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ABSTRACT

Unexpected  equipment  failure  in  machines  interrupts  production  schedules  and
creates costly downtime. Therefore, the importance of timely equipment maintenance
is to extend the machine lifespan, prevent unplanned downtime, and reduce the need
to buy equipment. Rivatex East Africa Limited (REAL) has an overcapacity of looms
with inconsistent maintenance time schedules.  The main objective of the research
was to establish a suitable maintenance schedule time and parameters by assessing the
state  of maintenance  practices  of the critical  equipment  in  the weaving section at
REAL. The specific objectives were to map out the critical equipment in the weaving
section, to model the time between maintenance operations and the number of failures
and  lastly,  to  synthesize  the  system  data  to  establish  an  optimized  maintenance
schedule and parameters. The maintenance time schedules of rapier, and air-jet looms
at  REAL  were  studied.  Data  collections  were  by  real-time  observations,
questionnaires, and interviews administered to 20 personnel using a simple random
sampling method suitable for a small population. Semi-structured interviews had both
predetermined  and  unplanned  questions  whereas  both  open  and  closed  ended
questionnaire were used. Failure mode and effect analysis, fishbone diagram, Weibull
distribution,  and Monte  Carlo  simulation  were  undertaken  followed by regression
analysis of the data. The setup of the Monte Carlo simulation entailed 1000 instances
of  the  random values  from the  systems  in  the  critical  equipment.  The  data  were
optimized  through  Monte  Carlos  regression  modeling  and  Weibull  distribution
analysis to get shape parameter and the scale parameter of 1.47 and 1683.46 hours.
Regression  analysis  indicated  that  95.50% of  the  variation  in  mean time  between
failures was due to total time and the number of failure variables in critical equipment
systems. A preliminary survey on downtime indicated up to 60 days, the productivity
was estimated at 194.76 meters, and efficiency was 90%.  In conclusion, the findings
indicated  that  weaving  looms  were  the  critical  equipment.   The  model’s  shape
parameter of 1.47 described a steady increase in the risk of wear-out failure during the
early life of the machines. Also, the value of the shape parameter suggested early
wear-out failure and premature failures after installation. The optimal time interval for
maintenance operations was 1683.46 hours from the scale parameter.  The findings
indicated that REAL’s looms had an inconsistent and incoherent maintenance time
scheduling  approach.  According to  the  results,  it  is  recommended  that  preventive
maintenance  schedules  be  done  once  every  1683.46  hours.   Further  research  is
recommended  to  investigate  non-maintenance  management  strategy  aspects  of
scheduling  maintenance  activities  for  industrial  equipment,  including
unplanned/reactive maintenance, preventive maintenance, and predictive monitoring.
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CHAPTER ONE: INTRODUCTION

This  chapter  provides  the  background  of  the  research,  statement  of  the  problem,

justification  of  the  research,  objectives,  research  question,  the  theoretical  framework,

scope  of  the  research,  and  the  methods.  Furthermore,  this  chapter  provides  the

significance of the study with the aim of developing the picture scenario. 

1.1 Background 

Maintenance forms a crucial part of any manufacturing process that involves the use of

machines. In essence, certain elements of competitiveness, such as the desire for quality,

product lead time, and cost, play a major role in optimized maintenance strategies. In

textile mills, there is frequently a considerable emphasis on maintenance in order to meet

a variety of critical goals. Minimizing rework, saving production costs, boosting machine

precision, increasing product homogeneity, and shortening lead times are all examples.

Textile  factories  can  increase  their  overall  efficiency  and  output  by  prioritizing

maintenance in these ways. Effective maintenance can aid in the prevention of costly and

time-consuming  errors,  the  reduction  of  waste  and  rework,  and  the  optimization  of

machine  performance.  As  a  result,  the  textile  factory's  customer  happiness,

competitiveness, and profitability can all improve. A combination of long uptime of the

machine and quality compliant products enables the textile mills to cut the production

cost. Therefore, statistical modeling using regression is used to assess machine reliability

and availability to model a robust maintenance strategy with significant and competitive

factors of maintenance (Shafiee & Sorensen, 2019). All these are tailored in a manner

that the maintenance strategy at Rivatex East Africa Limited (REAL) is visualized and

the problem at hand elaborated for the purpose of the study.  
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Furthermore, maintenance is a combination of administrative and technical actions that

are intended to resort of maintain the condition of the system in a state that functions

normally  (ISO 14224:  2004).  In  this  case,  it  was  evident  that  the  machine  must  be

available  in  the entire  production or  service time.  The cost  of maintenance  can be a

significant proportion of the total production cost for a company, ranging from 15% to

70% (Ilangkumaran et  al.,  2009).  To reduce this  cost and increase the reliability  and

availability of machines, statistical modeling such as regression analysis can be used to

identify a suitable maintenance strategy that minimizes planned, short,  and unplanned

stoppages (Ilangkumaran et al., 2009). The cost of maintenance can be high due to the

high cost  of  restoring  the  equipment,  safety  hazards  caused,  and,  secondly,  damages

associated with failures. Studies in India show that 50 % of textile companies fall under

the  medium  level  maintenance  while  only  10%  give  high-level  maintenance

strategies[  CITATION  Ami14  \l  1033  ].  In  essence,  a  high  level  has  a  suitable

maintenance strategy and has effective use of the resources. In medium and low-level

maintenance, the suitability of the strategy and the utilization of the resources are poor.

Similarly, reducing the probability of failure based on preventive maintenance translate to

12% to 18% savings in the cost of production (TT, 2018).

REAL is a manufacturing industry with processes such as spinning, weaving, dyeing,

printing,  garments  finishing,  and  garment  manufacture.  All  these  processes  form the

production line, each with a production target. However, the targets are not met due to

inconsistencies in the maintenance processes and schedules. A production line requires

that all the machines should be operating without breakdown that might require a halt of

the entire production line. Based on this need, the aspect of reliability, maintainability,
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and operability of the machines becomes a necessity in the production line. The purpose

of performing maintenance is to increase the life of the machine.  In other words, the

meantime to the next failure of the machine failure is extended. A better maintenance

strategy can reduce machine downtime interruption, hence a factor in the reliability of the

machines. Therefore, a study to investigate existing maintenance practices at REAL, with

a  view  of  statistically  modeling  and  analyzing  equipment  maintenance  time.  The

reliability of the machines in a production line is often paramount in the productivity of a

facility, especially when proper maintenance strategies are used to enhance production

[CITATION BPM15 \l 1033 ]. A proper maintenance strategy can cut the maintenance

costs by 80% and further reduce the losses in production (Chan & Mo, 2017). REAL has

a weaving section that largely depends on breakdown maintenance strategy and schedules

with  little  commitment  to  preventive  maintenance  scheduling.  Some  of  the  planned

preventive  maintenance  schedules  in  the  weaving section  are  overlooked,  with  much

attention being paid to the lubrication and dusting off the machines (Mahlangu & Kruger,

2015). 

1.2 The Problem Statement

REAL’s maintenance strategy is characterized by both the breakdown maintenance (run

to failure maintenance) strategy and preventive maintenance. In most maintenance cases,

the machine  operator  waits  until  the  machine  fails  in  order  to  repair  it.  As much as

dusting is done and lubrication, there is little commitment to clearing the fibers that build

upon the oiled section prior to the running of the equipment.  The approach used has

disadvantages since it requires more than two machines in order to maintain production

when one is redundant. The facility views equipment breakdown as either an emergency
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or  breakdown  maintenance.  The  machines  are  maintained  based  on  the  preventive

maintenance  strategy.  For  instance,  inspection,  cleaning,  greasing,  retightening,  and

oiling dominate the maintenance activities as they tasked personnel awaits the breakdown

of the machine. A preliminary survey on the critical equipment shows the effectiveness of

current strategies in terms of availability, 21% of the machines are available throughout

the shift without stoppages. Also, downtime ranges from 10 minutes to 24 hours. Other

machines can stop working for up to 60 days. The time needed to scan for failure ranges

from 10 to 30 minutes.  The target  efficiency and production are 90% and 194.76 m,

respectively, which point to a gap that needs to be addressed through the adoption of

consistent and proper maintenance time schedules.  Weaving equipment forms a critical

section due to dominant cases of breakdown maintenance (Run to failure maintenance)

and inconsistencies in the preventive maintenance strategies. The critical equipment in

the weaving section lacked a clear maintenance program and relied on the experience of

the  maintenance  crew as  opposed to  the  original  equipment  manufacturer  (OEM).  A

preliminary survey on failure, downtime, availability, productivity, and efficiency reveals

that the scheduling of machine maintenance is not coherent. The data points at the need

for a robust maintenance time scheduling program, an effective failure analysis, and a

more appropriate approach to maintenance.  The weaving department is critical  in that

product from the spinning department must pass through in order to reach the processing

department. 

1.3 Justifications of the Research

The research is based on the situation analysis of a weaving section of a textile mill with

the  aim  of  establishing  the  need  for  a  consistent  and  coherent  maintenance  time
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scheduling strategy. There are discrepancies and inconsistencies in the maintenance of

critical equipment that suggests that the existing strategy is not optimized and does not

guarantee  machine  availability.  The  rationale  implies  that  critical  equipment  needs

optimized  maintenance  time  schedules.  From  the  background  information  and  the

statement of the problem, the cases of Run failure maintenance and prolonged downtimes

of up to 60 days led to compromised availability of machines. Run to failure system of

maintenance  approach  does  not  guarantee  the  efficiency  of  the  machine  and  can  be

associated with an increased cost of maintenance and replacement. Therefore, this study

shows  some  of  the  grounds  to  affirm  the  need  for  an  effective  maintenance  time

scheduling strategy in a fabric manufacturing factory.

1.4 Objectives

1.4.1 General Objective

To establish a suitable maintenance schedule time and parameters by assessing the state

of maintenance practices of the critical equipment in the weaving section at REAL.

1.4.1 Specific Objectives

i. To  map  out  the  critical  equipment  and  collect  data  on  the  number  and  time

between failures encountered in the weaving section of the textile manufacturing

processes.

ii. To model the time between maintenance operations and the number of failures in

system components within the duration for the critical equipment.
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iii. To analyze the system data to establish an optimized maintenance schedule and

parameters  for  the  critical  equipment  for  the  time  between  maintenance

operations.

1.4 Scope of the Research

The research is based on the critical equipment that is found within the weaving section

of REAL. The critical  equipment as identified in the background information and the

problems statement is the rapier and the air-jet looms. Based on the situational analysis,

there are  discrepancies  that  suggest  that  the existing  maintenance  strategy that  is  not

optimized and does not guarantee optimum machine availability. Such discrepancies and

inconsistencies provide evidence of the gap and the need to undertake a study to resolve

the underlying problem.

1.5 Significance of the study

The research played an important role in assessing the current situation concerning the

maintenance strategy at REAL with the aim of statistically modeling a maintenance time

schedules that presents an optimized strategy. The critical machines were evaluated, the

problem of inconsistency and lack of coherent maintenance time scheduling strategy was

established,  and  a  solution  was  developed.  Furthermore,  the  research  provides  a

recommendation  to  REAL  on  how  to  go  about  the  process  of  maintenance.  The

significance  of  the  research  is  to  help  resolve  the  problem faced  as  far  as  machine

maintenance is concerned. The study ensured that the machine availability was prolonged

by pointing out the gap in the maintenance strategy used and ensuring that an optimized
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time is  established based on the failure scenario deduced from Weibull  distributional

analysis. 

1. 6 Outline of the Thesis

The  thesis  comprises  five  chapters:  Chapter  One  introduces  the  study,  Chapter  Two

provides  a  comprehensive  literature  review,  Chapter  Three  outlines  the  methodology

employed, Chapter Four presents the results and discussions, and Chapter Five concludes

with recommendations. The references and appendices are also included. 
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CHAPTER TWO: LITERATURE REVIEW

2.1 Introduction 

This chapter presents a review of the literature review that helps in depicting the gap in

the  case  of  Rivatex  East  Africa  Limited  (REAL).  Maintenance  can  be  termed  as  an

approach that involves a combination of strategies and techniques in order to avoid the

occurrence of failure and tactfully restore failed components. In the past, maintenance has

been about cost and the nature of stoppages encountered during the production process.

