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Over the past few years, a number of studies have revealed that a significant
number of men with prostate cancer had genetic defects in the DNA damage
repair gene response and mismatch repair genes. Certain of these modifications,
notably gene alterations known as homologous recombination (HRR) genes;
PALB2, CHEK2 BRCA1, BRCA2, ATM, and genes for DNA mismatch repair
(MMR); MLH1, MSH2, MSH6, and PMS2 are connected to a higher risk of
prostate cancer and more severe types of the disease. The DNA damage repair
(DDR) is essential for constructing and diversifying the antigen receptor genes
required for T and B cell development. But this DDR imbalance results in stress on
DNA replication and transcription, accumulation of mutations, and even cell
death, which compromises tissue homeostasis. Due to these impacts of DDR
anomalies, tumor immunity may be impacted, which may encourage the growth
of tumors, the release of inflammatory cytokines, and aberrant immune reactions.
In a similar vein, people who have altered MMR gene may benefit greatly from
immunotherapy. Therefore, for these treatments, mutational genetic testing is
indicated. Mismatch repair gene (MMR) defects are also more prevalent than
previously thought, especially in patients with metastatic disease, high Gleason
scores, and diverse histologies. This review summarizes the current information
on the mutation spectrum and clinical significance of DDR mechanisms, such as
HRR and MMR abnormalities in prostate cancer, and explains how patient
management is evolving as a result of this understanding.
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1 Introduction

Prostate cancer (PCa) is the most common cancer among men
worldwide and a significant public health burden. The disease is
diagnosed more frequently than any other type of cancer (Sanjose
et al., 2011; Lozano et al., 2012; Sung et al., 2021). Previous studies
(Siegel et al., 2011; El Noor and El Noor, 2015; Bugoye et al., 2019),
have shown that PCa is the most frequent solid tumor in males and
one of the main causes of cancer-related deaths in men worldwide.
The incidence and mortality of PCa are alarming, 2,293,818 new
cases are anticipated to be diagnosed between now and 2040, and a
1.05% rise in mortality is expected (Rawla, 2019). Incidence and
death of PCa are both associated with age at the time of diagnosis.
African-American men have higher incidence rates than white men.
Previous researchers reported 158.3 new cases per 100,000 African-
American men and twice the mortality rate compared to reported
data in white men, and the disparity is caused by a variety of social,
environmental, and genetic factors (Panigrahi et al., 2019). PCa
progression is typically gradual and symptom-free, and treatment
may not even be necessary, but most frequent complaints are
difficulty urinating, increased urination frequency, and nocturia,
though prostatic enlargement may induce similar symptoms. The
advanced stages of the disease may appear with back discomfort and
urinary incontinence because the axial skeleton is the most usual site
of bone metastatic sickness.

In 2018, 1,276,106 new cases of PCa were reported worldwide,
making up about 7.1% of all male malignancies (Bray et al., 2018;
Rawla, 2019). Prostate cancer incidence rates vary by geographic
area, and these variations have been connected to a range of
modifiable and non-modifiable factors (Rawla, 2019; Sung et al.,
2021). Smoking, food, obesity, and exposure to chemicals are all
aspects of lifestyle that can be modified to lower the chance of
developing prostate cancer. These risk factors can be changed or
managed to reduce a person’s chance of developing the illness. Age,
race/ethnicity, family history, and some genetic alterations such as
mutations in the Homologous recombination-related DNADamage
Repair genes PALB2, CHEK2, BRCA1, BRCA2, ATM, and MLH1,
MSH2,MSH6, PMS2Mismatch Repair (MMR) genes are risk factors
that cannot be modified to reduce risk of developing disease (Lang
et al., 2019; Sedhom and Antonarakis, 2019; van Wilpe et al., 2021).
In this review, the Mutation spectrum of HRR genes, and DNA
MMR genes involved in DNA damage repair mechanisms and their
therapeutic applications are discussed.

2 Materials and methods

The peer-reviewed articles in this review spanned the time
between January 2000 and June 2023 and were taken from
PubMed and Google Scholar. The search terms “prostate cancer
OR genetic alteration OR mutation variant OR gene OR DNA
Damage repair OR individual OR Mismatch repair OR
Homologous recombination OR immunotherapy OR prevalence
OR frequency OR Genetic OR Spectrum OR Landscape” were
used. 1,222 publications from Google Scholar and
12,773,760 articles from Pubmed made up 12,774,982 total
results for our search phrase. Since broad key terms were
employed, the search string’s filtering mechanism also supplied

irrelevant results. The following inclusion criteria were used to
manually screen retrieved articles: 1) Articles describing a
phenotypic or genetic condition associated with prostate cancer
2) Articles that detail genetic variations 3) Articles describing gene
changes related to DNA damage repair 4) Articles outlining genes
involved in homologous recombination repair (HRR) 5) Articles
discussing DNA damage repair modifications and the clinical or
therapeutic use of the Mismatch Repair (MMR) gene. To retrieve
and validate the reported Mutations, Either ClinVar, European
Nucleotide Archive (ENA), DNA Databank of Japan (DDBJ), or
Gene Bank Genetic Variants databases were used. Also, with the
exception of two articles published in 1999 and 1998, all other
selected articles published in 2000 and above were considered.
However, articles with irrelevant information for this review and
those with redundant information and duplicate information were
not selected. Thus, in this review, 174 articles were used.

