, 12103.0000, 5478.7000, 56.2688 for products 

A, B, C, D, and E respectively and there was no over-achievement for all the products 

in a quarter of the year. The model was validated giving optimal results for aggregate 

production planning of the products (manufacturing lot size as 0, 182.02, 0, and 

2.8341 and under achievement 4546.38). All the objectives in this study were 

achieved and an optimization model that predicts optimal manufacturing lot size in 

production planning (PP) under demand uncertainty was developed. In conclusion, the 

production planning system was characterized as a batch and make-to-stock strategy 

with standardization of product and process sequence. The manufacturing lot size was 

defined and formulated as determining the optimal manufacturing lot size minimizing 

the total production cost. Varying demand was then modeled as a two-state Markov 

chain where the optimality was state-dependent and then validated. The study 

recommends the adoption of the stochastic goal programming model to assist 

manufacturing companies that operate under demand uncertainty to accurately project 

production levels in order to sustain demand. 
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CHAPTER ONE: INTRODUCTION 

1.1 Background of the Study 

Engineering companies are ceaselessly attempting to seek out productivity to 

defeat the challenges associated with the market dynamics. Production planning is a 

necessary component in improving the general manufacturing system’s performance, 

especially if the system is working under uncertainty. One in every of the 

corporate varieties of instability that characterizes production situations is instability 

in product demand. Instability may well be a state of inadequate data, and this may 

well be seen in three forms: inexactness, unreliability, and border with ignorance 

(Mula et al., 2006). It is in this manner imperative that these uncertain parameters be 

considered when generating a sturdy production plan inside the production planning 

process, since once ignored, production effectiveness and the performance  of the 

organization are going to be affected (Kazemi Zanjani et al., 2010).  

Manufacturing organizations set up their production plans upheld outside requests 

with the center point of deciding the amount to be created given each period whereas 

fulfilling the stress and reducing the overall costs (Masmoudi et al., 2017). 

In manufacturing, when creating production plans, making the correct choices 

concerning the lot-size is greatly critical since it straightforwardly impacts the 

framework execution and efficiency (Mohammadi & Tap, 2012) and this will be key 

for any engineering firm that wishes to compete inside the market. As usually 

frequently complex however as imperative, it's been exceedingly examined in spite of 

the fact that, there's still a spot around appearing the commitments to clarify the 

appropriateness of these strategies utilized concerning each sensibly fundamental 
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manufacturing setting (with respect to varieties in demand and peaks of regularity) 

(Florim et al., 2019). 

Many studies have been conducted by researchers over the years to solve the 

production lot sizing and scheduling problem using a range of techniques having the 

classical Economic Order Quantity model marking the beginning of research on lot-

sizing problems (Erlenkotter, 2014). The Economic Order Quantity (EOQ), one of the 

foremost recognizable inventory models up to now, was first introduced by Ford W. 

Harris in 1913 and has inspired a range of fixed- quantity extensions. Since then, the 

sector has grown exponentially to incorporate fixed-interval models, zero-inventory 

models, Just-In-Time (JIT) models, and Vendor Managed Inventory (VMI), among 

others (Mosca et al., 2019). 

However, most manufacturing companies have not implemented production planning 

approaches to mitigate the negative effects of uncertainties in demand.  

In Uganda for instance, traditional approaches to production planning under demand 

uncertainty are largely based on rules of the thumb and are somehow unrealistic as it 

leads to overstocking or understocking (Bollapragada & Rao, 2006) which is costly 

on either side. In the light of this uncertainties characterized by the present market 

environment call for a dynamic new approach; for instance in case a manufacturing 

company produces a higher quantity of a product than it can sell, then there is an 

added holding cost per unit meaning it is less profitable to produce too many units, 

but too few also means lost sales (Mubiru, 2013). In order to accommodate the reality 

of constantly changing demand, production planners frequently need to put together 

sets of unconnected static models to ensure proper levels of production lot sizes.   
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Since demand varies over time, there has to be adjustment in production planning as it 

is difficult to precisely forecast demand at the most detailed level of the end products.  

The marketing plan must be revised at regular intervals and, as a consequence, the 

production plan as well (Graves, 2011). 

In addition, an organization’s overall operations over a planning horizon can be 

scheduled to satisfy demand while minimizing costs using an Aggregate Production 

Plan (APP). Optimizing the APP problem implies minimizing the cost over a finite 

planning horizon which can be done by adjusting production load as well as inventory 

and employment levels over a certain period of time to achieve the lowest cost while 

satisfying demand (Fahimnia et al., 2005). This is a very important tool in production 

decision making because the concept gives a basis for experimental investigation 

which provides information in less time and less cost.  

Nevertheless, the use of Markov chains and Stochastic goal programming have not 

been exhaustively applied to model PP due to demand uncertainty, especially in the 

case of Ugandan manufacturing sector. In this regard, developing a suitable 

mathematical model putting into consideration the possible uncertainties relating to 

the manufacturing lot sizing problem in production planning into a reasonable 

framework. 

This research therefore focuses on a multi-period, multi-product, manufacturing lot 

size problem under demand uncertainty. This was achieved by developing realistic 

mathematical models using Markov chains to formulate the possible states of demand 

under the condition of demand uncertainty. This study further, uses stochastic goal 

programming techniques to determine the number of units to be produced as demand 
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changes from state to state so that the total production cost and inventory is 

minimized.  

This study undertook a case study on a manufacturing facility that makes, disperses 

and offers skin care, hair & nail care products (Movit Products (U) Limited) to test the 

mathematical model and thereafter, validation was done to support the proposed 

model framework.  

 

 

 

 

 

Figure 1.1: Some manufacturing companies in Uganda including the case study 

 

Figure 1.1 shows some of the manufacturing companies or industries in Uganda 

ranging from plastics, steel, soft drinks, etc all these dealing with products with 

demand uncertainty; singling out the Movit products (U) limited which was used as 

the case study for this research. 

1.2 Statement of the Problem 

Characterized by the fluctuations and demand uncertainties, many manufacturing 

companies in Uganda continuously are faced with the challenge of establishing the 

optimal ‘manufacturing lot sizes’ in production planning systems. This is costly as it 

leads to overstocking (holding costs) or understocking (lost sales) of the finished 

manufactured products.  

MANUFACTURI

NG COMPANIES 

             Case Study: MOVIT Products (U) 

Limited 
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A realistic optimization model is highly sought to assist manufacturing industries in 

production planning of items with demand uncertainty. 

 

Figure 1.2: Fluctuations and demand uncertainties at MOVIT products (U) Ltd 

 

Figure 1.2 clearly shows the demand uncertainties and fluctuations at Movit products 

(U) limited and this gives a basis or a need for optimizing the manufacturing lot sizes.  

1.3 Objectives of the Study 

1.3.1 General objective 

To develop an optimization model that predicts optimal manufacturing lot size in 

production planning (PP) under demand uncertainty.  

1.3.2 Specific objectives 

1. To characterize the existing production planning system with respect to 

manufacturing lot sizes at Movit products (U) Ltd 

2. Define and formulate the manufacturing lot size problem in PP under demand 

uncertainty at Movit products(U) Ltd 
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3. Develop the manufacturing lot-size model (multi-product) under demand 

uncertainty that predicts optimal manufacturing lot sizes 

4. Validate the developed manufacturing lot-size model in part 3 above 

1.4 Research Questions 

1. What are the distinct nature and features of the production planning system 

with respect to manufacturing lot sizes at Movit products (U) Ltd? 

2. What is the objective function, decision variables, parameters, dependent & 

independent variables and constraints? 

3. What are the optimal manufacturing lot-sizes for finished products under 

demand uncertainty?  

4. What are the optimal manufacturing lot-sizes for finished products under 

model validation? 

1.5 Justification of the study 

Preliminary findings have shown that total production costs in terms of; cost of 

production, holding cost and cost of shortage; constitute the biggest percentage on the 

total operating costs at Movit products (U) Ltd.  

Meanwhile, it has been established that for any manufacturing industry to excel, 

optimizing manufacturing lot-size as a cost minimization strategy is very important 

especially for products with stochastic demand. This implies that in today’s industrial 

competitiveness, it is crucial to maintain optimal manufacturing lot-sizes or else 

manufacturing companies can make losses in the long run. The results of this study 

therefore provide a model and data that helps in determining the optimal 

manufacturing lot size at minimum total production and inventory cost, under demand 

uncertainty. 
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1.6 Significance of the Study 

The research has developed a mathematical model which is optimizing the 

manufacturing lot size in the production planning considering uncertainties in 

demand, in effect, overstocking or understocking of products is eliminated as a cost 

minimization strategy. The model will help in establishing optimal manufacturing lot-

sizes that can sustain random demand occurrences; raising interest and awareness to 

manufacturers, companies and policy makers engaged in production planning and 

manufacturing lot size of products with demand uncertainty.  

1.7 Scope 

The research concentrated on modeling and optimization of manufacturing lot-size at 

Movit products (U) Limited (mainly production department). This research focused 

on a multi-period, multi-product, lot-sizing system under demand uncertainty.   

The study was conducted at Zana-Bunamwaya movit road off Entebbe road Kampala-

Uganda, where the main factory is located. 
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CHAPTER TWO: LITERATURE REVIEW 

2.1 Introduction  

This chapter reviewed literature on uncertainties in production environments, 

production planning and control, optimization of manufacturing lot-sizes, Markov 

chains, stochastic goal programming and mathematical modelling & optimization. 

2.2 Uncertainties in Production Environments 

Uncertainties spring an inevitable concern allied with an incessant operation of the 

manufacturing system. Uncertainty is described as the variance between the amount 

of data required to carry out a given task and the amount of data already available. It 

is a condition of insufficient data and this data can be inexact, unreliable, and border 

with ignorance (Mula et al., 2006).  

The forms of uncertainty that affect production processes range from environmental 

uncertainty to system uncertainty. Environmental uncertainty is described as that 

which comprises uncertainties outside the production process, including demand and 

supply uncertainty whereas System uncertainty is described as the one that is 

associated with uncertainties within the production process, like operation yield 

uncertainty, quality uncertainty, production lead time uncertainty and failure of 

production system (Ramaraj, 2017).  

Uncertainty in product demand is a common type of uncertainty that characterizes 

production environments. Manufacturing companies using cost analyses are 

challenged with the uncertainties of the product demand, because it may impact the 

manufacturing framework execution subsequently the extreme choice on utilizing the 

production framework at the starting stages (Vafadar et al., 2017). 
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Once evaluating the danger associated with a choice, it is of great importance to 

understand these instabilities and their effects, as they can make it challenging to 

foresee performance (Assid et al., 2019). The aggregate demand for any product 

usually comes from a variety of separate customers and therefore the organization has 

little or no real control over who buys their products or what number buy and in what 

quantities. Random fluctuations within the number and size of order provides a 

variable and uncertain demand overall. 

 

 

 

 

 

Figure 2.1: Types of demand classification(Systems & Ziukov, 2015) 

 

Types of demand can be categorized as it is shown above in Figure 2.1. Deterministic 

demand is exactly known, unlike the probabilistic demand which is not known 

exactly. Deterministic demand can be of two types and one of them is static, which 

does not have any variation. The amount of demand known or can be computed with 

certainty. The second type is dynamic, which may vary. This type of demand varies 

with time, but the way in which the demand varies is known with certainty.  

Probabilistic demand can be of two types, that is, stationary and non-stationary. 

Stationary distribution is with known parameters. This type of demand follows a 

probability distribution that is known or estimated from historical data. Commonly 

used distributions include normal, gamma, Poisson. 
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Non-stationary probabilistic demand type of demand behaves like a random walk that 

evolves over time, with regular changes in its direction and rate of growth or decline. 

2.3 Production Planning 

Production planning is that the column of any manufacturing process, having the focal 

aim of establishing the sum of items to be mass-produced bearing in mind the amount 

of inventory to be moved from one period to a different. All this can be done through 

with the target to reduce both the overall “costs of production” and also the stock, 

meeting the customers’ request (Olanrele et al., 2014). 

Often, production planning problems are categorized in line with the ranking 

framework of strategic, tactical and operational deciding activities (Erenay et al., 

2015). Production planning selects the most optimal use of resources that are used in 

production in a way that satisfies the essential requirements for a given period of time, 

which is the planning horizon.(Abubakar Yusuf Baba, 2019). 

Production planning decisions involve determining the order of the product families, 

and the manufacturing lot sizes for the items within each product family, having the 

objective to minimize the total cost. During the planning horizon, demand forecasts 

and forecast revisions are then considered (Sethi et al., 2002). 

Material Requirements Planning (MRP) is one of the most broadly used production 

planning systems and it aims at converting the Master Production Schedule (MPS) 

into a production plan for the products with their components.  

Based on the demand forecasts over a time horizon, inventory levels, the Bill of 

Materials (BOM) of products, and lead times, the MRP generates a production plan 

by determining the quantities and the schedule for the products to be manufactured, to 
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meet the deadlines established by the demand. This technique, however, has got some 

restrictions since it assumes that there is no capacity constraint, which was later 

addressed with the introduction of Manufacturing Resource Planning (MRP II) and 

Enterprise Resource Planning (ERP).  

Also, it does not consider the minimum production costs for each production lot, that 

is, the production cost, inventory cost, and setup cost and yet these limitations are 

precisely the focus of lot sizing. (Florim et al., 2019). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2: Concept design of Enterprise Resource Planning (Elbahri et al., 2019) 
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Figure 2.2 illustrates the concept design of Enterprise Resource Planning where it 

starts from the clients or customers to the manufacturing department. It shows the 

relationship between the sales department, inventory section, production planning and 

the manufacturing department aiding on how much should be produced optimumly. 

The stochastic nature of the demand for the manufactured products makes production 

planning complex (Naeem et al., 2013). 

In the production planning model of the final product, where customer orders need to 

be managed, the whole problem can be decomposed at the inventory, where it is in 

control for balancing the process changes between the assembly and machining 

(Gyulai et al., 2017). In order to optimize production planning, it is essential to 

establish the whole optimization model based on different level constraints (Wen et 

al., 2017). 

Three essential aspects must be put into consideration in a production plan in a multi-

product environment (Juan Alejandro et al., 2013): 

1. The type of products to schedule 

2. The number of products to produce 

3. The time to make the products 

Garee et al., 2020 showed innovative ways of dealing with uncertainty in production 

planning using modern methods in the field of operations research which improved 

the classical methods and provided valuable information to production managers 

about accurate predictive models that improve profitability (Garre et al., 2020).  

Aggregate production planning is considered an appropriate approach as it’s an 

important tactical level planning in a production management system, usually 
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considered based on some parameters with uncertain values in many manufacturing 

environments. Aggregate production planning is tactical medium-term capacity 

planning over a 3 to 18-months planning horizon which determines the optimal 

production volumes for each planning period (Gholamian et al., 2015). 

The purpose of APP is: 

1. Determining overall level of each product category to meet fluctuating and 

uncertain demand in near future,  

2. Adopting decisions and policies in regard to hiring, lay off, overtime, 

backorder, subcontracting, inventory level and available production resources.  

Demand patterns that are Seasonal, randomness inherent in quantity and timing of 

received orders, all make the production planning system uncertain, which then 

commends applying a decision modelling tool that takes into account of these 

uncertainties. Due to the dynamic nature of the production planning and the unstable 

states of real world manufacturing environments, the deterministic models for 

production planning would lead to unrealistic decisions (Jamalnia et al., 2019). 

Figure 2.3 summaries the position of aggregate production planning among other 

types of production planning and control techniques showing their interconnected 

relationships.  
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Figure 2.3: APP relationship with other types of PPC activities(Jamalnia et al., 2019) 
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Production Planning and instable states of real world industrial environments, the 

deterministic models for Aggregate Production Planning would lead to unrobust 

decisions.  

Moreover, similar to other production planning family members, Aggregate 

Production Planning also involves several objectives or criteria in practice”. 

The role of the production planning layer of the supply chain planning matrix is to 

transform the orders of the customers into production orders through solving the lot-

sizing problems matching the order stream with available capacities, resulting into a 

production plan (Maxim A. Bushuev, Alfred Guiffrida, M.Y. Jaber, 2015). 

2.4 Optimization of Manufacturing Lot-Sizes 

Optimization has ended up a standard marvel in most organizations and foundations. 

Optimization is the method of finding (action of choosing (Afteni & Frumuşanu, 

2017) the finest conceivable arrangement to a given issue by looking at a few choices 

(surveyed after a predefined model) (Ejaz et al., 2019). 

This may be done by altering the inputs to or characteristics of an instrument, 

operation, or try to see the least or greatest yield (Elsheikhi, 2017). The optimization 

problem contains three fundamental parameters that has need to be considered, that’s, 

the target function, a set of factors, and a bunch of imperatives (Yusoff et al., 2011).  

The objective of the “optimization model” depends on definite features of the 

organization, termed as factors or unknowns to define the values of these factors that 

enhance the target task, while these factors are regularly limited, or compelled in a 

way or the opposite. Brahimi et al. classified optimization issues into four groups: 
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“process planning, layout design, re-configurability and planning, and, scheduling” 

(Brahimi et al., 2019). 

2.4.1 Manufacturing lot-sizing concept 

Lot sizing is one of the most common problems in production planning. The number 

of products that is processed on a production system without interruptions from the 

processing of other products is known as a lot. One of the key tasks of production 

planning and control is to determine lot sizes in production areas. Lot sizes need to be 

determined every time more than one product is to be manufactured on a single 

resource and setups are required. (Schmidt et al., 2015). 

All the “lot sizing” issues have developed an instantaneous outcome on the 

performance of the system & the efficiency. In the event that a production company 

desires to compete favorably inside the market, it is a need to form the proper choices 

in ‘lot-sizing’ issues and this will be a very serious choice for any producer. 

The determination of the number of a particular product which is required to be 

produced during a stated period of time is described as the manufacturing Lot sizing. 

The narrative of the Manufacturing Lot-Sizing Problem (MLSP) looks at the 

production and inventory considering their features and decision variables similarly as 

their effect on the service level. The objective function for the Manufacturing Lot-

Sizing Problem is usually to minimize the total cost, that is, the sum of the total 

holding costs, the stock-out costs, and the other costs which affect the operation of 

each system (Juan Alejandro et al., 2013). 

Usually, lot sizing models are classified (depending on the decision horizon and level 

of aggregation) as;  
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1. Tactical models (yearly master production schedule),  

2. Operational models (sequencing and loading), and  

3. Models between operational and tactical models (monthly lot sizing) 

(Erenay et al., 2015). 

The manufacturing ‘Lot sizing’ issues are generally allied with the capable 

‘production planning’ of a particular item. For every production plan, the chief 

challenge is to establish the manufacturing lot size for every item.  

Lot allocation concerns need to be resolved, so as to own proficient production 

planning, but built on the “demand” that has to be attained & therefore the 

obtainability of stock reducing the “production costs” by establishing the optimum 

production amount (Badri et al., 2020). 

The more the ‘manufacturing lot size’ is small, the more the amount the “holding” 

cost is reduced but raising the “ordering” cost while the greater the “manufacturing lot 

size”, the bigger the “holding” cost but then decreasing the “ordering” cost. Built on 

the theories of “lean production”, it’s desirable to possess lesser lot size because it 

avoids the buildup of the stock that arises with “management and holding” costs. The 

lot-size commended by a mathematical “manufacturing lot size” model will be the 

most effective because it caters for the balance concerning the prices there in. 

(Mohammadi & Tap, 2012) 

2.4.2 Manufacturing lot sizing variants 

Manufacturing Lot sizing decisions ascertain how and when a product should be 

produced, as well as the optimal level of production, where by the relevant costs (like 

holding cost and set up) are reduced to an optimal level (Abubakar Yusuf Baba, 

2019). 
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The following are the lot sizing variants: 

1. The planning horizon 

This describes the overall length of time in which the production schedule has to be 

determined. If the demand does not change from period to period then the problem 

is static and this usually assumes an infinite planning horizon whereas if the 

demand changes from period to period, the problem is called dynamic (Abubakar 

Yusuf Baba, 2019). 

The planning horizon is distinguished as either finite or infinite, where by infinite 

planning horizon is often used with a stationary demand assumption and finite 

planning horizon is associated usually with dynamic demand (Curcio, 2017). 

2. Number of Products 

This is another variant that directly influences the problem complexity. The 

complexity increases as the number of products increases.  

3. Number of levels 

Two main types of production system are considered in lot-sizing problems, that is, 

single level and multi-level. In single-level lot-sizing only one action is required, 

only independent demand products are considered and intermediate products are 

not accounted for producing final products. 

Multi-level lot-sizing problems involves various stages, intermediate items have to 

be produced in order to be used to produce final products. Single-level lot-sizing 

problems are simpler and less complex to solve than multi-level lot-sizing 

problems (Abubakar Yusuf Baba, 2019)(Curcio, 2017). 
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4. Demand 

When demand is static, it means that the demand is equal for any period considered 

whereas if demand is dynamic, the demand can vary from period to period, but it is 

known in advance. Random demand is not known in advance and its value is 

uncertain. Demand can also be categorized as dependent and independent where 

independent demand refers to the external demand or customer demand for final 

products and dependent demand is defined by the final products demand and the 

requirements of intermediate products to produce final products (Abubakar Yusuf 

Baba, 2019). 

Demand uncertainty is addressed in the manufacturing lot sizing model with the 

intention of bringing in a more realistic perspective to this problem. 

5. Set-up cost and time.  

Setup costs and times are either sequence independent or sequence dependent. In 

sequence independent the setup decision of the preceding period does not influence 

the setup time and costs of the subsequent period whereas in sequence dependent 

the setup decision of the preceding period influences the setup time and costs of the 

subsequent period. In sequence dependent the setup costs, different set up times 

and costs are incurred for different production sequences. There is setup carry-over 

when the product produced in the previous period is produced in the current period 

and this happens in both cases and no additional setup is required. Sequence 

dependent setups are more complex computationally than the sequence 

independent setups. 
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6. Capacity constraints 

The capacity of the production system can be limited by resources like manpower, 

machines and equipment. The lot sizing environment can be characterized by 

capacitated or un-capacitated problems. An uncapacitated lot-sizing problem is 

when capacity is not taken into account whereas if capacity is considered, the 

problem is capacitated. The complexity of the lot sizing problems increases 

directly by capacitated resources. 

7. Backlogging cost 

These are costs that are incurred in circumstances where there are shortages (when 

the product demand cannot be met on the due date). Backlogging costs increase 

with the number of periods being late. 

2.4.3 Solution to manufacturing lot-sizing problems 

Lot-sizing decisions aid the manufacturer in determining the quantity and time to 

produce a product at a minimum cost which is vital in production planning. The 

productivity and efficiency of a manufacturing system totally depend on the right 

choice of lot-sizes hence, developing and improving solution approaches for lot-sizing 

problems is crucial.  

The solution approaches of lot sizing problems include three main areas, that is, Exact 

methods (useful in exploring the underlying difficulties in solving the lot-sizing 

problems), Heuristic methods (A strategy designed for solving a problem more 

quickly when classic methods are too slow, or for finding an approximate solution 

when classic methods fail to find an exact solution.), and Metaheuristic methods (are 

not problem-specific but use the domain-specific knowledge in the form of problem-

specific heuristics that are controlled by the upper level strategy) (Chowdhury, 2018). 
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2.5 Markov Chains 

Markov chain, known as & after a ‘Russian mathematician Andrey Markov’ in 1907, 

can be a capable numerical instrument that’s utilized broadly to capture the model of 

frameworks transitioning in the midst of diverse states (Ye et al., 2019). Markov 

chains were known quickly for his or her noteworthy control of exemplification and 

their plausibility of modeling a large variety of actual world issues additionally to the 

standard of execution directories they produce (Gingu & Zapciu, 2017). When 

manufacturing frameworks uncover a few irregular behavior, ‘Markov chains’ are 

often accustomed to carry out execution assessment and modeling (Boteanu & 

Zapciu, 2017). 

A Markov chain, uncommon sort of theoretical account (‘with a Markov property’ 

(Kiassat et al., 2014)), may be a ‘discrete-time stochastic model’ characterized on a 

range of states, prepared with ‘transition probabilities’ from one state to a different at 

the following time stage (Nop et al., 2020). 

‘Markov Chains’ have uncovered their quality at modeling ‘stochastic transitions’, 

from revealing successive designs to straightforwardly modeling choice forms 

processes (He & McAuley, 2017).  

These have gotten uncommon property that probabilities including how the method 

will advance within the future depend only on the this state of the method, and then 

are ‘independent of events’ within the past (Ju et al., 2019).  

A Markov process may be a theoretical account that fulfills the ‘Markovian property’ 

(says that the chance of any “future event,” given any “past event” and therefore the 

“present state Xt-I”, is self-governing of the ‘past event’ and influenced only upon the 

current state (Doubleday & Esunge, 2011), (Otieno et al., 2015)). It’s a sequence of 
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random variables  with the Markovian property, namely that, given 

this state, the long run and past state is independent. Formally,  

,……… 2.1 

if both conditional probabilities are defined, i.e. if  the 

possible values of  form a countable set S called the state space of the chain 

(Tochukwu & Hyacinth, 2015). 

Markov Chains often described by a sequence of directed graphs, where the edges of 

the graph  labeled by the probabilities of going from one state at time  to another 

state at time ,  

 ………………………… 2.2 

Nonetheless, ‘Markov Chains’ adopts ‘time-homogenous’ situations, within which 

case the chart and matrix are self-governing of n and not obtainable as orders 

(Tochukwu & Hyacinth, 2015). 

Markov chains model ‘discrete-time processes’ and Markov processes models 

‘continuous-time processes’. They arithmetically model a procedure by presenting 

how the technique could shift amid dissimilar phases and also the ‘probability’ of 

generating these ‘transitions’. Markov’s analysis may be characterized 

diagrammatically as in figure 2.4 which demonstrates a ‘Markov chain model’ of a 

procedure with two phases A1 and A2, where the ‘probability’ of creating a 

‘transition’ from stage i to stage j is   (Leigh et al., 2017). 
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Figure 2.4: Markov Chain Diagram (Leigh et al., 2017) 

Figure 2.4 shows a Markov chain model of a process with 2 stages A1 and A2 where 

the probability of making a transition from stage i to stage j is given by qij. 

2.5.1 Markov Chain Model States 

The ‘Markov chain’ model may be a chronological procedure which involves 

numerous stages. For the phases reflected as ‘Markov Chain’ states, they must 

reverence all the subsequent 3 situations:  

1. “State i communicates itself”  

2. “If state i communicates with state j, then j communicates with state i.”  

3. “If state i communicates with state j, and j communicates with state k, then i 

communicates with state k.”  

 

Based on (Tochukwu & Hyacinth, 2015), the probability of going from state i to state 

j in n time steps is given by:  and the single step transition is 

 

In a ‘time-homogenous’ Markov Chain, the probability is: 

 and  A Markov Chain of 

order m, where m is finite, is a process satisfying 

 ... 2.3 
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In other words, the future state depends on the past m states. It is possible to construct 

a Chain  from  which has the ‘classical’ Markov property by taking as state-

space the ordered m tuples of x values, i.e.  (Tochukwu 

& Hyacinth, 2015). 

2.5.2 Stochastic Process 

Efficient ways of taking uncertainties into account, and to achieve more robust 

solutions are either applying stochastic models (Naeem et al., 2013) (e.g., by 

estimating the underlying stochastic processes), or using adaptive and cooperative 

approaches, which allow prompt responses to changes and disturbances (Gyulai et al., 

2017).  

A stochastic process is a mathematical model that evolves over time in probabilistic 

manner (Saad et al., 2014). A stochastic process is a random process (Gingu & 

Zapciu, 2017), that is, a change in the state of some system over time whose course 

depends on chance and for which the probability of a particular course is defined. 

Essentially it is a family of random variables, X (t): t Є T defined on a given 

probability space, indexed by the time variable t, where t varies over an index set T 

(Otieno et al., 2015).  

A stochastic process may be continuous or discrete. A stochastic process is said to be 

a discrete time process if set T is finite or countable. That is, if T= (0, 1, 2, 3 ,4…….. , 

n) resulting in the time process X(0), X(1), X(2), X(3), X(4), …….., X(n) , recorded 

at time 0,1,2,3,4……,n respectively. On the other hand stochastic processes X (t): t Є 

T is considered a continuous time process if T is not finite or countable. That is, if T= 

[0, ∞) or T= [0, k] for some value k. 
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A state space S is the set of states that a stochastic process can be in. The states can be 

finite or countable hence the state space S is discrete, that is S=1, 2, 3…, N. 

