
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/373706620

A low-cost TinyML model for Mosquito Detection in Resource-Constrained

Environments

Conference Paper · September 2023

DOI: 10.1145/3582515.3609514

CITATIONS

0
READS

28

2 authors:

Some of the authors of this publication are also working on these related projects:

Disseminating Data using LoRa and Epidemic Forwarding in Disaster Rescue Operations View project

Network Simulation and Models View project

Gibson Kimutai

Moi University

10 PUBLICATIONS   36 CITATIONS   

SEE PROFILE

Anna Förster

Universität Bremen

168 PUBLICATIONS   2,530 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Gibson Kimutai on 06 September 2023.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/373706620_A_low-cost_TinyML_model_for_Mosquito_Detection_in_Resource-Constrained_Environments?enrichId=rgreq-1f53b18f5d5910fd2475ff5989f27d1b-XXX&enrichSource=Y292ZXJQYWdlOzM3MzcwNjYyMDtBUzoxMTQzMTI4MTE4Njc2MTk0OEAxNjk0MDA1NzA5NDE3&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/373706620_A_low-cost_TinyML_model_for_Mosquito_Detection_in_Resource-Constrained_Environments?enrichId=rgreq-1f53b18f5d5910fd2475ff5989f27d1b-XXX&enrichSource=Y292ZXJQYWdlOzM3MzcwNjYyMDtBUzoxMTQzMTI4MTE4Njc2MTk0OEAxNjk0MDA1NzA5NDE3&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Disseminating-Data-using-LoRa-and-Epidemic-Forwarding-in-Disaster-Rescue-Operations?enrichId=rgreq-1f53b18f5d5910fd2475ff5989f27d1b-XXX&enrichSource=Y292ZXJQYWdlOzM3MzcwNjYyMDtBUzoxMTQzMTI4MTE4Njc2MTk0OEAxNjk0MDA1NzA5NDE3&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Network-Simulation-and-Models?enrichId=rgreq-1f53b18f5d5910fd2475ff5989f27d1b-XXX&enrichSource=Y292ZXJQYWdlOzM3MzcwNjYyMDtBUzoxMTQzMTI4MTE4Njc2MTk0OEAxNjk0MDA1NzA5NDE3&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-1f53b18f5d5910fd2475ff5989f27d1b-XXX&enrichSource=Y292ZXJQYWdlOzM3MzcwNjYyMDtBUzoxMTQzMTI4MTE4Njc2MTk0OEAxNjk0MDA1NzA5NDE3&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Gibson-Kimutai?enrichId=rgreq-1f53b18f5d5910fd2475ff5989f27d1b-XXX&enrichSource=Y292ZXJQYWdlOzM3MzcwNjYyMDtBUzoxMTQzMTI4MTE4Njc2MTk0OEAxNjk0MDA1NzA5NDE3&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Gibson-Kimutai?enrichId=rgreq-1f53b18f5d5910fd2475ff5989f27d1b-XXX&enrichSource=Y292ZXJQYWdlOzM3MzcwNjYyMDtBUzoxMTQzMTI4MTE4Njc2MTk0OEAxNjk0MDA1NzA5NDE3&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Moi_University?enrichId=rgreq-1f53b18f5d5910fd2475ff5989f27d1b-XXX&enrichSource=Y292ZXJQYWdlOzM3MzcwNjYyMDtBUzoxMTQzMTI4MTE4Njc2MTk0OEAxNjk0MDA1NzA5NDE3&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Gibson-Kimutai?enrichId=rgreq-1f53b18f5d5910fd2475ff5989f27d1b-XXX&enrichSource=Y292ZXJQYWdlOzM3MzcwNjYyMDtBUzoxMTQzMTI4MTE4Njc2MTk0OEAxNjk0MDA1NzA5NDE3&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Anna-Foerster-2?enrichId=rgreq-1f53b18f5d5910fd2475ff5989f27d1b-XXX&enrichSource=Y292ZXJQYWdlOzM3MzcwNjYyMDtBUzoxMTQzMTI4MTE4Njc2MTk0OEAxNjk0MDA1NzA5NDE3&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Anna-Foerster-2?enrichId=rgreq-1f53b18f5d5910fd2475ff5989f27d1b-XXX&enrichSource=Y292ZXJQYWdlOzM3MzcwNjYyMDtBUzoxMTQzMTI4MTE4Njc2MTk0OEAxNjk0MDA1NzA5NDE3&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universitaet-Bremen?enrichId=rgreq-1f53b18f5d5910fd2475ff5989f27d1b-XXX&enrichSource=Y292ZXJQYWdlOzM3MzcwNjYyMDtBUzoxMTQzMTI4MTE4Njc2MTk0OEAxNjk0MDA1NzA5NDE3&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Anna-Foerster-2?enrichId=rgreq-1f53b18f5d5910fd2475ff5989f27d1b-XXX&enrichSource=Y292ZXJQYWdlOzM3MzcwNjYyMDtBUzoxMTQzMTI4MTE4Njc2MTk0OEAxNjk0MDA1NzA5NDE3&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Gibson-Kimutai?enrichId=rgreq-1f53b18f5d5910fd2475ff5989f27d1b-XXX&enrichSource=Y292ZXJQYWdlOzM3MzcwNjYyMDtBUzoxMTQzMTI4MTE4Njc2MTk0OEAxNjk0MDA1NzA5NDE3&el=1_x_10&_esc=publicationCoverPdf