3 Race and ethnicity in prostate cancer

Hereditary factors are known to play a role in the higher
mortality and incidence rates of PCa in African American males
compared to European American men (DeSantis et al., 2016).
Greater genomic mutation, which results in a more aggressive
phenotype, is one of the characteristics of the ethnic disparities
in PCa biology. Knowing how to target genetic anomalies like DDR
gene mutations offers the way to efficient treatments that can
improve clinical outcomes (Kohaar et al., 2022; White et al.,
2022). Compared to white males, men with African heritage and
men from South America continue to have higher incidence and
mortality rates of PCa (Belkahla et al., 2022). Men from the Middle
East, North Africa, and Asia often have the lowest incidence of PCa
in comparison to other ethnic groups, such as non-Hispanic White
males, who have a chance of PCa diagnosis of 1 in 8 men over their
lifetime, data from the National Cancer Institute suggest that men of
African descent often have the greatest rate (1 in 6 men) (Akaza
et al., 2011; Powell and Bollig-Fischer, 2013). A number of factors,
including the downregulation of DNA repair genes in African men,
contribute to the increased incidence and mortality rate of prostate
cancer in African men. When compared with Non-Hispanic white,
African American men were found with upregulation genes
governing inflammatory pathways including CCL4, IFNG, CD3,
IL33, and ICOSLG despite the downregulation of DNA damage
response mechanisms (DeSantis et al., 2016; Nair et al., 2022).
However, it should be highlighted that race is a social rather
than a biological construct; in PCa, there have been conflicting
results and challenges to demonstrate the prevalence and differences
in DNA repair gene mutation between races, and results ought to be
handled with caution (Reizine et al., 2023).

4 Challenges and controversies in the
management of prostate cancer

The biological heterogeneity of PCa is the root of many of the
difficulties in treating the condition. Due to the clinical tumor
presentation, genetic or phenotypic variability, and therapy
outcomes, PCa has been described as a heterogeneous illness
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(Tolkach and Kristiansen, 2018; Haffner et al., 2021). Because of
these heterogeneities, there is no one-size-fits-all approach to
treating PCa. This has led to controversies over how to treat
patients (Shore et al., 2022). For instance, the issue of whether
routine PCa screening is more advantageous than the risk of over-
detection and over-treatment is still up for debate and necessitates
individualized treatment approaches (Force, 2018; Shore et al.,
2022). Despite the promise of precision therapy in the treatment
of PCa has increased due to advances in genetic testing, the use of
genetic data by practitioners in developing countries is hampered by
issues with insufficient capacity, the number of patients requiring
genetic testing, and accessibility (Szymaniak et al., 2020). Similar to
this, worries about overtreatment have changed recommendations
for active monitoring, and physicians’ approaches to managing PCa
vary widely (Shore et al., 2022). According to research, more than
50% of respondents disagree with management concerns relating to
PCa which is advancing (Saad et al., 2019). These findings, along
with others of a similar nature, have highlighted the necessity of
improved knowledge of the genetic mutation spectrum in prostate
cancer (Finch et al., 2022) and other concerted efforts to improve the
illness management (Gillessen et al., 2015; Gillessen et al., 2018; Saad
et al., 2019; Gillessen et al., 2020). Genetic Mutation in Prostate
Cancer.

Genetic and epigenetic changes normally occur at different
levels, and these genetic modifications have provided potential
applications as biomarkers in cancers. The genetic origins of
prostate cancer have been the subject of research for decades.
This is because genes involved in the DNA damage repair
pathways can increase the risk of developing PCa (Robinson
et al., 2015a). In Cells, there are sophisticated networks of non-
redundant mechanisms, including base alterations, strand breaks,
and interstrand crosslinks, these mechanisms detect and repair
DNA damage. Direct repair, base excision repair, nucleotide
excision repair, mismatch repair (MMR), homologous
recombination repair (HRR), non-homologous end joining
(NHEJ), and the Fanconi anemia repair pathways are important
DNA damage repair mechanisms. According to research, this PCa is
substantially more likely to be developed in carriers of HRR and
MMR gene mutations (Robinson et al., 2015a).

4.1 Mismatch repair gene mutations

A post-replication technique called DNA mismatch repair
(MMR) is used to correct base mismatches and replication-
related insertion or deletion mistakes. Genetic instability is
brought on by a loss of MMR gene function resulting in a
buildup of errors that typically occur during DNA replication
(Chen et al., 2001). The risk of PCa in men with MMR gene
mutations has been demonstrated to be significantly enhanced
(Rantapero et al., 2020). Individuals that have MMR mutations
are typically predicted to account for 2%–5% of PCa cases (Ritch
et al., 2020; Ye et al., 2020), and they are generally identified by their
Gleason score 8 and de novometastases (Dominguez-Valentin et al.,
2016; Ye et al., 2020; Jiang et al., 2021; Graham and Schweizer, 2022).
The genetic mutations in MMR genes in the prostate may aid in
understanding PCa carcinogenesis, which may have additional
repercussions for ICBs and other types of treatment. This review

effort focuses on the MSH2, MSH6, MLH1, and PMS2 genes
(Table 1), which are more frequently found in PCa and have
recently been described by Pecina et al., though previous authors
have reported on otherMMR genes which are also connected to high
microsatellite instability and high tumormutational load involved in
PCa progression (Chen et al., 2011; Sedhom and Antonarakis, 2019;
Pećina-Šlaus et al., 2020).

4.1.1 MutL homolog 1
The MutL homolog 1 (MLH1) protein, a member of the MutL

family of DNAmismatch repair proteins.MLH1 consists of 56kilobases
is located in chromosome 3 and consists of 11 exons for coding
MLH1 Protein which recognizes incorrect nucleotides, causing them
to be expelled and replaced in a strand-directed manner (Fukuhara
et al., 2014; Zhen et al., 2018). Several PCa cohorts have been examined
for the breadth ofMLH1 gene mutations using sequencing data (Pande
et al., 2012; Haraldsdottir et al., 2014; Dominguez-Valentin et al., 2016).
MLH1 mutations were found in 0.7% of the 150 mCRPC patient
(Robinson et al., 2015b). Additionally, PCa with the MLH1 gene
mutation has been connected to an elevated acute form of the
illness, a higher Gleason score, a lack of differentiation, and a higher
rate of distant metastasis (Shenderov et al., 2019; Antonarakis et al.,
2020). Frameshift, deletion, andmissensemutations are additionally the
most prevalentMLH1mutation types in PCa (McVety et al., 2005). The
MLH1 mutation previously identified in PCa patients comprises the
following variants associated with a higher risk of PCa; c.350C>T,
c.588+5G>A, c.1537 1547delInsC, c.1667+2delTAAATCAinsATTT,
c.1667+2delTAAATCAinsATTT, and c.1732-2A>T (Raymond et al.,
2013; Dominguez-Valentin et al., 2016).