Otherwise the space S is continuous (Doubleday & Esunge, 2011). 

2.5.3 Transition Probability Matrix 

These are ‘conditional’ probabilities P (X t+1 = j/ X t =i} =  organized in the way 

of a n x n matrix termed as the ‘transition probability matrix’ given by: 

which can be denoted as P =   

The ‘transition’ matrix demonstrations the probability of shifting amid the ‘row’ 

phase to the ‘column’ phase. In order to create a ‘Markov chain’ model the transition 

probabilities are essential & are solved by the equation 2.4 that defines the probability 

of creating a ‘transition’ from stage i to stage j, and is denoted by . In the equation, 

m is the overall sum of ‘transitions’ and  is the amount of ‘transitions’ from i to j 

(Leigh et al., 2017). 

    ………………………………… 2.4  

The ‘transition probability’ matrix has the following properties: (Otieno et al., 2015) 

1.  > 0 used for all i and j. 

2. Considering all i and j, addition of the component in every ‘row’ is equivalent 

to 1. The addition denotes the overall ‘probability’ of transition from state i to 

‘itself’ or a different one. 

3. The crosswise component signifies transition from one state to same state. 
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Markov Chain ‘models’ are beneficial in learning the advancement of organizations 

over recurrent trials. These recurrent ‘trials’ are frequently consecutive time periods in 

that the state of the organization in a specific period can’t be established by certainty.  

Reasonably, ‘transition’ probabilities may be applied in describing the manner in 

which the scheme creates transitions from one period to the next. It aids us in 

determining the probability of the scheme existing in a specific state at a certain 

period of time (Vasanthi et al., 2011). 

2.6 Stochastic Goal Programming (SGP) 

“Stochastic Goal Programming” may be a “multi-criteria” assessment support model 

which delivers “satisficing” results to a linear structure given an uncertainty situation 

from the usually probable function perspective (Bravo & Gonzalez, 2009), 

(Ballestero, 2005).  

Contini, presented the primary design of ‘Stochastic Goal Programming’ in 1968, 

bearing in mind goals as chance ‘variables’ possessing numerical distribution & and 

recommended a model putting under consideration that the expansion of the 

probability that the choice fits to a vicinity adjoining the random goal. This model 

persuades an answer that’s close to the “random goal” the maximum amount as 

conceivable (Aouni & La Torre, 2010). The standard design of the ‘SGP’ model is as 

follows: 

  …………………………………… 2.5 

Subject to: 

     ……………..… 2.6 
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Where  signifies an “n-dimensional random vector” of the choice variables,  

denotes a  matrix A of “deterministic coefficients” and  signifies an “m-

dimensional vector”  “(stochastic) resource limitations”. 

Almost real-life ‘optimization’ issues comprises of numerous imprecise data 

approximations & goals, contradictory standards. In such circumstances, the 

“stochastic goal programming” technique proposes a logical structural support in 

modelling and resolving such issues. “Stochastic goal programming” may 

accommodate the intrinsic uncertainty and has remained practical in several arenas 

comprising ‘Portfolio selection’ (Jones & Tamiz, 2010), ‘project selection, resource 

allocation, Healthcare management’ (Li et al., 2014), (Attari & Jami, 2018), 

transportation (Yang, 2007), marketing (Aouni et al., 2012), cash management (Salas-

Molina et al., 2020), wealth management (Kim et al., 2020), economic development, 

energy consumption, workforce allocation, and greenhouse gas emissions (Jayaraman 

et al., 2017), forest planning (Eyvindson & Kangas, 2014). Not many applications of 

“stochastic goal programming” in “production planning” in manufacturing systems 

are witnessed. 

2.6.1 Stochastic Programming (SP) 

Stochastic programming is a technique used for modelling optimization problems that 

involve uncertainty (Gorissen et al., 2015), (Smith & Furse, 2014) (“find an optimal 

decision in problems involving uncertain data” (Wilson et al., 2011)). “Stochastic 

programming” models are usually used to optimize probable values or as recursive 

decisions are required. (Curcio, 2017) 
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The objective of stochastic programming is to find a policy that: 

(i) Is feasible for all or almost all the possible realizations of uncertain 

parameters of a model, and that  

(ii) Optimizes the expectation of some function of the decisions and the 

random variables. (Xiang, 2019) 

Stochastic programming provides a functional tool in which a wide variety of sources 

of uncertainty can be incorporated into the development of the production plans 

(Eyvindson & Kangas, 2014). In stochastic programming, uncertainty is modeled 

through a probability distribution (Salas-Molina et al., 2020). 

The fundamental idea behind stochastic programming is its ability to take correct 

action after the realization of a scenario has taken place (Nejadi, 2016). A number of 

uses of  financial planning and control” (Wilson et al., 2011), portfolio management 

(Ji et al., 2005). For example ‘deterministic’ optimization issues may be articulated 

with well-known factors, real-life issues contain unknown factors at the time a call is 

formed.  

‘Stochastic programming’ is also practical during a very situation in which a special 

choice must be taken. The highest mostly practical & deliberated “stochastic 

programming” models are “two-stage” (linear) series whereby the choice maker 

performances inside the primary phase, afterwards which a random incident happens 

disturbing the results of the ‘first-stage’ choice (Smith & Furse, 2014). 

The basic stochastic programming problem is: 

 ………………………………… 2.7 

Subject to:   ………………. 2.8 



29 

 

Here the adjustable value is x, problematic data are  , circulation of   

If  are convex in   for every ,  are convex henceforth ‘stochastic 

programming’ issue is convex.  

2.6.2 Goal Programming (GP) 

Goal programming is a branch of multi-objective optimization (Huang et al., 2017) a 

generalization of linear programming that strives to reach predefined targets for a set 

of goals (satisficing philosophy) rather than an optimal solution subject to strict 

constraints (optimizing philosophy) (Eyvindson & Kangas, 2014). “Abraham Charnes 

and William W Cooper” presented the primary design of “goal programming” 

scattering its attraction to present periods (Ballestero, 2001), (Abdelaziz et al., 2007), 

(Aouni et al., 2014), (Jones & Tamiz, 2010), (Jayaraman et al., 2017). 

Goal programming is a sequential optimization procedure that solves multi-objective 

decision problems whereby it uses priority level of goals rather than importance 

weights of. Goal programming sequentially optimizes the objectives starting from the 

highest priority goal and the goals with lower priorities utilize the remaining resources 

after optimizing the higher goals. The goal programming approach uses input 

parameters that are simple and more intuitive.(Kim et al., 2020). Goal programming is 

useful for decision-makers to consider several objectives simultaneously and identify 

a set of acceptable solutions.(Li et al., 2014).  

The goal programming (GP) model is an aggregating procedure and takes into 

account simultaneously many objectives which can be conflicting whereby the 

obtained solution represents the best compromise that can be made by the decision 

marker. (Aouni & La Torre, 2010). This best compromise minimizes the sum of 

deviations between the achievement and aspiration levels (or targets) of the goals 

(Aouni et al., 2012). Here the results of the most effective cooperation decreases the 
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overall nonconformities amid the ‘achievement’  and ambition levels  (Aouni 

et al., 2012). 

Goals are overseen by the choice-makers’ viewpoint (and may differ with time based 

on other correlated aspects) (Hop, 2017) , follows a satisfying reason taken by means 

of objectives and he raises the value of the idea of setting objectives & therefore being 

openly involved within the growth of additional answers (Eyvindson & Kangas, 

2014). 

The GP approach may provide more realistic approach because in real application the 

conflict objectives are needed to consider in the same problem and yet it is impossible 

to optimize these objectives simultaneously (Abidin Çil et al., 2016). 

The underlying idea behind goal programming is that the decision-maker follows a 

satisfying logic expressed by means of targets. By establishing an achievement 

objective function, goal programming aims to conciliate the achievement of a set of 

goals instead of optimizing every goal (Salas-Molina et al., 2020).  

Goal programming combines a number of purposes to induce the outcome that 

reduces in entirety the nonconformities between “achievement” & the “aspiration” 

levels of the goals. It’s crucial to stipulate for every goal , the “aspiration” level or 

objective , with i = 1; 2; : : : ; q presenting positive & negative nonconformity 

supplementary variables to subordinate goal attainment and aims (Salas-Molina et al., 

2020). In terms of important “distance metric”, the “goal programming” types are 

“lexicographic, weighted” (Salas-Molina et al., 2020), (Iskander, 2007), & 

“Chebyshev” (min-max) goal programming (Britt, 2016) and in terms of the 

arithmetical nature of the choice variables or aims used are  “fuzzy, integer, binary, 
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and fractional” goal programming (Jones & Tamiz, 2010). In “weighted goal 

programming”, every goal is multiplied by a “weight” allocated to that, and also the 

general “objective” function (archimedian sum of all these), is reduced.  

In “lexicographic goal programming”, the goals are allocated priorities, and then 

graded by priority from uppermost to lowermost, then the primary goal is reduced by 

itself, and a restriction is about after the “optimization” to forestall the following 

optimization from gaining an inferior outcome, and finally, the process is recurrent for 

all of the goals. In “min-max goal programming”, the most variance amid any goal 

and its objective is reduced (Britt, 2016). Just like that of a “linear programming 

model”, issue is modelled into a “goal programming model” within the same way, 

but, the goal programming model has numerous & often opposing incommensurable 

goals, in a very exact priority order (recognized by positioning or considering 

numerous goals in accordance with their rank)  (Hussain & Kim, 2020). 

In the literature, GP models are typically used to (Jayaraman et al., 2017):  

1. Determine the required resources to achieve a desired set of goals,  

2. Determine the degree of attainment of the goals with the available resources,  

3. Provide the best satisfying solution under resource constraints, goal priorities 

and uncertainties.  

The popularity of goal programming is due, in part, to the fact that it is easy to 

understand and the fact that it easy to apply since it constitutes an extension of linear 

mathematical programming for which very effective solving algorithms are available 

(Yahia-Berrouiguet & Tissourassi, 2015) 

The broad design of ‘goal programming’ contains the converting of ‘multi-objective 

programming’ as (Ben Abdelaziz et al., 2009): 
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Where 
)(xf i is the goal function i ; if̂  is the target level of objective  i ; i



 and i


are 

the negative and positive deviations respectively associated with the objective i  from 

its target; iw
 is the weight assigned to the objective i , and A  is the set of feasible 

solutions or system constraints. 

2.7 Mathematical Modelling & Optimization 

Mathematical modelling is the process of describing real world problems as 

mathematical equations and using some approaches to solve the mathematical 

equations as a guide to deconstructing and solving the original problem (Ejaz et al., 

2019).  

‘Mathematical modelling’ experience means the capability to classify pertinent 

queries, variables, dealings or rules in a specified real-life condition, to interpret these 

into arithmetic. This then interprets and authenticate the answer of the subsequent 

mathematical issue in relation to the specified condition, as well as the capability to 
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examine or associate specified models by scrutinizing the expectations being made, 

inspecting properties and scope of a specified model (Frejd, 2014). 

2.7.1 Optimization  

Optimization is the process of finding the best possible solution to a given problem by 

examining several alternatives. (Ejaz et al., 2019). This may be through regulating the 

‘inputs’ to or ‘characteristics’ of a tool, calculation, or trial to seek out the least or 

greatest yield/result (Elsheikhi, 2017). An optimization model consists of maximizing 

or minimizing an objective function by systematically choosing input values from 

within a set that stratifies some constraints and computing the value of the function. 

The optimization issue encompasses three elementary factors which need to be well-

thought-out, that is, the “objective function”, a group of “variables”, and a group of 

“constraints” (Yusoff et al., 2011).  

The main task of the ‘optimization’ model hinges on specific features of the 

organization, termed as variables having the goal of defining the values of these 

variables which enhance the target function, although the variables are frequently 

limited, or controlled in a technique or the opposite. Brahimi et al. clustered 

optimization issues in 4 classes: “process planning, layout design, re-configurability 

and planning, and, scheduling”. In the foundation, “multi-objective optimization” 

initially advanced from areas comprising “economic equilibrium and welfare theories, 

game theories, and pure mathematics. Consequently, many terms and fundamental 

ideas stem from these fields” (Marler & Arora, 2004). 

The process identifying objective, variables, and constraints for a given problem is 

known as modeling or problem formulation. The mathematical formulation can be 

written by having the following (Elsheikhi, 2017):  
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1. Defining of the variables (X1, X2, X3... Xi).  

2. Objective function: y=f(x1, x2,……, xi), where f is the objective function as a 

function of x that needs to be maximized, minimized, or any target value.  

3. Identifying the constraints: Xi >, <, =, ≤ or ≥ a certain value based on the 

nature of the problem 

In order to compute optimal or near optimal lot-sizes which minimize total cost, a 

mathematical model that balances holding costs, ordering costs, and purchasing costs 

must be used. The mathematical model must also consider safety stock as it reduces 

the shortage probability in uncertain demand conditions (Mohammadi & Tap, 2012) 

2.8 Conceptual Framework 

The conceptual framework of modeling and optimizing of the manufacturing lot-size 

in PP under demand uncertainty consists of inputs, process and outputs, with elements 

of interest at each stage as shown in figure 2.5. Varying demand was modeled by 

means of a Markov chain with state transition matrix and optimality of the 

manufacturing lot size is state-dependent.  
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Figure 2.5: Conceptual framework of modeling and optimization of manufacturing 

lot-size 

 

Figure 2.5 represents the three main stages in this conceptual framework, that is, the 

input, process and output. It also shows the relationships among these stages and how 

they relate to each other to obtain the main objective of this study. At the input stage, 

we have got the demand, unit production costs, unit holding costs, inventory and unit 

shortage costs.  

All this is fed into the process, where production depends on the demand and 

inventory. The inputs also are used in developing the customer matrix, demand 

transition matrix, inventory matrix, expected future cost and accumulated total cost. 

Then Varying demand is modeled as a two-state markov chain and the optimality of 

manufacturing lot size is state-dependent. A new model optimizing the manufacturing 
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lot size is developed giving the output stage as the optimal manufacturing lot size with 

minimum total production cost. 

2.9 Theory 

The theory to be adopted in this study will be the optimal control theory.  Optimal 

control theory is a branch of applied mathematics that deals with finding a control law 

for a dynamical system over a period of time such that an objective function is 

optimized. This theory has as its objective the maximization of the return from, or the 

minimization of the cost of, the operation of physical, social, and economic processes 

(Weber, 2013), (Lin et al., 2010),  (Ghosh, 1987), (Livesey, 1986), (Cherruault & 

Gallego Medimat, 1985), (Levine, 1972), (Gilbert, 1967). Based on this, in this work 

the interest was to apply Optimal Control approaches to problems in APP with 

dynamics in manufacturing lot size levels taking into account the stochastic nature of 

demand. 

2.10 Literature Review Gap 

The knowledge gap identified revealed that in the current studies; 

 Demand was assumed to be the same for all periods and this could be invalid 

in different cases, and needs to be taken into account in relevant (models not 

considering the dynamic nature of demand (consider only the static nature) 

(Davizón et al., 2015)). 

 APP models (Jamalnia et al., 2019), dealt with controlling the in-process 

inventory in the manufacturing system, that is, doesn’t deal with finished 

product inventory (Azarskov et al., 2017),  

 Models not addressing uncertain events (demand) and their influence on the 

optimality of the aggregate production planning (Fahimnia et al., 2005) and ,  

https://en.wikipedia.org/wiki/Applied_mathematics
https://en.wikipedia.org/wiki/Dynamical_system
https://en.wikipedia.org/wiki/Objective_function
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 Stochastic goal programming is not a common approach to Model 

development for APP 

From some of the literature that has been reviewed in relationship to APP under 

uncertainty, some of the methods applied include mathematical modeling (Fahimnia et 

al., 2005), (Azarskov et al., 2017) and statistical analysis (Erenay et al., 2015). 

Stochastic mathematical programming, Fuzzy mathematical programming, simulation 

(Jamalnia et al., 2019), continuous time Markov chain (Yan & Kulkarni, 2008), 

simulation-based optimization, stochastic programming (Rahdar et al., 2018), linear 

decision rule, transportation model, dynamic programming, lot sizing model and 

linear programming (Davizón et al., 2015) are other methods applied.  

2.11 Model Validation 

Results from decisions that are made in a highly uncertain environment might not be 

valid by the time the decisions are to be implemented. Decision making might also be 

happening in a time window through which the new circumstances might occur, 

whereby it requires the decision to be revised or adapted.  

The goal of a model is to make predictions about data. Model validation determines 

whether the trained model is trustworthy and benefits in discovering more errors, 

scalability, reducing the costs, flexibility and enhancing the model quality. 

Model validation is the task of demonstrating that the model is a reasonable 

representation of the actual system “that it reproduces system behavior with enough 

fidelity to satisfy analysis objectives” (Tsioptsias et al., 2016). Model validation must 

ascertain whether the assumptions which have been made are reasonable with respect 

to the real system. Model validation is influenced by the objectives of the 

performance study(Zimmerman, 2000).  
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In most models, three separate aspects are considered during the process of model 

validation and this includes, assumptions, input parameter values & distributions and 

output values & conclusions. 

Nonetheless, in practice it may be problematic to attain such a full validation of the 

model, specifically if the system that is being modelled does not exist yet. 

Generally, initial validation attempts will concentrate on the output of the model, and 

only if that validation suggests a problem will more detailed validation be undertaken. 

Generally, there are three approaches to model validation and any combination of 

them may be applied as appropriate to the different aspects of a particular model. 

These are, expert intuition, real system measurements and theoretical results/analysis 

(Pieschacon, 2019). 

(i) Expert intuition  

This is similar to the use of ‘one-step analysis’ during model verification. Here, 

however, the examination of the model should preferably be led by someone other 

than the modeler, an “expert” with respect to the system, rather than with respect to 

the model.  

‘This might be the system designer, service engineers or marketing staff, depending 

on the stage of the system within its life-cycle’. 

‘Careful inspection of the model output, and model behavior, will be assisted by one-

step analysis, tracing and animation, in the case of simulation models, and the full 

steady state representation of the state space in the case of Markovian models’. In 

either case, a model may be fully instrumented, meaning that every possible 
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performance measure is extracted from the model for validation purposes regardless 

of the objectives of the performance study. 

(ii) Real system measurements  

Comparison with a real system is the most reliable and preferred way to validate a 

simulation model. In practice, however, this is often infeasible either because the real 

system does not exist or because the measurements would be too expensive to carry 

out. Assumptions, input values, output values, workloads, configurations and system 

behaviour should all be compared with those observed in the real world. In the case of 

simulation models, when full measurement data is available it may be possible to use 

trace-driven simulation to observe the model under exactly the same conditions as the 

real system(Yin & McKay, 2018). 

(iii)Theoretical results or analysis  

In the case of detailed Markovian models or simulation models it is sometimes 

possible to use a more abstract representation of the system to provide a crude 

validation of the model. In particular, if the results of an operational analysis, based 

on the operational laws coincide with model output it may be taken as evidence that 

the model behaves correctly. 

Another possible use for the operational laws is to check consistency within a set of 

results extracted from a simulation model. If a model is behaving correctly we would 

expect the measures extracted during the evolution of a model to obey the operational 

laws provided the usual assumptions hold. Failure of the operational laws would 

suggest that further investigation into the detailed behaviour of the model was 

necessary. For example, the general residence time law can provide us with a simple 

validation of the model output values obtained for residence times at individual 
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components if we know their respective visit counts, jobs behave homogeneously and 

we expect the model to be job flow balanced. 

At slightly more detail a simulation model may also be validated by comparing its 

output with a simple queueing network model of the same system, and conversely, (in 

academic work) Markovian models are often validated by comparing their outcome 

with that of a more detailed simulation model. 

Validation of models against the results or behaviour of other models is a technique 

which should be used with care as both may be invalid in the sense that they both may 

not represent the behaviour of the real system accurately. 

Another analytic approach is to determine invariants which must hold in every state of 

the system. For example, these invariants might capture a mutual exclusion condition 

or a conservation of work condition. Showing that the model always satisfies such an 

invariant is one way of increasing confidence in the model, and providing support for 

its validity. The disadvantage of such an approach is that it can be computationally 

expensive to carry out the necessary checks regularly within a model. 

2.11.1 In-sample and Out-of-sample validation 

1) In-sample validation 

In-sample validation looks at the “goodness of fit” and is concerned with how well the 

model fits the data that it has been trained on: its “goodness of fit”.  

In-sample validation examines the model fit and is particularly helpful if one is 

interested in what the current data tell us, e.g., about the relationships between the 

variables modelled and their effect sizes. By looking at the model coefficients and 

associated uncertainties of the model one could discover interesting associations, like 
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which types of customer were more likely to respond positively to the campaign (i.e. 

buy something).  

2) Out-of-sample validation 

Out-of-sample testing looks at a model’s “predictive performance” and refers to using 

“new” data which is not found in the dataset used to build the model. This is often 

considered the best method for testing how good the model is for predicting results on 

unseen new data: its “predictive performance”. 

Usually, out of sample testing refers to cross-validation. This is where the model is 

first built on a subsection of the data – the “training” set – and then tested on the data 

which was not used to build it – the “test” or “hold-out” set. This gives a way of 

looking at how good the model is at predicting results for new data as we can apply 

the model to what is effectively “unseen” data. Since we are using the hold-out set 

from the original data we have the advantage of knowing what the true, “real-life” 

outcome for each data point is, meaning we can assess the accuracy of the model by 

comparing the predicted outcomes to the actual outcomes. 

An advantage of out-of-sample validation over in-sample validation is that it helps to 

guard against overfitting. Overfitting is when a model is so specifically tuned to one 

dataset that the chances of it predicting an accurate outcome for the new data are very 

small.  
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Figure 2.6: Diagram of modelling 11 data points showing an overfit (Approaches to 

model validation by Sally Hunton) 

 

Figure 2.6 illustrates modelling 11 data points showing an overfit model (blue) vs a 

less accurate but more useful model (black). The x-axis (horizontal axis) represents 

the predictor variables and the y-axis (vertical axis) represents the outcome. 

The left-hand and middle panels show two different models which could be fitted to 

the data (black points), with the x-axis (horizonal axis) showing the predictor values 

and the y-axis (vertical axis) showing the outcome values. The blue model (left hand 

plot) perfectly fits all the data, whereas the green (central plot) model does not 

accurately predict all the points. The red arrows in the plots below represent the 

residuals (how far away the model predictions are from the observed data). 

Comparing these two models in-sample, it is easily see that the blue model is a better 

fit of the training data. 
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CHAPTER THREE: METHODOLOGY 

3.1 Introduction 

This chapter describes how the research addressed the objectives of the study. It gives 

an outline of research methods that were used to collect and analyze data. First, the 

research design that was used to collect data in order to characterize the existing 

production planning system with respect to manufacturing lot sizes. The approaches 

for formulating the manufacturing lot size model in PP under demand uncertainty, the 

techniques for algorithms of the manufacturing lot-size model under demand 

uncertainty that predicts optimal manufacturing lot size as well as the validation 

approaches are also described. 

3.2 Research Design  

The researcher adopted a mixed stream research design approach consisting of both 

qualitative and quantitative research methods. Qualitative research methods was used 

in the characterization of the existing production planning system with respect to 

manufacturing lot sizes at Movit products (U) Ltd whereas the quantitative method 

was used to define and formulate the ‘manufacturing lot size’ problem, develop the 

‘manufacturing lot-size’ model & validate the developed manufacturing lot-size 

model. The study undertook the description of demand, the manufacturing lot-size 

and the costs associated with maintaining the optimal production levels (unit 

production costs, unit holding cost, and unit shortage cost).  

3.3 Research Instruments  

At Movit products (U) Ltd, demand data, customer data and inventory data for the fast 

moving (most demanded) products was assessed. 
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In collecting data, the researcher developed and used appropriate data gathering 

sheets, interview guide as tools for collecting the data.  

3.3.1 Data gathering sheets  

The data gathering sheets established the customers, demand, quantity in stock (on 

hand inventory), states of demand and state transitions of customers demanding the 

products. 

3.3.2 Interview guide  

The interview guide was used in the characterization of the existing production 

planning system at Movit products (U) Ltd in order to obtain the unit production cost, 

the unit holding cost and the unit shortage cost of selected products. 

3.4 Study Population 

The study population consisted of Movit products (U) Ltd factory with several 

products produced and selection was made based on the fast moving (most demanded) 

products for which the developed manufacturing lot-size model was applied. A list of 

the different products produced at Movit products (U) ltd with the demand levels, 

customer levels and inventory levels on quarterly basis was established and data 

recorded. 

3.5 Data Coding 

For not disclosing the products investigated in the study, five most demanded 

products sampled were assigned identifier codes as shown in table 3.1; 
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Table 3.1: Research Data Coding 

Product Product codes Description 

4000008 A First Fast moving product at Movit company 

4000414 B Second Fast moving product at Movit company 

4000013 C Third Fast moving product at Movit company 

4000217 D Fourth Fast moving product at Movit company 

4000254 E Fifth Fast moving product at Movit company 

 

Table 3.1 describes the product codes that were assigned to each of the products that 

were considered in this research study. This was one of the ways of exhibiting 

confidentiality as requested by the case study not to disclose the exact products 

investigated. 

3.6 Sampling Procedures 

A random sampling method was used where by customers at the factory were 

observed at random. This enabled the researcher to analyze the occurrence of demand 

for the fast moving (most demanded) finished products. The corresponding quantity 

demanded and inventory levels were recorded based on the customer demand pattern 

of the fast moving (most demanded) finished products.  

‘Sample size is a research term used for defining the number of individuals included 

in a research study to represent a population. The sample size references the total 

number of respondents included in a study, and the number is often broken down into 

sub-groups by demographics such as age, gender, and location so that the total sample 

achieves represents the entire population. Determining the appropriate sample size is 

one of the most important factors in statistical analysis.  

If the sample size is too small, it will not yield valid results or adequately represent 

the realities of the population being studied. On the other hand, while larger sample 

https://www.geopoll.com/blog/probability-and-non-probability-samples/
https://www.geopoll.com/blog/probability-and-non-probability-samples/
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sizes yield smaller margins of error and are more representative, a sample size that is 

too large may significantly increase the cost and time taken to conduct the research.’ 

‘At first glance, many pieces of research seem to choose a sample size merely on the 

basis of what 'looks' about right, or what similar studies have used in the past, or 

perhaps simply for reasons of convenience: ten seems a bit small, and one hundred 

would be difficult to obtain, so 40 is a happy compromise!’. Unfortunately, a lot of 

published research uses precisely this kind of logic. Choosing the correct size of 

sample is not a matter of preference, it is a crucial element of the research process 

without which you may well be spending months trying to investigate a problem with 

a tool which is either completely useless, or over expensive in terms of time and other 

resources (Fox & Hunn, 2009). 

An appropriate sampling procedure was used to calculate the appropriate sample size 

for the customers from the factory for each of the most consumed product whereby 

the customers were selected taking into account the heterogeneous nature of the 

population, selected at random. 

The Andrew Fischer’s formula below was used to calculate the sample size of the 

population to participate in the study (Singh & Masuku, 2018). 

  …………...……….. 3.1 

Where: 

Z= Normal deviation at the desired confidence interval. In this case it was 

taken at 95%, that is, the Z value at 95% is 1.96 

Standard deviation = 2.6 ≈ 3% 

Confidence interval = 5% (Margin of error) 
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Population proportion = 50% 

Population size = 40 

Hence, the sample size is 40 

Table 3.2: Sample size at the factory 

 

 

 

 

 

 

 

Table 3.2 gives the sample size that was used for each product code, that is, A, B, C, 

D, and E, at Movit products (U) limited (Factory) 

3.7 Data Collection 

The quantitative technique involved modeling of a ‘real form’ problem into a 

mathematical form which was solved to arrive at a Solution that would aid the 

decision makers. 

Observations and interview modes of data collection were used whereby data 

gathering worksheets and interview guides were used for each mode respectively. The 

data that was collected included the customer levels; quantities demanded and the 

corresponding quantity in stock, which was used in determining the states of demand, 

state transitions, and demand transition probabilities. 