A low-cost TinyML model for Mosquito Detection in
Resource-Constrained Environments

Gibson Kimutai
kimutaigibs@mu.ac.ke

Mathematics, Physics and Computing, Moi University
Eldoret, Kenya

Anna Förster
Sustainable Communication Networks, University of

Bremen
Bremen, Germany

anna.foerster@comnets.uni-bremen.de

ABSTRACT
Yearly, more than 200 million malaria cases are recorded worldwide.
Most of these cases are witnessed in less developed countries as
the environments are not well-maintained, which forms breeding
places for mosquitoes. Female mosquito-anopheles is responsible
for malaria infection, dengue, chikungunya, and zika. Developing
countries struggle to fight diseases; malaria still claims more than
400,000 lives annually. One current way to keep away anopheles
mosquitoes is using commercially available electric liquid mosquito
repellents, which can adversely affect the human body when used
for extended periods. Furthermore, energy and sprays are wasted
as they constantly work even without the presence of anopheles
mosquitoes. We propose a low-cost IoT-based TinyML model that
intelligently discharges the mosquito repellent when an anopheles
mosquito is in the room. First, we prove the concept by exploring
two lightweight deep learners with a 1D Convolution Neural Net-
work (1D-CNN) and 2D Convolution Neural Network (2D-CNN) to
classify raw sounds from mosquito wingbeats. We adopted a Leaky
ReLU in building the 1D-CNN to speed up training and improve
classification performance. Furthermore, we adopted batch normal-
ization to avoid degradation and vanishing gradient problems. We
implemented the experiments in an Edge impulse platform. Each
of the CNN models recorded stable classification performance dur-
ing the proof of concept study, while the 1D-CNN took less time
and computing resources in training, validation, and testing. As
we aimed to propose a low-cost solution, we evaluated the perfor-
mance of the 1D-CNN-based prototype in the actual deployment
by playing mosquito wingbeat sounds on a laptop which we placed
next to it in intervals of 0.5, 1.0, 1.5, 2.0, 2.5, and 3 meters. The model
showed promising results across distances and thus could be used
to chase away mosquitoes in a room of small to medium size.
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1 INTRODUCTION
Malaria Plasmodium falciparum is a preventable and curable disease
[4] that is caused by parasites transmitted to people through the
bites of infected female Anopheles mosquitoes [26]. According to
the World health organization, there were an estimated 241 million
malaria cases worldwide in 2021. Furthermore, during that year,
the estimated number of malaria deaths stood at 627 000 [15]. Out
of those numbers, the African region is the worst hit by the malaria
burden, and in 2020, malaria cases accounted for 95% of the cases
globally. More worrying, 96% of the global malaria deaths were
recorded in Africa [10]. This trend is unpleasant, as the diseases
exacerbate poverty by preventing people from working to make a
living. Thus, diseases have been attributed to a factor in the low
growth rate of many African countries [1]. In Sub-Saharan Africa,
the most common methods of prevention against malaria include
the use of mosquito bed nets sprayed with insecticides and using
insect repellents [2, 25]. Although bed nets are relatively cheap
and efficient, they only work when people are in bed. On the other
hand, mosquito repellents are expensive as they require insecticides
even when there are no anopheles mosquitoes [3]. The continuous
release of insecticides into the environment is unhealthy and leads
to environmental pollution [10]. Therefore, detecting the presence
of anopheles mosquitoes in a specific home is crucial before in-
secticide sprays can be utilized. There are three main species of
mosquito: Anopheles, Aedes, and Culex. Aedes cause the following
diseases: chikungunya, dengue, yellow fever, and zika, while culex
causes Japanese encephalitis and West Nile fever. The Anopheles
mosquitoes cause malaria infection, dengue, chikungunya, and zika.