4.1.2 MutS homolog 2 (MSH2) gene
The MSH2 gene is responsible for the production of proteins

involved in the MMRmechanism.MSH2 gene is located in the short
arm of chromosome 2 (2p21) and encodes proteins that aid in DNA
mismatch repair (Salo-Mullen et al., 2018; Zhen et al., 2018). In
collaboration with the MutL homolog (MLH1) protein, MSH2
detects and corrects mismatched DNA base pairs that occur
during DNA replication (Chakraborty and Alani, 2016; Furman
et al., 2021). The MSH2 gene is commonly changed in PCa by
deletion, missense, and frameshift mutations that also cause the
buildup of neoantigens, raise the burden of tumor mutations, and
increase the density of lymphocytes that infiltrate tumors
(Haraldsdottir et al., 2014; Dominguez-Valentin et al., 2016).

4.1.3 MutS homolog 6 (MSH6) gene
The MSH6 gene is found on the short arm of chromosome 2

(2p16.3) (Salo-Mullen et al., 2018; Zhen et al., 2018). The MSH6
gene participates in MMR pathways and mutation of this gene has
been associated with an increase in the likelihood of developing PCa
(Pritchard et al., 2014) According to recent research, structural
rearrangements such as insertions and deletions are what make
MSH6 more susceptible to mutations (Dominguez-Valentin et al.,
2016).

4.1.4 PMS1 homolog 2 (PMS2) gene
The PMS2 gene with approximately 38,000 base pairs is located

on chromosome 7. The gene consists of 15 exons that code for the
862 amino acids that make up the PMS2 protein (Fukuhara et al.,
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2015). The produced protein is essential to the mismatch repair
mechanism, which corrects small insertions and deletions as well as
DNA mismatches that may occur during homologous
recombination and DNA replication. As previously reported,
Genomic integrity is protected by DNA mismatch repair, which
corrects mismatches brought on by DNA replication and

recombination (Wu et al., 2003). A multitude of essential phases
in mismatch repair are orchestrated by the human MutL-alpha
heterodimer. As has been previously noted, the nuclear import of
MutL-alpha may be the initial regulatory step in initiating the
mismatch repair mechanism (Leong et al., 2009). When this
protein forms heterodimers with the MutL homolog 1 (MLH1)

TABLE 1 Summary of mismatch repair genes related to PCa.

Gene Chromosome Total number
of Exon
coverage

Prevalence of
Germline Mutation
in mCRPC

Reported Mutation References

MLH1 3 19 0–0.9% Del exon 19 c.350C>T Fukuhara et al. (2014); Haraldsdottir et al. (2014);
Dominguez-Valentin et al. (2016); Wilczak et al.
(2017); Sharma et al. (2020); Javeed et al. (2022)c.588+5G>A

c.1537_1547delinsC

c.1667+2delTAAATCAinsATTT

c.1732-2A>T

c.1852_54delAAG

c.1310del

MSH2 2 16 1–2% c.942+3A>T Haraldsdottir et al. (2014); Pritchard et al. (2014);
Pritchard et al. (2016); Le et al. (2015);
Dominguez-Valentin et al. (2016); Abida et al.
(2017); Ye et al. (2020); Chang et al. (2022)

Del exons 1-6

Del exon 8 c.2038>T

c.1906G>C

c.560G>T

C.892C>T c.1786_788del AAT

c.2347del C

C2orf61343kb inversion

FBXO11 inversion

KCNK12 74kb inversion

KCNK12 40kb inversion

Exons 8-16 del c.1082del

c.1124_1125insG

c.2364_2365insTACA

MSH6 2 10 1% c.3155_315delAG Haraldsdottir et al. (2014); Pritchard et al. (2014);
Pritchard et al. (2016); Mateo et al. (2015);
Wilczak et al. (2017); Ye et al. (2020); Chang et al.
(2022); Cheng et al. (2023)

c.3261dupC

c.1444C>T

c.1483C>T

c.3647-1G>A

c.3609_3612delTGCA

c.3992+1T>C

del exon 8 to 3′ UTR

c.3799_3800del

c.3573del

PMS2 7 15 0.29–0.4% Del exons 11-12 Haraldsdottir et al. (2014); Pritchard et al. (2016);
Wilczak et al. (2017); Chang et al. (2022); Cheng
et al. (2023)
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gene product, the resulting structure is known as the MutL-alpha
heterodimer. The MutL-alpha heterodimer’s endonucleolytic
activity is essential for the removal of the mismatched DNA, and
the MutS-alpha and MutS-beta heterodimers identify mismatches
and insertion/deletion loops (Reyes et al., 2015). Lynch Syndrome
(LS), a multi-organ cancer syndrome, is caused by genetic
abnormalities in the four MMR genes (MLH1, MSH2, MSH6,
and PMS2). The most recent MMR gene to be connected to
Lynch Syndrome is PMS2 (Hendriks et al., 2006). It has been
hypothesized that PMS2 mutations, in contrast to MLH1 and
MSH2 mutations, may be linked to a later stage of cancer
development (Hendriks et al., 2006). In addition to the several
MMR genes, the PMS2 gene like many other genes associated
with PCa, has also been identified as having polymorphisms and
mutations (Fukuhara et al., 2015). Earlier studies have shown that
males with PMS2 mutations are more likely to develop PCa
(Haraldsdottir et al., 2014).