Product codes Sample size 

A 40 

B 40 

C 40 

D 40 

E 40 

Total              200 
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3.8 Data Analysis 

This involved coding and tabulation of the collected data where a quantitative method 

was used in computation of percentages and totals. Tables were used to present and 

summarize data for easy interpretation and display of information.  

3.8.1 Quantitative Data Analysis 

To reduce the data collected to usable dimensions, data editing, processing and 

analysis is critical with the aim of organizing and interpreting the data generated. 

Creation of an electronic data base from the raw data source is also essential in order 

to edit and certify the raw data sources.  

Data files were created from the data base generated and then analyzed from 

frequencies generated and categorical variables tabulated, which is observation of 

demand by state, inventory levels, and unit production costs.  

Matrices were used to establish demand and inventory levels for analysis. The 

demand pattern of the finished product was examined at chosen epochs, where 

demand transition probabilities and matrices were determined using probability 

theory.  

The corresponding production cost matrices were similarly determined based on the 

changing state of demand.  

The data obtained was used at a later stage when computing expected production-

inventory cost using Markov chain analysis and stochastic goal programming. 

3.8.2 Qualitative Data Analysis  

Analytical means to describe and explain the social phenomena of the manufacturing 

lot-size and demand characteristics at factory were critical in this study. 
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3.9 Ethical Considerations 

All the relevant ethical laws of Uganda were followed by the researcher and avoided 

under all circumstances any conditions that may undermine the production efficiency 

and future business effectiveness in the production concerns contacted. 

3.10 Model development flow chart 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1: Model development flow chart 

Manufacturing lot size model 

Input parameters: 

- Demand     -  Unit production costs 

- Unit holding cost    -  Inventory   -  Unit shortage cost 
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Figure 3.1 shows the model flow chart that was followed in the development of an 

optimization model that predicts optimal manufacturing lot size in production 

planning under demand uncertainty up to model validation. 

The following steps were followed to formulate the manufacturing lot-size model: 

Step 1: Formulating the demand transition probabilities that generate the 

demand transition matrices 

Step 2: Formulating the production-inventory cost matrix 

Step 3: Computation of the expected demand 

Step 4: Computation of the expected inventory 

Step 5: Computation of the expected production-inventory costs 

Step 6: Computation of the expected manufacturing lot-size 

Step 7: Formulating the “stochastic goal programming” model by: 

 “Setting” priorities 

 Describing the target function 

 Framing the goal constraints 

Step 8: Formulating the stochastic goal programming model for manufacturing 

lot-size 

Step 9: Solve and determine optimum manufacturing lot-size using MATLAB 

software 

Step 10: validation and verification of the mathematical model  

 

3.11 Mathematical Model Formulation 

An engineering company making items with changes and instabilities in demand was 

used. Movit Products (U) Ltd, the firm considered during this study, mainly 

fabricates, disperses and offers skin care, hair & nail care items. The demand of these 
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items amid each time period over a limited static “planning horizon” was depicted as 

either “favorable or unfavorable”. The “Markov chain” method was accepted and 

likewise the states of a “Markov” procedure signify conceivable states of demand for 

the finished items with the succeeding main symbolizations. 

Table 3.3: “Key notations” used in the Markov model 

 Established states of demand 

 Favorable demand 

 Unfavorable demand  

 Demand transition matrix 

 Product 

 Quarter of the year 

 State transitions 

 Value of the objective function 

 Preemptive priority of the kth goal 

 Over achievement of the kth goal 

 Under achievement of the kth goal 

 Manufacturing lot-size 

 Amount of product p produced in quarter q 

 Unit production cost 

 Unit holding cost 

 Unit shortage cost 

 Customer matrix 

 Demand matrix 

 Inventory matrix 

 Production-Inventory cost matrix 

 

Table 3.3 describes the different codes used in the Markov model and their 

symbolizations. 

Average “on-hand” inventory,  

 ……………………...……….. 3.2 

The “customer matrix” can be formulated as follows: 

 ……………………………. 3.3 
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The “demand transition probabilities” are then calculated as: 

 …………………………………………… 3.4 

This gives the “demand transition matrix”: 

……………………..………… 3.5 

The “demand, inventory and production-inventory cost” matrices are then determined 

as below; 

Demand matrix; 

 ……………….………………. 3.6 

Inventory matrix; 

 ……………….………………. 3.7 

‘Production-inventory cost matrix’; 

As demand exceeds the sum delivered at that point, 

            ……………….………………… 3.8 

where  –Production-inventory cost when demand is favorable 

And as the demand is fewer than the sum created at that point, 

            ………………………………… 3.9 

where  – Production-inventory cost when demand is unfavorable 
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Hence, 

            ……………………………… 3.10 

“Expected” demand 

“Favorable Demand” … 

3.11 

“Unfavorable Demand” . 

3.12 

“Expected” inventory 

“Favorable Demand” …. 

3.13 

“Unfavorable Demand”  

3.14 

“Expected” production-inventory costs 

“Favorable Demand” …. 

3.15 

“Unfavorable Demand”  

3.16 

“Expected” manufacturing lot-size 

“Favorable demand” 

…… 3.17 



54 

 

“Unfavorable demand” 

…… 3.18 

  

3.12 Goal Programming 

 

The manufacturing lot-size is then tested to determine whether it is achievable using 

goal programming 

Set priorities 

P1: manufacture a lot of   items as demand is ‘favorable’ 

P2: manufacture a lot of   items as demand is “unfavorable” 

P3: “Total production-inventory” cost shouldn’t not go above  as 

demand is “favorable” 

P4: “Total production-inventory” cost shouldn’t go above  as 

demand is “unfavorable” 

 

Objective function 

……………………. 3.19 

Goal constraints 

P1: Manufacturing lot-size   -  favorable demand 

 …….…… 3.19.1 

P2: Manufacturing lot-size    -   unfavorable demand 

 ………… 3.19.2 
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P3: Total production-inventory cost – favorable demand 

 … 3.19.3 

P4: Total production-inventory cost – unfavorable demand 

..…… 3.19.4 

 

Manufacturing lot-size model 

…………………… 3.20 

Subject to:  

……….…………… 3.20.1 

…………………… 3.20.2 

…...… 3.20.3 

…..… 3.20.4 

3.20.5 

 

Model solution 

The model was solved by MATLAB using data from first quarter of the year for the 

five most consumed products selected, that is, 

Product A, first quarter: (p = A, q = 1) 

Product B, first quarter: (p = B, q = 1) 

Product C, first quarter: (p = C, q = 1) 

Product D, first quarter: (p = D, q = 1) 

Product E, first quarter: (p = E, q = 1) 

3.13 Model Validation 

For the developed model, data analysis authentication was used to ascertain and 

approve that the model will work likewise given altered testing circumstances. The 
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developed stochastic goal programming model was then validated using out-of-

sample test. This was done by using ‘new’ data which was not found in the dataset 

that was used to build the model.  

In other words, it was used for testing how good the model is for predicting results on 

unseen new data, that is, predictive performance. Data (for product Y) not used in 

building the model, was got and used in validating the model to assess how well the 

model predicts outcomes in new data. 

3.14 Methodology Limitations 

The limitation to the project methodology was sample bias or selection bias. This is 

because sampling errors could have occurred due to probability sampling method 

used to select a sample. 
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CHAPTER FOUR: RESULTS AND DISCUSSIONS 

4.1 Introduction 

In this chapter, the results got about each specific objective, using the methods in 

chapter three are presented and later discussed. The stochastic goal programming 

model for the five products was developed considering some practical situations 

where data was collected. The stochastic goal programming model is composed of 

states of demand (FF, FU, UF, UU), manufacturing lot size and the total production-

Inventory costs. The model establishes the amount of the item to manufacture within 

the given quarter of the year as demand shifts from state i to state j for  

where total production-Inventory costs are minimized.  

4.2 Characterization of the existing PP system at Movit Products (U) Ltd 

The existing production planning system at Movit products (U) limited was 

characterized as; 

1. Batch production - identical or similar items produced together for different sized 

production runs. (mass-production in batches with small to major changes) 

Here, a group of identical products are produced simultaneously (rather than one 

at a time). It is up to the manufacturer to decide how big the batch will be, and 

how often these batches will be made. Each batch goes through the separate stages 

of the manufacturing process together, meaning that another batch can’t begin a 

stage, if the previous one is still within that part of the cycle.  

Each batch can be different, as manufacturers can decide to change the 

specifications from one group of products to the next.  

Maybe it is necessary to change the colour or size of that particular group 

(depending on the preferences specified in a particular order).   
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Figure 4.1: Batch production manufacturing system at Movit products (U) limited 

 

Figure 4.1 illustrates the existing production planning system at Movit (U) limited, the 

case study. It shows the sequence of production from one stage to another and what is 

done at each stage and the time spent there per piece. 

Quality checks can be carried out after each step of the production cycle and 

machinery can be tested between batches to ensure there are no performance problems 

(flexibility).  

2. Make-to-stock strategy - match inventory with anticipated demand. (requires an 

accurate forecast of this demand to determine how much stock it produces) 

In this strategy, the production planning and production scheduling are based on 

forecasted product demand.  

Products made during one production period are used to fulfill orders made in the 

next production period which means that in make-to-stock production planning, 

production is triggered prior to and independent of specific customer orders. 

https://www.plm.automation.siemens.com/global/en/our-story/glossary/production-planning-software/64119
https://www.plm.automation.siemens.com/global/en/our-story/glossary/what-is-production-scheduling-software/95966
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Make-to-stock is a push-type operation, which means that supplies, raw materials 

and supplier-provided components, are “pushed” through the production process, 

and planning starts with supplies and works forward to the finished product.  

 

Figure 4.2: Make to stock 

 

Figure 4.2 shows Movit factory and the movement to the warehouse, illustrating that 

after items are produced, they are shipped to the ware house for storage and later 

taken by the customers upon demand. 

A high inventory of finished goods is usually an unacceptable cost burden, imposing 

the expenses of inventory management, warehousing, spoilage and more. Likewise, 

inventory shortages are costly because of expediting premiums, overtime, and missed 

delivery times. Therefore, the ideal of make-to-stock production planning is to match 

the quantity of finished goods at any given time with customer demand during the 

next period of time.  
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3. Standardization of product and process sequence - Continuous Production 

(Production facilities arranged as per the sequence of production operations from 

the first operations to the finished product) 

This refers to the process of maintaining uniformity and consistency among the 

different iterations of a particular good or service. It is made using the same 

materials and processes, has the same packaging and is marketed under the same 

name. 

The strategy of product standardization requires the industry or organization to 

follow certain guidelines in order to maintain the consistency of a product’s 

nature, appearance, and quality.  

4. Special purpose machines having higher production capacities and output rates 

(these are designed according to the requirements of the clients) 

4.3 Data classification  

The data for the five fast moving products was collected as shown in appendix 5 and 

after that, diminished to operational measurements as presented by tables 4.1, 4.3, 4.5, 

4.7 and 4.9. “Data classification” by state of demand was made, analyzed and 

utilized to create the scientific  model. This was for the first quarter of the year.  

Product A  

In a specified week, demand was considered as “favorable” (state F) if Nij > 12 or 

else demand was “unfavorable” (state U) if Nij ≤ 12 
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Table 4.1: “Data classification” by state of demand for product A 

 

Month Week Customers 

(N) 

Demand 

(D) (x103) 

‘On-hand’ 

inventory (V)  

(x103) 

State of 

demand 

(i) 

1 

1 9 3937 6076 U 

2 12 4668 4687 U 

3 8 2485 6306 U 

4 17 7955 10160 F 

2 

1 1 110 4525 U 

2 15 3832 5681 F 

3 7 2870 4363 U 

4 20 3824 6028 F 

3 

1 4 758 2018 U 

2 16 6125 4149 F 

3 14 2625 4163 F 

4 17 3685 6279 F 

 

Table 4.1 shows the classification of data by state of demand (as either favorable or 

unfavorable) of product A for each week for the first quarter of the year.  

Overstocking and understocking of product A weekly in the first quarter of the year 

with the corresponding shortage and holding costs is shown in table 4.2. 

Table 4.2: ‘Overstocking’ & “understocking” with holding & shortage costs for 

product A 
 

Week Demand 

(D) (x103) 

“On-hand” 

inventory (V)  

(x103) 

Over/under 

stocking 

Holding/shortage 

costs (KES) 

1 3937 6076 2139 23165.37 

2 4668 4687 19 205.77 

3 2485 6306 3821 41381.43 

4 7955 10160 2205 23880.15 

5 110 4525 4415 47814.45 

6 3832 5681 1849 20024.67 

7 2870 4363 1493 16169.19 

8 3824 6028 2204 23869.32 

9 758 2018 1260 13645.80 

10 6125 4149 -1976 156973.44 

11 2625 4163 1538 16656.54 

12 3685 6279 2594 28093.02 
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Table 4.2 shows the overstocking or understocking of product A weekly for the first 

quarter of the year, with the corresponding holding or shortage costs. 

 

Figure 4.3: Overstocking & understocking of product A 

 

Figure 4.3 shows the graphical representation of overstocking and understocking of 

product A weekly for the first quarter of the year. 

 

Figure 4.4: Holding & Shortage costs of product A 

 

Figure 4.4 shows the graphical representation of holding and shortage costs of product 

A weekly for the first quarter of the year. 
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Product B  

In a specified week, demand was considered as ‘favorable’ (state F) if Nij > 25 or else 

demand was ‘unfavorable’ (state U) if Nij ≤ 25 

Table 4.3: “Data classification” by state of demand for product B 

 

Table 4.3 shows the classification of data by state of demand (as either favorable or 

unfavorable) of product B for each week for the first quarter of the year.  

The overstocking and understocking of product B in the first quarter of the year with 

the corresponding shortage and holding costs is shown in table 4.4. 

Month Week Customers 

(N) 

Demand (D) 

(x103) 

‘On-hand’ 

inventory (V)  

(x103) 

State of 

demand 

(i) 

1 

1 16 2309 2365 U 

2 34 3224 4459 F 

3 25 2759 3255 U 

4 42 6113 5923 F 

2 

1 7 414 2095 U 

2 22 2422 2564 U 

3 16 1269 2994 U 

4 36 2981 3372 F 

3 

1 12 289 2502 U 

2 24 1825 1827 U 

3 30 806 1636 F 

4 33 2426 2992 F 
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Table 4.4: ‘Overstocking’ & “understocking” with holding & shortage costs for 

product B 

 

 

Table 4.4 shows the overstocking or understocking of product B weekly for the first 

quarter of the year, with the corresponding holding or shortage costs. 

 

Figure 4.5: Overstocking & understocking of product B 

  

Figure 4.5 shows the graphical representation of overstocking and understocking of 

product B weekly for the first quarter of the year. 

 

 

 

 

Week Demand 

(D) (x103) 

“On-hand” 

inventory (V)  

(x103) 

Over/under 

stocking 

Holding/shortage 

costs (KES) 

1 2309 2365 56 2874.48 

2 3224 4459 1235 63392.55 

3 2759 3255 496 25459.68 

4 6113 5923 -190 53642.70 

5 414 2095 1681 86285.73 

6 2422 2564 142 7288.86 

7 1269 2994 1725 88544.25 

8 2981 3372 391 20070.03 

9 289 2502 2213 113593.29 

10 1825 1827 2 102.66 

11 806 1636 830 42603.90 

12 2426 2992 566 29052.78 
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Figure 4.6: Holding & Shortage costs of product B 

 

Figure 4.6 shows the graphical representation of holding and shortage costs of product 

B weekly for the first quarter of the year. 

Product C  

In a specified week, demand was considered as ‘favorable’ (state F) if Nij > 27 or else 

demand was ‘unfavorable’ (state U) if Nij > 27 

 

Table 4.5: “Data classification” by state of demand for product C 

 

Month Week Customers 

(N) 

Demand (D) 

(x103) 

‘On-hand’ 

inventory (V)  

(x103) 

State of 

demand 

(i) 

1 

1 16 1746 2581 U 

2 39 4929 4656 F 

3 19 3347 4538 U 

4 37 5020 5514 F 

2 

1 7 875 2050 U 

2 23 4757 3690 U 

3 19 3068 2687 U 

4 33 3005 4189 F 

3 

1 16 1745 3309 U 

2 38 3263 3259 F 

3 39 3093 4115 F 

4 33 4146 5177 F 
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Table 4.5 shows the classification of data by state of demand (as either favorable or 

unfavorable) of product C for each week for the first quarter of the year.  

Overstocking and understocking of product C in the first quarter of the year with the 

corresponding shortage and holding costs is shown in table 4.6. 

Table 4.6: ‘Overstocking’ & “understocking” with holding & shortage costs for 

product C 

Week Demand 

(D) (x103) 

“On-hand” 

inventory (V)  

(x103) 

Over/under 

stocking 

Holding/shortage 

costs (KES) 

1 1746 2581 835 6980.60 

2 4929 4656 -273 25107.81 

3 3347 4538 1191 9956.76 

4 5020 5514 494 4129.84 

5 875 2050 1175 9823.00 

6 4757 3690 -1067 98131.99 

7 3068 2687 -381 35040.57 

8 3005 4189 1184 9898.24 

9 1745 3309 1564 13075.04 

10 3263 3259 -4 367.88 

11 3093 4115 1022 8543.92 

12 4146 5177 1031 8619.16 

 

Table 4.6 shows the overstocking or understocking of product C weekly for the first 

quarter of the year, with the corresponding holding or shortage costs. 

 

Figure 4.7: Overstocking & understocking of product C 
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Figure 4.7 shows the graphical representation of overstocking and understocking of 

product C weekly for the first quarter of the year. 

 

Figure 4.8: Holding & Shortage costs of product C 

 

Figure 4.8 shows the graphical representation of holding and shortage costs of product 

C weekly for the first quarter of the year. 

 

Product D  

In a specified week, demand was considered as “favorable” (state F) if Nij > 26 or 

else demand was “unfavorable” (state U) if Nij > 26 

Table 4.7: “Data classification” by state of demand for product D 

 

Month Week Customers 

(N) 

Demand 

(D) (x103) 

‘On-hand’ 

inventory (V)  

(x103) 

State of 

demand 

(i) 

1 

1 15 308 5263 U 

2 29 2891 7337 F 

3 24 1757 7081 U 

4 38 6619 5654 F 

2 

1 8 231 3525 U 

2 17 2046 6243 U 

3 15 1617 5922 U 

4 45 4443 5951 F 

3 

1 14 559 3765 U 

2 37 3686 4738 F 

3 28 1537 4980 F 

4 44 5626 5746 F 
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Table 4.7 shows the classification of data by state of demand (as either favorable or 

unfavorable) of product D for each week for the first quarter of the year.  

The overstocking and understocking of product D in the first quarter of the year with 

the corresponding shortage and holding costs is shown in table 4.8. 

Table 4.8: ‘Overstocking’ & “understocking” with holding & shortage costs for 

product D 

 

Week Demand (D) 

(x103) 

On hand 

inventory (V)  

(x103) 

Over/under 

stocking 

Holding/shortage 

costs (KES) 

1 308 5263 4955 312165.00 

2 2891 7337 4446 280098.00 

3 1757 7081 5324 335412.00 

4 6619 5654 -965 334372.50 

5 231 3525 3294 207522.00 

6 2046 6243 4197 264411.00 

7 1617 5922 4305 271215.00 

8 4443 5951 1508 95004.00 

9 559 3765 3206 201978.00 

10 3686 4738 1052 66276.00 

11 1537 4980 3443 216909.00 

12 5626 5746 120 7560.00 

 

Table 4.8 shows the overstocking or understocking of product D weekly for the first 

quarter of the year, with the corresponding holding or shortage costs. 

 

Figure 4.9: Overstocking & understocking of product D 
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Figure 4.9 shows the graphical representation of overstocking and understocking of 

product D weekly for the first quarter of the year. 

 

Figure 4.10: Holding & Shortage costs of product D 

 

Figure 4.10 shows the graphical representation of holding and shortage costs of 

product D weekly for the first quarter of the year. 

Product E  

In a specified week, demand was considered as ‘favorable’ (state F) if Nij > 34 or else 

demand was ‘unfavorable’ (state U) if Nij > 34. 

Table 4.9: “Data classification” by state of demand for product E 
 

Month Week Customers 

(N) 

Demand 

(D) (x103) 

‘On-hand’ 

inventory (V)  

(x103) 

State of 

demand 

(i) 

1 

1 20 904 2333 U 

2 50 2220 4800 F 

3 28 1200 5341 U 

4 58 3827 6400 F 

2 

1 12 335 2802 U 

2 31 1672 5037 U 

3 24 1893 6102 U 

4 37 1480 5750 F 

3 

1 17 608 4906 U 

2 39 1528 5433 F 

3 41 1570 5576 F 

4 47 2224 5614 F 
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Table 4.9 shows the classification of data by state of demand (as either favorable or 

unfavorable) of product E for each week for the first quarter of the year.  

 

Overstocking and understocking of product E in the first quarter of the year with the 

corresponding shortage and holding costs is shown in table 4.10. 

Table 4.10: ‘Overstocking’ & “understocking” with holding & shortage costs for 

product E 

 

Week Demand 

(D) (x103) 

“On-hand” 

inventory (V)  

(x103) 

Over/under 

stocking 

Holding/shortage 

costs (KES) 

1 904 2333 1429 112533.75 

2 2220 4800 2580 203175.00 

3 1200 5341 4141 326103.75 

4 3827 6400 2573 202623.75 

5 335 2802 2467 194276.25 

6 1672 5037 3365 264993.75 

7 1893 6102 4209 331458.75 

8 1480 5750 4270 336262.50 

9 608 4906 4298 338467.50 

10 1528 5433 3905 307518.75 

11 1570 5576 4006 315472.50 

12 2224 5614 3390 266962.50 

 

Table 4.10 shows the overstocking or understocking of product E weekly for the first 

quarter of the year, with the corresponding holding or shortage costs. 

Figure 4.11: Overstocking & understocking of product E 
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Figure 4.11 shows the graphical representation of overstocking and understocking of 

product E weekly for the first quarter of the year. 

 

Figure 4.12: Holding & Shortage costs of product E 

 

Figure 4.12 illustrates the graphical representation of holding and shortage costs of 

product E weekly for the first quarter of the year. 

4.4 “State” transitions and “on-hand” inventory 

For a specific “state” transition, knowing the starting and finishing stock, as of 

equation 3.2, the average ‘on-hand’ inventory was designed for each item as shown 

from tables 4.11 to 4.15. 

Table 4.11: Average ‘on-hand’ inventory for product A 

State 

transitions 

 

Starting inventory 

(B) 

Finishing 

inventory (E) 

Average “on-

hand” inventory  

 

FF 4163 6279 5221.00 

FU 4525 2018 3271.50 

UF 10160 4149 7154.50 

UU 4687 6306 5496.50 
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Table 4.11 shows for each state transition, the Average ‘on-hand’ inventory for 

product A for the first quarter of the year considering the beginning and ending 

inventory. 

Table 4.12: Average “on-hand” inventory for product B 

 

State 

transitions 

 

Starting inventory 

(B) 

Finishing 

inventory (E) 

Average “on-

hand” inventory  

 

FF 2992 2992 2992.00 

FU 3255 2502 2878.50 

UF 4459 1636 3047.50 

UU 2564 1827 2195.50 

 

 
Table 4.12 shows for each state transition, the Average ‘on-hand’ inventory for 

product B for the first quarter of the year considering the beginning and ending 

inventory. 

 

Table 4.13: Average “on-hand” inventory for product C 

 

State 

transitions 

 

Starting 

inventory (B) 

Finishing 

inventory (E) 

Average “on-

hand” inventory  

 

FF 4115 5177 4646.00 

FU 4538 3309 3923.50 

UF 4656 3259 3957.50 

UU 3690 2687 3188.50 

 

 

Table 4.13 shows for each state transition, the Average ‘on-hand’ inventory for 

product C for the first quarter of the year considering the beginning and ending 

inventory. 
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Table 4.14: Average “on-hand” inventory for product D 

 

State 

transitions 

 

Starting 

inventory (B) 

Finishing 

inventory (E) 

Average “on-hand” 

inventory  

 

FF 4980 5746 5363.00 

FU 7081 3765 5423.00 

UF 7337 4738 6037.50 

UU 6243 5922 6082.50 

 

 
Table 4.14 shows for each state transition, the Average ‘on-hand’ inventory for 

product D for the first quarter of the year considering the beginning and ending 

inventory. 

 

Table 4.15: Average “on-hand” inventory for product E 

 

State 

transitions 

 

Starting inventory 

(B) 

Finishing 

inventory (E) 

Average “on-

hand” inventory  

 

FF 5576 5614 5595.00 

FU 7081 4906 5993.50 

UF 4800 5433 5116.50 

UU 5037 6102 5569.50 

 

 

Table 4.15 shows for each state transition, the Average ‘on-hand’ inventory for 

product E for the first quarter of the year considering the beginning and ending 

inventory. 
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Table 4.16: Summary of Average “on-hand” inventory and “state” transitions of 

products 

State transition Product A Product B Product C Product D Product E 

FF 5221.00 2992.00 4646.00 5363.00 5595.00 

FU 3271.50 2878.50 3923.50 5423.00 5993.50 

UF 7154.50 3047.50 3957.50 6037.50 5116.50 

UU 5496.50 2195.50 3188.50 6082.50 5569.50 

 

Table 4.16 shows for each state transition, the summary of the Average ‘on-hand’ 

inventory for products A, B, C, D, and E for the first quarter of the year. 

 

Figure 4.13: Average ‘on-hand’ inventory and ‘state’ transitions 

 

Figure 4.13 illustrates the graphical representation of the average ‘on-hand’ inventory 

and state transition for products A, B, C, D, and E for the first quarter of the year. 

 

4.5 Demand Transition Probabilities 

Data “classification” by “state” transition was carried out as shown from tables 4.17 

to 4.21 and then it was utilized to compute the “demand transition probabilities” for 

each product using equation 3.4. 
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Table 4.17: Data “classification” by ‘state’ transition for product A 

 

Month 

“State” transition 

 

Number of customers 

 

Demand 

 

1 

FF 0 0 

FU 0 0 

UF 25 10440 

UU 41 15758 

2 

FF 0 0 

FU 22 6702 

UF 43 10636 

UU 0 0 

3 

FF 61 15060 

FU 0 0 

UF 20 6883 

UU 0 0 

 

Table 4.17 shows for each week, for the first quarter of the year, the number of 

customers and their corresponding quantity demanded for a particular state transition 

for product A. 

TOTALS 

 

 

 

 

Demand transition probabilities 
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Therefore, the ‘demand transition matrix’ as of equation 3.5 is, 

   

 

Table 4.18: Data “classification” by ‘state’ transition for product B 

 

Month 

“State” transition 

 

Number of customers 

  

Demand 

 

1 

FF 0 0 

FU 59 5983 

UF 117 14405 

UU 0 0 

2 

FF 0 0 

FU 0 0 

UF 52 4250 

UU 67 6527 

3 

FF 63 3232 

FU 0 0 

UF 54 2631 

UU 36 2114 

Table 4.18 shows for each week, for the first quarter of the year, the number of 

customers and their corresponding quantity demanded for a particular state transition 

for product B. 

TOTALS 

 

  

 

 

 

Demand transition probabilities 
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Therefore, the “demand transition matrix” as of equation 3.5 is, 

  

Table 4.19: Data “classification” by “state” transition for product C 

 

Month 

“State” transition 

 

Number of customers 

 

Demand 

 

1 

FF 0 0 

FU 58 8276 

UF 111 15042 

UU 0 0 

2 

FF 0 0 

FU 0 0 

UF 52 6073 

UU 72 13457 

3 

FF 149 13595 

FU 0 0 

UF 54 5008 

UU 0 0 

 

Table 4.19 shows for each week, for the first quarter of the year, the number of 

customers and their corresponding quantity demanded for a particular state transition 

for product C. 