The TinyML approach is a branch of Machine Learning (ML)
where ML models are offloaded to run on low-resourced devices.
On the other hand, the Internet of Things (IoT), where sensors, actu-
ators, and other "things" communicate, enables the deployment of
the TinyML. The main aim of TinyML is to reduce the cost of com-
putations and make ML models usable in low-scarce environments
[19]. In recent years, the TinyML approach to Artificial Intelligence
(AI) has gained much popularity due to the need to reduce the
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cost of computations and make it universally accessible [19]. In
this study, we explore the applicability of an ultra-TinyML model
in detecting anopheles mosquitoes and the subsequent release of
mosquito repellents.

1.1 Problem Statement
Mosquito repellents are composed of chemicals that are harmful to
human health [13]. Insecticides, the main component of mosquito
repellent, may cause undesirable hazardous interactions with bi-
ological systems and potentially generate harmful effects [5, 28].
Furthermore, insecticides are known to be toxic to the environment,
challenging the "One-health" goal [9]. Additionally, the electrical
mosquito repellant is always on even in the absence of anopheles
mosquitoes; thus, much energy is consumed, making the solution
expensive and unusable, especially in developing countries [19]. To
solve the challenges, we propose a TinyML model that intelligently
detects anopheles mosquitoes based on their wingbeat sounds and
releases mosquito repellents.

1.2 Contributions
This study proposes a low-cost IoT-based model for monitoring
anopheles mosquitoes and releasing mosquito repellents intelli-
gently. Our main contributions are twofold; first, we performed the
feasibility of applying 1D-CNN and 2D-CNN in detectingmosquitoes
based on their wingbeats. We compared their performances in accu-
racy, precision, f-measure, recall, latency, main memory, and flash
memory usage. Second, we deployed the 1D-CNN with the IoT to
detect anopheles mosquitoes and activate the release of mosquito
repellents. We explored the energy and cost saved when the model
was used.

The rest of the paper is organized as follows: we provide related
work of the study in Section 2 andmethodology in Section 3. Section
4 reports on the evaluation of the proposed model, while Section
5 discusses the deployment of the proposed model for real-time
mosquito detection. We provide discussions and lessons learned in
Section 6. Lastly, we provide conclusions and recommendations for
future research in Section 7.

2 RELATEDWORK
The past decade has witnessed unparallel advancement in com-
puting power coupled with a reduction in the cost of computing
devices. This hasmade a large data volume available across domains,
making ML applications a reality. Research on the application of
Machine Learning (ML) and the Internet of Things (IoT) in malaria
detection follows three main research directions. The adoption of
acoustic sensors, odor-based sensors, and the use of optical sensors
[12, 16]. All these directions have shown much promise in their
proof of concepts. However, using optical and odor-based sensors
is expensive and power-hungry [16]. In this paper, we propose a
low-cost solution. Thus we focus on the prior studies that have
proposed using acoustic sensors, which have been shown to lead
to low-cost solutions.

Mukundarajan et al. [24] proposed usingmobile phones to record
mosquito repellent for high-throughputmosquito surveillance. Their
proposal to use mobile phone microphones as acoustic sensors

makes the solution usable even in resource-constrained environ-
ments, as mobile devices have been integrated into almost every-
one’s lives. They have yet to engineer the solution in terms of
energy management to make it ready for deployment. In [11], the
authors explored the possibility of using ML to detect Aedes aegypti
mosquito species. Since their model was designed for resource-
scarce environments, it needed to be more lightweight. Authors of
[30] used Edge Impulse and an Arduino Nano 33 to classify three
species of mosquitoes (anopheles, Aedes and Culex). They have not
engineered the solution to make it field-ready in terms of power
consumption and flexibility, and no communication option is pre-
sented. Showing the result on display is helpful for local populations
but does not allow for long-term research on mosquito presence.

Authors in [34] performed a feasibility study on applying a Deep
Learning (DL) model and the following standard machine learners
in counting mosquitoes and putting them in categories: K-Nearest
Neighbours, support vector machines, random forests, naive Bayes,
and linear regression. Unsurprisingly, the DL mode outperformed
the other models, and linear regression recorded the lowest results.
Work that inspired us in this direction is presented in [1], where
they proposed a TinyML for classifying mosquitoes based on their
species. They considered two species of mosquito, and their model
recorded promising results. They further performed experiments
on the power consumption of various microcontrollers to produce
an ultra-low power model. They intend to deploy their models to
classify mosquitoes in their future study. Research in [6] proposed
a 2D CNN for detecting anopheles mosquitoes and the appropriate
release of mosquito repellents. In contrast, in this study, we propose
the adoption of a 1D CNN, which is lighter than the 2D CNN the
researchers presented. This will reduce the cost of the solution
further. They implemented their approach in traditional Graphical
Processing Units (GPUs), which requires many resources that are
not readily available in resource-constrained environments. In this
approach, we implemented our proof of concept in an Edge impulse
platform, which is open and appropriate in developing countries.