However,  the current  system evaluates  maintenance in terms of reliability,  downtime,

safety, and availability of the machines. The traditional approaches have been replaced by

more  advanced  maintenance  strategies.  In  essence,  the  optimization  of  maintenance

schedules has been a pressing challenge, and most industries have striven to find ways of

minimizing downtime. In order to minimize downtime, there is a need to find ways to

maximize machine availability by enhancing the reliability and uptime of the machines.

Proactive  strategies  such  as  predictive  and  preventive  maintenance  have  been

instrumental in the maximization of machine availability (Mahfoud et al., 2016).

2.1.1 Rivatex East Africa Limited

Rivatex East Africa Limited (REAL) is a vertically integrated textile factory that converts

cotton lint through various processes to finished fabrics. The principal goal of REAL, a

business wholly owned by Moi University, which was established on August 16, 2007,

was to use the facility for training, research, extension, and commercial uses. REAL is

reputed as the home of quality textile products both locally and regionally. In addition,

the company has been facing a problem of obsolete machinery and technology challenges
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which  has  hindered  the  exploitation  of  the  opportunities  that  exist  in  the  local  and

regional markets. Among these challenges is the issue of machine maintenance amid the

issue of machine obsolescence. Lastly, the company has made various steps towards full

revival  despite  the  many challenges  that  it  has  faced on its  way towards  sustainable

growth and profitability.

REAL has  three  weaving technologies  in  the  weaving department,  namely  projectile,

rapier,  and  air  jet.  Under  rapier  weaving  technology,  there  is  a  dobby  and  tappet

mechanism. Dobby loom refers to a loom that controls all the warp yarns using a dobby

system. Tappets imply a shedding mechanism by a loom using a tool placed on the peak

of the loom in order to develop patterns using a limited number of healds created by the

tappet and cam motion. 

2.1.2 REAL Manufacturing processes

The steps for the manufacturing process are as shown in Figure 2.1.

        Figure 2.1: Textile Manufacturing Process with Flow chart (Uddin, 2019)

Spinning is a process used to create or transform fiber materials into yarns (Mahmood,

2020). It first passes through the blow chamber, where the size of the cotton is reduced

with the use of machines, then it is carded (Uddin, 2019). Drawing is used to carry on the

process after carding, which involves attenuating in spinning mills as shown in Figure

2.1. Following drawing, the sliver is processed for combining, where the cloth's uniform

size is  achieved.  According to  Scime et  al.  (2020),  the process  is  then  advanced for
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roaming in order to prepare the input package. Shirvanimoghaddam et al. (2020) argues

that  rollers  attenuate  this  roving before  it  is  spun around  the  spindle.  The  next  step

following spinning is the weaving process. In this location, the spun yarn is delivered for

additional doubling and twisting. After that, it goes through processing so that the yarn

can be  moved in  a  handy box with  enough yarn length.  The worn-out  packages  are

swapped out for new ones at the creeling stage, and then warping occurs (Uddin, 2019).

Sizing is the protective layer that is applied to the bent yarn to reduce yarn breaking.

According to  Huynh (2020),  sizing is  regarded as a crucial  section.  He et  al.  (2020)

argued that the final stage of weaving supports the processing of this yarn for winding on

the weaver's beam. A fabric is the result of this stage. 

A loom also known as Weaving Machine refers to a tool used for weaving yarn and

thread into textiles, or a cloth as shown in Figure 2.1. In the first half of the '70s, there

was an arrival in the market of systems used in weft insertion other ways than the shuttle

(Uddin, 2019). Machines with mechanical weft include insertion systems by rigid rapiers,

flexible rapiers, and projectiles. On the other hand, machines with non-mechanical weft

means of insertion system include jets of compressed air and jets of compressed water.

REAL employs the use of weaving machines that inserts weft by rigid rapiers, projectile,

and  the  jet  of  compressed  air  (Islam et  al.,  2021).  There  are  a  total  of  88  weaving

machines using these 3 mentioned insertion systems and fall under the critical equipment

as per the initial assessment.

In dyeing mills, the process of dying and printing cloth normally comes before adding

additional finishing touches. Dyeing gives fabric color and enhances its appearance. The

process  of  finishing involves  changing the product  from woven to knitted  fabric.  To
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produce  a  specific  aesthetic,  finishing  is  specifically  done  after  dying  or  printing.

Manufacturing clothing is the final step in turning semi-finished fabric into completed

fabric.

To  produce  cloth,  garment  manufacturing  companies  go  through  several  procedures.

Designing,  Sampling,  Costing,  Maker  Making,  Cutting,  Sewing,  Washing,  Finishing,

Packing,  Final  Inspection,  Dispatch,  and  many  other  operations  are  included  in  this

section  of  textile  manufacturing  (Uddin,  2019).  A  textile  factory  consists  of

interdependent  series  of  machines;  therefore,  the  maintenance  theory  of  reliability

becomes relevant in that the entire machine must be kept running. Uddin (2019) affirms

that the need to avoid failure and breakdown emergencies hinders the aspect of reliability

and availability of the machines. Failure and defects are viewed as discrete events that are

in  a  queue.  Furthermore,  there  are  events  that  are  characterized  by  failure  modes,

schedules, and the need for reaction. According to Andrade et al., (2020), such a scenario

dictates  the  conceptual  framework  required  to  assess  the  situation  at  REAL.  The

availability and reliability of machines calls for a change in the maintenance strategy. In

essence,  the  maintenance  theory  of  reliability  sort  to  assess  the  usefulness  and  the

practical maintenance models associated with inspection, prevention, and replacement of

machines systems (Nakagawa, 2006). Uddin (2019) argues further that the availability of

the machines  can be narrowed down to the theorem that  the maintenance cost of the

machine increases with time until a point is reached when it is no longer economical to

run  the  machines,  hence  affecting  its  availability.  Finally,  the  theory  of  probability

becomes crucial in the assessment of the efficiency, reliability,  and availability of the
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machines since it is simpler to guest the eventuality of a chance for failure at various

operational stages (Mehta et al., 2015).

2.1.3 Common textile manufacturing processes maintenance issues

Textile manufacturing processes entail a wide range of gear and equipment, each with its

own set of maintenance issues. Spinning machines are used to turn fibers into yarn. The

continual friction between the fibers and the machine's  parts causes wear and tear on

these  machines.  Wear  and  tear  can  reduce  efficiency  and  potentially  cause  machine

failure. Jia et al. (2020) explains that to avoid this, the machine must be lubricated and

cleaned on a regular basis to reduce friction and remove any dirt that has accumulated.

Sarı et al.  (2020) found out that replacing worn-out parts  like bearings, spindles,  and

rollers can help assure the machine's best operation. The fundamental issue with spinning

machines is frictional wear and tear on the parts. Wear and tear on the machine might

cause it to slow down, create subpar yarn, or even stop working entirely. These issues can

be avoided by regular lubrication, cleaning, and replacement of worn-out parts. Liu et al.

(2020) states that weaving machines are susceptible to vibration and shock, which can

cause bolts and nuts to loosen, resulting in part misalignment. Regular maintenance, such

as  checking  the  tightness  of  bolts  and  nuts,  replacing  worn-out  parts,  and  properly

aligning parts, can help prevent these issues. Fabric is created by interlacing strands on

weaving machines.  These machines are susceptible to vibration and shock, which can

cause bolts and nuts to loosen, resulting in component misalignment. Islam et al. (2021)

stated  that  misalignment  might  cause  the  machine  to  generate  poor  quality  fabric  or

possibly stop working entirely. Regular maintenance to check the tightness of bolts and

nuts is required to prevent this occurrence. Furthermore, replacing worn-out elements like
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drive  belts,  bearings,  and  shafts  can  assist  assure  the  machine's  peak  functioning.

Weaving machines are susceptible to vibration and shock, which can cause bolts and nuts

to  loosen,  resulting  in  part  misalignment.  Prasad  et  al.  (2020)  stated  that  regular

maintenance, such as checking the tightness of bolts and nuts, replacing worn-out parts,

and properly aligning parts, can help prevent these issues. Because of the acidic nature of

the dyeing process, dyeing machines corrode. To dye fabric or yarn, dyeing machines are

employed. Because of the acidic nature of the dyeing process, these machines are prone

to corrosion. Corrosion can cause leaks, corrosion, and structural damage to the machine,

resulting in lower efficiency and possibly machine failure. According to Pal (2020), to

avoid corrosion, the machine must be cleaned on a regular basis to remove any remaining

colour or debris that has accumulated. Furthermore, treating the machine's surfaces with

protective  materials  such  as  paint  or  anti-corrosion  coatings  can  aid  in  corrosion

prevention. Printing machines are used to transfer designs or patterns from paper or fabric

to fabric. According to Realyvásquez et al. (2020), this is because of the abrasive nature

of the printing process; these machines are prone to wear and tear. Wear and tear can

cause the machine's parts to break, resulting in poor print quality or machine failure. To

avoid wear and tear,  the machine must be cleaned on a regular  basis  to remove any

residual  ink  or  dirt  that  has  accumulated.  Furthermore,  replacing  worn-out  elements

including ink rollers, ink cartridges, and print heads can assist assure the machine reach

peak performance.  Corrosion can cause leaks, corrosion, and structural damage to the

machine, resulting in lower efficiency and possibly machine failure. Regular cleaning and

protective coating of the machine's surfaces can assist prevent these issues.  Mahmood

(2020)  argues  that  because  of  the  abrasive  nature  of  the  printing  process,  printing
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machines are vulnerable to wear and tear. This wear and strain might cause the machine's

parts to break, resulting in poor print quality or machine failure. Cleaning and replacing

worn-out  parts  on a regular  basis  can help prevent  these issues.  Due to  the repeated

cutting  of  fabric,  cutting  machines'  blades  become  dull.  Fabric  and  paper  cutting

machines are used to cut fabric and paper into precise shapes and sizes. Holgado et al.

(2020) claims that this dullness is due to the repeated cutting of fabric, the blades on

these machines  become dull.  Blades  that  are dull  can cause inconsistent  cuts,  ragged

edges,  and  decreased  efficiency.  To  avoid  the  decreased  efficiency,  blades  must  be

sharpened or replaced on a regular basis. Additionally, cleaning the machine to eliminate

any accumulated material can help assure the unit's best operation. Blades that are dull

can  cause  inconsistent  cuts,  ragged  edges,  and  decreased  efficiency.  Sharpening  or

replacing blades on a regular basis can help prevent these issues of decreased efficiency.

According to Parvin et  al.  (2020),  to prevent  issues of decreased efficiency in textile

production  operations,  constant  maintenance,  cleaning,  and  replacement  of  worn-out

parts are required. It is also critical to follow the manufacturer's instructions for optimal

equipment use and maintenance.

Weaving machines are key equipment in textile manufacturing processes and must be

serviced  on a  regular  basis  to  ensure peak performance.  The warp is  a  collection  of

strands that run longitudinally on a weaving machine. If the warp breaks, the machine

will stop running, resulting in production downtime and lower efficiency. Warp breaks

are most commonly caused by improper tension, worn-out or damaged warp beams, or

faults  in  the  warp  yarn.  These  shortcomings  of  improper  tension  can  be  avoided  by

performing  regular  maintenance  on  the  warp  beams,  tensioning  systems,  and  yarn



15

feeders. The weft is a group of strands that run across the weaving machine. Fithri et al.

(2020) argues that whenever the weft strands become trapped or jammed, the machine

ceases operating, resulting in production downtime and lower efficiency. Weft jamming

is most commonly caused by improper tension, a damaged or worn-out shuttle or rapier,

or faults in the weft yarn. Maintenance of the shuttle or rapier, tensioning mechanisms,

and yarn feeders on a regular basis can help prevent these issues. The reed is a comb-like

device that aids in the beating of the weft strands during the weaving process. If the reed

is not properly oriented, the weft threads may be wrongly placed, resulting in poor fabric

quality. Misalignment can be caused by worn or damaged reeds, poor tensioning of the

warp and weft yarns, or structural flaws in the machine. Regular reed, tensioning device,

and  machine  structural  maintenance  can  help  prevent  these  issues.  Modern  weaving

machines  frequently  feature  intricate  electronic  control  systems  that,  if  not  properly

maintained, can fail. Failure of these systems can cause the machine to stop running or

generate poor quality cloth. Electrical shorts, broken sensors, and faulty controllers are

common causes of electronic control system failure. Saggiomo et al. (2020), found out

that regular maintenance of the electronic control system, including sensor and controller

cleaning and inspection, can assist prevent these shortcomings. In conclusion, weaving

machines are prone to a variety of malfunctions that might result in production downtime

and lower efficiency.  McLaren et al.  (2020) further suggest that regular maintenance,

which includes inspection, lubrication, cleaning, and the replacement of worn-out parts,

can  help  prevent  these  shortcomings  and  assure  peak  performance.  Proper  machine

operator  training  and  attention  to  manufacturer's  instructions  can  also  aid  in  the

prevention of problems and the extension of the machine's lifespan.
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2.2 Maintenance Strategies

Textile factories are normally faced with different failures that call for decision-making

approaches  that  are  tailored  towards  addressing the  maintenance  problem.  Under  this

heading,  it  is  important  to  review the  maintenance  strategies  that  suitably  match  the

maintenance requirements of a textile mill such as REAL. 