 

TOTALS 

 

  

 

 

 

Demand transition probabilities 
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Therefore, the ‘demand transition matrix’ as of equation 3.5 is, 

  

Table 4.20: Data “classification” by “state” transition for product D 

 

Month 

“State” transition 

 

Number of customers 

  

Demand 

 

1 

FF 0 0 

FU 53 4648 

UF 106 11575 

UU 0 0 

2 

FF 0 0 

FU 0 0 

UF 60 6060 

UU 57 5940 

3 

FF 137 12386 

FU 0 0 

UF 51 4245 

UU 0 0 

 

Table 4.20 shows for each week, for the first quarter of the year, the number of 

customers and their corresponding quantity demanded for a particular state transition 

for product D. 

TOTALS 

 

  

 

 

Demand transition probabilities 
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Therefore, the “demand transition matrix” as of equation 3.5 is, 

  

Table 4.21: Data “classification” by “state” transition for product E 

 

Month 

‘State’ transition 

 

Number of 

customers  

Demand 

 

1 

FF 0 0 

FU 78 3420 

UF 156 8151 

UU 0 0 

2 

FF 0 0 

FU 0 0 

UF 61 3373 

UU 98 5572 

3 

FF 168 6892 

FU 0 0 

UF 56 2136 

UU 0 0 

 

Table 4.21 shows for each week, for the first quarter of the year, the number of 

customers and their corresponding quantity demanded for a particular state transition 

for product E. 

TOTALS 
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Demand transition probabilities 

  

  

  

  

Therefore, the ‘demand transition matrix’ as of equation 3.5 is, 

  

Table 4.22: Demand transition matrix 

 

Product, P  Demand transition matrix,  

A 

 

B 

 

C 

 

D 

 

E 

 

Table 4.22 shows the demand transition matrices got from the demand transition 

probabilities for each of the five products A, B, C, D, and E as demand transitions 

from one state to another for the first quarter of the year. 
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4.6 Demand, Inventory & Production-Inventory Cost Matrix 

For all the five fast moving products, the ‘demand, inventory and production-

inventory cost’ matrices are established as follows. 

4.6.1 Demand matrix 

From equation 3.6, the demand matrix for each of the products becomes; 

For product A, 

           

   

For product B, 

         

   

 

For product C, 

           

   

  

 

For product D, 
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For product E, 

         

   

 

4.6.2 Inventory matrix 

From equation 3.7, the inventory matrix for each of the products becomes; 

 For product A, 

         

   

 For product B, 

         

   

 For product C, 

         

   

 For product D, 
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For product E, 

         

   

4.6.3 Production-inventory cost matrix 

Using equations 3.8, 3.9 and 3.10, the ‘production-inventory cost’ matrices are then 

calculated for all the five products as presented below: 

For product A, 

 Unit production cost,  

 Unit holding cost,  

 Unit shortage cost,  

  

  

  

  

  

  

  

  

         Hence, 
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For product B, 

 Unit production cost,  

 Unit holding cost,  

 Unit shortage cost,   

  

  

  

  

  

  

  

  

  

Hence, 

         

   

For product C, 

 Unit production cost,   

 Unit holding cost,  

 Unit shortage cost,  
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 Hence, 

         

   

For product D, 

 Unit production cost,  

 Unit holding cost,  

 Unit shortage cost,  
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Hence, 

         

   

For product E, 

 Unit production cost,  

 Unit holding cost,  

 Unit shortage cost,  

  

  

  

  

  

  

  

          

Hence, 
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Table 4.23: Demand, Inventory and Production-inventory cost matrices 

 
 

Table 4.23 shows the Demand, Inventory and Production-inventory cost matrices for 

each of the five products A, B, C, D, and E as demand transitions from one state to 

another for the first quarter of the year. 

 

4.7 Expected Demand 

After producing the “demand transition” matrices and defining the “production-

inventory cost” matrix, the expected “demand, inventory & production-inventory 

costs” are calculated for all the items bearing in mind both “favorable & unfavorable” 

demand. 

Using equations 3.11 and 3.12, the expected demand for both ‘favorable & 

unfavorable’ demand was calculated respectively as below; 

For product A 

Favorable demand (F) 
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Unfavorable demand (U) 

   

  

  

For product B 

Favorable demand (F) 

   

  

  

Unfavorable demand (U) 

   

  

  

For product C 

Favorable demand (F) 

   

  

  

Unfavorable demand (U) 
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For product D 

Favorable demand (F) 

   

  

  

Unfavorable demand (U) 

   

  

  

For product E 

Favorable demand (F) 

   

  

   

Unfavorable demand (U) 

   

  

  

 

4.8 Expected Inventory 

Calculation of the “expected inventory” bearing in mind both “favorable & 

unfavorable” demand for all the five products was done using equations 3.13 and 3.14 

respectively as below; 

For product A 

Favorable demand (F) 
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Unfavorable demand (U) 

   

  

  

For product B 

Favorable demand (F) 

   

   

  

Unfavorable demand (U) 

   

  

  

For product C 

Favorable demand (F) 

   

   

  

Unfavorable demand (U) 
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For product D 

Favorable demand (F) 

   

   

  

Unfavorable demand (U) 

   

  

  

For product E 

Favorable demand (F) 

   

   

  

Unfavorable demand (U) 

   

  

  

 

4.9 Expected Production-Inventory Costs 

The “expected production-Inventory” costs are thereafter calculated for all the five 

products bearing in mind both “favorable & unfavorable” demand using equations 

3.15 and 3.16 respectively as presented beneath: 
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For product A 

Favorable demand (F) 

   

   

    

Unfavorable demand (U) 

  

  

  

For product B 

Favorable demand (F) 

   

   

  

Unfavorable demand (U) 

   

   

   

For product C 

Favorable demand (F) 
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Unfavorable demand (U) 

   

   

   

For product D 

Favorable demand (F) 

   

   

   

Unfavorable demand (U) 

  

  

  

For product E 

Favorable demand (F) 

   

   

    

Unfavorable demand (U) 
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4.10 Expected Manufacturing Lot Size 

Calculation of the “expected manufacturing lot size” bearing in mind both “favorable 

& unfavorable” demand for all the five products was done using equations 3.17 and 

3.18 respectively as below: 

For product A 

Favorable demand (F) 

 

 

 

Unfavorable demand (U) 

 

 

 

For product B 

Favorable demand (F) 

 

 

 

 

Unfavorable demand (U) 
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For product C 

Favorable demand (F) 

 

 

 

 

Unfavorable demand (U) 

 

 

 

For product D 

Favorable demand (F) 

 

 

 

Unfavorable demand (U) 

 

 

 

For product E 

Favorable demand (F) 
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Unfavorable demand (U) 

 

 

 

 

Table 4.24: Expected “demand, Inventory, production-inventory” cost & 

manufacturing lot size 

 
 

Table 4.24 shows the Expected demand, Expected Inventory, Expected production-

inventory cost and Expected manufacturing lot size for each of the five products A, B, 

C, D, and E for each state of demand, that is, either favorable (F) or unfavorable (U). 

4.11 Stochastic Goal Programming Model  

The “stochastic goal programming” model for each of the five products was expressed 

by setting priorities, describing the objective function & framing the goal constraints 

as follows: 



97 

 

For product A  

Priorities set 

  

 

 

  

 

  

Objective function 

   

Goal constraints 

 Manufacturing lot size 

    

    

 Total production-Inventory costs 

  

  

 Non negativity 

    

For product B  

Priorities set 
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Objective function 

   

Goal constraints 

Manufacturing lot size 

   

   

Total production-Inventory costs 

  

  

 Non negativity 

    

For product C  

Priorities set 
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Objective function 

   

Goal constraints 

Manufacturing lot size 

   

   

Total production-Inventory costs 

  

  

 Non negativity 

    

For product D      

Priorities set 
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Objective function 

   

Goal constraints 

Manufacturing lot size 

  

  

Total production-Inventory costs 

   

  

Non negativity 

    

 

For product E  

Priorities set 
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Objective function 

   

Goal constraints 

Manufacturing lot size 

    

 

   

Total production-Inventory costs 

  

  

Non negativity 

    

 

4.12 Stochastic Goal Programming Model for Manufacturing Lot Size  

The “stochastic goal programming” model for “manufacturing lot size” was thereafter 

established as below for all the products. The model defines the amount of each item 

to be manufactured in the first quarter of the year as demand shifts from state i to state 

j for  

 

For product A 

  

Subject to: 
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Where: 

 = slack variables 

 = surplus variables 

 – “manufacturing lot size” of product A as originally “favorable” demand 

remains “favorable” 

– “manufacturing lot size” of product A as primarily “favorable” demand 

turns to “unfavorable” 

 – “manufacturing lot size” of product A as originally “unfavorable” demand 

turns to “favorable” 

– “manufacturing lot size” of product A as primarily “unfavorable” demand 

remains “unfavorable” 

For product B 

  

Subject to: 
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Where: 

 = slack variables 

 = surplus variables 

 – “manufacturing lot size” of product B as originally “favorable” demand 

remains “favorable” 

 – “manufacturing lot size” of product B as primarily “favorable” demand 

turns to “unfavorable” 

 – “manufacturing lot size” of product B as originally “unfavorable” demand 

turns to “favorable” 

 – “manufacturing lot size” of product B as primarily “unfavorable” demand 

remains “unfavorable” 

For product C 

   

Subject to: 

   

   

   

   

   

Where: 

 = slack variables 

 = surplus variables 

 – “manufacturing lot size” of product C when initially “favorable” demand 

remains “favorable” 
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 – “manufacturing lot size” of product C when initially “favorable” demand 

turns to “unfavorable” 

 – “manufacturing lot size” of product C when initially “unfavorable” 

demand turns to “favorable” 

 – “manufacturing lot size” of product C when initially “unfavorable” 

demand remains “unfavorable” 

For product D 

  

Subject to: 

   

   

    

   

   

Where: 

 = slack variables 

 = surplus variables 

 – “manufacturing lot size” of product D as primarily “favorable” demand 

remains “favorable” 

 – “manufacturing lot size” of product D as originally “favorable” demand 

turns to “unfavorable” 

 – “manufacturing lot size” of product D as primarily “unfavorable” demand 

turns to “favorable” 
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 – “manufacturing lot size” of product D as originally “unfavorable” 

demand remains “unfavorable” 

For product E 

  

Subject to: 

   

   

   

   

   

Where: 

 = slack variables 

 = surplus variables 

 – “manufacturing lot size” of product E as primarily “favorable” demand 

remains “favorable” 

 – “manufacturing lot size” of product E as originally “favorable” demand 

turns to “unfavorable” 

 – “manufacturing lot size” of product E as primarily “unfavorable” demand 

turns to “favorable” 

 – “manufacturing lot size” of product E as originally “unfavorable” 

demand remains “unfavorable” 

 

4.13 Results of the stochastic goal programming model 

In this study, the “stochastic goal programming” model for each of the products in the 

first quarter of the year was solved using MATLABTM (in particular the lingprog 
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solver) and the optimum result was achieved having the values as presented in Table 

4.25. 

Table 4.25: Optimum result from MATLAB 

Variables 

Product 

A B C D E 

 0 6.7720 0 0 0 

 2.3729 0 1.7602 369.4800 13.3956 

 0 0 0 0 0.6835 

 104.0840 109.6800 181.8117 4975.1000 6286.3000 

 8137.7000 4555.6000 12103.0000 5478.7000 56.2688 

 17350.0000 17181.0000 22786.0000 7542.5000 0 

 0 0 0 0 0 

 0 0 0 0 0 

 98,702,000 62,715,000 14,378,000 62,316,000 562,630 

 

Table 4.25 shows the optimum results got from the Matlab software, using linprog 

solver, giving the manufacturing lot sizes, over achievements, under achievements 

and the total production-inventory cost for all the five products A, B, C, D, and E for 

the first quarter of the year.  

 

Figure 4.14: Manufacturing lot size with over or under achievement in each state 

transition 
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Figure 4.14 illustrates the values of the manufacturing lot size with the over 

achievement or under achievement in each state transition for all the five products A, 

B, C, D, and E for the first quarter of the year. 

4.14 Discussion of Results 

The results were analyzed and discussed for each product basing on the priorities 

fixed and the optimum values attained from sub section 4.12.  

The priorities set for product A are as follows; 

  

 

 

 

 

  

XFF (A,1) = 0; 

The “manufacturing lot size” of product A in the first quarter when initially 

favorable demand remains favorable is 0 units. This means that more products 

shouldn’t be manufactured but utilize what is existing in stock as it is 

sufficient to satisfy the demand. 

XFU (A,1) = 2.3729; 

The manufacturing lot size of product A in the first quarter when initially 

favorable demand becomes unfavorable is 2.3729 units. This means that more 

products, 2.3729 units, should be produced to meet demand. 

XUF (A,1) = 0; 

The manufacturing lot size of product A in the first quarter when initially 

unfavorable demand becomes favorable is 0 units. This means that more 
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products shouldn’t be manufactured but use what is already in stock as it is 

enough to meet the demand. 

XUU (A,1) = 104.0840; 

The manufacturing lot size of product A in the first quarter when initially 

unfavorable demand remains unfavorable is 104.0840 units. This means that 

more products, 104.0840 units, should be produced to meet demand. 

Goal constraints 

   

   

   

   

 

Priority 1 

  

When demand is initially favorable (state F), the amount to be produced in the first 

quarter is; 

   

                             

This is equal to the targeted production level for goal constraint (1).  Therefore, 

Priority 1 may be completely attained. Nonetheless, an “underachievement” of 

 units is however got in the first quarter as demand is originally “favorable” 

(state F). 
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Priority 2 

  

When demand is initially unfavorable (state U) the amount to be produced in the first 

quarter is; 

   

                                     

Priority 2 may be fully achieved as this value is equal to the targeted production level 

for goal constraint (2). On the other hand, an “underachievement” of  units is 

got in the first quarter as demand is primarily ‘unfavorable’ (state U). 

 

Priority 3 

 

 

 When demand is initially favorable (state F) the total “production-inventory” costs in 

the first quarter is; 

   

 

This to some extent is greater than the targeted ‘production-inventory’ costs for goal 

constraint (3).  Priority 3 is therefore partially attained in the first quarter as demand is 

originally “favorable” (state F).  

Priority 4 

 

 

When demand is initially unfavorable (state U) the total “production-inventory” costs 

in the first quarter is;  
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This to some extent is greater than the targeted ‘production-inventory’ costs for goal 

constraint (4). Priority 4 can therefore be partially attained in the first quarter as 

demand is originally “unfavorable” (state U). 

 

Table 4.26: Expected goal values for product A, “stochastic” solution with “over & 

under” achievement 

 

 

Table 4.26 shows the expected goal values for product A, the value of the stochastic 

solution giving the deviations with over achievement or under achievement. 

The priorities set for product B are as follows; 

  

 

 

 

  

 

Goals/ 

priorities 

Expected value 

from Goal 

Value of the 

stochastic solution 

Deviation Over-

achievement 

Under-

achievement 

1   0.03  8137.70 

2   0.18  17350.00 

3   102.99 0  

4   218.19 0  
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XFF (B,1) = 6.7720; 

The manufacturing lot size of product B in the first quarter when initially 

favorable demand remains favorable is 6.7720 units. This means that more 

products, 6.7720 units, should be produced to meet demand. 

XFU (B,1) = 0; 

The manufacturing lot size of product B in the first quarter when initially 

favorable demand becomes unfavorable is 0 units. This means that more 

products shouldn’t be manufactured but use what is already in stock as it is 

enough to meet the demand. 

XUF (B,1) = 0; 

The manufacturing lot size of product B in the first quarter when initially 

unfavorable demand becomes favorable is 0 units. This means that more 

products shouldn’t be manufactured but use what is already in stock as it is 

enough to meet the demand. 

XUU (B,1) = 109.68; 

The manufacturing lot size of product B in the first quarter when initially 

unfavorable demand remains unfavorable is 109.68 units. This means that 

more products, 109.68 units, should be produced to meet demand. 

Goal constraints; 
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Priority 1 

  

When demand is initially favorable (state F), the amount to be produced in the first 

quarter is; 

   

                             

Priority 1 can be achieved as this value is equal to the targeted production level for 

goal constraint (1). On the other hand, an “underachievement” of  units is 

however got in the first quarter as demand is originally “favorable” (state F) 

Priority 2 

  

When demand is initially unfavorable (state U) the amount to be produced in the first 

quarter is; 

                

                                     

This is equal to the targeted production level for goal constraint (2).  Therefore, 

Priority 2 may be completely attained. On the other hand, an “underachievement” of 

 units is got in the first quarter as demand is originally ‘unfavorable’ (state U). 

Priority 3 

 

 

 When demand is initially favorable (state F) the total “production-inventory” costs in 

the first quarter is; 
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This is a little greater than the targeted ‘production-inventory’ costs for goal 

constraint (3).  Priority 3 is therefore partially achieved in the first quarter as demand 

is originally “favorable” (state F).  

Priority 4 

 

 

When demand is initially unfavorable (state U) the total “production-inventory” costs 

in the first quarter is;  

 

 

This is a little greater than the targeted ‘production-inventory’ costs for goal 

constraint (4). Priority 4 can therefore be partially attained in the first quarter as 

demand is primarily “unfavorable” (state U). 

Table 4.27: Expected goal values for product B, “stochastic” solution with “over & 

under” achievement 

 

Table 4.27 shows the expected goal values for product B, the value of the stochastic 

solution giving the deviations with over achievement or under achievement. 

The priorities set for product C are as follows; 

Goals/ 

priorities 

Expected value 

from Goal 

Value of the 

stochastic solution 

Deviation Over-

achievement 

Under-

achievement 

1   0.0116  4555.6 

2   0.5  17181 

3   22.62 0  

4   802.78 0  
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XFF(C,1) = 0; 

The manufacturing lot size of product C in the first quarter when initially 

favorable demand remains favorable is 0 units. This means that more products 

shouldn’t be manufactured but use what is already in stock as it is enough to 

meet the demand. 

XFU(C,1) = 1.7602; 

The manufacturing lot size of product C in the first quarter when initially 

favorable demand becomes unfavorable is 1.7602 units. This means that more 

products, 1.7602 units, should be produced to meet demand. 

XUF(C,1) = 0; 

The manufacturing lot size of product C in the first quarter when initially 

unfavorable demand becomes favorable is 0 units. This means that more 

products shouldn’t be manufactured but use what is already in stock as it is 

enough to meet the demand. 

XUU(C,1) = 181.8117; 

The manufacturing lot size of product C in the first quarter when initially 

unfavorable demand remains unfavorable is 181.8117 units. This means that 

more products, 181.8117 units, should be produced to meet demand. 
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Goal constraints; 

   

   

   

   

Priority 1 

  

When demand is initially favorable (state F), the amount to be produced in the first 

quarter is; 

   

                             

Priority 1 can be achieved as this value is equal to the targeted production level for 

goal constraint (1). Nonetheless, an “underachievement” of  units is however 

got in the first quarter as demand is originally “favorable” (state F). 

Priority 2 

  

When demand is initially unfavorable (state U) the amount to be produced in the first 

quarter is; 

                  

                                     

This is equal to the targeted production level for goal constraint (2). Therefore, 

Priority 2 may be completely attained. Nonetheless, an “underachievement” of 22786 

units is got in the first quarter as demand is originally ‘unfavorable’ (state U). 
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Priority 3 

 

 
  

When demand is initially favorable (state F) the total “production-inventory” costs in 

the first quarter is; 

 

    

This is a little greater than the targeted ‘production-inventory’ costs for goal 

constraint (3).  Priority 3 is therefore partially achieved in the first quarter as demand 

is originally “favorable” (state F).  

Priority 4 

 

 

When demand is initially unfavorable (state U) the total “production-inventory” costs 

in the first quarter is;  

 

   

This is equal to the targeted production-inventory costs for goal constraint (4). 

Priority 4 can therefore be fully attained in the first quarter as demand is originally 

“unfavorable” (state U). 
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Table 4.28: Expected goal values for product C, “stochastic solution with over & 

under” achievement 

 

Table 4.28 shows the expected goal values for product C, the value of the stochastic 

solution giving the deviations with over achievement or under achievement. 

The priorities set for product D are as follows; 

  

 

 

 

  

 

 XFF(D,1) = 0; 

The manufacturing lot size of product D in the first quarter when initially 

favorable demand remains favorable is 0 units. This means that more products 

shouldn’t be manufactured but use what is already in stock as it is enough to 

meet the demand. 

XFU(D,1) = 369.48; 

The manufacturing lot size of product D in the first quarter when initially 

favorable demand becomes unfavorable is 369.48 units. This means that more 

products, 369.48 units, should be produced to meet demand. 

Goals/ 

priorities 

Expected 

value from 

Goal 

Value of the 

stochastic solution 

Deviation Over-

achievement 

Under-

achievement 

1   0.144  12103 

2   0.0877  22786 

3   196.47 0  

4   3.06 0  
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XUF(D,1) = 0; 

The manufacturing lot size of product D in the first quarter when initially 

unfavorable demand becomes favorable is 0 units. This means that more 

products shouldn’t be manufactured but use what is already in stock as it is 

enough to meet the demand. 

XUU(D,1) = 4975.1;  

The manufacturing lot size of product D in the first quarter when initially 

unfavorable demand remains unfavorable is 4975.1 units. This means that 

more products, 4975.1 units, should be produced to meet demand. 

Goal constraints; 

     

   

      

    

   

Priority 1 

  

When demand is initially favorable (state F), the amount to be produced in the first 

quarter is;                                       

                             

Priority 1 can be achieved as this value is equal to the targeted production level for 

goal constraint (1). Nonetheless, an “underachievement” of 5478.7 units is however 

got in the first quarter as demand is originally “favorable” (state F). 
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Priority 2 

  

When demand is initially unfavorable (state U) the amount to be produced in the first 

quarter is; 

                                  

                                            

This is equal to the targeted production level for goal constraint (2).  Priority 2 can 

therefore be completely attained in the first quarter as demand is originally 

“unfavorable” (state U). 

Priority 3 

 

 

 When demand is initially favorable (state F) the total “production-inventory” costs in 

the first quarter is; 

 

 

This is slightly lower than the targeted production-inventory costs for goal constraint 

(3).  Priority 3 can therefore be partially achieved in the first quarter as demand is 

primarily “favorable” (state F). 

Priority 4 

 

 

When demand is initially unfavorable (state U) the total “production-inventory” costs 

in the first quarter is;  

 



120 

 

 

This is a little greater than the targeted “production-inventory” costs for goal 

constraint (4) and priority 4 is partially attained in the first quarter as demand is 

originally “unfavorable” (state U). 

Table 4.29: Expected goal values for product D, “stochastic solution with over & 

under” achievement 

 

 

Table 4.29 shows the expected goal values for product D, the value of the stochastic 

solution giving the deviations with over achievement or under achievement. 

 

The priorities set for product E are as follows; 

  

  

 

  

 

XFF(E,1) = 0;  

The manufacturing lot size of product E in the first quarter when initially 

favorable demand remains favorable is 0units. This means that more products 

shouldn’t be manufactured but use what is already in stock as it is enough to 

meet the demand. 

Goals/ 

priorities 

Expected 

value from 

Goal 

Value of the 

stochastic solution 

Deviation Over-

achievement 

Under-

achievement 

1   0.0422  5478.7 

2   0.02  7542.5 

3   79.82 0  

4   120.96 0  
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XFU(E,1) = 13.3956 

The manufacturing lot size of product E in the first quarter when initially 

favorable demand becomes unfavorable is 13.3956units. This means that more 

products, 13.3956units, should be produced to meet demand. 

XUF(E,1) = 0.6835 

The manufacturing lot size of product E in the first quarter when initially 

unfavorable demand becomes favorable is 0.6835units. This means that more 

products, 0.6835units, should be produced to meet demand. 

XUU(E,1) = 6286.3 

The manufacturing lot size of product E in the first quarter when initially 

unfavorable demand remains unfavorable is 6286.3units. This means that 

more products, 6286.3units, should be produced to meet demand. 

Goal constraints; 

     

      

   

   

Priority 1 

  

When demand is initially favorable (state F), the amount to be produced in the first 

quarter is; 
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This is equal to the targeted production level for goal constraint (1). Therefore priority 

1 can be achieved. Underachievement of 56.2688 units is however got in the first 

quarter as demand is originally “favorable” (state F) 

Priority 2 

  

When demand is initially unfavorable (state U) the amount to be produced in the first 

quarter is; 

                      

                          

This is equal to the targeted production level for goal constraint (2).  Priority 2 can 

consequently be completely attained in the first quarter as demand is originally 

“unfavorable” (state U). 

Priority 3 

 

 

 When demand is initially favorable (state F) the total “production-inventory” costs in 

the first quarter is;  

 

 

This is somewhat greater than the targeted ‘production-inventory’ costs for goal 

constraint (3).  Priority 3 can consequently be partly attained in the first quarter as 

demand is originally “favorable” (state F). 
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Priority 4 

 

 

When demand is initially unfavorable (state U) the total “production-inventory” costs 

in the first quarter is;  

 

 

This is lower than the targeted production-inventory costs for goal constraint (4).  

Priority 4 is partly attained in the first quarter as demand is originally “unfavorable” 

(state U) 

 

Table 4.30: Expected goal values for product E, “stochastic” solution with “over & 

under” achievement 

 

Table 4.30 shows the expected goal values for product E, the value of the stochastic 

solution giving the deviations with over achievement or under achievement. 

4.15 Model validation 

Data for product Y not used in building the model, was got and used in validating the 

model to assess how well the model predicts outcomes in new data. 

For a specified week, demand is considered to be “favorable” (state F) if Nij > 21 or 

else demand will be taken as ‘unfavorable’ (state U) if Nij ≤ 21  

Goals/ 

priorities 

“Expected” 

value from 

Goal 

Value of the 

“stochastic” 

solution 

Deviation “Over-

achievement

” 

“Under-

achievement

” 

1   0  56.2688 

2   0.0157  0 

3   8.75 0  

4   99560.66 0  
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Table 4.31: Data “classification” by state of demand 

Month Week Customers 

(N) 

Demand (D) 

(x103) 

On hand inventory 

(V)  (x103) 

State of 

demand 

(i) 

1 

1 14 2664 3674 U 

2 28 4274 4601 F 

3 17 2864 4700 U 

4 32 6363 7199 F 

2 

1 5 466 2890 U 

2 20 3670 3978 U 

3 14 2402 3348 U 

4 30 3270 4530 F 

3 

1 11 931 2610 U 

2 26 3738 3078 F 

3 28 2175 3305 F 

4 28 3419 4816 F 

Table 4.31 shows the classification of data by state of demand (as either favorable (F) 

or unfavorable (U)) of product Y for each week for the first quarter of the year.  

 

‘Overstocking’ and “understocking” of product Y with the matching shortage and 

holding costs in the first quarter of the year is shown in table 4.32. 

Table 4.32: “Overstocking & understocking” with holding and “shortage” costs for 

product Y 

Week Demand 

(D) (x103) 

“On hand” 

inventory (V)  

(x103) 

“Over/under” 

stocking 

“Holding/shortage” 

costs (KES) 

1 2664 3674 1010 23744.40 

2 4274 4601 327 7687.50 

3 2864 4700 1836 43163.00 

4 6363 7199 836 19653.70 

5 466 2890 2424 56986.40 

6 3670 3978 308 7240.90 

7 2402 3348 946 22239.80 

8 3270 4530 1260 29621.70 

9 931 2610 1679 39472.00 

10 3738 3078 -660 99825.00 

11 2175 3305 1130 26565.50 

12 3419 4816 1397 32842.40 
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Table 4.32 shows the overstocking or understocking of product Y weekly for the first 

quarter of the year, with the corresponding holding or shortage costs. 

Figure 4.15: Overstocking & understocking of product Y 

 

Figure 4.15 shows the graphical representation of overstocking and understocking of 

product Y weekly for the first quarter of the year. 

Figure 4.16: Holding & Shortage costs of product Y 

 

Figure 4.16 shows the graphical representation of holding and shortage costs of 

product Y weekly for the first quarter of the year. 
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State “transitions” and “on-hand” inventory 

For every state “transition”, using equation 3.2, given the beginning & ending 

inventory, the average “on-hand” inventory was calculated as shown in table 4.33. 

Table 4.33: Average “on-hand” inventory 

State “transitions” 

 

“Beginning” 

inventory (B) 

“Ending” 

inventory (E) 

Average “on-hand” 

inventory  

 

FF 3305 4816 4060.5 

FU 4700 2610 3655 

UF 4601 3078 3839.5 

UU 3978 3348 3663 

 

 

Table 4.33 shows for each state transition, the Average ‘on-hand’ inventory for 

product Y for the first quarter of the year considering the beginning and ending 

inventory. 