4.2 Mutation in homologous recombination
repair genes

Genomic instability and eventually cancer are brought on by the
accumulation of mutations brought on by faults in the DNA damage
response pathways (Bartek et al., 2001; Bartek and Lukas, 2003;
Antoni et al., 2007), and the path that is frequently blocked is the
homologous recombination pathway (van Wilpe et al., 2021). Since
some of the proteins in this system are frequently altered in human
cancers and a number of heritable conditions that are predisposed to
developing cancer, disruption of this route has been demonstrated to
play a significant part in the genesis of cancer (Khanna and Jackson,
2001). In the face of various DNA-damaging events, the homologous
recombination mechanism is essential for maintaining genomic
integrity, Men who carry inherited mutations in essential
homologous recombination pathways have a significantly elevated
lifetime risk of developing PCa compared to noncarriers (van Wilpe
et al., 2021). The ability to test for carriers of those mutations using
DNAnext-generation sequencing technology has enabled the creation
of prospective risk-reduction strategies and the justification for the
therapeutic strategy for these individuals. There are currently
promising new prospects for treating PCa in people who have
mutations in homologous recombination repair genes. The use of
immune-based therapies, chemotherapy with platinum, and PARP
inhibitors are all viable treatment alternatives (Antonarakis et al.,
2019). Castrate-resistant PCa (CRPC) patients have not responded
well to immuno checkpoint blocking (ICB) or inhibitor therapy. Only
3%–5% of CRPC patients benefit from anti-PD-1 therapy
(Antonarakis et al., 2019). Additionally, research has shown that
using ICBs in conjunction with other treatments can improve
response rates. For instance, the response rate of a combination of
ipilimumab and nivolumab is predicted to be between 10%–26%
(Boudadi et al., 2018).When homologous recombination repair genes
BRCA1/2, ATM, PALB2, and CHEK2 are inactive, a variety of error-
prone and non-conservative DNA repair pathways are used,
increasing the incidence of cancer and worsening its prognosis
while also causing genomic instability (Castro and Eeles, 2012;
Amsi et al., 2020). The details of homologous recombination genes
involved in DNA damage repair are summarized in Table 2 below.

4.2.1 BRCA1 and BRCA2
Epidemiological research has connected Breast cancer gene

1(BRCA1) and Breast Cancer gene2 (BRCA2) mutations to the
risk of PCa; nevertheless, 5%–15% of cases of prostate cancer are
caused by high-risk hereditary variables (Ferrís-i-Tortajada et al.,
2011). Pathogenic mutations, which account for less than 1% of
BRCA1, and about 2% in BRCA2 of incident PCa cases, are likely to
be the cause of the disease (Kote-Jarai et al., 2011; Leongamornlert
et al., 2012) Click or tap here to enter text in mutation carriers. Male
BRCA2 carriers have a higher lifetime chance of acquiring PCa than
BRCA1 carriers (Roy et al., 2012). The DNA damage repair (DDR)
process uses non-conservative and potentially mutagenic methods
when these BRCA1 and/or BRCA2 genes are absent. There is
evidence that this genomic instability contributes to the cancer
risk associated with harmful BRCA gene mutations (Salmi et al.,
2021). BRCA1 and BRCA2 pathogenic mutation carriers have a
relative risk of PCa that is enhanced by 1.8–3.8 and 2.5 to 8.6 times,
respectively, by the time they are 65 years old (Thompson et al.,
2003; Agalliu et al., 2007; Leongamornlert et al., 2012). BRCA1 and
BRCA2 gene mutation testing, as well as their correlation with
higher Gleason scores (8>), and therapeutic use in PCa
management, have drawn the attention of experts to familial PCa
in particular (Amsi et al., 2020). Numerous authors have discussed
the mutation spectrum in relation to PCa risk, but Ashkenazi Jewish
and Icelandic populations have been found to have frameshift
deletion 185delAG and a frameshift insertion 5382insC for
BRCA1 and BRCA2 frameshift deletion, as well as
999del5 founder mutations linked to poor survival in young
people (Wilkens et al., 1999; Tryggvadóttir et al., 2007). In
addition, PCa patients in the United Kingdom with significantly
younger ages (<56 years) were found to have two base pair deletions
5531delTT and four base pair deletions 6710del ACAA frameshift
mutation in the BRCA2 gene (Gayther et al., 2000). Additionally,
different studies reported various types and different mutation
frequencies (Wilkens et al., 1999; Vazina et al., 2000; Ikonen
et al., 2003; Gallagher et al., 2010; Castro et al., 2013; Maia et al.,
2016; Shenoy et al., 2016). Most of the reported mutations are frame-
shift mutations. The differences in the prevalence of BRCA1/2
mutations amongst populations may be due to differences in
study sample size, inclusion criteria, patient ethnic origins, and
other factors. In this review, some of the previously reported BRCA1
and BRCA2 pathogenic mutations associated with PCa in different
populations are summarized in Table 3.

4.2.2 Ataxia telangiectasia mutated (ATM) gene
The Ataxia Telangiectasia Mutated (ATM) gene is in charge of

producing the serine/threonine kinase that is connected to PI3K and
is thought to be involved in maintaining genomic integrity. On
chromosomes 11q22–23, ATM is located and has 66 exons and a
coding sequence of 9,168 base pairs (Choi et al., 2016). In the
double-strand break (DSB) repair process,ATM functions as a signal
transducer and is essential for the detection of DNA damage and the
cellular response to it (Virtanen et al., 2019). The rearrangement of
antibody genes during B-cell maturation or meiotic recombination,
as well as ionizing radiation, chemotherapeutic drugs, or oxidative
stress, can all result in DSB, according to other findings (Lieber,
2011; Bednarski and Sleckman, 2012; Choi et al., 2016). RAG DSBs
trigger traditional DNA damage responses by activating ATM and
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DNA-PKcs, both of which are serine-threonine kinases that are a
member of the phosphatidylinositol-3-kinase (PI3K)-like family
(Callén et al., 2009). This is similar to other DSBs created in the
G1 phase of the cell cycle (Bednarski and Sleckman, 2012). Both
ATM and DNA-PKcs function as transducers in the DNA damage
response, phosphorylating a range of downstream effectors (Callén
et al., 2009).