Maintenance  is  done  in  order  to  maintain  the  machines  running  normally  without

downtime (Endrenyi,  et al.,  2001). Therefore,  the useful life period of the machine is

lengthened by reducing the component  failure rate.  The efficiency and availability  of

such a machine are achieved by ensuring that a proper maintenance strategy is adopted

(Gupta & Gupta, 2020). However, the development of a maintenance strategy happens to

be  a  challenging  and complex  undertaking  considering  the  case  of  textile  firms,  and

especially firms in developing countries such as REAL. The complexity of developing a

maintenance strategy stems from the two approaches of measuring equipment or process

performance.  These  two  approaches  include  the  scheduled  and  the  actual  measures.

Scheduling  defines  the  strategy  to  use  and  the  sequence  of  evidence  (TT,  2018).

Similarly,  the  actual  measure  outlines  the  process  performance  during  and  after  the

maintenance  has  been  undertaken.  In  the  actual  output,  the  true  performance  of  the

machine  was  assessed  and  includes  the  reworks  and  unscheduled  and  scheduled

downtime. The unscheduled downtime may originate from equipment breakdown due to

application of sub-optimal maintenance strategies (Endrenyi, et al., 2001). On the other

hand, the scheduled equipment output refers to the performance of the machines over

time, given the optimum allocation of work and production resources. 
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Furthermore,  regression  modeling  helps  in  formulating  appropriate  maintenance

strategies  for  optimizing  machine  uptime,  an  aspect  which  was  complex  considering

many factors such as machine availability, reliability, operation patterns of equipment,

among many other factors (Endrenyi, et al., 2001). Universally, maintenance affects the

system and component reliability. Therefore, if little or no effort was made in the process

of  maintaining  the  machines,  costly  failure  may  occur,  and  finally,  the  aspect  of

efficiency is lost. Endrenyi, et al. (2001) explained that whenever maintenance is done

often,  efficiency  tends  to  improve,  and  the  maintenance  cost  increases  drastically.

Likewise, whenever an optimized maintenance strategy is employed, it implies that there

is a satisfactory system and component efficiency (Endrenyi, et al., 2001). Furthermore,

the system capacity has more reliable components, and reinforced redundancies are often

viewed in advanced maintenance strategies. 

2.2.1 Preventive Maintenance 

Preventive maintenance (PM) refers to a maintenance strategy that is performed on a

machine in order to prevent it from failing. In essence, the practice is aimed at increasing

the productive life of a machine. The practice is undertaken when the machine is still in

operation in order to avoid unexpected breakdown[ CITATION HMa16 \l 2057 ]. The

maintenance activity schedule of done based on certain triggers that suggest the need for

maintenance. PM is quite complex and requires knowledge about the machine, unlike the

Run to failure technique. Mahfoud et al. (2016) argues that the technique is quite useful

when there is a likelihood of failure.  Also, the technique works best when the failure

modes can be prevented. Most importantly, the role and function of the machine must be
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critical in the production line. Some advantages of this method are as follow[ CITATION

HMa16 \l 2057 ],

 Equipment is kept running for longer than any other maintenance strategy.

 Lower cost of long-term maintenance of the machine.

 Safety is improved, and the operator remains safe from catastrophic failures.

The method, however, has demerits such as;

 More complex to plan than other strategies.

 The initial cost of investment is high.

 Application in textile mills.

The application of preventive maintenance in textile mills has been done based especially

when the equipment  is  critical  to  the productivity  of the facility.  In this  case,  PM is

considered  as  a  planned maintenance  strategy.  Mahfoud et  al.  (2016) argues  that  the

operations that are evaluated in preventive maintenance strategy include cleaning, setting,

and minor repairs.  Lubrication  is  a common example of the PM strategy in  a  textile

factory [ CITATION HMa16 \l 2057 ].

2.2.2 Predictive Maintenance 

Predictive maintenance (PdM) refers to the strategy that relies on the prediction of the

failures of a machine. When the time of occurrence of the failure has been determined,

the maintenance team is dispatched to attend the machining order to avoid the occurrence

of  the  failure[  CITATION  Ber16  \l  2057  ].  Monitoring  of  such  failures  helps  the

craftsmen to be planned and make necessary inventory requirements on time. The method

helps in avoiding unplanned reactive maintenance and the extra cost that is incurred in
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preventive  maintenance.  Techniques  such  as  observation  of  the  vibrations,  thermal

imaging, and oil analysis, among others, can help in predicting failures. The methods are

associated with advantages such as minimizing maintenance time, minimizing production

hours lost during maintenance, and minimizing the cost of unnecessary purchase of spare

parts. The merits of using predictive maintenance are (Schmidt et al, 2016);

 The cost and the time of maintenance are normally kept low.

 Reliability is improved, and the likelihood of failure is reduced significantly.

On the other hand, predictive maintenance has limitations such as;

 Higher planning and anticipation cost than basic maintenance practices.

 Application in textile mills.

PdM has been adopted in textile mills mainly in the prediction of the failures,  which

would eventually save on the cost of maintenance, in this case, the settings, adjustments,

cleaning, and minor repairs done regularly. Schmidt et al. (2016) found out that checking

forms the basis of this maintenance strategy within a facility. PdM is done, for instance,

on the epicyclical gearings, rollers, V-belt, and V-pulley [ CITATION Ber16 \l 2057 ].

2.2.3 Run to Failure Maintenance

Run-to-failure  maintenance,  also  known  as  breakdown  maintenance  is  normally

associated with machines that are not critical in the production processes. Such machines

are characterized by the low cost of maintenance. Similarly, the impact of such machines

during downtime is insignificant. In a textile mill, the machines are normally fixed by

repair,  part  replacement,  or  restoration.  In  this  case,  the  maintenance  is  based  on



21

breakdown until it becomes feasible to order replacement equipment. The advantages of

this method are [ CITATION Ber16 \l 2057 ];

 Minimum or no planning at all is needed.

 The sequence of events and processes is simple to understand.

 On day by day, less work is done hence less staff is needed.

The disadvantages of Run to failure (Breakdown) maintenance are [ CITATION Ber16 \l

2057 ];

 Failure is normally unpredictable.

 Normally is extremely costly and time-consuming.

 Poses a high risk to the machine operators.

In the textile manufacturing system, run to failure maintenance is also often applied, in

the sense that textile mills often consider this strategy when the equipment is not critical

to the production processes. Operations such as repairing, altering, setting, adjustment,

and overhauls are normally undertaken under breakdown maintenance. In essence, most

of the operations done in this strategy are normally not scheduled. Schmidt et al. (2016)

researched that overhauling maintenance is undertaken when the machine suddenly stops

or reaches the manufacturer's recommendation or when most of the parts have worn out.

A  run  to  failure  approach  to  the  maintenance  of  the  machine  is  characterized  by

secondary damage complications. In most cases, the secondary damages often result from

primary damages asset failures that have been overlooked for a long time. Safety and

security issues tend to increase with prolonged uses of machines in the case of run to
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failure  approach  [  CITATION Ber16 \l  2057 ].  Alongside  the  safety  concerns,  the

approach is associated with low user comfort and satisfaction levels.

2.2.4 Condition-based maintenance

Condition-based  maintenance  (CBM) is  a  maintenance  strategy  that  involves  routine

testing,  visual inspections,  and sensor devices  to monitor equipment  performance and

predict when repair will be carried out most affordably. CBM is a strategy where the

primary  driver  behind  performing  maintenance  is  a  change  in  the  condition  or

performance of the equipment (Wu et al., 2019). The asset, a component of it, or a part of

it is actually monitored to identify when is the best time to undertake maintenance (Wu et

al., 2019). By gathering and analyzing sporadic or continuous data about the operational

state of crucial assets' components, CBM aims to reduce the overall cost of inspection

and repairs as shown in Figure 2.2.  On-condition maintenance is often used to detect the

onset of failures and recommended maintenance practices. 
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        Figure 2.2: Condition-Based Maintenance Workflow (Nguyen et al., 2019)

The differences between CBM and PdM are quite outstanding and needs to be explored

as shown in the comparison Table 2.1 (Wu et al., 2019);

Table 2.1: CBM versus PdM 

Condition-Based Maintenance Predictive Maintenance
Relies on condition-based diagnostics to 

determine when maintenance is necessary

(For example: vibrations, temperature, 

pressure, speed, voltage). 

Uses sophisticated predictive formulae to 

combine condition-based diagnostics 

(such as temperature and vibrations) with 

the potential need for repair. 
Utilizes static rules to make decisions. Uses dynamic rules to make decisions.
Extremely susceptible to noise input. Less susceptible to input noise. 
A more effective approach to preventive 

maintenance that uses ongoing detection, 

diagnostic, and prognostic algorithms. 

Preventive maintenance that uses 

algorithmic pattern recognition of 

machines is the most cutting-edge type. 
Provides technicians with immediate 

notice when a problem arises. 

Uses cutting-edge technology to forecast 

future breakdowns.  

The advantages of CBM are (Zhou & Yin, 2019);

 Prolongs the life of the equipment because maintenance is done before it breaks.

 Due to  the  idea  that  maintenance  is  only done when necessary,  hence  is  less

expensive.

 Due to CBM being carried out while the asset is in use, normal operations are

hardly ever interrupted.
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 It is possible to schedule maintenance tasks to cut down on overtime expenses.

Thus possible to do repairs off-peak. 

The disadvantages of CBM are (Hiruta et al., 2019);

 It will cost a lot of money to train staff in the selected CBM technology. CBM

systems barely detect fatigue failures.

 Installing condition-based monitoring systems is expensive.

 Harsh working conditions can damage sensors.

 It is difficult to predict when maintenance will be needed. It may require using an

emergency budget.

When operating in a vast company CBM approach requires that different maintenance

strategies are used. Preferably, CBM is used alongside a preventive maintenance strategy.

2.3 Obtaining data

The process includes finding out how long the machines in the critical section should go

without repairs.  Piqueras et al. (2019) stated that various machines yield different results

depending on how the preventive maintenance is carried out. In this situation, the data on

downtime has been sorted out and subjected to further analysis in order to reduce the time

significantly.

2.3.1 Failure data

The failure data sorts the failure quantity in each department. Upon failure, the machine

downtime  is  recorded  for  the  purpose  of  maintenance  optimization  by  minimization.
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Failure leads to downtime, which in turn impacts the interest of the maintenance team,

penalties,  decent idle machines, loss of profit opportunity,  non-growing benefit  of the

machine, and lost production (Piqueras et al., 2019). Based on the original equipment

manufacturers (OEM),  the  root  cause  of  the  failure  is  determined  for  the  critical

machines. Failure can be categorized as mechanical or electrical using the severity and

the probability of the failures in the entire department's control (Piqueras et al., 2019).

Therefore, risk probability number is obtained. The failure data captured stemmed from a

collection  of  cases  that  include  improper  use,  inadequate  materials,  overstressed

components,  improper  setup  and  improper  installation.  Other  parameters  are  power

surges, handling damages, and poor-quality control (Piqueras et al., 2019).

2.3.2 Failures and defects 

Assessment of a textile mill should be done based on failures and defects occurrences and

the impact of such occurrences on the maintenance strategy used. Indeed, the criticality

of the equipment and the department under which the machines are located leads to the

adaptation of a maintenance strategy. However, it is important to explore some of the

failures and defects that are common in a textile mill [ CITATION Hep16 \l 2057 ]. The

failures  are  normally  viewed as  either  known or  unknown by the  maintenance  team.

When the failures are known, such failures can be repetitive or non-repetitive. Li et al.