 
 

Figure 4.17: Average “on-hand” inventory and state “transitions” 

 

Figure 4.17 illustrates the graphical representation of the average ‘on-hand’ inventory 

and state transition for product Y for the first quarter of the year. 
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Demand “transition” probabilities 

Classification of data by “state-transition” was then carried out as showed from table 

4.34 and then using equation 3.4 the demand transition probabilities was calculated. 

Table 4.34: Data classification by state-transition 

 

Month 

“State” transition 

 

“Number” of customers 

 

Demand 

 

1 

FF 0 0 

FU 45 7138 

UF 91 16165 

UU 0 0 

2 

FF 0 0 

FU 0 0 

UF 44 5672 

UU 59 10208 

3 

FF 110 11507 

FU 0 0 

UF 37 4669 

UU 0 0 

 

Table 4.34 shows for each week, for the first quarter of the year, the number of 

customers and their corresponding quantity demanded for a particular state transition 

for product Y. 

 

TOTALS 
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Demand transition probabilities 

  

  

  

  

Hence, 

    

From equation 3.6, the demand matrix for product Y becomes; 

   

From equation 3.7, the inventory matrix for product Y becomes; 

  

Using equations 3.8, 3.9 and 3.10, the “production-inventory cost” matrices are then 

calculated for product Y as presented below: 

Production-inventory cost matrix 

 Unit production cost,   

 Unit holding cost,  

 Unit shortage cost,  
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 Hence, 

     

Using equations 3.11 and 3.12, the predictable demand for both “favorable” and 

“unfavorable” demand was calculated correspondingly as below; 

“Favorable” demand (F) 

   

  

  

Unfavorable demand (U) 

   

  

  

By means of equations 3.13 and 3.14, the predictable inventory bearing in mind both 

“favorable” and “unfavorable” demand for product Y was calculated respectively as 

below; 

‘Favorable’ demand (F) 

   

   

  

Unfavorable demand (U) 
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The probable “production-Inventory” costs were then and there calculated for product 

Y bearing in mind both ‘favorable’ and ‘unfavorable’ demand using equations 3.15 

and 3.16 respectively as presented below: 

Favorable demand (F) 

   

   

   

Unfavorable demand (U) 

  

  

  

By means of equations 3.17 and 3.18, the probable ‘manufacturing lot size’ bearing in 

mind both ‘favorable’ & ‘unfavorable’ demand for product Y was calculated 

correspondingly as below: 

“Favorable demand” (F) 

 

 

 

Unfavorable demand (U) 
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“Stochastic goal programming” model  

Through fixing priorities, describing the “objective” function & framing the “goal 

constraints”, the “stochastic goal programming” model was then expressed as follows: 

Priorities fixed 

  

 

 

 

  

 

Objective function 

   

Goal constraints 

 Manufacturing lot size 

    

    

 Total production-Inventory costs 

  

 

Non negativity 
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“Stochastic goal programming” model for the “manufacturing lot size”  

  

Subject to: 

   

  

 

   

Where: 

 = slack variables 

 = surplus variables 

 – “manufacturing lot size” of product Y as originally “favorable” demand 

remains favorable 

 – “manufacturing lot size” of product Y while at first “favorable” demand 

becomes “unfavorable” 

 – “manufacturing lot size” of product Y as primarily “unfavorable” demand 

becomes “favorable” 

 – “manufacturing lot size” of product Y while originally “unfavorable” 

demand remains “unfavorable” 

Optimization of the model 

Using MATLABTM, the “stochastic goal programming model” for the product was 

then solved whereby the figures were placed in and using the linprog solver the results 

were obtained. An optimum result was established and the figures are as follows: 
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Table 4.35: Optimal solution from MATLAB 
 

Variables          

Values 0 182.02 0 2.8341 4546.38 18546.17 0 0 63,987,000 

 

Table 4.35 shows the optimum results got from the Matlab software, using linprog 

solver, giving the manufacturing lot sizes, over achievements, under achievements 

and the total production-inventory cost for product Y for the first quarter of the year.  

Figure 4.18: Manufacturing lot size with over or under achievement in each state 

transition 

 

Figure 4.18 illustrates the values of the manufacturing lot size with the over 

achievement or under achievement in each state transition for product Y for the first 

quarter of the year. 

The priorities set for product Y are as follows; 
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XFF (Y,1) = 0; 

The “manufacturing lot size” of product Y in the “first quarter” when initially 

favorable demand remains favorable is 0 units. This means that no extra products 

must be produced however utilize that which is at present in stock because it’s 

adequate to satisfy the demand. 

XFU (Y,1) = 182.02; 

The “manufacturing lot size” of product Y in the “first quarter” when initially 

favorable demand becomes unfavorable is 182.02 units. This means that additional 

products, 182.02 units, must be produced to satisfy demand. 

XUF (Y,1) = 0; 

The “manufacturing lot size” of product Y in the ‘first quarter’ when initially 

unfavorable demand becomes favorable is 0 units. This means that no additional 

products must be produced but utilize that which is at present in stock because it’s 

sufficient to satisfy the demand. 

XUU (Y,1) = 2.8341; 

The “manufacturing lot size” of product Y in the “first quarter” when initially 

unfavorable demand remains unfavorable is 2.8341units. This means that more 

products, 2.8341units, should be produced to meet demand. 

Goal constraints; 
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Priority 1 

  

When demand is initially favorable (state F), the amount to be produced in the first 

quarter is; 

  

                             

This is equal to the targeted production level for goal constraint (1).  Therefore, 

Priority 1 is completely attained. On the other hand, an “underachievement” of 

 units is still got in the first quarter as demand is originally “favorable” (state 

F) 

Priority 2 

  

When demand is initially unfavorable (state U) the amount to be produced in the first 

quarter is; 

   

                                     

Priority 2 can be fully achieved as this value is equal to the targeted production level 

for goal constraint (2). Nevertheless, an “underachievement” of  units is got 

in the first quarter as demand is originally unfavorable (state U). 

Priority 3 

 

 

 When demand is initially favorable (state F) the total “production-inventory costs” in 

the first quarter is; 
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This value is somewhat greater than the targeted ‘production-inventory costs’ for goal 

constraint (3) and therefore priority 3 can be partially attained in the first quarter 

while demand is originally favorable (state F).  

Priority 4 

 

 

When demand is initially unfavorable (state U) the total ‘production-inventory costs’ 

in the half-moon is;  

 

    

This value is somewhat greater than the targeted ‘production-inventory costs’ for goal 

constraint (4). Priority 4 can consequently be partly attained in the half-moon as 

demand is originally unfavorable (state U). 

Table 4.36: Expected goal values for product Y, “stochastic solution with over & 

under achievement” 

 

Table 4.36 shows the expected goal values for product Y, the value of the stochastic 

solution giving the deviations with over achievement or under achievement. 

“Goals”/ 

priorities 

“Expected” value 

from Goal 

“Value” of the 

stochastic solution 

“Deviation” “Over-

achievement” 

“Under-

achievement” 

1 
  

0  
 

2 
  

0  
 

3 
  

173.6 0  

4 
  

179.15 0  
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4.16 Discussion  

During the research, after developing the “stochastic goal programming” model for 

the products, it was then resolved by the use of applied mathematics “linprog” solver 

in “MATLAB” obtaining an optimum result having the values as seen in Table 4.25. 

The outcomes give the optimum values of the “manufacturing lot size” of the 

products within the half-moon of the year as demand shifts from one state to a 

different. The solutions were examined and deliberated basing on the priorities fixed 

and also the optimum values that were attained. The expansion of the result from this 

study was determining the “over-achievement” and “under- achievement” of the 

“manufacturing lot size” priorities wanted in the course of production planning.  

During the study, an extension is incorporating in “Markov chains” considering shifts 

form one state to a different. As shown in Table 4.25, product A, as originally 

favorable demand remains “favorable” and initially “unfavorable” demand remains 

favorable, no additional items must be produced but utilize that which is at present 

available because it’s sufficient to satisfy the “demand” as the model forecasts 0 

“manufacturing lot size” of product A within the half-moon of the year.  

The developed model likewise forecasts the “manufacturing lot size” of product A as 

2.3729 units and 104.0840 units while originally “favorable” demand becomes 

unfavorable and “unfavorable” demand remains unfavorable correspondingly. This 

means that the above amount of products must be manufactured to fulfill the demand. 

Having the fixed priorities and probable values as of every goal, the outcomes as in 

Tables 4.26 to 4.30 display the significance of using the existing sources of data while 

making a strategy. As seen in Table 4.26, both priority 1 & 2 stand completely 

attained but, an “under-achievement” of 8137.7 units & 17350 units correspondingly 
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is got within the half-moon while demand is originally “favorable” (state F) and 

“unfavorable” (state U) correspondingly. This suggests that the values are fewer than 

the target values in priorities 1 and 2. The real stochastic result of Priority 3 is 

somewhat beyond the probable goal value targeted “production-inventory costs” 

within the half-moon when demand is originally favorable (state F), having it partially 

achieved. 

Also priority 4 is completely attained within the half-moon when demand is originally 

“unfavorable” (state U). Both priority 3 and 4 haven’t any “over-achievement”, 

meaning that the values are adequate to the target values in priorities 3 and 4. 

As this model helps in establishing optimum manufacturing lot-sizes that can sustain 

random demand occurrences, it is of significance to optimization as it eliminates 

overstocking or understocking of products as a cost minimization strategy. 
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CHAPTER FIVE: CONCLUSION AND RECOMMENDATIONS  

5.1 Conclusion 

For any manufacturer that wants its firm to compete favorably within the market, it’s 

very critical for him or her to make the right decisions concerning the “manufacturing 

lot-sizing” problems. 

The study was observing demand uncertainty of the “manufacturing lot size” in 

“aggregate production planning” of finished products and an approach using “Markov 

chains” in combination with “stochastic goal programming” was adopted.  

 The existing production planning system at Movit products (U) Ltd was 

characterized as batch production, using make-to-stock strategy with 

Standardization of product & process sequence and special purpose machines 

having higher production capacities and output rates. 

 The manufacturing lot size problem was defined and formulated for determining 

the optimal manufacturing lot size minimizing the total production-inventory cost. 

Varying demand was modelled as a two-state markov chain where the optimality 

of the manufacturing lot size was state dependent. Goal constraints, deviation 

variables, priorities & objective function were defined to establish the over-

achievement or under achievement of the manufacturing lot size priorities desired. 

 An optimization model, that is, Stochastic goal programming, that predicts 

optimal manufacturing lot size in production planning under demand uncertainty 

was developed and validated (using out of sample testing).  

 The developed model was solved using Linprog Solver in MATLAB software 

where results indicated optimal manufacturing lot size levels as demand changes 
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from one state to another to obtain the over-achievement or underachievement of 

the manufacturing lot size priorities desired.  

5.2 Scientific Contribution 

Through this study, more information has been added to the group of knowledge and that 

is of stochastic goal programming in aggregate production planning.  

This is the first application of operations research techniques in particular “Markov 

chains” in combination with “stochastic goal programming” in Uganda to establish the 

optimum manufacturing lot size considering uncertainty in demand. This research is of 

significance as it will raise interest and awareness to manufacturers, companies and policy 

makers engaged in production planning of manufacturing lot-sizes of products with 

demand uncertainty. 

5.3 Recommendations 

In this thesis, it has been established that for any manufacturing industry to excel, 

optimizing manufacturing lot-size as a cost minimization strategy is very important 

especially for products with stochastic demand.  

The research has developed a mathematical model that optimizes the manufacturing 

lot size in aggregate production planning under demand uncertainty in effect, 

overstocking or understocking of products is eliminated as a cost minimization 

strategy. 

The model helps in establishing and maintaining optimal manufacturing lot-sizes that 

can sustain random demand occurrences.  

Movit products (U) Ltd should consider adopting the stochastic goal programming 

model as a strategy to optimize the manufacturing lot size of the finished product. 
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This is also applicable to any other manufacturing companies, manufacturers, and 

policy makers engaged in production planning of products with demand uncertainty 

(stochastic demand).  

5.3.1 Further Research 

Several possibilities for more investigation are recommended considering the 

accomplishments throughout this study, as below: 

 The suggested developed model should be spread so as consider numerous 

finished items with uncertainties in price and demand  

 Analyzing situations of non-stationary demand for the products where demand 

transition probabilities change over time should also be considered.  

 In addition, “weighted goal programming” can also be introduced to improve 

computational proficiency but managing “pre-emptive priorities” of the 

products. 
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Abstract 

Manufacturing is an essential aspect to the global economy and prosperity. Many 

Manufacturing systems operate in an uncertain environment which affects the system 

performance. Production planning is very key in improving the overall manufacturing 

system performance. Systems that apply production planning approaches not 

considering uncertainties yield inferior planning decisions as compared to those that 

explicitly account for the uncertainty. Markov chains can be used to capture the 

transition probabilities as changes occur. Some existing literature on application of 

Markov chains in manufacturing systems has been reviewed. The objective is to give 

the reader beginning points about uncertainty modelling in manufacturing systems 

using Markov chains. 

Keywords:  

Manufacturing systems, Uncertainties, Production planning, Markov chains 

 

1. Introduction 

Manufacturing is described as the procedure of using raw materials, components or 

sub-components to produce finished products that meet the customers’ requirements 

[1]. Characterization of manufacturing systems, like many other systems, can be 

dynamic or static, stationary (time-invariant)[2] or non-stationary (time-varying), 

linear or non-linear, discrete-state (time) or continuous-state (time), event-driven or 

time-driven, and stochastic or deterministic [3] 

Manufacturing companies are facing a growing and rapid change where trends like 

globalization, customer orientation and increasing market dynamics have led to a 

move in both managerial and manufacturing principles which calls for more 

flexibility, fast and effectiveness [4].  

http://bgsiran.ir/journal/ojs-3.1.1-4/index.php/IJIEOR/article/view/26
http://bgsiran.ir/journal/ojs-3.1.1-4/index.php/IJIEOR/article/view/26
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Product demand uncertainty is one of the challenges faced by manufacturing 

companies [5] and influences the performance of the manufacturing system and the 

final decision on utilizing the manufacturing system [6]. 

The criteria of performance like manufacturing lead times, inventory costs, customer 

satisfaction, machine utilization, meeting due dates, and quality of products all 

dependent on how efficiently the jobs are scheduled in the system [7]. Therefore it 

becomes increasingly important to develop effective production planning approaches 

that help in achieving the desired objectives. 

Production planning has an important role in the manufacturing system. The more 

variety of products, increased number of orders, increased number and size of 

workshops and expansion of factories have all made production planning more 

complicated, making the traditional methods of optimization unable to solve them [4] 

Production planning in manufacturing systems is affected by a number of 

uncertainties which need to be considered in order to generate better planning 

decisions. [8] 

Markov chain is a powerful mathematical tool that is extensively used to capture the 

stochastic process of systems transitioning among different states [9]. 

When manufacturing systems reveal some random behavior (breakdowns, random 

time to process a part), markov chains can be used for modeling and performance 

evaluation [10]. Companies’ model manufacturing processes for many reasons, 

including predicting cost, predicting resource and material demand and running 

optimization studies. Basing future business simulations on these markov chains can 

give a more reliable representation of the business which reduces the risk of 

modelling inaccuracies and can help to predict future outcomes and run optimization 

more accurately [1].  

To gain a better understanding of the application of Markov chains in manufacturing 

systems and to provide a basis for future research, a broad review of some existing 

research on the topic has been presented. 

 

2. Basic concepts 

The concepts and theory applied in this study are presented in the section below. This 

study was centered on the theory of Markov Chains focusing on their application in 

manufacturing systems. A Markov chain may be a special sort of model. 

Manufacturing systems, the concepts of stochastic process, Markov chain, types of 

Markov chains, Markov chain model states, transition probability matrix, properties 

of Markov chains, classification of states and application areas are presented in sub 

sections as outlined below. 

 

2.1 Manufacturing systems 

A manufacturing system may be a network of interacting parts. Managing the network 

of interacting parts is as important as managing individual parts, if not so more. In 

manufacturing systems research, a lot of interesting fields come to mind, such as 

design, analysis, modeling, optimization and control [11].  

Manufacturing systems contain a number of several system factors among which 

exists work environment, physical structure, performance measurements, work 

organization, market & strategy, and manufacturing development process.[12]   

Most of the manufacturing companies are large, complex systems characterized by a 

number of decision subsystems, like finance, personnel, marketing, operations and 

operates in an uncertain environment.[13] 
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A manufacturing system is an objective oriented network of processes through which 

entities flow with an objective of improving throughput or flow time. It also contains 

processes that are not only physical, but can include support of direct manufacturing 

(e.g., order entry, maintenance). Due to variability in manufacturing systems, values 

of performance measures fluctuate, resulting in complexity. Therefore, models are 

required to imitate behavior of manufacturing systems. Together with variability, the 

evolution of manufacturing systems leads to a need for predicting behavior of the 

manufacturing systems [11] 

 

2.2 Stochastic process 

A stochastic process may be a mathematical model that evolves over time in 

probabilistic manner [14]. A stochastic process is a random process [10], that is, a 

change in the state of some system over time whose course depends on chance and for 

which the probability of a particular course is defined. Essentially it is a family of 

random variables, X (t): t Є T defined on a given probability space, indexed by the 

time variable t, where t varies over an index set T [15].  

A stochastic process may be continuous or discrete. A stochastic process is claimed to 

be a discrete time process if set T is finite or countable. That is, if T= (0, 1, 2, 3 

,4…….. , n) resulting in the time process X(0), X(1), X(2), X(3), X(4), …….., X(n) , 

recorded at time 0,1,2,3,4……,n respectively [16]. On the other hand stochastic 

processes X (t): t Є T is considered a continuous time process if T is not finite or 

countable. That is, if T= [0, ∞) or T= [0, k] for some value k. 

A state space S is the set of states that a stochastic process can be in. The states can be 

finite or countable hence the state space S is discrete, that is S=1, 2, 3…, N. 

Otherwise the space S is continuous [17]. 

 

2.3 Markov chain  

Markov chain, named after a Russian mathematician Andrey Markov in 1907, is a 

powerful mathematical tool that is used widely to capture the stochastic process of 

systems transitioning among different states [9]. Markov chains were recognized 

rapidly for their significant power of representation and their possibility of modeling a 

wide range of real life problems in addition to the quality of performance indices they 

give [10]. When manufacturing systems reveal some random behavior, Markov chains 

can be used to carry out performance evaluation and modeling [18]. 

A Markov chain, special type of stochastic process (with a Markov property [19]), is a 

discrete-time stochastic model defined on a space of states, equipped with transition 

probabilities from one state to another at the next time stage [20]. 

Markov Chains have revealed their strength at modeling stochastic transitions, from 

uncovering sequential patterns to directly modeling decision processes [21]. These 

have got a special property that probabilities involving how the process will evolve in 

the future depend only on the present state of the process, and so are independent of 

events in the past [22].  

A Markov process is a stochastic process that satisfies the Markovian property (says 

that the conditional probability of any future “event,” given any past “event” and the 

present state Xt-i, is independent of the past event and depends only upon the present 

state[17], [15]). It is a sequence of random variables  with the 

Markovian property, namely that, given the present state, the future and past state is 

independent. Formally[23],  

,  (1) 



154 

 

if both conditional probabilities are defined, i.e. if  the 

possible values of  form a countable set S called the state space of the Chain [4]. 

Markov Chains often described by a sequence of directed graphs, where the edges of 

the graph  labeled by the probabilities of going from one state at time  to another 

state at time ,  

        (2) 

However, Markov Chains assumes time-homogenous scenarios[24], in which case the 

graph and matrix are independent of n and not presented as sequences [4]. 

  

2.3.1 Types of Markov chains 

There are two differing types when approaching Markov chains which is, discrete-

time Markov chains and continuous-time Markov chains. This means that there are 

scenarios where the changes happen at specific states and others where the changes 

are continuous [25].  

 

Discrete-Time Markov Chains (DTMC) 

These are Markov chains that are observed only at discrete points in time (e.g., the 

end of each day) rather than continuously. Each time it is observed, the Markov chain 

can be in any one of a number of states [26].  

 
Fig. 1. Discrete-Time Markov Chains [27]  

 

P {system stays in state A for N time units | as long as the system is currently in state 

A} = pN 

P {system stays in state A for N time units before exiting from state A} = pN(1-p) 

 

State changes are pre-ordained to occur only at the integer points 0, 1, 2, ......, n (that 

is at the time points t0, t1, t2,......, tn)[28] [29] 

The sequence of random variables X1, X2, ....... forms a Markov Chain if for all n (n = 

1, 2, ........) and all possible values of the random variables, giving; 

       (3) 

 

Continuous-time Markov Chains (CTMC)  

A continuous-time Markov chain changes at any time (State changes may occur 

anywhere in time) [26].  

A Markov chain with continuous time is a stochastic process with Markov 

characteristics whose future state conditional probability, depends on present state 

which have no relation to past state of process [30]. 

 

p  

1-  p  

A  
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Fig. 2. Continuous -Time Markov Chains [27]  

 

P{system in state A for time T | system currently in state A}  

    (4) 

 
2.3.2 Markov chains exploration 

Markov chains model discrete-time processes and Markov processes models 

continuous-time processes. They mathematically model a process by showing how the 

method can move between different stages and therefore the probability of creating 

these transitions. Markov’s analysis can be represented diagrammatically as in figure 

1 which shows a Markov chain model of a process with two stages A1 and A2, where 

the probability of making a transition from stage i to stage j is   [1]. 

 
Fig. 3. Markov Chain Diagram [1] 

 

2.4 Markov Chain Model States 

The Markov chain model is a sequential process that consists of many steps. For those 

steps considered as Markov Chain states, they should respect all the following three 

conditions:  

1. “State i communicates itself”  

2. “If state i communicates with state j, then j communicates with state i.”  

3. “If state i communicates with state j, and j communicates with state k, then i 

communicates with state k.”  

According to [4], the probability of going from state i to state j in n time steps is given 

by:  and the single step transition is 

 
For a time-homogenous Markov Chain, the probability is: 

 and  A Markov Chain of 

order m, where m is finite, may be a process satisfying 

1-µΔt  

µΔt 

A  
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In other words, the future state depends on the past m states. It is possible to construct 

a Chain  from  which has the ‘classical’ Markov property by taking as state-

space the ordered m tuples of x values, i.e.  [4] 

 

2.5 Transition Probability Matrix 

Transition probabilities are conditional probabilities P (X t+1 = j/ X t =i} =  

arranged in the form of a n x n matrix called the transition probability matrix given 

by: 

which can be denoted as P =   

The transition matrix shows the probability of transitioning between the row stage to 

the column stage. To form a Markov chain model the transition probabilities are 

required and are calculated using the equation below which determines the probability 

of making a transition from stage i to stage j, which is represented by . Where m is 

the total number of transitions and  is the number of transitions from i to j [1]. 

           (5) 

 

The Transition Probability Matrix has the following properties: [15] 

1.  > 0 for all i and j. 

2. For all i and j, sum of the element in each row is equal to 1. The sum 

represents total probability of transition from state i to itself or the other state. 

3. The diagonal element represents transition from one state to same state. 

Markov Chain models are useful in studying the evolution of systems over repeated 

trials. The repeated trials are often successive time periods where the state of the 

system in any particular period cannot be determined with certainty. Rather, transition 

probabilities are used to describe the way during which the system makes transitions 

from one period to subsequent. It helps us to determine the probability of the system 

being in a particular state at a given period of time [31]. 

 

2.6 Properties of Markov chains 

Periodicity 

A state i has period k if any return to state i must occur in multiple of k time steps. 

Formally, the period of a state is defined as: 

      (6) 

(where “gcd” is the greatest common division). Note that even though a state has 

period k, it may not be possible to succeed in the state in k steps. For example, 

suppose it is possible to return to the state in {6, 8, 10, 12….} time steps; k would be 

2, even though 2 does not appear in this list. 

If k = 1, then the state is claimed to be a periodic: returns to state i can occur at 

irregular times, in other words, a state i is aperiodic if there exists n such that for all 
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        (7) 

Otherwise , the state is said to be periodic with period k. a Markov Chain is 

aperiodic if every state is aperiodic. An irreducible Markov Chain only needs one 

aperiodic state to imply all states are aperiodic. Every state of a bi partite graph has an 

even period. [4], [15]. 

 

Recurrence 

A state i is said to be transient if, given that the system start in state i, there is a non-

zero probability that the system will never return to i formally, but the random 

variable Ti be the first return time to state i (the “hitting time”): [4] 

     
   (8) 

The number  is the probability that state is returned to for the first 

time after n steps. Therefore, state i is transient if 

    
   (9) 

State i is recurrent if it is not transient. Recurrent states are guaranteed to have a finite 

hitting time [15]. 

 

Ergodicity 

A state i is said to be ergodic if it is periodic and positive recurrent. In other words, a 

state has a period of 1 and it has finite mean recurrence time. If all states in an 

irreducible Markov chain are ergodic, then the chain is claimed to be ergodic. It can 

be shown that a finite state irreducible Markov chain is ergodic if it’s a periodic state. 

A model has the ergodic property if there's a finite number such that any state can be 

reached from any other state in exactly N steps. In case of a fully connected transition 

matrix where all transitions have a non-zero probability, this condition is fulfilled 

with N = 1. That is a Markov chain is ergodic if there exists some finite k such that; 

 for all i and j [15] 

A model with more than one state and just one out transition per state cannot be 

ergodic. 

 

Reducibility 

A state j is claimed to be accessible from a state a system started in state i has a non-

zero probability of transitioning into state j at some point. Formally, state accessible 

from state i if there exists an integer  such that  

   (10) 

This integer is allowed to vary for every pair of states, hence the subscripts in nij. 

Allowing n to be zero means that every state is defined to be accessible from itself. A 

state i is said to communicate with state j (written ) if both  and . A set 

of states C may be a communicating class if every pair of states in C communicates 

with each other, and no state in C communicates with any state not in C. It may be 

shown that communication in this sense is an equivalence relation and thus that 

communicating classes are the equivalence classes of this relation. A communicating 
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class is closed if the probability of leaving the category is zero, namely that if i is in C 

but j isn’t, then j isn’t accessible from i. 

A state i is claimed to be essential or final if for all j such that  it’s also true that 

. A state i is inessential if it’s not essential. A Markov chain is claimed to be 

irreducible if its state space may be a single communicating class; in other words, if 

it’s possible to get to any state from any state [15]. 

 

2.7 Classification of states of a Markov chain 

Recurrent States  

A state is claimed to be a recurrent state if, upon entering this state, the method 

definitely will return to the present state again. Therefore, a state is recurrent if and as 

long as it’s not transient. 

Since a recurrent state definitely will be revisited after each visit, it will be visited 

infinitely often if the process continues forever [32]. 

If the method enters a particular state then stays during this state at the subsequent 

step, this is often considered a return to the present state. Hence, the following kind of 

state is a special type of recurrent state [26]. 

 

Transient States 
A state is claimed to be a transient state if, upon entering this state, the method may 

never return to the present state again. Therefore, state i is transient if and as long as 

there exists a state j ( j≠ i) that’s accessible from state i but not the other way around, 

that is, state i is not accessible from state j [33]. 

Thus, if state i is transient and the process visits this state, there is a positive 

probability (perhaps even a probability of 1) that the process will later move to state j 

and so will never return to state i. Consequently, a transient state will be visited only a 

finite number of times[26]. When starting in state i, another possibility is that the 

process definitely will return to this state [34]. 

 

The Markov process is transient if the state can only be visited a finite number of 

times otherwise, the state is recurrent[11]. 

 

Absorbing states 

In an absorbing Markov chain model, the Markov chain may include circles and it 

theoretically allows an infinite number of circulations among certain process states 

[35] 

A state is claimed to be an absorbing state if, upon entering this state, the process 

never will leave this state again. Therefore, state i is an absorbing state if and only if 

 [33] 

A Markov chain with one or more absorbing states is understood as absorbing 

Markov chain. An absorbing state is, because the name implies, one that endures. In 

other words, when a work-part reaches such a state, it never leaves the state [36]. 