The literature clearly shows that the area is attracting justified at-
tention from researchers. Most research aims to identify and count
mosquito species to inform mitigation measures. These models can
also build prevalence predictions based on seasons. However, only
a few mosquito detection datasets exist; thus, it requires action, es-
pecially with crowdsourced citizen data. Additionally, the literature
suggests that sub-Saharan Africa accounts for more than 90% of the
global cases [10], so the proposed solutions should be low-cost to
make them uniformly affordable, especially in these resource-scarce
countries. More encouragingly, the advent of cloud platforms for
performing ML training and deployment is accelerating research in
the area as it provides computing as a service in machine learning.
Some works that we reviewed and reported have adopted the Edge
impulse cloud platform to train and deploy their ML models with
promising results. This trend is expected to continue, and, more
importantly, there will be more implementation of ML models in
resource-scarce environments.

3 METHODOLOGY
We propose a four-stage approach to developing a low-cost smart
mosquito repellent model: First, as we envisioned to present a
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low-cost and low-power solution that could run on embedded low-
cost devices, we performed a feasibility study using TinyML-based
models based on 1D-CNN and 2D-CNN architectures to classify
mosquito species. We compared the performance of the two archi-
tectures in classifying an open-source dataset regarding classifica-
tion performance, main memory, and flash memory usage. Second,
we performed a feasibility study using TinyML-based models based
on 1D-CNN and 2D-CNN architectures to classify mosquito species.
We compared the performance of the two architectures in classify-
ing an open-source dataset regarding classification performance,
main memory, and flash memory usage. Third, we performed a
feasibility study using TinyML-based models based on 1D-CNN
and 2D-CNN architectures to classify mosquito species. Fourth, we
deploy the 1D-CNN model with Arduino Nano 33 for real-time
detection of mosquitoes and the intelligent release of mosquito
repellents. We explored using Renewable Energy Sources (RES) to
power the solution and performed duty cycling on the model to
save on energy consumption.

3.1 Selection of datasets
We examined various open-source mosquito wingbeats datasets
that could be used in training deep learners to classify mosquitoes.
We selected a wingbeat dataset [21] as it has been selected as a
standard dataset in Kaggle contests. Additionally, the data was col-
lected with low-cost smartphones and professional-grade recording
devices; thus, they could be used to train models that can detect
wingbeats recorded in various acoustic sensors. The dataset is rich
as it was collected in Tanzania, Kenya, the United States of America,
and the United Kingdom, representing both developing and devel-
oped countries’ environments. It makes the model general enough
to be usable across different geographical regions. The dataset con-
tains three common species of mosquitoes. We introduced a class of
domestic environment sounds, including human speakers, human
activity, television, household appliances, silence, and unidenti-
fiable sounds, to enable the models to learn other categories of
sounds which are not mosquito related but are present in a home
environment. We used the dataset’s 80/20 training/test ratio, which
has been widely used in the state of the art. Furthermore, we used
20% of the training dataset to validate the model. Table 1 shows the
ratio of training, validation, and testing used in this study.

Table 1: The classes on the datasets that we used in the study

Class Training Validation Testing

Aedes albopictus 640 160 200
Aedes aegypti 640 160 200

Culex quinquefasciatus 640 160 200
Domestic environment 640 160 200

Culex pipiens 640 160 200
Anopheles Arabiensis 640 160 200
Anopheles gambiae 640 160 200

Total 4480 1120 1400

3.2 Model Design and Training
We explored the applicability of 2D and 1D CNN TinyML archi-
tectures in detecting mosquitoes based on their wingbeats. The
Tiny-ML models can run on a low-cost, ultra-low-power device
that can be implemented in resource-constraint devices [20]. The
architecture of the 2D CNN network is presented in Fig 1 (a). It
has only two convolutional layers (CLs), which was much reduced
compared to the classical models, including ResNet [29], VGG [22],
Inception [27] among others. The architecture of the 1D CNN net-
work is shown in Fig 1 (b). We reduced the CLs of the CNN to two,
and instead of max-pooling layers, we adopted batch normalization
to ease the network’s training and avoid the degradation and vanish-
ing gradient problems [33]. Each of the two CLs in the 1D-CNN had
a filter size of three and stride one. Additionally, the architecture
had two batch normalization (BN) layers and an identity shortcut
where the models skipped some of the layers of the CNN when the
parameters were accurately set to avoid the overfitting problem.
We used a Leaky ReLU as an activation function as it speeds up
training and makes its mean activation function close to 0 [23]. The
Leaky ReLU also performs well in acoustic-based tasks [17].