Due to the different and redundant functions that ATM and
DNA-PKcs play in the response to RAG-mediated DSBs, immune
system deficiencies and errors in DNA end repair occur in mice and
individuals who lack either of these kinases (Bednarski and
Sleckman, 2012). According to the information that is currently
available, castration-resistant PCa have an enrichment of
approximately two times the frequency of localized PCa in terms
of tumoral germline or somatic ATM mutations, which vary from
5% to 8% of the tumors, also Men with pathogenic ATM mutations
have an increased risk of developing PCa, which may potentially
cause the condition to appear earlier (Giri and Beebe-Dimmer, 2016;
Thalgott et al., 2018; Wokołorczyk et al., 2020). There is limited
information about populations in Africa, despite some populations
being known to carry these mutations and being discussed in this
review. In the research conducted on 390 Polish people, eight genes
were mutated and 76 males (19.5%) had a mutation in one of the
BRCA1, BRCA2, ATM, CHEK2, MSH2, or MSH6 genes. A total of
11 mutations (2.8%) associated with ATM were among the reported
gene variations. A few one-stop gains in the ATM gene have been
documented, including c.8545C>T, c.742C>T, c.5932G>T, and
c.7096G>T. A frameshift mutation, c.7010_7011del, two splice
acceptor variations, c.7630-2A>C, and two missense mutations,
c.6095G>A and c.8147 T>C, are all found in the ATM gene, but
all of those alterations were not reported in the control groups
(Wokołorczyk et al., 2020).

4.2.3 Partner and localizer of BRCA2 (PALB2)
The BRCA1-PALB2-BRCA2 protein, which is encoded by the

partner and localizer of BRCA2 (PALB2), is found on chromosome
16 and forms the PALB2 complex. The molecular scaffold, PALB2,
interacts with BRCA2. It is essential for homologous recombination
and DNA double-strand break (DSB) repair (Sy et al., 2009).
Fanconi anemia is also brought on by germline homozygous loss

of function (LoF) mutations of PALB2, like BRCA2 (Reid et al., 2007;
Xia et al., 2007), although heterozygous LoF mutations have been
associated with hereditary breast cancer and pancreatic cancer
(Jones et al., 2009; Antoniou et al., 2014). Despite new
correlations between pathogenic PALB2 mutations and an
elevated risk of different cancer, research on the PALB2 gene’s
role in PCa has produced conflicting results. The authors of this
study are aware of new results linking PALB2 to a statistically
significant increase in the chance of developing PCa (Yang et al.,
2020). While it has long been known that these polymorphisms
increase the risk of breast cancer, data on PALB2’s role in PCa have
also been decisively proven (Horak et al., 2019; Wokołorczyk et al.,
2020; Bouras et al., 2022).

The authors also acknowledge that there has not been much
research on PALB2 pathogenic mutations in PCa patients, but
research conducted in Poland in 2021 by Wokolorczyk and
others found that aggressive cancers with high Gleason scores of
8–10 were more frequently diagnosed with the two founder
mutations of PALB2 c.509_510delGA and c.172_ 175delTTGT,
which together account for 80% of all PALB2 mutations.
Furthermore, the 5′ ends of the PALB2 gene were the location of
these founder mutations, as described by Wokolorczyk
(Wokołorczyk et al., 2021). Additionally, these c.509_510delGA
and c.172_ 175delTTGT variants result in a translational
frameshift with a predicted alternate stop codon and are
predicted to cause PALB2 function to be lost through premature
protein truncation or nonsense-mediated messenger RNA decay.
These research findings are strengthening the case that the two
Polish founder mutations of PALB2 are also pathogenic for breast
cancer (Wokołorczyk et al., 2021).

4.2.4 Checkpoint kinase 2(CHEK2)
Cell cycle checkpoint kinase 2 (CHEK2) is a protein that

participates in DNA damage response in many distinct cell types.
Ataxia Telangiectasia Mutated (ATM) protein activates CHEK2 to
prevent the buildup of mutations and reduce the risk of cancer when
DNA is damaged (Bartek et al., 2001; Bartek and Lukas, 2003;
Antoni et al., 2007). By activating CHEK2 in response to DNA
damage, the checkpoint control pathways’ downstream targets, such
as p53, Cdc25A, Cdc25C, BRCA1, E2F1, Pml1, Plk3, and other

TABLE 2 Summary details of homologous recombination genes related to PCa.

Gene Chromosome Exon
coverage

Protein prevalence of Gene
mutation in
Primary PCa

Prevalence of Gene
mutation in m
CRPC

References

BRCA1 17 24 Breast cancer typer
1 susceptibility
protein 1

2.5–6.5 11–13 Dong (2006); Castro and Eeles
(2012); Lukashchuk et al. (2023)

BRCA2 13 27 Breast cancer typer
1 susceptibility
protein 2

2.5–6.5 11–13 Castro and Eeles (2012); Vietri
et al. (2021); Xie et al. (2022);
Lukashchuk et al. (2023)

ATM 11 66 Serine/threonine kinase 0.5–3 4–6 Vietri et al. (2021); Lukashchuk
et al. (2023)

PALB2 16 13 BRCA2-interacting
protein

0–1 0.3–3 Brandão et al. (2020), Lukashchuk
et al. (2023)

CHEK2 22 14 Serine/threonine kinase 0–1 1.4–2 Lukashchuk et al. (2023); Wang
et al. (2015)

Frontiers in Genetics frontiersin.org06

Bugoye et al. 10.3389/fgene.2023.1231536

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1231536


TABLE 3 Mutation spectrum of homologous recombination genes related to PCa.

Gene Population Reported Mutation References

BRCA1 Morrocan c.1953_1956delGAAA Salmi et al. (2021)

United Kingdom c.68_69delAG Leongamornlert et al. (2012)

c.212+1G>T

c.1954dupA

c.2475delC

Ashkenazi 185delAG Nastiuk et al. (1999), Petrovics et al. (2019), Wilkens et al. (1999)

5382insC

Poland c.5382insC Cybulski et al. (2013)

c.4153delA

c. 181T>G

BRCA2 Morrocan c.7234_7235insG Salmi et al. (2021)

BRCA2ΔE12 or BRCA2 del 12

Ashkenazi c.6174delT Petrovics et al. (2019), Wilkens et al. (1999)

United Kingdom 2558insA, c.IVS17-1G>C (Edwards et al. (2003))

c.6710delACAA

c.7084delAAAAG

c.7772insA

c.8525delC

Icelandic c.999del5 Tryggvadóttir et al. (2007)

Turkish c.4691A>T Manguoğlu et al. (2010)