(2019) claims that the repetitive failures are often associated with routine, preventive and

statutory maintenance. On the other hand, non-repetitive failure attracts major repairs and

overhauls. Sometimes, the failure could be unknown, leading to corrective action based

on preventive maintenance. Also, a change of layout and restoration could demand the

use of a breakdown maintenance strategy. In addition, the failures define the availability
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of the machines and the maintainability of such machines. A production line within the

textile mills cannot be 100% perfect in their operation [ CITATION Hep16 \l 2057 ]. At

times, there are machine failures that can lead to stoppages of the equipment. Therefore,

the  duration  that  the  machine  is  in  operation  can  be  treated  as  system  availability.

Maintainability implies the ease with which a machine can be maintained. In essence, it

starts with the ability to identify the failure, the failure mode and the extent of the failure,

and the ability to repair the failure in order to restore machine availability for production.

Old machines were designed with each component functioning and failing independently

of others. However,  modern systems have modules that can easily be replaced as the

other unit heads for repair. All the changes are aimed at improving the reliability of the

textile  machines.  Li  et  al.  (2019)  claims  that  maintenance  indirectly  impacts  the

availability of machines through maintainability.

2.3.3 Common Waste in Maintenance Planning

A maintenance strategy tends to affect the time needed during the maintenance of the

machines. Therefore, of the 8 hours of working, 4 hours of the maintenance team has

been  established  to  go  to  waste.  Maintenance  planning  plays  a  crucial  role  in  the

development of the optimized maintenance strategy. Li et al. (2019) claims that a team of

craftsmen can waste more time making multiple trips to the store in a bid to collect the

materials. Such trips can accompany other trips such as going to find the tools needed for

the operation. Much at times, the craftsmen can make irrelevant trips to the site where the

machine to  maintenance  is  located[ CITATION She15 \l  2057 ].  Such trips  include

checking  the  nature  of  failure,  checking  the  material  requirement,  checking  the  time

required for the activity, and also assessing the extent of the damage. Such visits can be
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compressed  when  an  optimized  maintenance  strategy  is  developed.  Also,  poor  crafts

coordination is quite a major issue during the maintenance of the machines. Therefore, it

is important to have a plan that captures the desired number of craftsmen per machine.

From Mostafa et al. (2015),  incomplete planning and lack of effective communication

can affect the nature of rolling out of the activities. Moreover, some of the craftsmen rely

on the supervisor for guidance on how to operate the machine or perform maintenance.

Such  lack  of  expertise  is  a  major  cause  of  the  poor  maintenance  plan  in  most

organizations.  Similarly,  the  habit  of  waiting  for  the  next  work  always  leads  to  the

adoption  of  a  poor  maintenance  plan.  Most  of  the  factories  rely  on  Run  to  failure

technique  in  order  to  administer  maintenance  activities.  Such  a  technique  leads  to

breakdowns  that  can  affect  machines'  availability  for  quite  a  long  time.  Therefore,

from[ CITATION She15 \l 2057 ], a maintenance strategy that forces the craftsmen to

waste time waiting for work is weak and not productive.

2.3.4 Failure Mode and Effect Analysis

The method is commonly used in identifications of possible failures based on a design

looking into a manufacturing process, product, or service. The method entails the system

analysis that is assessment based on planning and preparation part, structure analysis, and

function analysis. In addition, the failure data and its analysis are assumed before the

optimization is done to find out the criticality (Shahin et al., 2020). The value of severity

from severity, occurrence, and detectability are multiplied in order to get the risk priority

number. According to Shahin et al. (2020), the item with the highest risk priority number

is given much attention. In a scenario where improvements of goals, development of new

controls, and analysis of failures on an existing process, services, and product needs to be
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done, Failure Mode & Effects Analysis (FMEA) stands out (Sarih et al., 2018). Indeed,

FMEA  emerges  as  the  solution  when  done  periodically  throughout  the  life  of  the

processes.

2.4 Fishbone Diagram

The fishbone diagram is a cause-and-effect diagram that is useful in tracking down the

reasons  for  certain  events,  imperfections,  defects,  variations,  and  failures.  In

maintenance, the tool can be useful in determining the maintenance strategies used in a

given production process by assessing the various causes of the underlying event. In the

manufacturing world, the fishbone diagram is defined by the 6 Ms that include machines,

man,  methods,  materials,  Mother  Nature,  and  measurements  (Ershadi  et  al.,  2018).

According to Ershadi et al. (2018), the 6 Ms tend to influence the variation in all the

processes and act as the integral basis of the bones in the diagram.

2.5 Reliability and Response and Model significance 

The ideas of reliability, response, and model significance can be applied to problems like

inconsistent  maintenance  time  scheduling  and  incoherent  maintenance  tactics.

Inconsistency in maintenance time scheduling might lead to inconsistency in maintenance

actions. Fan & Li (2020) researched that equipment may not be effectively maintained if

maintenance is not performed consistently and according to a defined schedule, resulting

in breakdowns, lower efficiency,  and possibly hazardous conditions.  As a result,  it  is

critical  to  design  a  dependable  maintenance  schedule  that  is  followed  consistently.

Maintenance  employees  may  respond  incorrectly  or  incompletely  if  maintenance
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strategies are incoherent.  Fan & Li (2020) researched that  maintenance employees may

not offer accurate information regarding the condition of the equipment or the success of

the maintenance strategies whenever they are not properly qualified or equipped to carry

out  maintenance  tasks.  Such  a  situation  can  result  in  insufficient  or  ineffective

maintenance, increasing the risk of equipment failure and safety hazards. Maintenance

time schedule  inconsistency and incoherent  maintenance  techniques  can also have an

impact  on  the  significance  of  maintenance  models.  Models  based  on  erroneous  or

inadequate  data  may  fail  to  accurately  anticipate  equipment  performance  or  suggest

effective maintenance procedures. This assumption of lack of close attention to data can

result in lost time and resources, as well as increased safety and production concerns. To

provide correct answers and dependable data for maintenance models,  it  is critical  to

develop reliable maintenance schedules and coherent maintenance strategies. This failure

to  act  as  per  data  and  information  can  aid  in  maximizing  equipment  performance,

lowering hazards, and optimizing resources.

A consistent maintenance schedule is essential for ensuring that equipment is properly

maintained and runs efficiently. Duer et al. (2023) explains that uneven wear and tear on

equipment  can  come  from  inconsistent  maintenance  plans,  resulting  in  unscheduled

downtime, increased repair costs, and safety issues. A dependable maintenance schedule,

on the other hand, can help to discover possible concerns before they become serious

ones, allowing maintenance professionals to take corrective action before a breakdown

occurs.  Incoherent  maintenance  techniques  might  cause  maintenance  employees  to

provide  inaccurate  or  partial  responses,  limiting  their  capacity  to  effectively  identify

equipment  issues  and  execute  effective  maintenance.  Maintenance  employees,  for
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example,  may  be  unable  to  identify  the  root  cause  of  a  problem or  select  the  most

effective  maintenance  approach  if  they  are  not  properly  trained  to  use  diagnostic

instruments or analyze maintenance data (Fan & Li et al., 2020). This failure to find root

causes  can  lead  to  a  waste  of  time  and  resources,  as  well  as  increased  safety  and

production  concerns.  Maintenance  models  are  useful  for  predicting  equipment

performance and determining the best maintenance techniques. However, in order to be

useful, these models require accurate and reliable data.  ÖzcAn et al. (2020) argues that

inconsistent maintenance schedules and incoherent maintenance procedures might result

in inadequate or erroneous data, affecting the model's validity. As a result, models may

be less efficient in predicting equipment performance and identifying ideal maintenance

techniques, resulting in wasted resources and increased safety and production hazards. To

summarize, it is critical to establish consistent and dependable maintenance schedules as

well  as  coherent  maintenance  strategies  to  ensure that  maintenance  professionals  can

respond to equipment concerns effectively and give correct data for maintenance models.

This  commitment  to  act  on  data  and  information  can  aid  in  optimizing  equipment

performance, lowering downtime and repair costs, and improving safety and production

outcomes.

2.5.1 Mean Time between Failures

For repairable products, the reliability is quantified using Mean Time between Failures

(MTBF). The formula for calculating the MTBF is given by (Duer et al., 2023);

MTBF=
Total time

Number of failures
   2.1
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MTBF is a measure of how reliable a product is, and it is given based on the age (in unit

hours) of the product.  Furthermore,  the higher the value of MTBF which is  given in

hours, the more reliable the product. The Mean Time Between Failures (MTBF) is a key

statistic  used  in  reliability  engineering  to  assess  the  performance  of  a  system  or

component.  This  indicator  reflects  the  average  amount  of  time  between  system  or

component failures (Duer et al., 2023). Understanding the MTBF is critical for planning

effective  maintenance  and repair  plans,  as  well  as  projecting  systems or  components

expected lifetime. The range of reliability of the system components in the loom ranges

from 1000 hours to 5000 hours as per the manufacture’s specification. The relationship

between the number of failures and the average time between each failure is illustrated by

a plot of MTBF and the failure number. Pena et al. (2022) stated that, the x-axis would

reflect the number of failures, while the y-axis would represent the MTBF. The MTBF is

calculated  by  dividing  the  total  operating  time  by  the  number  of  failures.  As  the

frequency of failures grows, the plot would indicate a falling trend in the MTBF over

time. This trend is due to the fact that as a system or component fails more frequently, its

dependability declines, resulting in a shorter MTBF (Pena et al., 2022). Variations in the

MTBF may also be visible on the plot, indicating various failure modes or maintenance

tactics. Pena et al. (2022) emphasized that a plot of MTBF and failure number is a useful

tool for spotting patterns and trends in a system's or component's performance, and it can

serve to inform maintenance and repair strategies to enhance dependability and minimize

downtime. Consider the curves in Figure 2.3;
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            Figure 2.3: Plot of MTBF VS failure number (Pena et al., 2022)
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 2.5.2 Regression

Regression is done to check whether the whole model being developed is statistically

significant.  A significant model has an R-square value greater than 0.70 or 70%. The

value of MTBF is the response variable for the model. Regression analysis is one method

for  examining  the  link  between the  MTBF and other  variables.  ÖzcAn et  al.  (2020)

argues that regression analysis is a statistical approach that allows us to determine the

relationship between two or more variables and forecast how a change in one influence

the  others.  The  study  discovers  elements  that  lead  to  failures  and  devised  ways  to

mitigate failures by using regression analysis on the MTBF.

2.6 The Weibull distribution

The Weibull distribution, a probability distribution widely used to describe mechanical

system failure,  is  another  key tool in reliability  engineering.  Weibull  distribution was

used to simulate the likelihood of failure over time and estimate the expected lifetime of a

system or component (Fan & Li, 2020). Failure rate is determined, and predictions made

about the future failures by fitting the Weibull distribution to failure data. The method

was invented  70 years ago and has  been extensively  used for life  or failure  analysis

(Zulkafli & Mat Dan, 2016). The data needed in Weibull distribution analysis is failure

and change event data. Also, the operating age of the machine is required alongside the

time when changes were made. Age can be elapsed calendar time is the machine run

24/7.  Otherwise,  age  is  given by operating  hours  or  some kind of  cyclic  count.  The

Weibull  shape  that  is  <  0.9  implies  a  premature  failures  pattern.  In  this  case,  the

applicable maintenance task is a root cause analysis. The method helps in eliminating the

cause of premature failures. The approach is of low quality when it comes to maintaining
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equipment (Zulkafli & Mat Dan, 2016). The method is used on conditions in order to

contain the effects of failure. A shape value that is 0.9 < shape (ß) < 1.3 describes a

random failures pattern, and only on-conditions maintenance tasks are required as shown

in Table 2.2 (Wisniewski,  2019).  Furthermore,  a ß  > 1.3 follows a  wear-out  failures

pattern that demands on-conditions and scheduled restoration or replacements of parts

(Wisniewski, 2019). Wisniewski (2019) explains that a shape range of 1.3 to 2.5 implies

weak  wear  out,  and  on-condition  maintenance  is  preferred  that  includes  scheduling

restoration or replacement.
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Table  2.2:  The relationship  between the  parameters  of  the Weibull  distribution,

reliability functions, and hazard functions (Wisniewski, 2019)

Shape range Probability density function Hazard function Failure
0 < ß < 1 Early  failures  occur  throughout  the

product's  first  life  cycle.  To  lessen
the  chance  of  first  failure,  these
failures  may  demand  a  product
"burn-in"  period.  From infinity,  the
value  decreases  exponentially.
Failure  rate  is  initially  high  but
lowers  over  time  (first  section  of
"bathtub" shaped hazard function) 

ß = 1 The rate of failure remains constant.
Failures  due to a variety of causes.
Product  "useful  life"  model.  1/  (=
scaling  parameter)  decreases
exponentially.  Constant  failure  rate
throughout  product  life  (second
portion  of  "bathtub"  shaped  hazard
function)

ß = 1.5 Failure  due  to  premature  wear.
Increases  to  a  climax,  and  then
lowers.  Increasing failure  rate,  with
the greatest rise occurring initially.