Max pooling
Layer 1

Conv
Layer 2

Max pooling
Layer 2

Dense Dense

Output layer Conv 1D

Batch Normalization Leaky
ReLU

Conv 1D Batch Normalization

+

Leaky ReLU
sum of
weights Output layer

Input

Identity shortcut

a) The network architecture of the 2D-CNN b) The architecture of the 1D-CNN model that we propose in this study 

Conv Layer 1

Figure 1: The architectures of the 1D-CNN and 2D-CNNmod-
els that we explored in this study

To perform training, we set the learning rate at 0.001 with a batch
size of 100 and an epoch of 60. We present the training progression
rate of the CNN models in terms of accuracy and loss in Figure 2.
The 1D-CNN registered its maximum accuracy at epoch 28, while
the 2D-CNN achieved it at 30 epochs. The 1D-CNN model took
a shorter time to attain its peak accuracy as the ReLU activation
function, batch normalization, and identity shortcut accelerated
the training. Furthermore, the 2D-CNN had increased parameters
for training compared to the 1D-CNN. However, the training and
validation accuracy did not differ significantly for the two CNN
models and showed stable results. The 1D-CNN performed better in
loss and converged faster than the 2D-CNN as the model applied the
identity shortcut to skip similar patterns in data and thus could not
suffer from overfitting. More interestingly, the difference between
the training and the validation accuracy is minimal in 1D-CNN
compared to the 2D-CNN model. This implies that the 1D-CNN
did not suffer from overfitting, as the identity shortcut allowed
the network to skip some layers when the weights were optimal.
This makes the network not memorize but learn the patterns in
data. Additionally, the accuracy and loss curves of the 1D-CNN
were smoother than those of the 2D-CNN, as there were fewer
parameters to train in the 1D-CNN network. Furthermore, batch
normalization that we used in designing the 1D-CNN eases the
training of the ML models. Therefore, it was cheaper to train the
1D-CNN andmore stable in performance. Additionally, the 2D-CNN
took more epochs to converge than the 1D-CNN, as the additional
parameters in 2D-CNN require more learning time. However, the
2D-CNN registered better results in validation and training accuracy
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as the added parameters in its network improved the classification
performance. During the training, validation, and testing of the
CNN models, we saved about eight milliseconds of CPU time when
we compressed the model from the 2D-CNN to the 1D-CNN using
the pruning techniques [31] and saved the RAM usage by more
than 4.5K, which significantly freed the main memory for other
applications.

(a) Accuracy vs epoch for 1D-CNN (b) Loss vs epoch for 1D CNN

(a) Accuracy vs epoch for 2D-CNN (b) Loss vs epoch for 2D-CNN

Figure 2: The accuracy and losses of the 2D and 1D deep
learners in training and validation

3.3 Model Implementation
The architecture of the proposed model to monitor anopheles
mosquito and release mosquito repellent in real time is presented in
Fig. 3. The system had a microphone node attached to an Arduino
Nano 33 device. The system is connected through Wi-Fi technology
to the fog servers. Notice that in our solution, we utilized the Edge
and fog environments.

Fog
server

Mosquito
repellents

Arduino nano 33

Wifi
transmitter

Microphone

Solar Panel

Charge
controller

Battery

Energy harvesting IoT-based components Deployment

Figure 3: System architecture for the IoT-based smart
mosquito repellent model

3.3.1 Resources. We submitted quotations for electric mosquito re-
pellent to three major supermarkets in Eldoret City, Kenya: Naivas,
Quickmart, and Khetia’s. Based on received proforma invoices,
Morteinmosquito repellent had the lowest power rating and promised
to last longer (30 nights). Thus we chose it for our experiments as
we were focused on providing a low-cost and low-power solution
that can be used in resource-scarce environments. The IoT-based
hardware used in this experiment included Arduino Nano 33, with
a 19 mA power rating, and a microphone from Elecbee, whose
power rating was 0.5 mA. Furthermore, we had a micro SD card of
memory size 16 GigaByte (GB) attached to the microcontroller and
acted as an Edge server.

3.3.2 Energy harvesting. We harvested energy for use in lighting
the room and also for powering the IoT solution. We took 12 hours,
the longest time that the solution could be used, as the sunset occurs
at 6 pm and sunrise is witnessed at 6 am in the Eldoret region.
During this period, mosquitoes are active, and thus, repellents are
used. The rating of an Arduino Nano 33 was 19 mA, while the
rating of the speaker was 0.5 mA. Equation 1 gives the energy of
the IoT-based solution used during the period.