 

2.8 Areas of application of Markov chains 

Markov chains are used in a variety of situations since they can be considered to 

model many real-world processes. These fields include, to mention but a few, quality 

management [37], system performance (reliability & availability)[38], electronics 

[35], condition monitoring [39], physics, chemistry, computer science, queuing 

theory, economics, games, and sports [23].  
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3. Markov models in manufacturing  

In an effort to gain a better understanding of the markov chains and its application in 

manufacturing, and to provide a basis for future research, a broad review of some 

existing research on the subject has been presented. 

Table 1 gives a summary of citations on Markov models in manufacturing. A 

complete of 39 citations on Markov models in manufacturing were reviewed. The 

majority of the citations were found in journals (76.92%), proceedings, conferences 

and others (12.82%), books (5.13%) and published PhD Thesis (5.13%). 

 
Table 1: summary of citations on Markov models in manufacturing 

Source Number of citations % total 

Journal of Industrial Engineering 1 2.564 

Procedia Manufacturing 2 5.128 

International Journal of computer science issues 1 2.564 

Conference proceedings 5 12.821 

Thesis  2 5.128 

Journal of Mathematics and Statistics  1 2.564 

Book 2 5.128 

UPB Scientific Bulletin, Series D: Mechanical 

Engineering 

2 

5.128 

Periodica Polytechnica Social and Management 

Sciences  

1 

2.564 

Nuclear Engineering and Design  1 2.564 

Journal of Advanced Mechanical Design, Systems 

and Manufacturing 

1 

2.564 

Journal of the Operational Research Society 1 2.564 

International Journal of Engineering Research & 

Technology 

1 

2.564 

Advances in Science and Technology Research 

Journal 

1 

2.564 

International Journal of Production Economics 2 5.128 

Journal of Cleaner Production 2 5.128 

International Journal of Current Research 2 5.128 

Journal of Banking Financial 1 2.564 

Computers and Chemical Engineering 1 2.564 

Computers & Industrial Engineering 2 5.128 

Quality Engineering  1 2.564 

Manufacturing and Service Operations 

Management  

1 

2.564 

Journal of Industrial Mathematics  1 2.564 

Applied Sciences (Switzerland)  1 2.564 

IJISET-International Journal of Innovative 

Science, Engineering & Technology 

1 

2.564 

Acta Mathematica Scientia  1 2.564 

Annals of the Academy of Romanian Scientists 

Series on Engineering Sciences 

1 

2.564 

Total  39 100 

 

Table 2 provides a summary of the classification scheme of Markov models in 

manufacturing giving the research topic, nature of uncertainty, research approach and 

conclusions drawn. 
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Table 2: Classification scheme of Markov models in manufacturing 

Author(s) Research 

topic 

Uncertainty Approach 

detail 

Conclusion  

Leigh et al., 2017 Modelling 

manufacturing 

processes 

Human 

interaction 

with very 

variable 

products 

Radio 

Frequency 

Identification 

(RFID) 

Created a Markov chain 

model used to predict 

future product paths for 

use in discrete event 

simulation 

Tochukwu et al., 

2015 

Agent Based 

Markov Chain 

for Job Shop 

Scheduling 

and 

Control 

Dynamic 

market changes 

Scheduling 

algorithms 

Developed an agent 

based model where all 

information of the 

dynamics of the model 

was formulated as a 

Markov chain 

Kiassat et al., 

2013 

Effects of 

operator 

learning on 

production 

output 

Operator 

learning 

Proportional 

hazards model 

Developed a Markov 

chain approach to 

forecast production 

output of a human-

machine system, 

considering HR factors 

and operator learning. 

Gingu & Zapciu, 

2017 

Synchronizing 

the 

manufacturing 

production 

rate with real 

market 

demand 

Market demand Markov chains 

and 

decomposition 

method, C++ 

Offered a solution, by 

avoiding intermediary 

stocks at the same time, 

and a predictable market 

demand of these products 

(balancing between 

demand and production) 

Ye et al., 2019 Modeling for 

reliability 

optimization 

of system 

design and 

maintenance 

based on 

Markov chain 

theory 

System failures 

and repairs 

Continuous- 

time Markov 

chain 

Proposed a non-convex 

MINLP model 

Chatys, 2020 Application of 

the Markov 

Chain Theory 

in Estimating 

the Strength of 

Fiber-Layered 

Composite 

Structures 

with Regard to 

Manufacturing 

Aspects 

Static strength 

and fatigue life 

Vacuum bag 

method 

(mathematical 

model) 

MM can be used for 

“predicting” the S-N 

curve, taking into 

account the maximum 

volume share of 

reinforcement in the 

composite and 

manufacturing 

technology 

Sastri et al., 2001 Markov chain 

approach to 

failure cost 

Estimation in 

batch 

manufacturing 

Failure cost 

estimation 

(repair/rework) 

Markov chain 

approach, 

Showed how a markov 

chain model is used to 

estimate a fore 

mentioned activity based 

failure costs 

Santhi, 2019 Markov 

decision 

process in 

supply chain 

management 

Inventory levels Markov 

decision 

process 

Determined the service 

rates to be employed as a 

function of the number of 

customers in the queue 

and the amount of 

inventory on hand so that 
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the long-run expected 

cost rate is minimized 

Mubiru, 2013 An EOQ 

Model For 

Multi-Item 

Inventory 

With 

Stochastic 

Demand 

Demand Markov 

decision 

process 

Demonstrates the 

existence of an optimal 

state dependent 

EOQ, produces optimal 

ordering 

policies and the 

corresponding total 

inventory costs for items. 

Boteanu & 

Zapciu, 2017 

 

Modeling and 

simulation of 

manufacturing 

flows for 

optimizing the 

number of 

work pieces 

on buffers 

from 

manufacturing 

systems 

Failures, 

demand 

modifications, 

breakdown 

Markov 

chains, 

Decomposition 

method, C++ 

programme, 

discrete event 

simulation 

(analytical 

approach) 

Dynamic adaptation of 

the production rate by 

optimizing the buffers 

according to the effective 

demand or estimated 

demand of the market. 

Janicijevic et al., 

2014 

Using a 

markov chain 

for product 

quality 

Improvement 

simulation 

Customer 

requirements 

Simulation Modelled the stochastic 

processes of a system of 

quality management and 

selection of the optimum 

set of FIPQ. 

Sharma & 

Vishwakarma, 

2014 

Application of 

Markov 

Process in 

Performance 

Analysis of 

Feeding 

System of 

Sugar Industry 

Systeme 

performance 

(failures) 

Markov 

modelling 

The system can be 

analyzed easily by 

concerning the process as 

Markov process and it 

helps the system design 

analyst or plant 

personnel to select the 

most appropriate 

structural components. 

(high performance 

measures for maximum 

duration of time) 

Pillai & 

Chandrasekharan, 

2008 

An absorbing 

Markov chain 

model for 

production 

systems 

with rework 

and scrapping 

Scrapping and 

reworking 

Probabilistic 

model 

Identifies production 

system parameters under 

scrapping and reworking, 

and accurately estimates 

the quantity of raw 

materials required. 

Afrinaldi, 2020 Exploring 

product 

lifecycle using 

Markov chain  

 Behavior of the 

product  

 

Markov chain The number of trips and 

duration of stay of a 

product in a particular 

lifecycle stage, number 

of products visiting a 

specific lifecycle stage, 

probability of a product 

being discarded, and the 

expected total 

environmental impact of 

the product are predicted  
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Sobaszek et al., 

2020 

Predictive 

Scheduling 

with Markov 

Chains and 

ARIMA 

Models 

Machine failure Markov 

process 

Inclusion of machine 

failure in the production 

schedule results in the 

extension of the 

performance indicators, 

mean flow time, mean 

job completion time, and 

the central criterion 

describing the 

performance of the 

production system 

Strachan et al., 

2009 

A Hidden 

Markov 

Model for 

Condition 

Monitoring of 

a 

manufacturing 

drilling 

process. 

Tool wear and 

impending 

failure 

Algorithm; 

hidden Markov 

model 

presented an algorithm 

for the condition 

monitoring of a 

manufacturing drilling 

process that will be able 

to detect tool wear and 

impending failure 

Jónás et al., 2014 Application of 

Markov 

Chains for 

Modeling and 

Managing 

Industrial 

Electronic 

Repair 

Processes 

Repairs Absorbing 

markov chain 

Modeling repair, 

manufacturing and 

business processes as 

acyclic absorbing 

Markov chains can 

ground for many process 

management activities 

which enable managers 

to determine the 

probability distribution 

of lead time of any 

repairing process. 

Beijsens & 

Rooda, 2005 

Markov based 

modeling of 

manufacturing 

systems 

dynamics 

Manufacturing 

system 

properties 

Markov theory Control a discrete 

manufacturing system 

with a continuous 

controller. And the 

continuous 

model validated with a 

discrete-event model 

Karim & Nakade, 

2020 

A Markovian 

production-

inventory 

system with 

consideration 

of random 

quality 

disruption 

Product quality 

disruption 

 Stochastic 

model 

Under the situation of 

production time 

constraint, the integration 

of safety stock in an 

interruption prone 

production–inventory 

system, assists in 

improving the average 

cost function.  

Abedi et al., 2009 Using Markov 

Chain to 

Analyze 

Production 

Lines Systems 

with Layout 

Constraints 

Layout 

constraints 

Hybrid model 

(Markov chain 

in queue 

theory) 

Developed a queuing 

model by 

analyzing a real queuing 

system with layout 

limitations in specific 

conditions and applying 

Markov chain concepts 

 

From the reviewed literature, there a number of uncertainties that affect the 

performance in manufacturing companies. From table 2 it is seen that system failure 

and repairs (45%) is the most researched nature of uncertainty affecting 
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manufacturing, then market /customer requirements or demand (25%), inventory 

levels (5%), product quality (5%), and others (20%)  

It is also seen that both Discrete-Time Markov Chains (DTMC) and Continuous-time 

Markov Chains (CTMC) approaches are used although Discrete-Time Markov Chains 

was used more. 

 

 

Conclusion 

This paper has presented an extensive literature survey about the application of 

Markov chains in manufacturing systems. Markov chain is an established concept in 

operations research and probability theory and it has been applied to many areas in 

manufacturing including quality management, system performance (reliability & 

availability), supply chain, electronics, condition monitoring, queuing theory, 

economics, to mention but a few.  

As a basis for decision making, Markov Chain prediction method is no exception and 

a combination of results from using Markov Chain to predict with other factors can be 

more useful. 

 

More research should be done on development of models in the context of Continuous 

Time Markov Chains (CTMC) [5].  

Models should further be developed to be applied for products having components 

and modules, the logistics operation behind the transition needs to be modeled so that 

the accuracy of the model is improved and, the economic aspects should be included 

in the model, to aid policymakers in making a comprehensive decision[23] .  
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Abstract 

Optimization has become a standard phenomenon in the majority of organizations and 

establishments. Many Manufacturing companies operate under uncertainties which 

affect the system performance. Product demand is one of the common kinds of 

uncertainty that characterizes production environments.  One of the challenges faced 

by manufacturing companies that use cost analyses is product demand uncertainty that 

often affects the manufacturing system performance and decision making. 

Manufacturing Lot size problems are normally related to proficient production 

planning of a given product. If a manufacturing firm wants to compete within the 

market, it must make the right decisions regarding lot-sizing problems and this can be 

a critical decision for any manufacturer. In this paper, an optimization model for the 

manufacturing lot size was developed using Markov chains in conjunction with 

stochastic goal programming. The goal constraints, deviation variables, priorities and 

objective function were defined to determine the over-achievement or 

underachievement of the manufacturing lot size for aggregate production planning, 

the different states of demand for the product being represented by states of a Markov 

chain. The model was solved using the linear programming solver in MATLABTM to 

determine the quantity of product plan for manufacturing within the first quarter of 

the year when demand changes from one state to another. 

 

Keywords 

Optimization, manufacturing lot size, demand uncertainty, production planning, goals 

 

1. Introduction 

Uncertainties present an unavoidable concern associated with a continuous operation 

of the manufacturing system, a state of insufficient information, and this can be seen 

in three forms: inexactness, unreliability, and border with ignorance [1]. 

One of the challenges faced by manufacturing companies that use cost analyses is 

product demand uncertainty, as it may influence the manufacturing system 

performance hence the final decision on utilizing a manufacturing system at the initial 
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stages [2]. When assessing the risk related to a decision, understanding these 

uncertainties and their impacts, which can make it difficult to predict performance, are 

of major concern [3]. 

Production planning is the pillar of any manufacturing operation, with the main aim of 

determining the amount of products to be manufactured considering the level of 

inventory to be shifted from one period to another with the objective to minimize both 

the total costs of production and the inventory, meeting the customers’ demand [4]. 

In production planning, making the right decisions about the lot size is very important 

as it directly affects the system performance and productivity [5] and this is key for 

any manufacturing firm that wants to compete in the Market. 

Lot sizing problems have got a direct effect on the system performance and 

productivity. Manufacturing Lot sizing can be defined as determining the quantity of 

a given product that needs to be manufactured in a specified period of time. 

Manufacturing Lot sizing problems are normally associated with proficient 

production planning of a given product. Each production plan has got the main 

problem of determining the manufacturing lot size for each product. In order to have 

efficient production planning lot allocation issues must be solved based on the 

demand that needs to be achieved and the availability of inventory stock minimizing 

production costs by determining the optimal production quantity[6]. 

The smaller the manufacturing lot size, the less the holding cost but raises the 

ordering cost whereas the larger the manufacturing lot size, the more the holding cost 

but reducing the ordering cost. Based on the concepts of lean production, it is 

preferable to have a small lot size as it prevents the accumulation of inventory which 

comes with management and holding costs. The lot size recommended by a 

mathematical manufacturing lot size model would be the best as it accounts for the 

tradeoff between the costs involved [5]. 

Optimization is the process of finding (activity of choosing [7]) the best possible 

solution to a given problem by examining several alternatives (assessed after a 

predefined criterion) [8] and can be done by adjusting the inputs to or characteristics 

of a device, mathematical process, or experiment to find the minimum or maximum 

output [9].  

The optimization problem contains three basic parameters needed to be considered, 

that is, the objective function, a set of variables and a set of constraints [10]. 

The objective of the optimization model depends on certain characteristics of the 

system, called variables or unknowns with the goal of finding the values of these 

variables that optimize the objective, although these variables are often restricted, or 

constrained in one way or the other. Brahimi et al. grouped optimization problems 

into four categories: process planning, layout design, reconfigurability and planning 

and scheduling.  

Manufacturing lot size is in the category of planning and scheduling. Manufacturing 

companies must have the ability to adjust scalable production capacities and to 

respond rapidly to market demands making planning and scheduling become complex 

in such a dynamic environment [11].  

Stochastic analysis and goal programming are introduced into the framework to 

handle uncertainties in real-world manufacturing systems.  

Stochastic Goal Programming is a multi-criteria decision support model that gives 

“satisficing” solutions to a linear system under an uncertainty case from the normally 

expected utility viewpoint [12], [13]. Most real-world optimization problems consist 

of various inexact information estimates and goals, conflicting criteria. In such 
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situations, the stochastic goal programming method suggests an analytical structure 

aid in modelling and solving such problems. 

Stochastic goal programming can deal with the inherent uncertainty and has been 

applied in different fields including Portfolio selection, project selection, resource 

allocation, Healthcare management, transportation, marketing [14], cash management 

[15], wealth management [16], economic development, energy consumption, 

workforce allocation, and greenhouse gas emissions[17], forest planning [18]. Not 

many applications are seen in production planning in manufacturing systems hence 

the need for manufacturing lot size optimization under demand uncertainty. This can 

be considered as a guideline for production planners and practitioners used to solve 

specific decision-making problems (optimal manufacturing lot size). Manufacturing 

companies will minimize on overproduction when demand is actually low or under-

producing when demand is actually high. 

Due to the fluctuating and uncertainties in demand, manufacturing companies over 

and over again face the challenge of establishing optimal manufacturing lot sizes in 

production planning systems. Manufacturing companies are continuously looking for 

efficiency to overcome the challenges associated with the market dynamics. One of 

the common types of uncertainty that characterizes production environments is 

uncertainty in product demand. It is therefore important that these uncertain 

parameters be considered in the production planning process when developing a 

robust production plan because when neglected, production efficiency and system 

performance will be affected [19].  

Manufacturing industries establish their production plans based on external demands 

with the core aim of determining the quantity (lot size) to be produced given each 

period while satisfying the demands and minimizing total costs [20]. In production 

planning, making the right decisions about the lot size is very important as it directly 

affects the system performance and productivity [5] and this is key for any 

manufacturing firm that wants to compete on market. 

As this is complex as well as important, it has been highly studied although, there is 

still a gap about showing the contributions to clarify the suitability of those methods 

used concerning each kind of underlying manufacturing environment (regarding 

variations in demand and peaks of seasonality) [21].  

Therefore the present study aimed at developing an optimization model for the 

manufacturing lot size under demand uncertainty, establishing the over-achievement 

or underachievement of the manufacturing lot size priorities desired for aggregate 

production planning. 

 

2. Mathematical model formulation 

A manufacturing company producing products with fluctuations and uncertainties in 

demand was considered. The demand for these products during each time period over 

a finite fixed planning horizon was described as either favorable or unfavorable.  

The Markov chain approach ([22], [23], [24], [25], [26]) in conjunction with 

stochastic goal programming ([13], [27], [14], [28], [18], [15]) was adopted and the 

states of a Markov chain represent possible states of demand for the finished products 

with the notations shown in Table 1. 
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Table 1: Notations used in the Markov models 

 Set of states of demand  Manufacturing lot-size 

 Favorable demand  Quantity of product p to be 

manufactured in quarter q 

 Unfavorable demand   Customer matrix 

 Demand transition matrix  Unit production cost 

 Product  Unit holding cost 

 Quarter of the year  Unit shortage cost 

 State transitions  Demand matrix 

 Value of the objective function  Inventory matrix 

 Preemptive priority of the kth 

goal 
 Production-Inventory cost 

matrix 

 Over achievement of the kth 

goal 
 Beginning Inventory 

 Under achievement of the kth 

goal 
 Ending Inventory 

 

Average on-hand inventory,       (1)  

 

Consider the customer matrix: 

      (2) 

2.1 Demand transition probability 

As demand changes from state i to state j for , the associated demand 

transition probabilities are calculated as: 

       (3) 

This yields the demand transition matrix: 

    (4) 

Then the demand matrix, the inventory matrix and the production-inventory cost 

matrix. 

Demand matrix; 

     (5) 

Inventory matrix; 

     (6) 

 

Production-inventory cost matrix; 

When demand outweighs the amount produced then, 

                  (7) 
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Similarly, when the demand is less than the amount produced then, 

                  (8) 

Hence, as demand changes from state i to state j ( ) 

                  (9) 

where  production-inventory cost matrix. 

 

2.2 Expected demand, inventory, production-inventory costs and manufacturing 

lot-size 

Expected demand 

Favorable Demand        (10) 

Unfavorable Demand   (11) 

 

Expected inventory 

Favorable Demand         (12) 

Unfavorable Demand    (13) 

 

Expected production-inventory costs 

Favorable Demand         (14) 

Unfavorable Demand    (15) 

 

Expected manufacturing lot-size 

Favorable demand 

      (16) 

Unfavorable demand 

     (17) 

  

2.3 Stochastic goal programming formulation 

The stochastic goal programming model was formulated by setting priorities, defining 

the objective function and formulating the goal constraints as follows: 

Set priorities 

P1: Produce a batch of   units when demand is favorable 

P2: Produce a batch of   units when demand is unfavorable 
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P3: Total production-inventory cost must not exceed  when demand 

is favorable 

P4: Total production-inventory cost must not exceed  when demand 

is unfavorable 

 

Objective function 

          (18) 

Goal constraints 

P1: Manufacturing lot-size   -  favorable demand 

         (18.1) 

P2: Manufacturing lot-size    -   unfavorable demand 

         (18.2) 

P3: Total production-inventory cost – favorable demand 

 (18.3) 

P4: Total production-inventory cost – unfavorable demand 

 (18.4) 

 

2.4 Stochastic goal programming model for manufacturing lot-size 

                      (19) 

Subject to:  

        (19.1) 

        (19.2) 

           (19.3) 

           (19.4) 

  (19.5) 

3. Case study 

In this section, a real case application from Movit Products Uganda limited was used 

to demonstrate the applicability of the proposed mathematical models. The 

manufacturing industry manufactures, distributes and sells skincare, hair & nail care 

products. The numerical illustration contains real data for the first quarter of the year, 

which was collected and then reduced to usable dimensions as shown in Table 2. Data 

classification by state of demand was made, analyzed and used in the proposed 

mathematical model.  

 

Considering a product A, for a given week, demand is favorable (state F) if Nij > 12 

otherwise demand is unfavorable (state U) if Nij ≤ 12 as shown in Table 2. 
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Table 2: Data classification by state of demand for product A 

Month Week Customers 

(N) 

Demand (D) 

(x103) 

On hand inventory 

(V)  (x103) 

State of 

demand (i) 

1 

1 9 3937 6076 U 

2 12 4668 4687 U 

3 8 2485 6306 U 

4 17 7955 10160 F 

2 

1 1 110 4525 U 

2 15 3832 5681 F 

3 7 2870 4363 U 

4 20 3824 6028 F 

3 

1 4 758 2018 U 

2 16 6125 4149 F 

3 14 2625 4163 F 

4 17 3685 6279 F 

 

Table 3a, 3b and 3c shows the over stocking or under stocking of product A with the 

corresponding holding or shortage costs in the first quarter of the year. 

 
Table 3a: Overstocking and understocking with holding and shortage costs for 1st month 

Week 
Demand (D) 

(x103) 

On hand 

inventory (V)  

(x103) 

over/under 

stocking 

Holding/shortag

e costs 

1 3937 6076 2139 231.6537 

2 4668 4687 19 2.0577 

3 2485 6306 3821 413.8143 

4 7955 10160 2205 238.8015 

 

 

Table 3b: Overstocking and understocking with holding and shortage costs for 2nd month 

Week 
Demand (D) 

(x103) 

On hand 

inventory (V)  

(x103) 

over/under 

stocking 

Holding/shortage 

costs 

1 110 4525 4415 478.1445 

2 3832 5681 1849 200.2467 

3 2870 4363 1493 161.6919 

4 3824 6028 2204 238.6932 

 

 

Table 3c: Overstocking and understocking with holding and shortage costs for 3rd month 

Week 
Demand (D) 

(x103) 

On hand 

inventory (V)  

(x103) 

over/under 

stocking 

Holding/shortage 

costs 

1 758 2018 1260 136.458 

2 6125 4149 -1976 1569.734 

3 2625 4163 1538 166.5654 

4 3685 6279 2594 280.9302 
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Figure 2: Over stocking and under stocking 

of product A 

Figure 3: Holding and Shortage costs  

 

 

3.1 State transitions and on-hand inventory 

For a particular state transition, given the beginning and ending inventory, the average 

on-hand inventory was calculated as presented in Table 4. 

 
Table 4: Average on-hand inventory for product A 

State transitions 

 

Beginning inventory 

(B) 

Ending inventory 

(E) 

Average on-hand 

inventory  

 
FF 4163 6279 5221 

FU 4525 2018 3271.5 

UF 10160 4149 7154.5 

UU 4687 6306 5496.5 

From Equation (1) section 2, the average on-hand inventory was calculated giving; 

 
 

Figure 4: Average on-hand inventory and state transitions 

 

3.2 Demand transition probabilities 

Data classification by state-transition was done as illustrated in Table 5 and then used 

to calculate the demand transition probabilities for the product 
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Table 5: Data classification by state-transition for product A 

Month 

State transition 

 

Number of customers 

 

Demand 

 

1 

FF 0 0 

FU 0 0 

UF 25 10440 

UU 41 15758 

2 

FF 0 0 

FU 22 6702 

UF 43 10636 

UU 0 0 

3 

FF 61 15060 

FU 0 0 

UF 20 6883 

UU 0 0 

 

From Table 5, the Totals for customers and demand as it changes from one state to 

another are; 

Customers: 

  

        

  

Demand: 

  

    

     

From Equation (3) in section 2, the demand transition probabilities are; 

  

  

  

  
Hence the demand transition matrix as from equation (4), 

  
3.3 Demand matrix, inventory matrix and production-inventory cost matrix 

The demand matrix, the inventory matrix and the production-inventory cost matrix 

were developed as follows. 

From Equation (5), the demand matrix becomes; 
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From Equation (6), the Inventory matrix becomes; 

  

Production-inventory cost matrix 

The production-inventory cost matrix is then computed for the product From 

Equations (7), (8) and (9). 

 Unit production cost,  

 Unit holding cost,  

 Unit shortage cost,  

  

  

  

  

  

  

  

  
Hence, 

   

  

3.4 Expected demand, inventory, production-inventory costs and manufacturing 

lot-size 

Expected demand 

After generating the demand transition matrix and formulating the production-

inventory cost matrix, the expected demand, expected inventory and expected 

production-inventory costs are computed for the product considering both favorable 

and unfavorable demand as shown below; 

Favorable demand (F) was computed from equation (10)  

   

  

  

Unfavorable demand (U) was computed from equation (11) 

   

  

  

Expected Inventory 

Computation of the expected inventory considering both favorable and unfavorable 

demand for the product was computed From equation (12) as follows: 

Favorable demand (F) 
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Unfavorable demand (U) was computed from equation (13) as follows 

   

  

  

 

Expected production-Inventory costs 

The expected production-Inventory costs are then computed for the product 

considering both favorable and unfavorable demand results were computed from 

equations (14) and (15) as follows; 

Favorable demand (F) 

   

   

    

Unfavorable demand (U) 

  

  

  

 

Expected manufacturing lot size 

Computation of the expected manufacturing lot size considering both favorable and 

unfavorable demand for the product yields was computed from equations (16) and 

(17) as follows: 

Favorable demand (F) 

 

 

 

Unfavorable demand (U) 

 

 

 

 

3.5 Stochastic goal programming model  

The stochastic goal programming model for the product was formulated by setting 

priorities, defining the objective function and formulating the goal constraints as 

follows: 
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Priorities set 

  

 

 

  

 

  

Objective function 

   

Goal constraints 

 Manufacturing lot size 

    

    

 Total production-Inventory costs 

         

  

  

  

 Non negativity 

    

 

3.6 Stochastic goal programming model for manufacturing lot size  

The stochastic goal programming model for manufacturing lot size was then 

developed for the product as below. This determines the quantity of the product to 

manufacture in the first quarter of the year when demand changes from state i to state 

j for , establishing the over-achievement or under achievement of the 

manufacturing lot size priorities desired. 

  

Subject to: 

   

   

   

   

   

Where: 
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 = slack variables 

 = surplus variables 

 – manufacturing lot size of product A when initially favorable demand 

remains favorable 

 - manufacturing lot size of product A when initially favorable demand 

becomes unfavorable 

 - manufacturing lot size of product A when initially unfavorable demand 

becomes favorable 

 - manufacturing lot size of product A when initially unfavorable demand 

remains unfavorable 

4. Results and Discussions 

In this study, the stochastic goal programming model for the product was solved using 

the using the linear programming (linprog) solver in MATLABTM ([29], [30])., an 

optimal solution was obtained with the values as shown in Table 6: 

 

 
Table 6: Optimal solution from MATLAB 

Variables  XFF (A,1) XFU (A,1) XUF (A,1) z XUU (A,1) d1
- d2

- d3
+ 

d4
+ 

values  0 2.3729 0  104.0840 8137.7 17350 0 0 

 

The results highlight the optimal values of the manufacturing lot size of product A in 

the first quarter of the year as demand changes from one state to another. The results 

were analyzed and discussed based on the priorities set and the optimal values 

achieved as seen from Table 6.  

The improvement of the solution from the case is establishing the over-achievement 

and under achievement of the manufacturing lot size priorities desired during 

production planning. An expansion in this case is incorporating in Markov chains 

which considers changes form one state to another. As seen from Table 6, for cases 

where initially demand is favorable and unfavorable, more products shouldn’t be 

manufactured but use what is already in stock as it is enough to meet the demand 

since the model predicts 0 manufacturing lot size of product A in the first quarter of 

the year. 