ß = 2 The  risk  of  wear-out  failure  rises
continuously  during  the  product's
lifetime.  Rayleigh  distribution  is
used. Failure rate increases linearly 

3 ≤ ß ≤4 Failures  due  to  rapid wear.  Models
the  end-of-life  era  of  a  product,
when the majority of failures occur.
The form of a bell. it denotes rapid
growth 

ß > 10 Failures  due  to  rapid wear.  Models
the  end-of-life  era  of  a  product,
when the majority of failures occur.
The  same  as  the  extreme  value
distribution.  Failures  are  rapidly
rising.
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2.6.1 Failure Rate vs. Time Plot

This refers to a plot of the failure rate over time. The plot has the cumulative failure rate

or percentage on the y axis and the cumulative system operating hours on the x-axis.  Li

et al. (2019) explains that with this plot, one is able to depict the product failure rate at

the time t. The Failure Rate vs. Time Plot is an important visualization tool in reliability

engineering.  This  graphic visualizes  a  system's or component's  failure rate  over time,

which can help us detect trends and patterns that may be indicative of certain failure

processes (Heiser & Hofmeister, 2019).  Li et al. (2019) concluded that one can build

efficient maintenance and repair strategies to decrease the risk of failure and optimize the

performance of the system or component by examining the Failure Rate vs. Time Plot.

This aspect of Failure Rate vs. Time Plot has not been utilized in the case of REAL.

2.6.2 Fitting age data to a Weibull distribution

The estimation method for fitting age data to a Weibull  distribution includes Ranked

Regression, using the median ranks on the y values, Maximum Likelihood Estimation

(MLE), and the Method of Moments. Method of the moment only takes into account the

failure events  hence not used for failures.  The ranked regression method is  preferred

since the probability chart allows visualization of the data and the fit. In essence, it is

easy to visualize whether the data suffers from a mixed failure mode or whether it is

appropriate to use the location parameter from the visual line fit. The Weibull distribution

is  a  powerful  tool  in  modeling  reliability  data  and predicting  the  failure  behavior  of

systems. It is widely used in various industries, including manufacturing and engineering,

to evaluate the probability of failures and optimize maintenance schedules. The Weibull

distribution allows for the estimation of several key parameters, such as the shape and
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scale of the distribution, which can be used to calculate the probability density function,

survival  function,  and  hazard  function.  The  hazard  function  describes  the  increasing

failure  rate  of  a  system,  with the largest  increase  occurring initially.  Meanwhile,  the

probability density function increases to a peak and then decreases. The survival function

is the probability that an item will survive until a particular time. In addition, the Weibull

distribution provides insight into the expected percentage of items that will fail during the

burn-in period, as shown in terms of the age of the machine. The probability plot can also

indicate the time and scale of fast wear-out that is expected to occur, which is critical

information for maintenance planning and optimization. Therefore, the use of the Weibull

distribution  and  its  associated  functions  can  provide  valuable  insights  into  system

reliability and help to minimize downtime and maintenance costs. The MLE method is

often preferred when one has statistical background since it is more accurate. Li et al.

(2019) found out that the MLE method has an inherent bias that can be worse when the

shape parameter is < 1, and the number of data points is < 15 (Wisniewski, 2019).

2.6.3 The Optimized Maintenance Strategy 

An optimized maintenance strategy implies that machines within the production floor are

operated at  optimized time schedules.  An optimized maintenance strategy is normally

aimed at helping the organization to meet the operational goals and has the overall lowest

cost of operation. OEM does provide a maintenance strategy that often loses relevance

with time as the machine wears down. In essence, Vasili et al. (2011) emphasizes that an

optimized maintenance strategy helps in elongating the productive life of such machines.

In essence, this is not the case in REAL.

2.6.4 Implementation of Maintenance Optimization
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Maintenance optimization is a critical  issue when it  comes to the management of the

production line [ CITATION Meh11 \l 1033 ]. When a machine fails in the production

line,  it  normally  delays  the  completion  time  and  leads  to  the  rescheduling  of  other

production activities that utilize the same line. Whenever jobs are not finished on time,

the organization loses its credibility and trust from the customers. Therefore, optimization

of the maintenance process involved the introduction of conditions and features into the

maintenance schedule. Such a condition can only be unidentified by assessing the number

of failures or failure rates over a period of time (the age of the machine).  The shape

parameters  of  the  Weibull  function  provide  the  nature  of  failures,  and  therefore  an

appropriate approach to maintenance is determined. Vasili et al.  (2011) states that the

process  of  optimization  ensures  that  the  maintenance  policy  is  more  realistic  and

achievable. The end result of the optimization is that most of the imperfections, safety

issues, and delays are eradicated from the maintenance system[ CITATION Meh11 \l

1033 ].

2.6.5 The Validation of the Maintenance Strategy

The validation of a maintenance strategy is determining whether the strategy is effective

in lowering the likelihood of equipment failure and enhancing system reliability.  One

method is to use regression analysis to analyze MTBF data (Marcello, 2020). Fitting a

mathematical  model  to  the  MTBF  data  to  detect  any  correlations  between  the

maintenance plan and the MTBF is what regression analysis is all about. This approach

can assist in establishing whether the maintenance method is effective in reducing failure

frequency  and  improving  system  reliability.  In  such  cases,  Da  Silva  et  al.  (2020)

suggested that one should collect MTBF data for the device over a specified time period.
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The  period  between  failures,  the  cause  of  the  failure,  and  any  relevant  maintenance

information should all be included in this data to determine the variables that may be

influencing  the  MTBF,  such  as  maintenance  plan,  equipment  age,  and  operating

conditions. The type of data and the nature of the relationship between the independent

and dependent variables are used to select the right regression model, using a statistical

software application to fit the model to the MTBF data. According to Marcello (2020),

maintenance  teams are able  to  determine  the  strength  of  the  association  between the

maintenance strategy and the MTBF as a result of this time schedule. ÖzcAn et al. (2020)

concluded that the model is then evaluated to confirm that it is a good fit for the data and

offers  accurate  MTBF  estimates  to  draw  judgments  about  the  effectiveness  of  the

maintenance plan and whether any enhancements or revisions are needed based on the

results of the regression analysis. Doing regression analysis on MTBF data can aid in

validating the efficacy of a maintenance approach and identifying areas for improvement

to ensure optimal equipment performance and reliability.

2.7 Current Maintenance Strategies at REAL

In the weaving department, the efficiency of the machine is < 90%, making it a critical

section  in  the  weaving  department.  There  are  88  machines  that  are  critical  in  fabric

formation, and an overview of a section of the machines yields crucial assertions on the

maintenance. From Figure 2.4, both rapier and air-jet loom comprised of 66 machines

which form the critical equipment as far as maintenance and availability for production is

concerned. 
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Figure  2.4:  The  layout  of  a  section  of  weaving  machines  (REAL  maintenance

department)

Type of failures experienced in the spinning department includes Mechanical: Bearing,

loose nuts, broken parts, and Electrical: Motor (brushes, fuses, switches).
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A sampled performance of the machines based on their availability in a shift is shown in

Figure 2.5.
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Figure 2.5: Performance of the machines (REAL maintenance department)

The rapier and the air-jet loom handle the majority of the designs on the factory floor,

while the projectile technology weaves designs with large size. Figures 2.6, 2.7, 2.8, and

2.9 shows the state of maintenance of the rapier and air-jet looms. Similarly, from these

pictures, it is easy to identify the push factors that lead to failures within the weaving

section.  The  factors  can  be  avoided  by  the  implementation  of  a  proper  maintenance

schedule and approach. 
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Figure  2.6:  Buildup  of  dust  and  fiber  waste  of  moving  machine  parts  (REAL

maintenance department)

Figure  2.7:  Weft  selector  covered  by  choking  fiber  waste  (REAL  maintenance

department)
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Figure.2.8:  Sample of  belt  that  depicts  early  worn-out  failure (REAL maintenance

department)

Figure 2.9: A scenario of a cleaned machine part with a brush leaving no choked

gears with waste (REAL maintenance department)
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Furthermore, Figures 2.6, 2.7, 2.8, and 2.9 indicate a lack of optimized and consistent

maintenance practices that are required in ensuring that the equipment life is increased,

and that premature failure is avoided. The increased wear-out failures are more likely

when the machines are operated under the "not good" situation in Figures 2.7 and 2.8.

Also, the “not good” situation in Figures 2.7 and 2.8 indicates a lack of an optimized

maintenance  strategy.  From Figures  2.6,  2.7,  2.8,  and 2.9,  the critical  equipment  has

built-up  wastes  that  choke  the  gears  and  the  moving  parts.  REAL is  divided  into  3

departments  with  various  cost  centers.  The  department  in  question  is  the  weaving

department. The machines are part of the production line; therefore, any stoppage implies

a halt in the entire production. In essence, it is a cloth-forming section. The state of the

machines determines the quality of the cloth produced. Removing the weaving machines

from the  production  line  implies  that  key activities  at  REAL are stopped.  Therefore,

maintenance of machines in the department must remain as a shop floor activity. The

current  maintenance  practices  are  based  on  breakdown  and  preventive  maintenance

strategies  which  is  dominated  by some incoherence  and inconsistency as  far  as  time

scheduling is concerned.

2.8 Research Gaps

One significant  source  of  concern  is  the  aspect  of  mechanical,  human,  and systemic

failures. Much has been written about mechanical failures, but little about human and

societal  failures.  Weaving  machines  are  prone  to  mechanical,  human,  and  systemic

failures, making maintenance essential to their proper operation. Weaving machines have

several moving parts that are susceptible to wear and tear as well as various forms of

mechanical failure. Belts, for example, may slip or break, bearings may wear out, and
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gears may get misaligned. Mechanical failures can result in decreased production, poor

output quality,  and, in certain situations,  full  machine breakdowns. Weaving machine

operators might also contribute to their failure. An operator, for example, may overload

the equipment, employ inappropriate settings or operating techniques, or just disregard

essential maintenance responsibilities. These errors can damage the equipment, diminish

its efficiency, and jeopardize the output quality. Finally, systemic failures might arise as a

result  of  variables  outside  of  the  control  of  individual  operators  or  maintenance

specialists.  A  power  loss  or  voltage  surge,  for  example,  could  harm  the  machine's

electrical  components.  Changes  in  ambient  circumstances,  such  as  temperature  or

humidity,  can  also  have  an  impact  on  the  machine's  operation.  Given these  possible

failure points, it is evident that frequent maintenance is essential for the correct operation

of  weaving  machines.  Proper  maintenance  can  help  to  reduce  breakdowns,  boost

production, and improve output quality. It can also assist in identifying and addressing

issues before they become more serious and costly ones.

The  argument  made  by  Mahfoud  et  al.  (2016)  is  that  proactive  strategies  such  as

predictive and preventive maintenance are essential  for maximizing the availability of

weaving machines. These strategies involve regularly monitoring the machines for signs

of  wear  and  tear,  and  conducting  maintenance  and  repair  work  before  a  breakdown

occurs. However, the credibility of the manufacturer's recommendations for maintenance

practices  needs  to  be  assessed,  as  some  may  not  be  optimal  for  specific  machine

configurations or conditions. To optimize preventive maintenance, Mahfoud et al. (2016)

propose that critical  equipment needs to be identified and prioritized for maintenance.

This involves evaluating the likelihood and impact of failures on the machine's overall
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performance, as well as the cost of maintenance versus the cost of downtime. However,

they do not provide a basis for finding critical equipment, and this could be an area for

further research. Another proposed direction for preventive maintenance optimization is

the simulation of big data. By analyzing large datasets generated by weaving machines, it

may be possible to identify patterns and trends that can inform maintenance decisions.