𝐼𝑜𝑇 -𝐸𝑛𝑒𝑟𝑔𝑦 = 0.09525𝑤 × 12ℎ𝑜𝑢𝑟𝑠 = 1.143𝑤ℎ (1)

As we envision simulating real-condition in a home setup, light-
ing was needed in the room. Thus we harvest energy for use in
lighting the room. The total energy that is required to power the
bulb for 12 hours a day is given by equation 2:

𝐵𝑢𝑙𝑏-𝑒𝑛𝑒𝑟𝑔𝑦 = 15𝑤 × 12ℎ𝑜𝑢𝑟𝑠 = 180𝑤ℎ (2)

The required energy to power the electric mosquito for 12 hours
is given by equation 3:

𝑅𝑒𝑝𝑒𝑙𝑙𝑒𝑛𝑡 -𝑒𝑛𝑒𝑟𝑔𝑦 = 5𝑤 × 12ℎ𝑜𝑢𝑟𝑠 = 60𝑤ℎ (3)

The total amount of energy required by the components daily is
given by equation 4:

𝐸𝑛𝑒𝑟𝑔𝑦-𝑡𝑜𝑡𝑎𝑙 = 180𝑤ℎ + 1.143 + 60𝑤ℎ = 241.143𝑤ℎ (4)

Energy harvesting is affected by the efficiency of the compo-
nents [14]. In this study, the battery’s efficiency was 80% while the
efficiency of the charge controller was 85%. Therefore the required
energy to be harvested is given by equation 5:

𝑃𝑉 -𝑎𝑟𝑟𝑎𝑦 =
241.143
0.8 × 0.85

= 354.6𝑤ℎ (5)

The radiation time in a region affects the amount of PV-based energy
that can be harvested [14].We used theworst radiation season in the
Eldoret region for a stable energy supply to our components, which
occurs in August with an average of 5 hours daily [18]. Although
mismatch factors also affect energy harvesting [8, 32], regions closer
to the equator are not challenged by mismatch factors, which is the
case for Eldoret. Hence a solar panel of more than 70.9 W could
serve the model. We thus chose a solar panel of 80w more than the
minimum of 70.9w. (equation 6).

𝐴𝑟𝑟𝑎𝑦-𝐿𝑜𝑎𝑑 =
354.6𝑤ℎ

5ℎ
= 70.9𝑤 (6)

Deep-discharge batteries are durable and work well with solar
panels; thus, we selected them for our experiment. It allowed a max-
imum of 60% discharge levels and a voltage rating of 12V. Typical
energy storage by the battery is given by equation 7:

𝑇𝑜𝑡𝑎𝑙 -𝑒𝑛𝑒𝑟𝑔𝑦 =
241.143𝑤ℎ

0.6
= 401.9𝑤ℎ (7)

Equation 8 presents the required battery rating. As a rating of
33.5 was not available in the market, we chose a battery with a 40
A/h rating as it was the nearest.

𝑟𝑎𝑡𝑖𝑛𝑔-𝑏𝑎𝑡𝑡𝑒𝑟𝑦 =
401.9
12𝑣

= 33.5𝐴/ℎ (8)
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4 EVALUATION RESULTS
The average accuracy achieved by the 1D-CNN and the 2D-CNN
models when evaluated based on the dataset discussed in Section
3.1 were 78.02% and 82.94% (Figure 4). Although the 2D-CNN out-
performed the 1D-CNN, they did not differ significantly; they per-
formed evenly well across the classes in the dataset. The sophisti-
cated results of the 2D-NN model were due to the additional CNN
parameters for decision-making. We observed the same trend when
we evaluated the model based on precision, recall, and f-measure.
However, both models recorded good results and proved that any
of them could be implemented in actual deployment based on per-
formance and cost issues.

Figure 4: The comparison of the accuracy values obtained by
the 1D-CNN and 2D-CNN models

5 DEPLOYMENT OF THE MODEL
Real-world evaluation of our model is not trivial, mainly because
we cannot guarantee the presence of mosquitoes, especially not
in the quantity we would need for evaluation. Thus, we adopted a
slightly different approach. First, we evaluate the correctness and
efficiency of the model itself to recognize mosquitoes. We did so
by playing mosquito sounds at varying distances from the receiver.
Second, we evaluated the energy consumption of our deployment
compared to the traditional way of always turning on the mosquito
repellent every night. Figure 5 (b) shows the prototype deployed in
a bedroom in a house in Eldoret City, Kenya. The prototype was
deployed to run for 50 nights, from 20th November 2022 to 8th
January 2023. Additionally, we implemented a traditional electric
mosquito repellent that we discussed in Section 3.3.1 in a different
room in the same building (Figure 5 (a)) to act as a base. We turned
them on from 6 pm to 6 am during the 50 nights to compare the
energy consumed by the two models and the cost.

a) Mosquito repellent in a socket b) Proposed model for intelligent release of
mosquito repellents.