German c.1813_14_insA Maier et al. (2014)

c.3847delGT

c.4449delA

c.6037A>T

c.7495C>T

ATM Poland c.1100delC, Cybulski et al. (2013)

c.IVS2 + 1G>A

c.del5395

c.I157T

c.8545C>T Wokołorczyk et al. (2020)

c.742C>T

c.5932G>T

c.7096G>T

c.8695dupA

c.8147 T>C

c.7630-2A>C

c.7010_7011delGT

c.6095G>A

(Continued on following page)
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substrates, are signaled. These substrates altered biological activities
resulting in cell cycle blockage, enhanced DNA repair, or apoptosis
(Bartek et al., 2001; Bartek and Lukas, 2003; Antoni et al., 2007). Cell
cycle regulator CHEK2 controls the homologous recombinant DNA
repair process, suppresses tumors, and genetic changes in it render
cancers more susceptible to more advanced targeted therapies.
CHEK2 is phosphorylated and activated in an ATM-dependent
way in response to certain DNA-damaging substances (Matsuoka
et al., 1998).

In the cell-cycle checkpoint control, active CHEK2 and other
DNA damage-triggered protein kinases stabilize TP53 or speed up
Cdc25A degradation through the coordination of DNA repair, cell-
cycle progression, and death (Matsuoka et al., 1998; Hirao et al.,
2000; Falck et al., 2001; Zannini et al., 2014) The tumor-suppressing
function of the cell cycle regulator CHEK2 is mediated via
homologous recombinant DNA repair, and genetic changes in it
render malignancies susceptible to more advanced targeted
therapies. CHEK2 is phosphorylated and activated in an ATM-
dependent way in response to certain DNA-damaging agents
(Matsuoka et al., 1998). Activated CHEK2 and other DNA
damage protein kinases stabilize TP53 or hasten Cdc25A
degradation in the cell-cycle checkpoint regulation via
coordinating DNA repair, cell-cycle progression, and apoptosis
(Matsuoka et al., 1998; Hirao et al., 2000; Bartek et al., 2001;
Falck et al., 2001; Zannini et al., 2014) The frameshift 1100delC
mutation in the CHEK2 gene, which causes the translation of a
truncated CHEK2 protein product lacking kinase function, is the
gene variation that has received the most attention. A substitution
G>A in the exon 2 splice site has also been known as the IVS2 +
1G>A (or 444 + 1G>A) mutation. Because of this substitution, an
aberrant splicing event occurs which also causes the insertion of a 4-
base pair fragment, and finally, a frameshift that terminates at codon
154 in exon 3 (Dong et al. (2003)). Men with the CHEK2 1100delC,
IVS2 + 1G>A, and I157T missense mutations have a higher chance
of developing PCa, while there is no evidence that these CHEK2

1100delC, variants cause the disease in all cases of familial PCa. A
previous study using 178 patients identified 13 CHECK2mutations,
of which 9 (10.7%) were found in the prostate cancer of
84 unselected patients and 4 (4.3%) were found in the early-
onset cancer of 94 patients (Dong et al. (2003)). Men from both
Europe and Africa have shown similar evidence of a CHEK2 risk
mutation for PCa. African men had a CHEK2 c.1343T>GOR of 3.03
(95% CI 1.53 to 6.03, p = 0.0006), whereas European men had a
CHEK2 c.1312G>T OR of 2.21 (95% CI 1.06 to 4.63, p = 0.030)
(Southey et al., 2016).

5 Genetic mutation and tumor
antigenicity in prostate cancer

The tumor is more likely to be recognized by the immune system
when it contains more neoantigens. The accumulation of these neo-
antigens is triggered by mutations in the DNA repair process. The
prevalence of mutations, which might increase the number of
neoantigens, would increase if specific DNA repair mechanisms,
including MMR and HRR are altered (Jiricny, 2013; De Mattos-
Arruda et al., 2020; Golan et al., 2021; Ma et al., 2022; Amodio et al.,
2023). Neoantigen-reactive T cells have been demonstrated in
studies to be one of the critical components of immunotherapy
efficacy, particularly in tumors with a high tumor mutational burden
(TMB) (Ye et al., 2020).When ICBs like CTLA4 and PD1 are used to
treat some forms of cancer, tumors with high TMB have superior
clinical results (Lu and Robbins, 2016; Ye et al., 2020; Graf et al.,
2022; Shi et al., 2022) Cancer-associated antigens, including
neoantigens derived from genetic mutations, are presented to
CD8+ T cells through the major histocompatibility complex
(MHC) on dendritic cells (DCs), and professional antigen-
presenting cells (APCs). However, the majority of neoantigens
are usually not recognized by the immune system, thus
identification of highly tumor-specific antigens is important for

TABLE 3 (Continued) Mutation spectrum of homologous recombination genes related to PCa.

Gene Population Reported Mutation References

China c.185+1G>C Ye et al. (2020)

PALB2 Poland c.509_ 510delGA Wokołorczyk et al. (2020)

c.172_ 175delTTGT

c.509_ 510delGA

c.172_ 175delTTGT

CHEK2 USA c.1100delC (Dong et al. (2003))

c.IVS2 + 1G>A

c.I157T

A751T

G715A

T470C

African American Men c.1343T>G Southey et al. (2016)

European Men c.1312G>T Southey et al. (2016)
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the development of personalized immunotherapy (Kiyotani et al.,
2018; De Mattos-Arruda et al., 2020) In patients with advanced and
other types of cancers, greater neoantigen load is a predictive factor
for a better result when utilizing ICBs (Hopfner and Hornung,
2020). Further studies are needed to fill this knowledge gap because
there is a lack of enough evidence in the literature to relate specific
DDR gene mutations to TMB, resistance to DNA-damaging
treatments, or radiation therapy.