This aspect could involve using machine learning algorithms to identify potential failure

modes or predicting the remaining useful life of critical components. Overall, Mahfoud et

al. (2016) argue that proactive maintenance strategies are necessary for maximizing the

availability  of  weaving  machines.  However,  the  credibility  of  manufacturer

recommendations needs to be assessed, and further research is needed to identify critical

equipment and optimize preventive maintenance using big data analysis. Piqueras and

Fernandez-Crehuet (2019) argue that preventive maintenance is an important strategy for

avoiding  unexpected  breakdowns  of  weaving  machines.  This  approach  involves

analyzing data collected over a long period of time to identify patterns and trends that can

inform maintenance decisions. By conducting regular maintenance and repair work based

on this data, it is possible to minimize the risk of machine breakdowns and maximize

their availability for use. However, one issue that Piqueras and Fernandez-Crehuet (2019)

were not able to address is that identical equipment does not necessarily mean identical

maintenance strategies. Different weaving machines may be subject to different operating

conditions,  such as variations  in temperature,  humidity,  or the type of material  being

woven. These differences may affect the wear and tear on different parts of the machine,

and  as  a  result,  require  different  maintenance  strategies.  To  address  this  issue,  it  is

important  to conduct  a thorough analysis  of each weaving machine  and its  operating
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conditions. This undertaking may involve collecting data on factors such as the machine's

age,  usage patterns,  and environmental  conditions.  By considering  these  factors,  it  is

possible to develop customized maintenance strategies that are tailored to the specific

needs of each machine. In addition, it may be useful to incorporate real-time monitoring

systems into weaving machines, which can provide continuous data on their performance.

This data can help identify potential  problems as they arise, allowing for quicker and

more targeted maintenance interventions. By combining both long-term data analysis and

real-time  monitoring,  it  is  possible  to  develop  a  more  comprehensive  and  effective

preventive maintenance strategy for weaving machines.

Li et al. (2016) argue that maintenance can indirectly impact the availability of weaving

machines  through  its  impact  on  maintainability  in  multi-component  systems  with

hierarchical dependence. In such systems, the failure of one component can lead to the

failure of other components that depend on it, resulting in decreased machine availability.

While Li et al. (2016) addresses the issue of multi-component systems with hierarchical

dependence; they fail to use data to address the issue of failure in system components

with the aim of optimization. To optimize maintenance in such systems, it is important to

identify which components are critical to the functioning of the machine and prioritize

their  maintenance  accordingly.  This  requires  collecting  and  analyzing  data  on  the

performance of each component,  as well as the interdependencies between them. One

approach to using data to optimize maintenance in multi-component systems is to use

predictive  maintenance  techniques.  These  techniques  involve  analyzing  data  on  the

performance of  each component,  such as  temperature  readings  or  vibration  levels,  to

identify  potential  failures  before  they  occur.  By  identifying  potential  issues  early,
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maintenance  can  be  scheduled  and  conducted  proactively,  reducing  the  risk  of

unexpected  downtime.  Another  approach  is  to  use  machine  learning  algorithms  to

analyze data on the performance of each component and identify patterns and trends that

can inform maintenance  decisions.  For  example,  machine  learning algorithms can  be

used  to  identify  which  components  are  most  likely  to  fail,  or  which  maintenance

strategies are most effective for different types of components. By using data to inform

maintenance  decisions,  it  is  possible  to  optimize  maintenance  in  multi-component

systems with hierarchical dependence, maximizing machine availability and minimizing

downtime. Overall, while Li et al. (2016) addresses the issue of multi-component systems

with hierarchical dependence, using data to optimize maintenance can further enhance the

effectiveness of maintenance strategies. By analyzing data on the performance of each

component,  it  is possible to identify potential  issues early and prioritize maintenance,

accordingly, maximizing machine availability and minimizing downtime.

Mostafa et al. (2015) argue that maintenance strategies can have an impact on the time

required for maintenance  activities  in weaving machines.  According to  lean thinking,

maintenance can be optimized by reducing waste and streamlining maintenance value

stream  mapping.  In  this  context,  Mostafa  et  al.  (2015)  proposed  a  scheme  of  lean

maintenance  practices  that  could  be  applied  to  weaving  machines.  However,  while

Mostafa et al. (2015) mentioned waste reduction, maintenance value stream mapping, and

lean  maintenance  practices,  they  failed  to  mention  the  specific  tools  used  in  lean

maintenance.  These  tools  are  important  for  identifying  and  eliminating  waste  in

maintenance  activities  and  improving  the  efficiency  of  maintenance  processes.  One

example  of  a  tool  used  in  lean  maintenance  is  the  FMEA  methodology.  This
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methodology involves organizing the workplace to optimize efficiency, with a focus on

sorting,  simplifying,  sweeping,  standardizing,  and  sustaining.  By  applying  this

methodology to maintenance activities, it is possible to eliminate waste and improve the

efficiency of maintenance  processes.  Overall,  while  Mostafa et  al.  (2015) proposed a

scheme of lean maintenance practices for weaving machines, they failed to mention the

specific tools used in lean maintenance.

Sarih et al. (2018) suggested that the failure mode and effects analysis (FMEA) approach

can be  used  to  improve  the  goals,  develop  new controls,  and analyze  failures  in  an

existing process. They proposed a methodology for identifying important components of

a  specific  industrial  system  based  on  experience  input.  While  Sarih  et  al.  (2018)

conducted a literature review on the use of FMEA in industrial systems, although they

did not rank equipment based on criticality due to failures. However, ranking equipment

based on criticality  is  important  to  prioritize  maintenance  activities  and optimize  the

maintenance process. One approach to ranking equipment based on criticality is to use a

risk matrix. This action involves identifying the likelihood and severity of failure for each

equipment component and plotting these on a matrix. The resulting plot can then be used

to  prioritize  maintenance  activities  based  on  the  level  of  risk  associated  with  each

component. 

Ershadi et  al.  (2018) proposed the use of the fish-bone diagram in the manufacturing

world, which is defined by the 6 Ms that include machines, man, methods, materials,

Mother Nature, and measurements. This tool is used to identify the various causes and

effects of a problem, which can be used to develop effective solutions. However, Ershadi

et  al.  (2018)  work  missed  out  on  the  opportunity  to  identify  all  the  causes  of
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inconsistency in scheduling machine maintenance. In order to identify all the causes of

inconsistency in  scheduling  machine  maintenance,  it  is  important  to  consider  various

factors  that  could  impact  maintenance  scheduling.  These  factors  may  include  the

availability of maintenance personnel, the availability of spare parts, the complexity of

the maintenance task, the frequency of machine use, and the production schedule. One

approach to identifying these causes is to conduct a root cause analysis (RCA), which

involves identifying the underlying causes of a problem. RCA can help to identify the

factors  that  contribute  to  inconsistency  in  scheduling  machine  maintenance  and  can

provide insight into how to address these issues. Another approach is to use data analytic

to  identify  patterns  and  trends  in  machine  maintenance.  By  analyzing  historical

maintenance data, it may be possible to identify factors that contribute to inconsistency in

scheduling machine  maintenance.  This information can be used to develop predictive

maintenance  models,  which can help to  optimize  maintenance  scheduling  and reduce

downtime. In conclusion, while Ershadi et al. (2018) proposed the use of the fish-bone

diagram to identify the causes of problems in the manufacturing world, their work missed

out on the opportunity to identify all the causes of inconsistency in scheduling machine

maintenance.  To address this  concern,  it  is  important  to consider  various  factors  that

could impact maintenance scheduling, and to use tools such as RCA and data analytic to

identify underlying causes and develop effective solutions.

Wisniewski (2019) stated that the Weibull distribution requires the operating age of the

machine, as well as time changes, to accurately predict equipment failure rates. While,

this is a useful tool for understanding equipment failures, Wisniewski's (2019) work did

not use the Weibull function alongside Monte Carlo simulation to assess the nature of
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equipment failure in a textile mill setup or factory. Monte Carlo simulation is a statistical

technique  that  can  be  used  to  model  complex  systems and simulate  outcomes  under

various conditions. By combining the Weibull distribution with Monte Carlo simulation,

it is likely to create a more comprehensive model of equipment failure rates that takes

into  account  various  factors  that  may  impact  the  performance  of  the  machine.

Additionally, Wisniewski (2019) stated that Monte Carlo simulation can also be used to evaluate

the  effectiveness  of  different  maintenance  strategies.  By simulating  different  maintenance

scenarios  and  comparing  the  results,  it  is  possible  to  identify  the  most  effective

maintenance approach for a given machine or system. While, Wisniewski (2019) work

highlighted  the  importance  of  the  Weibull  distribution  for  understanding  equipment

failures, their work did not use this function alongside Monte Carlo simulation to assess

the nature of equipment failure in a textile mill  setup or factory. By combining these

tools, it is important to create more comprehensive models of equipment failure rates and

identify potential issues before they occur.

Zulkafli  &  Mat  Dan  (2016)  used  Weibull  analysis  to  investigate  the  maintenance

performance  of  a  gasification  process  unit,  which  is  a  useful  tool  for  understanding

equipment failure rates. However, their work did not address the use of Weibull analysis

to  investigate  the  maintenance  time  schedules  in  critical  equipment.  One  potential

application of Weibull analysis in maintenance scheduling is to determine the optimal

time for maintenance activities. By analyzing equipment failure data using the Weibull

distribution, it is important to identify the most common failure modes and determine the

expected  time to failure.  This  information  can then be used to  schedule  maintenance

activities  before equipment  failure  occurs,  thereby reducing downtime and improving
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productivity.  In  addition,  Weibull  analysis  can  also  be  used  to  identify  trends  in

equipment failures over time. By analyzing failure data over an extended period, it  is

possible  to  identify  changes  in  failure  rates  that  may indicate  a  need for  changes  in

maintenance strategies or equipment replacement. Therefore, while Zulkafli & Mat Dan's

(2016)  work  demonstrated  the  usefulness  of  Weibull  analysis  in  investigating

maintenance performance of a gasification process unit,  further  research is  needed to

explore  the  potential  of  this  tool  in  optimizing  maintenance  schedules  for  critical

equipment in various industries.

Vasili et al. (2011) suggested that the optimization of maintenance systems can help to

eliminate imperfections, safety issues, and delays. However, their work failed to capture

the  issue  of  inconsistency  scheduling  of  machine  maintenance,  which  can  have  a

significant impact on the effectiveness of maintenance programs. Inconsistent scheduling

of  machine  maintenance  can  lead  to  increased  downtime,  reduced  productivity,  and

higher costs. When maintenance activities are not scheduled and performed on a regular

basis, equipment failures and breakdowns are more likely to occur. This scenario can lead

to unplanned downtime, production delays, and increased maintenance costs. To address

the issue of inconsistent scheduling of machine maintenance, it is important to establish a

regular  maintenance  schedule  and  adhere  to  it.  This  argument  can  help  to  prevent

equipment failures and reduce the risk of downtime. In addition, using data analytic and

predictive maintenance tools can help to identify potential equipment issues before they

become major problems, allowing for proactive maintenance and reducing the need for

reactive  maintenance  activities.  Therefore,  while  Vasili  et  al.  (2011)  highlighted  the

benefits  of  optimizing  maintenance  systems,  it  is  important  to  address  the  issue  of
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inconsistent  scheduling  of  machine  maintenance  to  fully  realize  these  benefits.  By

establishing a regular maintenance schedule and utilizing predictive maintenance tools,

organizations can improve the effectiveness of their maintenance programs and reduce

the risk of downtime and production delays.

In this research study, significant value was added by addressing the gap in inconsistent

scheduling  of  machine  maintenance  and  incoherent  maintenance  strategies.  The

utilization of Failure Mode and Effects Analysis (FMEA) and fishbone diagrams proved

to be highly effective in identifying critical equipment and identifying the root causes of

failures in textile mills. By employing FMEA, the researcher was able to systematically

analyze potential failure modes and their associated effects on the machinery within the

mills. This approach not only helped in identifying the most critical equipment prone to

failures but also prioritized maintenance efforts based on the severity of the potential

consequences. Consequently, this study enabled the mills  to focus their resources and

attention  on  those  machines  that  had  the  highest  likelihood  of  causing  significant

disruptions if not properly maintained. Additionally, the utilization of fishbone diagrams

in this research study provided a visual representation of the various factors contributing

to maintenance issues. By categorizing the potential causes into specific branches on the

diagram,  it  became  easier  to  identify  the  root  causes  of  failures  and  maintenance

inconsistencies.  This  analysis  helped  the  textile  mills  gain  a  comprehensive

understanding of the underlying issues and develop targeted strategies  to mitigate  the

failures. In a nutshell, by employing FMEA and fishbone diagrams, this research study

not  only  highlighted  the  critical  equipment  requiring  maintenance  attention  but  also

provided  valuable  insights  into  the  root  causes  of  maintenance  inefficiencies.  The
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findings of this study can serve as a basis for implementing more effective maintenance

scheduling  and strategies  in  textile  mills,  leading  to  improved operational  efficiency,

reduced downtime, and increased productivity.
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CHAPTER THREE: METHODOLOGY

This chapter  outlines  the procedures employed to accomplish  the research objectives.