Figure 5: Deployment of the 1D-CNN model with the IoT for
detection of anopheles mosquito and intelligent release of
mosquito repellents.

5.1 Energy and Costs comparisons
The average time it takes an anopheles mosquito to bite after en-
tering a room with moderate temperatures and the absence of
mosquito repellent is 6.5 minutes [7]. Therefore, through inter-
mittent computing, the model should be awake at least every 6.5
minutes to "listen" to mosquito wingbeats. Thus, we performed
duty-cycling on the IoT-based mosquito repellent model, which
was turned on every 5 minutes each for 10 seconds to listen for
anopheles mosquitoes.

We compare the amount of energy consumed by the proposed
prototype to the traditional approach in Table 2. In the conven-
tional method, mosquito repellents were turned on throughout the
night from 6 pm to 6 am. Therefore, the energy consumed by the
traditional mosquito repellent was much larger than that consumed
by the proposed solution, which had undergone duty cycling. Duty
cycling resulted in saving about 2995 W amount of energy during
the 50 nights of deployment. The total amount of energy that the
proposed model used was 4.2179 W. These results are significant as
they proved the viability of intermittent computing in the deploy-
ment of computing tasks in resource-scarce environments. Finally,
during the 50 nights of implementation, the traditional approach
where a mosquito repellent worked from 6 pm to 6 am every night
resulted in using three mosquito repellents. On the other hand, the
IoT-based solution used only one mosquito repellent. Therefore,
these findings showed that using the IoT-based solution resulted
in the economical usage of mosquito repellents, which resulted in
saving on cost and reducing the pollution of the environment by
the insecticides in the mosquito repellent.

Table 2: Energy consumption comparison of the traditional
approach and the IoT-based mosquito repellent model..

Week Proposed approach (W) Traditional approach (W)

1 0.78181 600
2 0.86515 600
3 0.89293 600
4 0.73225 600
5 1.00405 600

Total 4.2179 3000

Week 1: 20th -29 Nov 2022 Week 2: 30 Nov-9th Dec 2022
Week 3: 10-19 Dec 2022 Week 4: 20-29 Dec 2022
Week 5: 30 Dec-8 Jan 2023

5.2 Evaluation of the model during deployment
To further evaluate the performance of the 1D-CNN model in its
deployment environment, we played unseen mosquito wingbeat
sounds 1. The classes of the dataset were Aedes aegypti, Aedes
albopictus, Anopheles arabiensis, anopheles gambiae, Culex quin-
quefasciatus, and domestic environment. After downloading the
sounds of the wingbeats, we played 50 of them in each class on
a laptop placed next to the mosquito repellent at intervals of 0.5

1https://www.kaggle.com/code/potamitis/the-wingbeat-signal/data
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to 3 meters at intervals of 0.5. The model’s performance based on
precision and recall is presented in Figure 6. The model produced
excellent precision and recall values when the distance between
the model and the speaker delivering the wingbeats sounds was
between 0.5-1.5 meters. As the length increased from 2.0-3.0 me-
ters, the model’s performance reduced. When the distance between
the laptop speaker playing mosquito wingbeats sounds, and the
IoT-based model grew, the noise in the environment overpowered
the mosquito wingbeats sounds. However, the precision and recall
values at the furthest distance, 3.0 meters, were still good enough
and showed the model’s stability and usability in chasing anopheles
mosquitoes in small to medium-sized rooms. However, the model’s
performance may increase or decrease depending on the noise in
the deployment environment.

Figure 6: Evaluation of the 1D-CNNmodel in real deployment
based on precision and recall

Furthermore, when the model was evaluated based on f-measure
and accuracy, they showed a similar trend as reported during eval-
uation based on recall and precision. The performance reduced
as the distance between the source of the mosquito wingbeats
and mosquito repellent increased (Figure 7). However, the model
showed good classification performance across distances and con-
firmed that the model could detect anopheles mosquitoes in its
actual deployment.