6 Clinical and therapeutic implications
of DNA damage response mutation in
prostate cancer

In order to detect PCa and increase survival rates without over
diagnosing and overtreating patients, screening techniques have
been developed (Force, 2018). Oncologists can use risk
stratification in therapeutic decision-making, and the
stratification groups are routinely used to establish the inclusion
or exclusion criteria for patients to take part in studies looking at
drugs that are specifically targeted for a given risk group (Rodrigues
et al., 2012). There are a number of prostate risk stratification
methods in place, including the Gleason score, PSA levels,
clinical staging, and histological staging, among others; however,
none of these are enough to predict outcomes (S.-Y. Wang et al.,
2014). As a result, this drove the need for additional research until
recently, when 333 primary prostate tumors were examined for the
first time by the Cancer Genome Atlas Research Network, which
discovered that 19% of them contained DNA repair gene
abnormalities (“Cancer Genome Atlas Research Network,” 2015).
New classification schemes based on molecular traits have been
described, which will improve PCa precision medicine. Recent
studies have demonstrated that the DDR gene mutation raises
the risk of PCa (Castro et al., 2019; Chung et al., 2020).

Pathogenic mutation in the DDR genes BRCA1/2 and ATM
status differs between risk for aggressive and indolent PCa and is
linked to a younger death age and a shorter survival period (Na et al.,
2017). According to research, while some people have aggressive
cancers that metastasize and result in disease-related death, many
with indolent tumors can be successfully treated with early therapy
or monitored (Sakellakis et al., 2022). Furthermore, studies
conducted in various contexts with various populations have
demonstrated that homologous recombination repair (HRR) and
mismatch repair genes, which are mutated in a high proportion of
patients, are involved in aggressive PCa biology (Lukashchuk et al.,
2023). When managing familial cancer risk, knowledge of the
therapeutic sensitivity to novel targeted medications imparted by
these mutations in DNA damage response could be life-saving
(Herberts et al., 2023; Lukashchuk et al., 2023; Sorrentino and Di
Carlo, 2023).

6.1 Genetic mutation as prognostic
biomarkers

Patients with homologous recombination repair (HRR) and
mismatch repair (MMR) gene mutations are more likely to have
poor clinical outcomes, intraductal and cribriform structure, and

higher Gleason scores than patients without these mutations
(Risbridger et al., 2015; Schweizer et al., 2019). According to
studies, localized PCa with mutations in the HRR and MMR
genes displays a biological profile that is very aggressive and
resembles a treatment-resistant metastatic disease. The
dysregulation of MED12L/MED12 in localized PCa with HRR
and MMR gene alterations is an illustration of this. A
combination of genomic dysregulation of the Wnt-pathway
mediator complexes and enhanced genomic instability can
account for this. This imbalance is a typical castration-resistant
PCa molecular feature (Taylor et al., 2017). Genomic instability,
which is a characteristic of cancer cells that is not present in normal
cells due to DDR defects, is a well-known characteristic of these cells.
Men with genomic instability seem to have a worse prognosis and
are more likely to be diagnosed with PCa, especially in somatic cells
with shorter telomere lengths (Heaphy et al., 2013). According to the
most recent study that thoroughly investigated the function of DDR
mutation in PCa survival (Zhang et al., 2022), the majority of DDR
pathway mutations have been reported to be linked to a poor
prognosis (Heaphy et al., 2013). Castro and others highlighted
the function of the DDR gene mutation as a predictive
biomarker after finding a substantial relationship between
germline BRCA1/2 gene mutation and PCa aggressiveness. In
hereditary BRCA1/2 mutation carriers, Castro found that the risk
of stage T3/T4 cancer, nodal involvement, a Gleason score of 8 or
higher, and metastases at the time of initial diagnosis was increased
and that the survival time was also decreased (Castro et al., 2013). In
another study, it was discovered that patients with lethal PCa had a
significantly higher combined rate of germline BRCA/ATM
alterations than those with localized PCa, and those with local
disease or a diagnosis of metastases had a shorter prostate-
cancer-specific survival time than non-carriers (Na et al., 2017).
These findings were recently supported by research conducted by
Lukashchuk, Zhang, Silvestri, and others (Silvestri et al., 2020; Zhang
et al., 2022; Lukashchuk et al., 2023) thus, in addition to other
reported findings elsewhere, the current data suggest that DDR gene
mutation would be a helpful marker for disease screening.
Additionally, among reported DDR genes, the CHEK2 mutation
provides reliable evidence of PCa risk in African men (Southey et al.,
2016).

6.2 Genetic mutation and prostate tumor
recognition of the adaptive immune
response

The antigen recognition and immune cell activation in the
adaptive immune system depends on the interaction between
molecules of MHC on the surface of cells that present antigen
(APCs) and costimulatory molecules found on the surface of naive
T cells (Jiang et al., 2021). According to previous research, antigen
recognition by MHC molecules of Intratumoral T cell lymphocytes
depends on the activation and amount of T cells (Alexandrov et al.,
2013; Jiang et al., 2021). As reported by Alexandrov and others
(Alexandrov et al., 2013), the number of mutations that cause
alterations in the sequence of amino acids of the protein in a
tumor has a positive correlation with the quantity of tumor
neoantigen. Prostate and various forms of cancer develop at
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various rates in terms of intra-tumoral T-cell activation and the
number of cells involved (Alexandrov et al., 2013). Additionally,
when the non-synonymous mutation occurs in DDR genes, the
newly produced peptide is identified as foreign by immune cells and
elicits an adaptive immune response (Riaz et al., 2016). These non-
synonymous mutation rates could rise as a result of DDR deficits
and they have also been linked to the synthesis of peptides that affect
the proinflammatory responses, particularly in MMR genes (Jiricny,
2013).