Prioritizing the department that requires maintenance arises from the criticality ranking

assessment.  Machines  within  Rivatex  East  Africa  Limited  receive  unstructured  and

unscheduled  OEM-based  maintenance.  The  judgment  can  be  done  by  way  of

maintenance strategy assessment. In addition, the parameter that is used in the analysis in

the  case  of  FMEA entails  the  quantity  of  failures  in  each  department.  The  Weibull

distribution analysis, on the other, hand uses the failure data and age of the machine in

the analysis.

The research began with preliminary surveys that involved conducting interviews and

administering questionnaires to gather initial data. By obtaining an accurate picture of the

real  situation,  the  study  focused  on  reviewing  the  existing  literature  to  assess  the

underlying problem as evaluated by other scholars. This process helped to identify gaps

and  formulate  the  research  problem.  Data  collection  was  carried  out  in  real-time,

capturing information on failures, machine age at the time of failure, and maintenance

strategies. The collected data underwent processing for Monte Carlo simulation. FMEA

was employed to determine the critical equipment, while a fishbone diagram was used to

identify failure causes. Weibull distribution analysis was conducted to calculate the data

distribution, deriving shape and scale parameters for generating random data representing

1000 instances of similar machine scenarios. MTBF was calculated for these randomly

generated data instances. Subsequently, the data underwent Monte Carlo simulation to

evaluate performance maintenance in various time schedules as shown in Figure 3.1.
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Figure 3.1 Conceptual Framework

Real-time data collection is a critical process that can provide valuable insights into the

performance  of  systems  and  equipment.  One  area  where  real-time  data  collection  is

particularly useful is in monitoring failures, including tracking the age of equipment at

the  time  of  failure.  By collecting  and analyzing  this  data,  organizations  can  develop

effective  maintenance  strategies  that  help  to  prevent  future  failures  and  minimize

downtime.  Real-time  data  collection  is  essential  for  monitoring  failures,  including

tracking  equipment  age  at  the  time  of  failure,  and developing  effective  maintenance

strategies. With one year of data collection, organizations can gain a better understanding

of  failure  patterns  and  make  informed  decisions  about  maintenance  schedules.  The
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methodology was carefully selected based on its ability to provide accurate results, the

availability of resources required for its implementation, and its compatibility with the

data available. This approach was deemed to be the most appropriate due to its proven

track record in  producing reliable  results,  its  ease of use,  and its  alignment  with the

specific requirements of the project. By using this methodology, the author was able to

collect high-quality data that can be confidently used to inform decision-making.

3.1 Method of Data Collection

During  situation  analysis,  data  collection  was  done  using  observation,  check  sheets,

interviews,  and  questionnaires  with  both  open  and  closed-ended  questions.  Each

personnel or participant was presented with a questionnaire. The check sheet was filled

while at the same time monitoring the failures in the entire weaving section. A repeat of

the same was done for a month in the critical machines. Interviews were conducted with

20 members of REAL's maintenance staff. This procedure entailed asking them a series

of  questions  in  order  to  learn  about  their  work  experiences,  responsibilities,  and the

obstacles they confront while doing their duties. REAL can acquire significant insights

into the experiences of their maintenance employees by conducting these interviews. The

information gleaned from the interviews can be utilized to identify areas for improvement

in the operations of the maintenance team and to build plans to increase their  overall

performance. Furthermore, the interview input can be utilized to identify training gaps

and improve communication between the maintenance team and other departments within

the firm.
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3.1.1 Interviews with Maintenance Team

The maintenance teams were interviewed to provide important information as far as the

maintenance strategies are concerned. In essence, interviews formed the basis of mapping

the maintenance strategy of the critical equipment. Interviews provided information on

the maintenance strategies and the critical equipment at REAL. The interviews provided

both  qualitative  and  quantitative  information  that  can  be  interpreted.  Given  that

interviews were structured, unstructured, and semi-structured, the most important aspect

of the method was the data  collected  (Fredriksson & Larsson,  2012).  Finally,  all  the

interview questions are provided in appendix 1.  The interview process was thorough,

consisting of 4 thoughtfully crafted questions that aimed to capture key insights from the

maintenance team. It is evident that the team approached the interview process with a

high level of engagement, as all the questions were attempted and answered to the best of

their  ability.  This level  of commitment  to providing detailed and insightful  responses

undoubtedly proved invaluable in the analysis of the data collected.

3.1.2 Questionnaires to Maintenance Staff

A list of questions was prepared in order to help in data collection concerning REAL’s

maintenance strategies. A series of open-ended questions provide the respondents with an

opportunity to express their critical thinking concerning the state of machine maintenance

at REAL[ CITATION Mil16 \l 1033 ]. Also, closed-ended questions are quite important

in restricting the depth of response. Most of the machine operators and the maintenance

provided information on failure rates,  downtime,  and the duration needed to scan for
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failures. The questions used in this process are provided in appendix 2. The maintenance

team was diligent in their response to the survey, as all 23 questions were thoughtfully

filled out and returned. This level of attention to detail ensures that the collected data is

comprehensive  and  accurate,  providing  valuable  insights  for  analysis  and  decision-

making.

3.1.3 Real-time data collection on Maintenance Activities

Recording the maintenance sessions and activities  at  REAL was captured through an

observation process. In this method, data pertaining identification of critical failure type,

number of failures,  availability,  downtime, and the productivity of the machines were

collected. The work performance during most of the maintenance and installation process

was captured and used for the analysis and development of the optimized maintenance

strategies. Observation notes and images are provided in appendix 2.

3.2 Method of Data Analysis

The data collected in the field was recorded statistically for the purpose of use in failure

mode and effect analysis, fishbone diagram analysis, and Weibull distribution analysis.

Following the completion of Weibull analysis, the collected data underwent both Monte

Carlo  simulation  and  regression  analysis  to  extract  further  insights  and  ensure  data

validation.

 3.2.1. Data Processing using Monte Carlo

Data Processing using Monte Carlo is an effective method for evaluating and predicting

equipment failure modes, with several steps involved. The first step is to determine the

critical  equipment  using  Failure  Mode  and  Effects  Analysis  (FMEA)  to  identify
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equipment failure modes and their potential effects. A fishbone diagram can then be used

to identify underlying failure causes. To further enhance the analysis, performing data

distribution  calculations  using  the  Weibull  distribution  can  provide  insight  into

equipment  reliability  and predict  potential  failures.  Once potential  failures  have  been

identified, random number generation can be used to simulate maintenance activities in

several time schedules. Utilizing these tools and techniques can provide organizations

with a comprehensive understanding of equipment criticality, help predict and mitigate

potential failures, and develop effective maintenance strategies to optimize performance

and reduce downtime.

The overall procedure is as follows (Shahin et al., 2020);

i. Determine critical equipment using FMEA.

ii. Identify failure causes using Fishbone Diagram.

iii. Performing data distribution calculations.

iv. Generating random numbers.

v. Perform maintenance simulation in several time schedules.

3.2.2 Determining the critical equipment

In this case, Failure mode and effect analysis (FMEA) presents a basis of risk assessment

of the machines as far as failures and downtime are concerned. FMEA procedure is as

follows (Shahin et al., 2020);

i. Identifying all the probable failure modes from data collected through interviews,

interviews as well as real-time data collection.

ii. Assign a value on a 1-10 scale  to severity,  probability  of occurrence,  and the

probability of detection for each potential failure mode.
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iii. Get the Risk Priority Number (RPN) by multiplying the three numbers for each

failure mode.

RPN=( Severity∗Occurence∗Detection ) 3.1

iv. Using  RPN  as  the  priority  value,  rank  the  failure  modes.  The  highest  score

demands the most urgent improvements activity. For instance, if there are three

items of comparison and the RPN score are 11, 24 and 32. Then score, 32 has the

highest RPN and should get the highest priority for corrective measures.

3.2.3 Fishbone Diagram process

In this study, the construction of the fishbone diagram involved initiating the process by

drawing a horizontal line and placing the problem statement at one end, which in this

case pertained to the inconsistent and incoherent  maintenance strategy, particularly in

relation to the machines (Ershadi et al., 2018). A slanted line was then drawn, pointing

towards the statement, with a box positioned at the end to represent the fish's head. The

analysis further identified the 6 Ms as factors contributing to the run-to-failure problem.

Smaller lines branching off each bone with 6 Ms were drawn and labeled with a factor

that impacts the category. The procedure was as follows (Ershadi et al., 2018); 

i. Define the problem to be solved in relation to maintenance strategy.

ii. Establish the main causes of the inconsistent and incoherent maintenance strategy.

iii. Establish  the  reasons  leading  to  the  inconsistent  and  incoherent  maintenance

strategy.

iv. Establish  the  most  likely  causes  of  inconsistent  and  incoherent  maintenance

strategy.
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3.2.4 Weibull distribution 

A Weibull distribution presents 2 parameters that define it, shape and scale parameters.

The critical machines are rapier weaving machines and air-jet weaving machines. The

input data from the rapier weaving machine were collected from the Reed system (X1),

warp let-off system (X2), fabric take-up system (X3), machine main drive system (X4),

selvedge  formation  system  (X5)  and  connectivity  system  (X6).  On  the  other  hand,

maintenance  input  data  from air-jet  weaving  machines  were  collected  from the  weft

feeders system (X7), reed system (X8), warp let-off system (X9), fabric take-up system

(X10),  machine  drive  system  (X11),  harness  frames  system  (X12),  selvedge  formation

system (X13) and connectivity system (X14) as shown in appendix 3. 

For the critical equipment, lubrication fabric take-up and let-off system (X15), lubrication

main drive (X16), total time operation time (X17), and the number of failures (X18) were

subjected  to  simulation.  Therefore,  all  these  formed  the  input  variables.  The  output

variable was calculated from the total time of operation and the number of failures in the

critical machines, MTBF (Y). It is important to mention that all data for a 2-parameter

Weibull distribution must be greater than zero. Since the threshold parameter is zero. The

shape parameter  describes  how the  data  are  distributed.  Whereas  lower shape  values

describe the right-skewed distribution, and higher shape values describe the left-skewed

distribution. The shape of 3 describes a normal curve. 
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Measurement of the distance between the fitted line based on the Weibull distribution and

the empirical  distribution  resulting  from the  data  points  is  done using the  Anderson-

Darling goodness-of-fit statistic (AD-Value) (Jäntschi & Bolboacă, 2018). AD is given as

the squared distance that is weighted more heavily in the tails of the Weibull distribution.

A smaller value provides stronger evidence that the data follows a Weibull distribution.

On  the  other  hand,  the  scale  parameter  describes  how spread  out  the  data  is  in  the

distribution. A large-scale result depicts a more spread-out distribution. In order to model

the maintenance strategy at the critical department, a Weibull Distribution was selected to

analyze  the collected  data  of machine  failure  with the  age of machines. This  project

adopted a 3-parameter probability density similar to recommendation by Wisniewski

(2019).  In this case, the location parameter is equal to 0 in 3-parameter probability

density function and the Weibull Distribution was given by (Wisniewski 2019);

f ( x )=
γ
α ( x−μ

α )
γ−1

exp(( x−μ
α )

γ

) x≥ μ ;γ ,α>0 3.2

Where,

 γ is the shape parameter or Weibull slope or the threshold parameter similar to

recommendation by Wisniewski (2019).

 α is  the scale  parameter  or  the  characteristic  life  parameter  in  line  with  the

suggestion put forth by Wisniewski (2019).

 μ is the location parameter or the waiting time parameter or sometimes the shift

parameter akin to the suggestion put forth by Wisniewski (2019).
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The next step was to simulate the systems using the formula; 

Weibull=¿¿+min 3.3

Where;

 c is scale

 m is shape

 min is the minimum value of the age of the system.