Figure 7: Evaluation of the 1D-CNNmodel in real deployment
based on f-measure and accuracy

6 DISCUSSIONS AND LESSONS LEARNED
This study explored two TinyMLmodels, 2D-CNN and 1D-CNN, for
developing an intelligent mosquito repellent. We trained and eval-
uated them using an open-source mosquito wingbeat dataset. We
further compared them in terms of performance and resource usage.
The 2D-CNN model performed slightly better than the 1D-CNN
model, although both models recorded promising results across
the metrics. This was expected as the 1D convolution model had

fewer parameters than the 2D-based DL model. The same observa-
tion has been made by other researchers, including [34], where the
performance of the DL-based model reduced with the reduction
in the CNN parameters. However, both models generally recorded
good classification performance across the metrics, showcasing
that any of them could be used in the classification task. As our
main goal was to develop an ultra-Tiny model that could work in a
resource-constrained environment regarding power and cost, we
selected the 1D-CNN for exploration in an actual deployment. The
adoption of the ID-CNN resulted in reduced memory usage, CPU
time, and flash memory usage. We expected it as we significantly
reduced the number of parameters involved in the prediction. The
latency was also reduced as the decision-making process took less
time as it applied fewer layers than more complex architectures.

More interestingly, we evaluated the 1D-CNN in its real-deployment
environment by playing the sounds of unseen mosquito wingbeats
on a laptop at intervals of 0.5, 1.0, 1.5, 2.5, and 3.0 meters. The model
produced promising results across distances and confirmed that it
was trained well and did not suffer from overfitting. The prototype
was powered by a PV-based energy source, making the solution
autonomous and usable in areas not connected to the grid. The
application of duty cycling ensured that we saved much energy and
also ensured we saved on repellent usage. This reduced the cost of
the solution and the environmental pollution by only releasing the
mosquito repellents when necessary.

We can briefly highlight some of the lessons that we learned as
follows. First, reducing the complexity of the CNN model results
in a reduction in the classification performance. Second, when a
DL architecture is simplified, it saves CPU time, main memory, and
flash memory usage. This potentially results in the saving of re-
sources. However, DL models must be more complex for improved
performance, increasing the computation cost. Thus, there should
be a trade-off between performance and cost reduction. Third, there
is no ground truth for developing DL models. It is up to the model
designers to understand their computation needs and constraints.
A good model delivers on performance and works within the con-
straints. Fourth, intermittent computing, when modeled correctly,
reduces energy consumption by the model, reducing the cost of
the solution. However, consideration should be taken to ensure the
model’s performance is not compromised. In our case, prior studies
showed that mosquitoes would take an average of 6.5 minutes to
bite after discovery. Therefore, we used a duty cycle of 5 minutes
which was less than that time. Fifth, PV-based energy harvesting is
an effective way of generating energy when done correctly with
careful consideration of solar mismatch factor, distance from the
equator, peak solar radio, and battery effectiveness.

7 CONCLUSIONS AND FUTUREWORK
In this paper, we have explored 1D-CNN, and 2D-CNN architectures,
which we trained with an openly available dataset on mosquito
wingbeat sounds in the edge impulse platform. The models showed
promising results across the dataset and did not differ significantly.
We explored their resource consumption on the edge impulse plat-
form, where 1D-CNN used fewer Random Access Memory (RAM)
and flash memory resources. Thus we adopted the ID-CNN archi-
tecture in the actual deployment for anopheles mosquito detection
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and intelligent mosquito repellent release. The 1D-CNN model pro-
duced promising results when evaluated in an unseen dataset in its
deployment environment. Thus the model is expected to be usable
in its deployment environment, as evidenced by its superior classifi-
cation results. We powered the prototype using a Photovoltaic (PV)
energy source to make the solution usable in areas not connected to
the grid and advance efforts of using green energy solutions. Addi-
tionally, we applied duty cycling, where the prototype was designed
to sleep and wake up every 5 minutes to listen to the anopheles
mosquitoes. This ensured that we saved much energy making the
solution cheap. During the actual deployments in the 50 nights, the
proposed prototype used one mosquito repellent, whereas we used
three mosquito repellents in the traditional approach. Furthermore,
the proposed method resulted in fewer insecticides being released
into the environment, thus reducing environmental pollution. Most
importantly, the solution was cheap as fewer mosquito repellents
and less energy were used.

In future studies, we will implement user feedback so that our
model can learn from the user feedback on the classification results.
This will improve the model further and ensure that it continuously
learns in its environment, thus achieving the goals of the living
lab. Additionally, we will roll out our proposed solution in schools
and hospitals in Eldoret municipality, Kenya, for more feasibility
studies. Last but not least, we will take advantage of the availabil-
ity of smartphones to carry out citizen-centric crowdsourcing to
collect and release mosquito wingbeat sounds in Kisumu county,
Kenya, which would be used by the community in developing ML
model which will accelerate the deployment of intelligent mosquito
repellents.
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