6.3 Genetic mutation in predicting
immunotherapy

Immune Checkpoint Blockades (ICB)are therapeutic drugs that
specifically target negative inhibition receptors on host T
lymphocytes, such as cytotoxic T lymphocyte antigen 4 (CTLA-
4) and programmed death 1 (PD1), which are frequently taken over
tumors to hinder an efficient antitumor immune response. ICB acts
on the immune system to strengthen antitumoral immunity, in
contrast to conventional cancer therapies, which directly target
cancer cells (Lei et al., 2021). The therapeutic efficacy of ICB
using antibodies against inhibitory compounds produced on
tumor and immune cells has been shown for a wide range of
tumor types. Recent studies have demonstrated the efficacy and
approval of anti-CTLA-4, anti-PD1, anti-PDL1, and their
combinations with other medications. Compared to
chemotherapy alone, the administration of these ICB has
considerably reduced the incidence of cancer (Wei et al., 2018;
Akinleye and Rasool, 2019). The findings indicate that not all PCa
patients who are not actively selected benefit from ICB because of
the diversity of the disease and therapy response. Unfortunately, the
exact reason why different people respond to ICB therapy in
different ways is still unknown. Additionally, while employing
ICB, increased cancer treatment costs and unnecessary immune-
related side effects should be considered (Lei et al., 2021). However,
significant research is needed to address inherent and acquired
problems that limit the number of individuals who benefit from
ICB. Similarly, for efficient utilization of ICBs, it will be necessary to
identify potential candidates for therapies. This helps to determine
whether a patient will be a long-term responder, a short-term
responder, or a non-responder (Lei et al., 2021). Through the use
of these biomarkers, we would be able to treat responders to the
fullest extent possible without unnecessarily harming non-
responders (Lei et al., 2021).

Checkpoint inhibitors have also been demonstrated to be
beneficial for patients with advanced PCa (Teply and
Antonarakis, 2017; Boudadi et al., 2018; Hansen et al., 2018;
Antonarakis et al., 2020). In men with BRCA1/2 mutations,
subset analysis of larger trials revealed a greater effect for single-
agent PD-1 inhibitors. For instance, in a clinical trial on
pembrolizumab monotherapy for PCa, Antonarakis, and others
found that men with BRCA1/2 or ATM mutations had an
objective response rate of 12%, which was much greater
compared to the 4% objective response rate seen in men with no
those mutations (Antonarakis et al., 2020). Three of the five men
(60%) who had tumors with altered HRR genes (BRCA1/2)
demonstrated objective responses in previous clinical trials in

78 men with mCRPC treated with the combination of
ipilimumab and nivolumab (Sharma et al., 2020). Similar results
were also reported from a study carried out by Boudadi at John
Hopkins (Boudadi et al., 2018).

6.4 Mutation in DNA damage as biomarkers
for response to poly (ADP-ribose)
polymerase inhibitors

The amount of DNA damage brought on by internal and
external sources would be fatal in the absence of the DNA
damage repair (DDR). In order to prevent damage from being
duplicated during the S-phase or transferred to the daughter cells
during mitosis, the DDR evolved as a structured network of
pathways that repair DNA and stop cell division. Hanahan and
Weinberg assert that DDR gene alterations can cause genomic
instability and mutations that may result in cancer (Hanahan
and Weinberg, 2011). Additionally, active oncogenes enhance
replication stress by driving cells into the S-phase before they are
ready. This leads to DNA sequence alterations and aberrant DNA
structures that need to be resolved by the DDR (Saxena and Zou,
2022). According to Curtin, a mutation in one DDR gene that is
associated with the DDR pathway may result in enhanced activity of
compensatory pathways, leading to resistance to DNA-damaging
radiation therapy and chemotherapy (Curtin, 2023). In order to treat
PCa, the development of drugs that target the DDR was initially
justified by the need to get around these mechanisms of resistance.
However, the approach used by chemo- or radiotherapies to stop the
DDR also causes more harm to healthy cells while maintaining
increased antitumor effects (Curtin, 2012). Previous researchers
suggested the inhibition of PARP, which interferes with DNA
damage repair and results in tumor cell death, is connected to
the anticancer mechanism of medicines targeting DDR. While
PARP inhibition is tolerated in normal cells, it has a significant
impact on tumor cells with HRRmutations (Keung et al., 2019; Lang
et al., 2019; Rose et al., 2020).

Single-strand breaks (SSB) which occur as a result of PARP
inhibition facilitate the formation of damage in DSB which is mainly
repaired by HRR (Yi et al., 2019). The coincident loss of PARP
function in cancer cells with changed HRR proteins engaged in HRR
inadequate repair leads to the formation of Double strand breaks
(DSBs) and consequently cell death (Yi et al., 2019). Authors have
recently reported a breakthrough in PCa treatment that uses the
DDR gene mutation to target the tumor only while protecting
healthy cells with intact DDR pathways. This discovery has led to
numerous clinical trials that take advantage of these defects, and
numerous PARP inhibitors, such as olaparib, rucaparib, niraparib,
talazoparib, and veliparib, have been successfully tested in patients
with a variety of DDR gene mutations, including BRCA1, BRCA2,
ATR, ATM, CHEK1/2, and PALB2 (Catalano et al., 2023).

In recent years, the PCa treatment PARPi—poly (ADP-ribose)
polymerase inhibitors—has been approved by the FDA (Catalano
et al., 2023). Patients with mutations in the DDR response genes
BRCA2, ATM, and BRCA1 reported significantly greater response
rates to olaparib than noncarriers in one of the earliest trials of
PARPi in patients with advanced PCa (Gurley and Kemp, 2001).
Similar to this, rucaparib’s phase II TRITON2 research results by
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Abida and others hastened its approval after demonstrating a 51%
radiographic response rate for docetaxel-resistant patients with
BRCA1/2 mutation in mCRPC (Abida et al., 2020). Researchers
have recently demonstrated that next-generation hormonal drug
combined with PARPi therapy for mCRPC provides the strongest
PARPi benefit (Agarwal et al., 2022; Chi et al., 2022; Clarke et al.,
2022; Herberts et al., 2023).

7 Conclusion

Despite the difficulties and variations in PCa diagnosis and
treatment that have been mentioned, the most current study is
showing gaps in the recognized therapy guidelines. To better
diagnose and treat PCa patients, a multidisciplinary approach
involving molecular biologists, oncologists, and immunologists is
necessary. Research on effective and targeted treatments for prostate
cancer is therefore critically needed, as well as investigations on the
variety of genetic abnormalities prevalent in prostate cancer. Future
studies should focus on generating genetic data that could be used to
improve the health of PCa patients through immunologically based
targeted therapies or combination therapeutic options, particularly
in African settings where knowledge of the genetic spectrum of
genes associated with the disease is limited.
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