The model also predicts the manufacturing lot size of product A of 2.3729 units and 

104.0840 units when initially favorable demand becomes unfavorable and 

unfavorable demand remains unfavorable respectively. Meaning these number of 

products should be produced to meet demand. 
Table 7: Expected goal values and actual stochastic solution with over and under achievement 

Goals/ 

priorities 

Expected 

value from 

Goal 

Value of the 

stochastic 

solution 

Deviation Over-

achievement 

Under-

achievement 

1 8140.1 8140.07 0.03  8137.7 

2 17453.9 17454.08 0.18  17350 

3 66137.6 66138.66 1.06 0  

4 115668.5 115668.55 0.05 0  
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With the set priorities and expected values from each goal, the results from Table 7 

show the importance of utilizing the available sources of information when generating 

a plan. 

As observed from Table 7, Priority 1 and 2 can be fully achieved however, an 

underachievement of  units  units respectively is realized in the first 

quarter when demand is initially favorable (state F) and unfavorable (state U) 

respectively. 

Priority 3 is partially achieved as the actual stochastic solution is slightly higher than 

the expected goal value targeted production-inventory costs in the first quarter when 

demand is initially favorable (state F). And priority 4 is fully achieved in the first 

quarter when demand is initially unfavorable (state U). Both priority 3 and 4 have no 

over-achievement. 

 

5. Conclusion 

A stochastic goal programming model that optimizes the manufacturing lot size under 

demand uncertainty was presented in this paper. The model determines the quantity of 

the product (with demand uncertainty) to be produced in the first quarter of the year 

when demand changes from state i to state j for , establishing the over-

achievement or underachievement of the manufacturing lot size priorities desired. The 

decision of whether or not to produce more units is modelled using Markov chains in 

conjunction with stochastic goal programming. The model was solved with the help 

of MATLAB software environment and the results indicate the optimal manufacturing 

lot sizes as demand changes from one state to another, establishing the over-

achievement or underachievement of the manufacturing lot size priorities desired. 

Further research is sought to extend the proposed model in order to handle multiple 

products under demand and price uncertainty. In addition, weighted goal 

programming can be introduced to improve computational efficiency while handling 

pre-emptive priorities of the product. 
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Abstract 

In many manufacturing problems, multi-objective optimizations are representative 

models, as objectives are considered a conflict with one another. In real-life 

applications, optimizing a specific solution concerning one objective may end up in 

unacceptable results concerning the other objectives. Many Manufacturing companies 

operate under uncertainties and this affects the system performance. Stochastic 

product demand is one of the challenges faced by manufacturing companies and often 

affects the manufacturing system’s performance and decision-making. Making the 

proper decisions regarding manufacturing lot-sizing problems is critical for any 

manufacturer because it makes the firm compete within the market. In this paper, 

Markov chains in conjunction with stochastic goal programming were used to develop 

an optimization model for the manufacturing lot size. The over-achievement or under-

achievement of the manufacturing lot size was determined by defining the goal 

constraints, deviation variables, priorities, and objective function. The different states 

of demand for the product with stochastic demand were represented by states of a 

Markov chain. Using the applied mathematics solver in MATLAB TM, the 

optimization model was then solved, determining the quantity of product to be 

manufactured in a given quarter of the year as demand changes from one state to 

another. 

 

Keywords: Optimization, multi-objective, manufacturing lot size, stochastic product 

demand, stochastic goal programming 

 

1. Introduction 

Manufacturing companies experience a rapid and growing change where 

developments like customer orientation, globalization, and increasing market 

dynamics have led to a shift in both manufacturing and managerial principles which 

require more flexibility and effectiveness [1]. Many manufacturing companies operate 

under uncertainties [2] and this affects the system performance hence the ultimate 

https://scholar.google.co.in/scholar?q=Multi-Objective%20Optimization%20of%20Manufacturing%20Lot%20Size%20Under%20Stochastic%20Demand
https://doi.org/10.47191/ijcsrr/V5-i2-02
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decision on utilizing a production system at the initial stages [3]. Manufacturing 

companies are continuously trying to find efficiency to beat the challenges related to 

the market dynamics. Stochastic product demand is one of the important factors that 

affect the manufacturing system’s performance. Practically, stochastic product 

demand is more realistic than other demand types, like constant or functions [4]. 

Understanding these uncertainties and their impacts (which can make it difficult to 

predict performance) when assessing the risk associated with a decision, are of major 

concern [5]. Having more orders, more different products, enlargement of factories, 

and increased number and size of workshops, have all led to more complications in 

production planning making the ordinary methods of optimization not able to resolve 

them [1]. Production planning is the pillar of any manufacturing operation, with the 

key purpose of determining the number of products to be manufactured considering 

the level of inventory to be shifted from one period to another to lessen both the 

overall costs of production and the inventory, meeting the customers’ demand [6].  

Making the proper decisions about the manufacturing lot size is incredibly important 

because it directly affects the system performance and productivity [7] and this is 

often key for any manufacturing firm that wishes to compete within the Market. Lot 

sizing problems have gotten an immediate effect on the system performance and 

productivity. Manufacturing Lot sizing is determining the amount of a given product 

that has to be manufactured in a specified period. Every production plan has got the 

main problem of determining the manufacturing lot size for every product. To own 

efficient production planning, lot allocation issues must be solved centered on the 

demand that has to be achieved and also the availability of inventory stock 

minimizing production costs by determining the optimal production quantity [8]. The 

smaller the manufacturing lot size, the less the holding cost but raises the ordering 

cost whereas the larger the manufacturing lot size, the more the holding cost but 

reducing the ordering cost. Based on the concepts of lean production, it's preferable to 

have a smaller lot size because it prevents the buildup of inventory which comes with 

management and holding costs. The lot size recommended by a mathematical 

manufacturing lot size model would be the most effective because it accounts for the 

tradeoff between the costs involved [7]. Optimization is the process of finding 

(activity of selecting [9]) the simplest possible solution to a given problem by 

examining several alternatives (assessed after a predefined criterion) [10] and maybe 

done by adjusting the inputs to or characteristics of a device, mathematical process, or 

experiment to determine the minimum or maximum output [11]. The optimization 

problem contains three basic parameters that must be considered, that is, the objective 

function, a collection of variables, and a collection of constraints [12]. The objective 

of the optimization model depends on certain characteristics of the system, called 

variables or unknowns to determine the values of those variables that optimize the 

objective function, even though these variables are often restricted, or constrained in 

one way or the other. Brahimi et al. grouped optimization problems into four 

categories: process planning, layout design, reconfigurability and planning, and, 

scheduling. In the beginning multi-objective optimization originally developed from 

areas including economic equilibrium and welfare theories, game theories, and pure 

mathematics. Consequently, many terms and fundamental ideas stem from these fields 

[13]. A realistic result to a multi-objective problem is to examine a collection of 

solutions, each satisfying the objectives at a satisfactory level without being 

controlled by another solution. Many, or maybe most, real engineering problems do 

have multiple objectives, that is, minimize cost, maximize performance, maximize 

reliability, and many others, of which are difficult but realistic problems [14]. The 
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solution of multi-objective optimization (MOO) problems differs from single-

objective optimization problems because there's no global optimal solution in an 

exceedingly mathematical sense, due to the contradictory nature of the set of 

objectives involved; that's, a result that minimizes all objectives at the same time 

doesn't exist [15]. Manufacturing companies must have the flexibility to regulate 

scalable production capacities and to respond rapidly to market demands making 

planning and scheduling complex in such a dynamic environment [16]. Markov chain 

is a powerful mathematical tool that's extensively accustomed to capturing the 

stochastic process of systems transitioning among different states [17]. Markov chains 

may be applied in modeling and performance evaluation as manufacturing systems 

show any unplanned behavior relating to breakdowns, unplanned time to process a 

component, and many others [18]. To tackle uncertainties in real-world manufacturing 

systems, goal programming and stochastic analysis must be put into the whole 

structure. Stochastic Goal Programming is a multi-criteria decision support model that 

provides “satisficing” solutions to a linear system under an uncertainty case from the 

normally expected utility viewpoint [19], [20].  

Because many real-world optimization problems have got several inaccurate 

information estimates & goals and conflicting criteria, the stochastic goal 

programming method suggests an analytical structure aid in modeling and solving 

such problems. Stochastic goal programming can cope with the inherent uncertainty 

and has been applied in several fields including Portfolio selection, project selection, 

resource allocation, Healthcare management, transportation, marketing [21], cash 

management [22], wealth management [23], economic development, energy 

consumption, workforce allocation, and greenhouse gas emissions [24], forest 

planning [25]. Little applications of stochastic goal programming in production 

planning in manufacturing systems are observed hence the necessity for multi-

objective optimization of the manufacturing lot size under stochastic demand. This 

may be considered as a suggestion for production planners and practitioners 

accustomed to solving specific decision-making problems (optimal manufacturing lot 

size). Manufacturing companies will minimize overproduction when demand is low 

or underproduction when demand is high. As a result of fluctuations and uncertainties 

in demand, manufacturing companies are always challenged with determining optimal 

manufacturing lot sizes in production planning systems. Manufacturing companies are 

continuously searching for efficiency to beat the challenges related to the market 

dynamics. It's therefore important that these uncertain parameters be considered 

within the production planning process when developing a strong production plan 

because when neglected, production efficiency and system performance are affected 

[26]. Centering on external demands, manufacturing industries form their production 

plans having the principal goal of establishing the number (lot size) of products that 

can be produced for each period but meeting the demand and minimizing total costs 

[27]. In production planning, making the proper decisions about the lot size is 

extremely important because it directly affects the system performance and 

productivity [7] and this is often key for any manufacturing firm that desires to 

compete on market. As this is often complex moreover as important, it's been highly 

studied although, there's still a niche about showing the contributions to clarify the 

suitability of these methods used concerning each quite underlying manufacturing 

environment (regarding variations in demand and peaks of seasonality) [28]. 

Therefore this study aimed toward the development of a multi-objective optimization 

model for the manufacturing lot size under stochastic demand, establishing the over-

achievement or underachievement of the manufacturing lot size priorities desired. 
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Mathematical model formulation 

A case of a manufacturing company whose products have got stochastic demand was 

considered. The demand for these products during each period over a finite fixed 

planning horizon was described as either favorable or unfavorable. The Markov chain 

approach ([29], [30], [31], [32], [1]) together with stochastic goal programming ([20], 

[33], [21], [34], [25], [22]) was adopted and also the states of a Markov chain 

represent possible states of demand for the finished products with the notations shown 

in Table 1. 

 
Table 4: Key notations used in the Markov model 

 Set of states of demand  Manufacturing lot-size 

 Favorable demand  Quantity of product p to be 

manufactured in quarter q 

 Unfavorable demand   Customer matrix 

 Demand transition matrix  Unit production cost 

 Product  Unit holding cost 

 A quarter of the year  Unit shortage cost 

 State transitions  Demand matrix 

 Value of the objective function  Inventory matrix 

 Preemptive priority of the kth goal  Production-Inventory cost 

matrix 

 Over achievement of the kth goal  Beginning Inventory 

 Under achievement of the kth goal  Ending Inventory 

 

Average on-hand inventory,       (1)  

 

Consider the customer matrix: 

      (2) 

2.1 Demand transition probability 

As demand changes from state i to ievementstate j for , the associated 

demand transition probabilities are calculated as: 

       (3) 

This yields the demand transition matrix: 

    (4) 

Then the demand matrix, the inventory matrix and the production-inventory cost 

matrix. 

Demand matrix; 

     (5) 

Inventory matrix; 

     (6) 
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Production-inventory cost matrix; 

When demand outweighs the amount produced then, 

                  (7) 

Similarly, when the demand is less than the amount produced then, 

                  (8) 

Hence, as demand changes from state i to state j ( ) 

                  (9) 

where  production-inventory cost matrix. 

 

2.2 Expected demand, inventory, production-inventory costs, and manufacturing 

lot-size 

Expected demand 

Favorable Demand        (10) 

Unfavorable Demand   (11) 

 

Expected inventory 

Favorable Demand         (12) 

Unfavorable Demand    (13) 

 

Expected production-inventory costs 

Favorable Demand         (14) 

Unfavorable Demand    (15) 

 

Expected manufacturing lot-size 

Favorable demand 

      (16) 

Unfavorable demand 

     (17) 

  

2.3 Stochastic goal programming formulation 

The stochastic goal programming model was formulated by setting priorities, defining 

the objective function, and formulating the goal constraints as follows: 

Set priorities 

P1: Produce a batch of   units when demand is favorable 

P2: Produce a batch of   units when demand is unfavorable 
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P3: Total production-inventory cost must not exceed  when demand 

is favorable 

P4: Total production-inventory cost must not exceed  when demand 

is unfavorable 

Objective function 

                         (18) 

Goal constraints 

P1: Manufacturing lot-size   -  favorable demand 

                      (18.1) 

P2: Manufacturing lot-size    -   unfavorable demand 

                     (18.2) 

P3: Total production-inventory cost – favorable demand 

  (18.3) 

P4: Total production-inventory cost – unfavorable demand 

 (18.4) 

 

1.4 Stochastic goal programming model for manufacturing lot-size 

              (19) 

Subject to:  

          (19.1) 

                      (19.2) 

             (19.3) 

             (19.4) 

  (19.5) 

 

2. Case study 

In this section, a real case application from Movit Products Uganda limited was used 

to demonstrate the applicability of the proposed mathematical models. The 

manufacturing industry manufactures, distributes, and sells skin care, hair & nail care 

products. The numerical illustration contains real data for the first quarter of the year, 

which was collected and then reduced to usable dimensions as shown in Table 2. Data 

classification by state of demand was made, analyzed, and used in the proposed 

mathematical model.  

 

Considering a product D, for a given week, demand is favorable (state F) if Nij > 26 

otherwise demand is unfavorable (state U) if Nij ≤ 26 as shown in Table 2. 
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Table 5: Data classification by state of demand for product D 

Month Week Customers 

(N) 

Demand (D) 

(x103) 

On hand inventory (V)  

(x103) 

State of 

demand (i) 

1 

1 15 308 5263 U 

2 29 2891 7337 F 

3 24 1757 7081 U 

4 38 6619 5654 F 

2 

1 8 231 3525 U 

2 17 2046 6243 U 

3 15 1617 5922 U 

4 45 4443 5951 F 

3 

1 14 559 3765 U 

2 37 3686 4738 F 

3 28 1537 4980 F 

4 44 5626 5746 F 

 

Tables 3a, 3b, and 3c show the overstocking or understocking of product D with the 

corresponding holding or shortage costs in the first quarter of the year. 

 

 
Table 6a: Overstocking and understocking with holding and shortage costs for month 1 

Week 
Demand (D) 

(x103) 

On hand 

inventory (V)  

(x103) 

over/under stocking 
Holding/shorta

ge costs 

1 308 5263 4955 3121.65 

2 2891 7337 4446 2800.98 

3 1757 7081 5324 3354.12 

4 6619 5654 -965 3343.725 

 

Table 3b: Overstocking and understocking with holding and shortage costs for month 2 

Week 
Demand (D) 

(x103) 

On hand 

inventory (V)  

(x103) 

over/under stocking 
Holding/shorta

ge costs 

1 231 3525 3294 2075.22 

2 2046 6243 4197 2644.11 

3 1617 5922 4305 2712.15 

4 4443 5951 1508 950.04 

 

Table 3c: Overstocking and understocking with holding and shortage costs for month 3 

Week 
Demand (D) 

(x103) 

On hand 

inventory (V)  

(x103) 

over/under stocking 
Holding/shorta

ge costs 

1 559 3765 3206 2019.78 

2 3686 4738 1052 662.76 

3 1537 4980 3443 2169.09 

4 5626 5746 120 75.6 
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Figure 5: Overstocking and understocking of 

product D 

Figure 6: Holding and Shortage costs 

 

3.1 State transitions and on-hand inventory 

For a particular state transition, given the beginning and ending inventory, the average 

on-hand inventory was calculated as presented in Table 4. 

 
Table 4: Average on-hand inventory for product D 

State transitions 

 

Beginning inventory 

(B) 

Ending inventory 

(E) 

Average on-hand 

inventory  

 
FF 4980 5746 5363 

FU 7081 3765 5423 

UF 7337 4738 6037.5 

UU 6243 5922 6082.5 

 

From Equation (1) section 2, the average on-hand inventory was calculated giving; 

 

 
Figure 7: Average on-hand inventory and state transitions 

 

3.2 Demand transition probabilities 

Data classification by state transition was done as illustrated in Table 5 and then used 

to calculate the demand transition probabilities for the product 
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Table 5: Data classification by state-transition for product D 

Month 

State transition 

 

Number of customers 

 

Demand 

 

1 

FF 0 0 

FU 53 4648 

UF 106 11575 

UU 0 0 

2 

FF 0 0 

FU 0 0 

UF 60 6060 

UU 57 5940 

3 

FF 137 12386 

FU 0 0 

UF 51 4245 

UU 0 0 

From table 5, the Totals for customers and demand as it changes from one state to 

another are; 

Customers:  

  

Demand:  

                
From Equation (3) in section 2, the demand transition probabilities are; 

  

  

  

  
Hence the demand transition matrix as from equation (4), 

  
3.3 Demand matrix, inventory matrix, and production-inventory cost matrix 

The demand matrix, the inventory matrix, and the production-inventory cost matrix 

were developed as follows. 

From Equation (5), the demand matrix becomes; 

                        
From Equation (6), the Inventory matrix becomes; 

  
Production-inventory cost matrix 

The production-inventory cost matrix is then computed for the product From 

Equations (7), (8), and (9). 

 Unit production cost,  

 Unit holding cost,  

 Unit shortage cost,  
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Hence, 

   

  
3.4 Expected demand, inventory, production-inventory costs, and manufacturing 

lot-size 

Expected demand 

After generating the demand transition matrix and formulating the production-

inventory cost matrix, the expected demand expected inventory, and expected 

production-inventory costs are computed for the product considering both favorable 

and unfavorable demand as shown below; 

Favorable demand (F) was computed from equation (10)  

   

  

  
Unfavorable demand (U) was computed from equation (11) 

   

  

  
Computation of the expected inventory considering both favorable and unfavorable 

demand for the product was computed from equation (12) as follows: 

Favorable demand (F) 

   

   

  
Unfavorable demand (U) was computed from equation (13) as follows 

   

  

  
 

Expected production-Inventory costs 

The expected production-Inventory costs are then computed for the product 

considering both favorable and unfavorable demand results were computed from 

equations (14) and (15) as follows; 

Favorable demand (F) 
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Unfavorable demand (U) 

  

  

  
 

Expected manufacturing lot size 

Computation of the expected manufacturing lot size considering both favorable and 

unfavorable demand for the product yields was computed from equations (16) and 

(17) as follows: 

Favorable demand (F) 

 

 

 
 

 

Unfavorable demand (U) 

 

 

 
 

 

3.5 Stochastic goal programming model  

The stochastic goal programming model for the product was formulated by setting 

priorities, defining the objective function, and formulating the goal constraints as 

follows: 

Priorities set 

  

 

 

  

 

  
Objective function 

   
Goal constraints 

Manufacturing lot size 

  

  
Total production-Inventory costs 

   

  

Non-negativity 
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3.6 Stochastic goal programming model for manufacturing lot size  

The stochastic goal programming model for manufacturing lot size was then 

developed for the product as below. This determines the quantity of the product to 

manufacture in the first quarter of the year when demand changes from state i to state 

j for , establishing the over-achievement or under achievement of the 

manufacturing lot size priorities desired. 

  
Subject to: 

   

   

    

   

   
Where: 

 = slack variables 

 = surplus variables 

 – manufacturing lot size of product D when initially favorable demand 

remains favorable 

 - manufacturing lot size of product D when initially favorable demand 

becomes unfavorable 

 - manufacturing lot size of product D when initially unfavorable demand 

becomes favorable 

 - manufacturing lot size of product D when initially unfavorable demand 

remains unfavorable 

 

 

3. Results and Discussions 

In this study, the stochastic goal programming model for the product was solved using 

MATLAB. The values were inserted in MATLAB TM ([35], [36]) and using the 

linprog solver, an optimal solution was obtained with the values as shown in Table 6: 
Table 6: Optimal solution from MATLAB 

Variables  XFF (D,1) XFU (D,1) XUF (D,1) XUU (D,1) d1
- d2

- d3
+ d4

+ 

values  0 369.4816 0 12518 5478.7 0 0 677130 

 

The results highlight the optimal values of the manufacturing lot size of product A in 

the first quarter of the year as demand changes from one state to another. The results 

were analyzed and discussed based on the priorities set and the optimal values 

achieved as seen from table 6.  

The improvement of the solution from the case is establishing the over-achievement 

and under achievement of the manufacturing lot size priorities desired during 

production planning. An expansion, in this case, is incorporated in Markov chains 

which considers changes from one state to another. As seen from table 6, for cases 

where initially demand is favorable and unfavorable, more products shouldn’t be 

manufactured but use what is already in stock as it is enough to meet the demand 

since the model predicts 0 manufacturing lot size of product A in the first quarter of 

the year. 

The model also predicts the manufacturing lot size of product A of 2.3729units and 

104.0840 units when initially favorable demand becomes unfavorable and 
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unfavorable demand remains unfavorable respectively. Meaning these number of 

products should be produced to meet demand. 
Table 7: Expected goal values and actual stochastic solution with over and under achievement 

Goals/ 

priorities 

Expected 

value from 

Goal 

Value of the 

stochastic 

solution 

Deviation Over-

achievement 

Under-

achievement 

1   0.0438  5478.7 

2   0.38  0 

3   0.017 0  

4   35.0571   

 

With the set priorities and expected values from each goal, the results from table 7 

show the importance of utilizing the available sources of information when generating 

a plan. 

As observed from table 7, Priorities 1, 2, and 3 can be fully achieved however, an 

underachievement of 5478.7 units is realized in the first quarter when demand is 

initially favorable (state F). 

Priority 4 is partially achieved as the actual stochastic solution is slightly higher than 

the expected goal value targeted production-inventory costs in the first quarter when 

demand is initially unfavorable (state U) and an over-achievement of  units is 

realized. 

 

4. Conclusion 

A stochastic goal programming model that optimizes the manufacturing lot size under 

demand uncertainty was presented in this paper. The model determines the quantity of 

the product (with demand uncertainty to be produced in the first quarter of the year 

when demand changes from state i to state j for , establishing the over-

achievement or underachievement of the manufacturing lot size priorities desired. The 

decision of whether or not to produce more units is modeled using Markov chains in 

conjunction with stochastic goal programming. The model was solved with the help 

of MATLAB software environment and the results indicate the optimal manufacturing 

lot sizes as demand changes from one state to another, establishing the over-

achievement or underachievement of the manufacturing lot size priorities desired. 

Further research is sought to extend the proposed model to handle multiple products 

under demand and price uncertainty. In addition, weighted goal programming can be 

introduced to improve computational efficiency while handling pre-emptive priorities 

of the product. 
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Abstract 

Manufacturing system performance is very important for any manufacturing company 

and one of the key tools that aid in maintaining and improving its performance is 

production planning. 

Manufacturing systems function in an uncertain environment and this affects its 

system performance in one way or the other. Production planning tactics that don’t 

put into consideration the uncertainties will produce substandard planning decisions 

linked to the ones that clearly consider uncertainty. Stochastic goal programming is 

applied in decision-making circumstances with uncertainty by means of stochastic 

calculus and therefore the decision-maker isn't in the position to evaluate exactly the 

several factors but gives certain information regarding the likelihood of the existence 

of the decision-making factor values. During this paper, existing literature about the 

application of stochastic goal programming in production planning in manufacturing 

has been reviewed to provide the reader, optimization practitioners, and researchers 

with the important matters that arise once dealing with uncertainty modeling in 

manufacturing systems using stochastic goal programming.  

 

Keywords 

Production planning, uncertainty, manufacturing, Goal programming, Stochastic 

programming  

 

1. Introduction  

Manufacturing is a vital aspect of the global economy and prosperity. There's always 

an issue of the supply chain within the manufacturing domain, and production 

planning is one of its stages. Many industries have manufacturing systems 

characterized as large and sophisticated and operate in an uncertain environment. 

There are several different methods by which the complexity within the 

manufacturing system can be reduced and one of them is by modeling uncertainties 

within the production planning problem [1], [2]. With manufacturing systems 

functioning in uncertain environments, production planning is a significant element in 

refining its performance [3]. The production planning process becomes more difficult 

and complicated concerning product demand uncertainty [4]. Making the production 
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planning process well-organized and enhanced (having minimum expenses and 

meeting the market demand) is the desire of any manufacturing company. 

Optimizing the production planning process is very essential in the production of 

high-quality products (while maximizing profit), especially given the competitive 

nature of the market globally. 

Examining the decision-making process (to get an optimal alternative possible 

solution to a specific problem) within the production planning process, the application 

of mathematical modeling is essential. 

One of the objectives in production planning is maximizing profit with the production 

of products at minimum cost [5]. The process of defining the modest way that 

proficiently utilizes resources necessary for production (manpower, materials, and 

equipment) is the production planning process. The usual decisions in Production 

planning are affected by compromises between productivity efficiency and financial 

objectives. 

Financial targets are precisely linked to cumulative profits or decreasing costs, 

(including production costs, labor costs, material costs, and inventory costs). 

Concerning production efficiency, production planning must reveal the capability to 

supply products & the distinct effects of extra concerns all through the operation 

(inventory levels, overtime, and backorders) [1]. Ali Cheraghalikhani, Farid 

Khoshalhan, and Hadi Mokhtari in their paper characterized the production planning 

models as shown in Table 1 [6]. 
Table 1: Model characterization by type of data and number of objective function 

Type of data Model Objective function 

Deterministic  Single  

Multiple  

Uncertain  Fuzzy  Single  

Multiple  

Stochastic  Single  

Multiple  

Mula et al.’s research demonstrates the factors of uncertainty within the production 

system (as demand, environment, system resource, lead time, and yield) and further 

amalgamate common methods to uncertainty (including stochastic model, dynamic 

programming, fuzzy theory, and simulation-based approaches) [2]. Many times 

uncertainty in production planning is perceived as demand uncertainty (fluctuations) 

within the production process (production times or material loss). As observed in 

Bakir & Byrne’s research, the variation in the solutions given by the deterministic 

model & stochastic model is analyzed and the uncertainty factor is market demand 

(the analytical results showing that the difference relies on the variance of uncertain 

demand) [1].  

Considering the summarized fundamental concerns in table 2 [6], the purpose of the 

production planning models is to determine an optimum rate of production and labor 

force, minimizing the costs associated with satisfying the known demand 
Table 2: Fundamental concerns in production planning 

Fundamental  

concerns 

Definition 

Market demand Demand per period satisfied by product, inventory or 

backorder 

Inventory  Products held in stock per period 

Backorder  Part of demand not satisfied per period 

Production capacity  Maximum amount of products that can be produced per 



201 

 

period by system 

Warehouse space Capacity of the warehouse for the holding inventory 

Costs of production Regular time & overtime production and costs of inventory 

carrying & backorders 

Subcontracting Hiring capacity of other firms temporarily to make 

component parts 

Labor level Number of workers per period (regular & overtime 

workers) 

Hiring and Layoff 

cost 

Additional workers recruited to handle extra production 

loading and redundant workers laid-off to reduce 

overheads. 

Product Price Selling price of products 

 

Given today’s industrial competitiveness, and the uncertain environment these 

manufacturing companies operate in, it's crucial for the decision makers to maintain 

optimal strategies or solutions to such problems hence stochastic goal programming 

method because it proposes a logical structural guide in modeling and resolving such 

problems. 

 

2. Goal Programming 

Goal programming (GP), is one of the well-known multi-objective optimization 

models and has recurrently been cultivated by both theoretical advances and new 

applications through categorical success. Abraham Charnes and William W Cooper 

introduced the first formulation of goal programming spreading its attractiveness to 

current periods [7], [8], [9], [10], [11]. Having been introduced in the early 1960s, and 

subsequently, significant additions and several applications have been recommended, 

one of them being the stochastic goal programming model. This is where the result of 

the best negotiation reduces total deviances between the achievement  and 

aspiration levels  [12]. Goal programming, generally a linear programming tool 

(useful tool to balance conflicting aspects of the competing criteria), attempts to 

achieve predefined targets for a set of goals (satisficing philosophy) other than an 

optimal result subject to stringent constraints (optimizing philosophy).  

Stochastic programming must be applied to proficiently assimilate information 

concerning an aspect of uncertainty. Goals are governed by the decision-makers’ 

perspective (and vary with time due to related factors) [13] , follows a sustaining logic 

conveyed by means of targets and he appreciates the notion of setting targets & thus 

being directly involved in the development of other solutions [14]. Goal programming 

combines several objectives to get the result that minimizes in totality the deviations 

between achievement & the aspiration levels of the goals. It is essential to specify for 

each goal , the aspiration level or target , with i = 1; 2; : : : ; q introducing 

positive & negative deviation auxiliary variables to associate goal achievement and 

targets [15].  

goal programming purposes to reconcile the achievement of a set of goals other than 

optimizing each goal done by instituting an achievement objective function. In terms 

of fundamental distance metric, the goal programming types are lexicographic, 

weighted [15], [16], & Chebyshev (min-max) goal programming [17] and in terms of 

the mathematical nature of the decision variables or goals used are  fuzzy, integer, 

binary, and fractional goal programming [10]. In weighted goal programming, each 

objective is multiplied by a weight assigned to it, and the overall objective function 
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(archimedian sum of all these), is minimized. In lexicographic goal programming, the 

objectives are assigned priorities, then ranked by priority from highest to lowest, then 

the first objective is minimized by itself, and a constraint is set after the optimization 

to prevent the next optimization from obtaining a worse result, and lastly, this 

procedure is repeated for all of the objectives. In min-max goal programming, the 

maximum difference between any goal and its objective is minimized [17]. similar to 

that of a linear programming model, problem is modelled into a goal programming 

model in the same way, but, the goal programming model has 

several & frequently contradicting incommensurable goals, in a specific priority 

hierarchy (established by ranking or weighing various goals in accordance with their 

importance)  [18]. GP defines the resources needed to attain a preferred set of 

objectives, determines the point of achievement of the goals per the available 

resources, and delivers the best sufficient result with a changing resources & priorities 

of 

the goals. For every objective, a goal is set and the deviancy concerning every 

objective & its goal are minimized. The general formulation of goal programming 

consists in transforming multi-objective programming as [19]: 

  iOptimize f x
       (1) 

                          Subject to P1 

     Ax         (2) 

In the following form: 

1

min  ( )
n

i i i

i

w   




       (3) 

Subject to 
ˆ( )i i i if x f    

  ni ,...,1      (4) 

Ax          (5) 

i


 and 
0i

 
   ni ,...,1  

Where 
)(xf i is the goal function i ; if̂  is the target level of objective  i ; i



 and i


are 

the negative and positive deviations respectively associated with the objective i  from 

its target; iw
 is the weight assigned to the objective i , and A  is the set of feasible 

solutions or system constraints. 

Pre-emptive and Non Pre-emptive goal programming are the basic types of goal 

programming formulations, with Non Pre-emptive [20] having the weighted sum of 

all the undesirable deviations is minimized (no goal is said to dominate any other 

goal). 

    (6) 

     (7) 

         Subject to: 

            (8) 

  

       (9) 

Supposing that the decision maker needs to have at least 40,000 profit and the cost 

should not exceed the limit of 20,000, the above problem can be converted into a goal 

programming problem as follows (𝐺𝑃1): 

      (10) 
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          Subject to: 

    (11) 

    (12) 

      (13) 

      (14) 

      (15) 

      (16) 

Rajendran demonstrates Pre-emptive Goal Programming as below;  

Assuming in the problem above, having known the fact that the multi-objective 

situation limit to have any such result that satisfies both goals concurrently, the 

decision makers states the priorities for both the goals. Assuming in problem 𝐺𝑃1 the 

first goal has the higher priority, say 𝑃1, and the second goal has a lower priority, say 

𝑃2, that is 𝑃1 > 𝑃2. In this condition, the problem 𝐺𝑃1 is written as follows (𝐺𝑃2): 

     (17) 

Subject to: 

    (18) 

    (19) 

      (20) 

      (21) 

      (22) 

      (23) 

      (24) 

 

3. Stochastic programming (SP) 

SP is a method aimed at modeling optimization problems involving uncertainty [21] 

(“find an optimal decision in problems involving uncertain data” [22]). Stochastic 

programming ([22]) conveys a useful tool within which a huge range of sources of 

uncertainty is integrated into the development of the production plans [14]. Some of 

the applications of stochastic programming include, production planning, 

manufacturing design, financial planning and control [22], portfolio management 

[23]. As deterministic optimization problems are expressed with known parameters, 

real world problems comprise unknown parameters at the time a decision is made.  

Stochastic programming may be applied in a very setting during which a one-off 

decisions must be made.  

The top broadly applied & studied stochastic programming models are two-stage 

(linear) programs where the decision maker acts within the first stage, after which a 

random event occurs affecting the result of the first-stage decision [21]. 

The basic stochastic programming problem is: 

     (25) 

Subject to:   (26) 

Where the variable is x, problem data are  , distribution of   

If  are convex in   for each ,  are convex 

hence stochastic programming problem is convex 
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4. Stochastic Goal Programming (SGP) 

Stochastic Goal Programming is a “multi-criteria decision support” model that has 

“satisficing” results to a linear structure under an uncertainty situation from the 

usually predictable utility perspective [24], [25]. Because many real-world 

optimization problems have got numerous erroneous information estimates & goals 

and conflicting criteria [26], the stochastic goal programming technique proposes a 

logical physical aid in modeling and resolving these problems. 

SGP addresses intrinsic uncertainty & is being applied in numerous areas like 

economic development, portfolio selection, project selection, resource allocation, 

healthcare management,  

transportation, marketing [12], cash management [15], wealth management [27], 

energy consumption, workforce allocation, greenhouse gas emissions [11], forest 

planning [14]. Contini, introduced the first formulation of SGP in 1968, considering 

goals as random variables having statistical distribution & and suggested a model 

taking into account that the maximization of the probability that the decision belongs 

to a region surrounding the random goal. This model induces a solution that is near 

the random goal as much as possible [28]. The conventional formulation of the SGP 

model is as follows: 

    (27) 

Subject to: 

   (28) 

     

Where  represents an “n-dimensional random vector” of the decision variables,  

symbolizes a  matrix A of “deterministic coefficients” and  represents an “m-

dimensional vector”  “(stochastic) resource limitations”. 

Applications of SGP 

Numerous studies have revealed the usefulness of stochastic goal programming 

formulations being supportive in quiet a number of different areas (marketing, 

transportation [29], portfolio selection [10], health care management [30], [31], [32], 

resource allocation, project selection,) [12], “cash management” [15], “wealth 

management” [27], pharmaceutical [20], “economic development, energy 

consumption, workforce allocation, & greenhouse emission emissions” [11], “forest 

planning” [14], Coal-fired power stations, Water management [33], data 

communication networks, Market share scheme, Investments, Blends, Hot Desking, 

Advertising [34], [25]. 
Table 3: Applications of stochastic goal programming 

Application Author (s) Uncertainty Conclusion  

Textile industry Wang et al., 

2021 

Demand  Developed “a stochastic multi-

objective mixed-integer 

programming model for global 

sustainable multi-product 

production planning”. 

Water use 

planning 

Bravo & 

Gonzalez, 2009 

Demand  SGP especially designed for 

water use planning was 

developed. 
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Portfolio 

management 

Ji et al., 2005 Asset 

returns 

Presented “a stochastic linear 

goal programming model for 

multistage portfolio 

management emphasizing the 

investor’s goal & risk 

preference”. 

Sustainable 

development  

Jayaraman et 

al., 2017 

Electricity 

demand 

presented “a scenario-based 

stochastic goal programming 

model with satisfaction function 

for optimal employee allocation 

across various economic 

sectors”. 

Cash 

management 

Salas-Molina et 

al., 2020 

Cash flows Developed “a generalized 

stochastic goal programming 

model to derive stable policies 

within cash management 

systems with multiple bank 

accounts using cash flow 

forecasts as a key input” 

Groundwater 

remediation 

management 

Li et al., 2014 Human 

health-risk 

“Stochastic analysis & goal 

programming were introduced 

into the framework to handle 

uncertainties in real-world 

groundwater remediation 

systems” 

Pharmaceutical Rajendran et 

al., 2019 

No. “of 

customers 

lost due to 

side effects” 

Developed “a multiple criteria 

stochastic mixed integer 

programming model, which 

serves as a decision support 

system to pharmaceutical 

companies”. 

Forest planning Eyvindson & 

Kangas, 2014 

Forest 

inventory 

Developed “three stochastic goal 

programming formulations & 

highlighted the usefulness of the 

approach on a small forest 

holding”. 

 

 
Table 37: (Continued) 

Application Author (s) Uncertainty Conclusion  

Industrial 

production 

(textile 

blending) 

Ballestero, 

2005 

Blends  “Choice of fibers to make 

blends in yam production was 

developed from empirical 

information & numerically 

solved” 
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Wealth 

management 

Kim et al., 

2020 

Assets Proposed “a GBI framework 

that finds the optimal financial 

plan for an individual to 

achieve multiple consumption 

goals with various priority 

levels”, (automated financial 

advising services) 

Health care 

system (blood 

collection and 

distribution) 

Attari & Jami, 

2018 

Demand  Developed “a novel hybrid 

approach based on stochastic 

programming, MCGP and 

robust optimization”.  

Transportation  Yang, 2007 “direct 

cost, 

transportation 

time, supply 

abilities, 

demands” 

Three “models were 

constructed for stochastic solid 

transportation problem with 

different modeling 

Ideas (expected value, chance-

constrained & dependent-

chance goal programming)”.  

 

 

5. Conclusion 

Having scrutinized through a number of papers published in field of stochastic goal 

programming both theoretical and applied contributions, the following conclusions 

are drawn: 

 Throughout numerous decades, the goal programming model has demonstrated to 

be powerful instrument and remains to be “an attractive and flexible” model 

dealing with “decision-making situations” where numerous “conflicting” and 

“incommensurable” objectives are to be optimized concurrently. 

 Given its “simplicity and satisficing philosophy”, the goal programming model is 

suitable for aiding the decision marker to advance towards the best 

recommendations and help in getting to know more about the “decision-making 

context”. 

 SGP is one of greatest widespread applied tools in the “multi-criteria decision aid 

paradigm” and its acceptance is based on to its being easily “understood and 

applied”. 

 The information in this paper can be used as a guide for “academicians and 

optimization practitioners” to resolve “specific decision-making” situations. 
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Appendix 7: Data Collected Tools Used 

Below are the ‘sample’ data collection tools that were used in the collection of data 

during this research study. 

 

DATA GATHERING SHEETS 

 

Introduction   

The main aim of this survey is to collect data that will be used in the development of an 

optimization model that predicts optimal manufacturing lot size in production planning (PP) 

under demand uncertainty in Uganda (case study: MMOVIT PRODUCTS (U) LTD).  

It is for academic purposes only and I’m requesting you to help in providing the 

necessary information as it will be treated with outmost confidentiality. Thanks so 

much.  

 

BACKGROUND QUESTIONS 

1. List all the items produced by Movit products (U) ltd in the plastic department 

 

2. List the five (5) most demanded products from the list above starting with the 

most demanded to the least demanded 

1) ____________________________________________ 

2) ____________________________________________ 

3) ____________________________________________ 

4) ____________________________________________ 

5) ____________________________________________ 

 

3. What characterizes the Production Planning system at Movit products(U) ltd (Tick 

the most appropriate answer, please) 

a) Make – on – order 

b) Make – to – stock 

 

 

 

1.   11.   

2.   12.   

3.   13.   

4.   14.   

5.   15.   

6.   16.   

7.   17.   

8.   18.   

9.   19.   

10.   20.   
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4. What is the nature of the Production Planning system at Movit products(U) ltd 

(Tick the most appropriate answer, please) 

a) Job Method 

b) Flow Method 

c) Mass Production Method 

d) Batch Method 

e) Process Method 

 

5. What are the distinct features of the production planning system with respect to 

the manufacturing lot sizes at Movit products(U) Ltd? (Tick the appropriate 

answer, please) 

a) Routing 

b) Scheduling 

c) Dispatching and inspection 

d) Co-ordination and the control of materials 

e) Methods 

f) Machines 

g) Tooling  

h) Operating times. 
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DATA GATHERING WORKSHEET 

 

Factory:     Movit products(U) Limited                Product: _____________________ 

Week: _______    Month: _______________     Year: _______       Quarter: ________   

 

Day Time 

Duration 

Observed 

Customer 

orders 

Quantity 

Demanded 

 

On-hand 

inventory 

 

State 

Favorable 

 (F) 

Unfavorable 

 (U) 

 

 

 

 

 

Mon 

8:00am -9:00am      

9:00am -10:00am      

10:00am -11:00am      

11:00am -12:00pm      

12:00pm -1:00pm      

1:00pm -2:00pm      

2:00pm -3:00pm      

3:00pm -4:00pm      

4:00pm -5:00pm      

 

 

 

 

Tue 

8:00am -9:00am      

9:00am -10:00am      

10:00am -11:00am      

11:00am -12:00pm      

12:00pm -1:00pm      

1:00pm -2:00pm      

2:00pm -3:00pm      

3:00pm -4:00pm      

4:00pm -5:00pm      

 

 

 

 

Wed 

8:00am -9:00am      

9:00am -10:00am      

10:00am -11:00am      

11:00am -12:00pm      

12:00pm -1:00pm      

1:00pm -2:00pm      

2:00pm -3:00pm      

3:00pm -4:00pm      

4:00pm -5:00pm      

 

 

 

 

Thur 

8:00am -9:00am      

9:00am -10:00am      

10:00am -11:00am      

11:00am -12:00pm      

12:00pm -1:00pm      

1:00pm -2:00pm      

2:00pm -3:00pm      

3:00pm -4:00pm      

4:00pm -5:00pm      

 

 

 

 

Fri 

8:00am -9:00am      

9:00am -10:00am      

10:00am -11:00am      

11:00am -12:00pm      

12:00pm -1:00pm      
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1:00pm -2:00pm      

2:00pm -3:00pm      

3:00pm -4:00pm      

4:00pm -5:00pm      

 

 

CUSTOMER DATA FOR PRODUCT A IN THE FIRST QUARTER OF THE 

YEAR 

1. What is the average number of customers for product 1 in the first week of the 

first month?  ………………………………………………………. 
 

2. What is the average number of customers for product 1 in the second week of 

the first month?   ………………………………………………………. 
 

3. What is the average number of customers for product 1 in the third week of 

the first month?   ………………………………………………………. 
 

4. What is the average number of customers for product 1 in the fourth week of 

the first month?   ………………………………………………………. 
 

5. What is the average number of customers for product 1 in the first week of the 

second month?    ………………………………………………………. 
 

6. What is the average number of customers for product 1 in the second week of 

the second month?    ………………………………………………………. 
 

7. What is the average number of customers for product 1 in the third week of 

the second month?   ………………………………………………………. 
 

8. What is the average number of customers for product 1 in the fourth week of 

the second month?   ………………………………………………………. 
 

9. What is the average number of customers for product 1 in the first week of the 

third month?    ………………………………………………………. 
 

10. What is the average number of customers for product 1 in the second week of 

the third month?   ………………………………………………………. 
 

11. What is the average number of customers for product 1 in the third week of 

the third month?    ………………………………………………………. 
 

12. What is the average number of customers for product 1 in the fourth week of 

the third month?    ………………………………………………………. 
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DEMAND DATA FOR PRODUCT A IN THE FIRST QUARTER OF THE 

YEAR 

1. What is the average number of product 1 demanded in the first week of the 

first month? 

………………………………………………………. 

2. What is the average number of product 1 demanded in the second week of the 

first month? 

………………………………………………………. 

3. What is the average number of product 1 demanded in the third week of the 

first month? 

………………………………………………………. 

4. What is the average number of product 1 demanded in the fourth week of the 

first month? 

………………………………………………………. 

5. What is the average number of product 1 demanded in the first week of the 

second month? 

………………………………………………………. 

6. What is the average number of product 1 demanded in the second week of the 

second month? 

………………………………………………………. 

7. What is the average number of product 1 demanded in the third week of the 

second month? 

………………………………………………………. 

8. What is the average number of product 1 demanded in the fourth week of the 

second month? 

………………………………………………………. 

9. What is the average number of product 1 demanded in the first week of the 

third month? 

………………………………………………………. 

10. What is the average number of product 1 demanded in the second week of the 

third month? 

………………………………………………………. 

11. What is the average number of product 1 demanded in the third week of the 

third month? 

………………………………………………………. 

12. What is the average number of product 1 demanded in the fourth week of the 

third month? 

………………………………………………………. 
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ONHAND INVENTORY DATA FOR PRODUCT A IN THE FIRST QUARTER 

OF THE YEAR 

1. What is the average number of product 1 in inventory in the first week of the 

first month? 

………………………………………………………. 

2. What is the average number of product 1 in inventory in the second week of 

the first month? 

………………………………………………………. 

3. What is the average number of product 1 in inventory in the third week of the 

first month? 

………………………………………………………. 

4. What is the average number of product 1 in inventory in the fourth week of the 

first month? 

………………………………………………………. 

5. What is the average number of product 1 in inventory in the first week of the 

second month? 

………………………………………………………. 

6. What is the average number of product 1 in inventory in the second week of 

the second month? 

………………………………………………………. 

7. What is the average number of product 1 in inventory in the third week of the 

second month? 

………………………………………………………. 

8. What is the average number of product 1 in inventory in the fourth week of the 

second month? 

………………………………………………………. 

9. What is the average number of product 1 in inventory in the first week of the 

third month? 

………………………………………………………. 

10. What is the average number of product 1 in inventory in the second week of 

the third month? 

………………………………………………………. 

11. What is the average number of product 1 in inventory in the third week of the 

third month? 

………………………………………………………. 

12. What is the average number of product 1 in inventory in the fourth week of the 

third month? 

………………………………………………………. 
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Appendix 8: Data collected for fast moving products at MOVIT products (U) Ltd 

Favorable when N > 12, else Unfavorable 

 

Unit 

production cost 

KES 

Unit holding 

cost KES 

Unit shortage 

cost KES 

PRODUCT A, Selling price per carton = 1111 KES 722.22 10.83 79.44 

MONTH DATE   WEEK 

CUSTOMERS 

(N) 

DEMAND (D) 

(x103) 

ON HAND 

INVENTORY 

(V)  (x103) 

1 

1/3/21 - 6/3/21 6 DAYS 1 9 3937 6076 

8/3/21 - 13/3/21 6 DAYS 2 12 4668 4687 

15/3/21 - 20/3/21 6 DAYS 3 8 2485 6306 

22/3/21 - 27/3/21 6 DAYS 4 17 7955 10160 

2 

1/4/21 - 7/4/21 6 DAYS 1 1 110 4525 

8/4/21 - 14/4/21 6 DAYS 2 15 3832 5681 

15/4/21 - 21/4/21 6 DAYS 3 7 2870 4363 

22/4/21 - 28/4/21 6 DAYS 4 20 3824 6028 

3 

1/5/21 - 7/5/21 6 DAYS 1 4 758 2018 

8/5/21 - 14/5/21 6 DAYS 2 16 6125 4149 

15/5/21 - 21/5/21 6 DAYS 3 14 2625 4163 

22/5/21 - 28/5/21 6 DAYS 4 17 3685 6279 

 
Favorable when N > 25, else Unfavorable 

 

Unit production 

cost KES 

Unit holding 

cost KES 

Unit shortage 

cost KES 

PRODUCT B, Selling price per carton = 3667 KES 2566.67 51.33 282.33 

MONTH DATE   WEEK 

CUSTOMERS 

(N) 

DEMAND (D) 

(x103) 

ON HAND 

INVENTORY 

(V)  (x103) 

1 

1/3/21 - 6/3/21 6 DAYS 1 16 2309 2365 

8/3/21 - 13/3/21 6 DAYS 2 34 3224 4459 

15/3/21 - 20/3/21 6 DAYS 3 25 2759 3255 

22/3/21 - 27/3/21 6 DAYS 4 42 6113 5923 

2 

1/4/21 - 7/4/21 6 DAYS 1 7 414 2095 

8/4/21 - 14/4/21 6 DAYS 2 22 2422 2564 

15/4/21 - 21/4/21 6 DAYS 3 16 1269 2994 

22/4/21 - 28/4/21 6 DAYS 4 36 2981 3372 

3 

1/5/21 - 7/5/21 6 DAYS 1 12 289 2502 

8/5/21 - 14/5/21 6 DAYS 2 24 1825 1827 

15/5/21 - 21/5/21 6 DAYS 3 30 806 1636 

22/5/21 - 28/5/21 6 DAYS 4 33 2426 2992 

 
Favorable when N > 27, else Unfavorable 

 

Unit 

production cost 

KES 

Unit holding 

cost KES 

Unit shortage 

cost KES 

PRODUCT C, Selling price per carton = 1194 KES 836.1111111 8.3611111 91.9722222 

MONTH DATE   WEEK 

CUSTOMERS 

(N) 

DEMAND (D) 

(x103) 

ON HAND 

INVENTORY 

(V)  (x103) 

1 

1/3/21 - 6/3/21 6 DAYS 1 16 1746 2581 

8/3/21 - 13/3/21 6 DAYS 2 39 4929 4656 

15/3/21 - 20/3/21 6 DAYS 3 19 3347 4538 

22/3/21 - 27/3/21 6 DAYS 4 37 5020 5514 

2 

1/4/21 - 7/4/21 6 DAYS 1 7 875 2050 

8/4/21 - 14/4/21 6 DAYS 2 23 4757 3690 

15/4/21 - 21/4/21 6 DAYS 3 19 3068 2687 
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22/4/21 - 28/4/21 6 DAYS 4 33 3005 4189 

3 

1/5/21 - 7/5/21 6 DAYS 1 16 1745 3309 

8/5/21 - 14/5/21 6 DAYS 2 38 3263 3259 

15/5/21 - 21/5/21 6 DAYS 3 39 3093 4115 

22/5/21 - 28/5/21 6 DAYS 4 33 4146 5177 

 
Favorable when N > 26, else Unfavorable 

 

Unit 

production cost 

KES 

Unit holding 

cost KES 

Unit shortage 

cost KES 

PRODUCT D, Selling price per carton = 4500 KES 3150 63 346.5 

MONTH DATE   WEEK 

CUSTOMERS 

(N) 

DEMAND (D) 

(x103) 

ON HAND 

INVENTORY 

(V)  (x103) 

1 

1/3/21 - 6/3/21 6 DAYS 1 15 308 5263 

8/3/21 - 13/3/21 6 DAYS 2 29 2891 7337 

15/3/21 - 20/3/21 6 DAYS 3 24 1757 7081 

22/3/21 - 27/3/21 6 DAYS 4 38 6619 5654 

2 

1/4/21 - 7/4/21 6 DAYS 1 8 231 3525 

8/4/21 - 14/4/21 6 DAYS 2 17 2046 6243 

15/4/21 - 21/4/21 6 DAYS 3 15 1617 5922 

22/4/21 - 28/4/21 6 DAYS 4 45 4443 5951 

3 

1/5/21 - 7/5/21 6 DAYS 1 14 559 3765 

8/5/21 - 14/5/21 6 DAYS 2 37 3686 4738 

15/5/21 - 21/5/21 6 DAYS 3 28 1537 4980 

22/5/21 - 28/5/21 6 DAYS 4 44 5626 5746 

 
Favorable when N > 34, else Unfavorable 

 

Unit production 

cost KES 

Unit holding 

cost KES 

Unit shortage 

cost KES 

PRODUCT E, Selling price per carton = 3750 2625 78.75 288.75 

MONTH DATE   WEEK 

CUSTOMERS 

(N) 

DEMAND (D) 

(x103) 

ON HAND 

INVENTORY 

(V)  (x103) 

1 

1/3/21 - 6/3/21 6 DAYS 1 20 904 2333 

8/3/21 - 13/3/21 6 DAYS 2 50 2220 4800 

15/3/21 - 20/3/21 6 DAYS 3 28 1200 5341 

22/3/21 - 27/3/21 6 DAYS 4 58 3827 6400 

2 

1/4/21 - 7/4/21 6 DAYS 1 12 335 2802 

8/4/21 - 14/4/21 6 DAYS 2 31 1672 5037 

15/4/21 - 21/4/21 6 DAYS 3 24 1893 6102 

22/4/21 - 28/4/21 6 DAYS 4 37 1480 5750 

3 

1/5/21 - 7/5/21 6 DAYS 1 17 608 4906 

8/5/21 - 14/5/21 6 DAYS 2 39 1528 5433 

15/5/21 - 21/5/21 6 DAYS 3 41 1570 5576 

22/5/21 - 28/5/21 6 DAYS 4 47 2224 5614 
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Appendix 9: Photos at MOVIT products (U) Ltd during data collection 
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Appendix 10: MATLAB Solutions 

PRODUCT A 

Objective function 

   

Let Pk(A,1) = Pk 

Z=  

Focus objective function needed to satisfy the given goals; 

Z = P1d1
- + P2d2

- + P3d3
++ P4d4

+     

Constraints 

XFF(A,1) + XFU(A,1) +d1
- = 8,140.1 

XUF(A,1) + XUU(A,1) +d2
- = 17,453.9  

79940.9XFF(A,1) + 27872.5XFU(A,1) -d3
+ = 66,137.6 

169034.5XFU(A,1) + 1111.3XUU(A,1) -d4
+ = 115,668.5 

The values were then inserted in the editor window of MATLAB with Aeq being the 

values of the LHS of the constraints and Beq being the values of RHS of the 

constraints. The Big M method was also used to determine the coefficients of the 

priorities. The lower bounds (lb) were set to zero and the upper bounds (ub) set to 

positive infinity. (Used the linprog solver in MATLAB) 
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PRODUCT B 

Objective function 

   

Let Pk(B,1) = Pk 

Z=  

Focus objective function needed to satisfy the given goals; 

Z = P1d1
- + P2d2

- + P3d3
++ P4d4

+     

Constraints 

XFF(B,1) + XFU(B,1) +d1
- = 4,562.3836 

XUF(B,1) + XUU(B,1) +d2
- = 17,290.18    

6,960.792XFF(B,1) + 90,040.7449XFU(B,1) -d3
+ =     

528,976.6871XFU(B,1) + 3,308.4752XUU(B,1) -d4
+ =  
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PRODUCT C 

Objective function 

   

Let Pk(C,1) = Pk 

Z=  

Focus objective function needed to satisfy the given goals; 

Z = P1d1
- + P2d2

- + P3d3
++ P4d4

+     

Constraints 

XFF(C,1) + XFU(C,1) +d1
- = 12,104.6162 

XUF(C,1) + XUU(C,1) +d2
- = 22,967.8994       

83802.0156XFF(C,1) + 40758.551XFU(C,1) - d3
+ = 71,741.2368 

207566.6082XFU(C,1) + 858.4466XUU(C,1) - d4
+ = 15,6075.6051   
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PRODUCT D 

Objective function 

   

Let Pk(D,1) = Pk 

Z=    

Focus objective function needed to satisfy the given goals; 

Z = P1d1
- + P2d2

- + P3d3
++ P4d4

+     

Constraints 

XFF(D,1) + XFU(D,1) +d1
- = 5848.1378 

XUF(D,1) + XUU(D,1) +d2
- = 12517.62   

249983.685XFF(D,1) + 488.25XFU(D,1) - d3
+ = 180399.4082 

563913.7875XFU(D,1) + 89.775XUU(D,1) - d4
+ = 446638.3929   
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PRODUCT E 

Objective function 

   

Let Pk(E,1) = Pk 

Z=  

Focus objective function needed to satisfy the given goals; 

Z = P1d1
- + P2d2

- + P3d3
++ P4d4

+     

Constraints 

XFF(E,1) + XFU(E,1) +d1
- = 69.6644 

XUF(E,1) + XUU(E,1) +d2
- = 6286.9678 

38812.725XFF(E,1) + 2026.6313XFU(E,1) - d3
+ = 27147.8547 

255664.2375XFU(E,1) + 2.1263XUU(E,1) - d4
+ = 188118.3077 

 

 