Referring  to  Table  2.2  in  page  23  and  24,  the  Weibull  distribution  has  the

capability to represent data that have a right, left, or symmetric skewness. Weibull

distribution can also model a hazard function that is decreasing,  increasing, or

constant, enabling the model to describe any stage of an object's lifespan. The

impact of the shape parameter on the data is significant (Wisniewski, 2019). The

shape parameter characterizes the distribution of the data. The shape value of 3

was similar to a normal curve. When the shape value was low, such as 1, the

curve was skewed to the right. On the other hand, when the shape value was high,

such as 10, the curve was skewed to the left. The scale parameter has a significant

impact on the Weibull curve (Wisniewski, 2019). 

The scale, also known as the characteristic life, is the point at which 63.2% of the

data is < it scales value. The scale parameter in a distribution account for the level

of variability present. The scale parameter determines the position of the Weibull

curve in relation to the threshold, like how the mean determines the position of a
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normal  curve.  If  the  scale  parameter  is  set  to  20,  for  instance,  it  implies  that

63.2% of the equipment will fail within the first 20 hours after the threshold time

(Wisniewski, 2019). Adjusting the scale parameter has an impact on the extent to

which the probability distribution spreads out. When the scale is increased, the

distribution stretches out to the right, resulting in a decrease in its height as shown

in Figure 3.2. 

Figure 3.2: Weibull Scale Parameter

The procedure that was used to perform Weibull distribution;

i. Step 1:  Determine  the age of the machine and failure  data  resulting  from the

inconsistent and incoherent maintenance strategy used at REAL.

ii. Step 2: Record the number of failures over the machine age at REAL.

iii. Step 3: Find the cumulative age alongside the number of failures of the machines.

iv. Step 4: Fitting age data to a Weibull distribution.
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v. Step 5: Calculate the MTBF as shown in equation 2.1.

vi. Step 6: Plot the Weibull distribution.

vii. Step 7: Undertake probability plot based on MLE.

viii. Step 8: Analyze the data by checking the shape value.

ix. Step 9: Perform regression analysis to validate the models used and determine the

R-square value. The validation was done on a total of 18 models and finally on

the MTBF by checking the sensitivity of the models developed.

Censor  statistics  were highlighted  in  the  study since,  when performing a study for  a

designated period of time, any units that was still operational at the end of the study were

referred to as time censored. Censor statistics were set at 0 for all the Weibull distribution

analysis. It is important to note that the data collected during the study was not censored,

meaning that it was all obtained within a designated one-year period. Time censoring is

also known as Type I censoring on the right. Conversely, failure censoring occurs when

conducting the study until a predetermined number of failures have been observed. The

AD is a measure of how closely the data adheres to a specific distribution (Wisniewski,

2019). Table 3.1 presents the AD values for different distribution plots as indicated in

Figures 3.2, 3.3, and 3.4. 

In this study, when a particular distribution was applied to a given dataset and a smaller

the AD statistic was seen, it then meant, the better the fit of the distribution to the data.

Table 3.1: The AD values for different distribution plots (Wisniewski, 2019)

Distribution Anderson-Darling P-value

Exponential 9.599 p < 0.003
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Distribution Anderson-Darling P-value

Normal 0.641 p < 0.089

3-parameter

Weibull

0.376 p < 0.432

Figure 3.3:  Exponential Distribution 

Figure 3.4: Normal Distribution 

Figure 3.5: 3-parameter Weibull Distribution (Wisniewski, 2019)

Weibull  distribution in reliability analysis entails  a statistic that was named failure. It

stands for the data size for the study. In this case, there were 1000 in number which

represented  the  failure  data  size.  The  inter-quartile  range  (IQR)  refers  to  the  space

between the first quartile (Q1) and the third quartile (Q3), with 50% of the data points
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falling  within  this  range (Wisniewski,  2019).  When it  came to  the  large  data  or  the

unusual data, it is important to refer to IQR where the data that are unusually large lie

outside the Q1 and Q3 limits. The median represents the middle value of the dataset. Half

of the observations in the dataset are greater than the median and the other half are lesser.

The  standard  deviation  (StDev)  is  the  most  widely  used  measure  of  the  spread,  or

dispersion, of the data around the mean (Wisniewski, 2019). The mean is the average

value of the dataset, calculated by adding all the values and dividing by the number of

observations. 

The  outcomes  of  the  Weibull  distribution  included  the  probability  density  function,

Survival function,  hazard function,  and Weibull  probability  plot.  The hazard function

analyzes the life distribution through historical failure data and online status monitoring

data. The Probability density function is a way of describing the distribution function,

with the parameters controlling the shape, scale, and location. The survival function is a

function that calculates the likelihood of an object of interest, such as a device or patient,

surviving  past  a  certain  point  in  time.  The  Weibull  plot  is  a  graphical  method  that

determines  if  a  dataset  follows  a  2-parameter  Weibull  distribution,  with  the  location

assumed to be zero. The Weibull plot utilizes special scales, and if the dataset indeed

follows a Weibull distribution, the points then are linear or nearly linear. Additionally,

the Weibull distribution is used to model reliability data and determine the percentage of

items that are expected to fail during the burn-in period in terms of the machine's age.

The probability plot provides insights into the expected time and scale of fast wear-out.

The  Weibull  distribution  and  its  associated  functions  provide  valuable  insights  into
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system reliability and can be used to optimize maintenance schedules and predict failures,

minimizing downtime and maintenance costs.

3.2.5 The procedure that was used to perform regression analysis to validate the

models. 

In line with step 9, Monte Carlo Simulation requires that the regression model equation is

established and used as a transfer function during validation of results. In this situation

equation 2.1 requires that’s input data have the age and the number of failures recorded

during the age of operation. Based on this all the input variables X1 to X18 must explain

the  response  variable  Y  (MTBF).  Regression  modeling,  sensitivity  analysis  and

validation of the simulated results requires input variables as well as the responses or the

output  variable  and  the  R-square  value  should  >=  0.7  (70%)  and  exceedingly  as

illustrated in appendix 4 (Wen et al., 2020). R-square >= to 70% implies that the value of

the response is explained by all the variables in the model equation (Wen et al., 2020).

In summary,  the methodology is  such that  it  relies  on survey design to highlight  the

critical departments in REAL. Furthermore, the method is used to depict the scenario of

the  maintenance  strategy  within  the  organization,  indicating  the  most  affected

department. With the help of the real-time data equipment failure, a set of data that was

analyzed using Monte Carlos was deduced. The generated data was used in the Weibull

distribution analysis. The results from the analysis were presented in chapter four.
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CHAPTER FOUR: RESULTS AND DISCUSSION

In this  chapter,  results  and discussion are explored.  The expected result  of  the  study

depends on the goals and the aim set in the objectives. Under the results sections, an

evaluation of maintenance based on the age of the machine and the number of failures is

done.  This  chapter  further  presents  the  criticality  results  alongside  the  Weibull

distribution analysis. 

4.1. Assessment of the criticality

Table 4.1 presents the assessments of the critical equipment. In this case, the score was

determined using the mechanical and electrical failures of the machines in the weaving

department.
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Table 4.2: Failure Mode & Effects Analysis for Critical Equipment  

Failure Mode & Effects Analysis (FMEA) Date: 11 April 2018   Types of FMEA: Process

Rivatex East Africa Limited (REAL)               Analysis: Per Shift     Department: Weaving
Failure

Modes A. Severity

B.  Probability  of

Occurrence

C.  Probability  of

Detection

D.  Risk  Priority

Number (RPN)
Rate  1-10:  10=

Most Severe

Rate 1-10: 10= Highest

Probability

Rate 1-10: 10= Lowest

Probability D=A*B*C

Yarn Winding Machine

Mechanical

Failure 2 3 2 12
Electrical

Failures 3 4 1 12

Total 24

Yarn Warping Machine

Mechanical

Failure 2 2 2 8
Electrical

Failures 3 4 1 12

Total 20

Sizing machine

Mechanical

Failure 4 5 3 60
Electrical

Failures 4 3 1 12

Total 72

Looms

Mechanical

Failure 6 7 2 84
Electrical

Failures 4 5 2 40

Total 124
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According  to  the  results  of  critical  assessment  of  equipment  in  the  weaving  section

shown in Table 4.1, the  Yarn Winding Machine had a value of 24; the Yarn Warping

Machine had a value of 20, the Sizing machine had a value of 72, and the Looms had a

value of 124.  It was established from the results that the looms are critical equipment.

From the criticality assessment of REAL production departments, the weaving section

posted the highest score indicating that the section has some notable number failures as

far  as  maintenance  activities  are  concerned.  In  this  regard,  the  modeling  of  the

maintenance  in  the  weaving  department  was  performed  to  assess  the  maintenance

strategy used and to analyze the failure data to come up with an optimized maintenance

strategy. The assertion made is corroborated by additional studies conducted by Sarih et

al. (2018) and Shahin et al. (2020).

4.2 Modeling of the Maintenance strategy in the Critical Department 

Figure 4.1 shows a fish-bone diagram that presents the maintenance strategy results based

on the fish-bone diagram assessment. The diagram is based on the data that was collected

using questionnaires and observation of the maintenance activities at the facility. During

the  data  collection,  the  factors  that  contributed  to  most  failures  were  recorded  and

assessed in relation to the nature of maintenance that followed once a failure occurred in

the critical department.
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Figure  4.2:  Fishbone  diagram  indicating  the  nature  of  dominant  maintenance

strategy.

The over-reliance on run-to-failure maintenance or breakdown maintenance strategy is a

major  problem  due  to  the  inconsistency  and  incoherence  of  preventive  maintenance

strategy as illustrated in Figure 4.1. It has been observed that failures occur due to various

reasons such as machine vibrations, many stoppages, and a few inspections. The fish-

bone  diagram  developed  to  identify  the  causes  of  failures  also  highlighted  poor

installation of wires, poor fastening, and the absence of a clear formal process as method/

strategy  issues.  Additionally,  having  unclear  inventory  was  identified  as  a  materials

problem. Communication failure and improper training were attributed to man, while soft

fibers choking, and beam wastes were attributed to Mother Nature. The inability to track

maintenance processes and unclear maintenance goals were identified as measurement

issues. Therefore,  it  is important to address these underlying issues and adopt a more

proactive preventive maintenance approach to ensure optimal machine performance and
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avoid unplanned downtime. Ershadi et al. (2018) conducted studies that are consistent

with the observed findings, suggesting a consensus among multiple sources.

4.3 Monte Carlo simulation analysis

Monte  Carlo  simulation  entails  Weibull  distribution  analysis  was  performed  on  the

maintenance time collected from the systems on the critical machines. To determine the

shape,  scale  parameters,  and  minimum  age  value  of  a  system  based  on  Weibull

distribution  for  Monte  Carlo  simulation,  equation  3.2  was  utilized.  Following  this,

equation 3.3 is used to undertake 1000 iterations of Monte Carlo simulation using real-

time data collected in REAL. The data set includes 6 system components from rapier

weaving machines, 7 system components from airjet weaving machines and 2 common

lubrication points. Other parameters examined were total  time data, number of failure

data, and calculated MTBF. These Figures in appendix 5 exhibits the probability density

function, Weibull  distribution,  survival function,  and hazard function alongside shape,

scale, mean STDev, median, IQR, failure data size, censor, and AD. These metrics are

crucial in evaluating the availability and maintainability of the systems, and the findings

were used to optimize maintenance schedules, predict component failures, and minimize

downtime.  The  use  of  Monte  Carlo  simulation  and  Weibull  distribution  allows  for

accurate probabilistic modeling and prediction of system failures.
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4.3.1 Weibull distribution analysis 

The data generated during Monte Carlo simulation analysis, as presented in Appendix 5,

was subjected to Weibull analysis. Figures 1 to 19 in the appendix were utilized for this

purpose. The results of the analysis were discussed in detail. The Weibull analysis entails

the shape and scale  parameters displayed with the respective AD value.  The analysis

presents  the  shape  and  scale  parameters  since  it  follows  a  2-parameter  Weibull

distribution.  The  relationship  between  the  Weibull  distribution  parameters,  hazard

functions, and reliability functions is based on the shape parameters. By adjusting the

shape parameters, several characteristics of the maintenance times can be modeled for

different life distributions. The Weibull distribution results were illustrated in Figures 4.2,

4.3, 4.4, 4.5, 4.6, 4.7, 4.8 and 4.9. The analysis included several key outcomes, such as

the Probability density function, which provides an estimate of the likelihood of a failure

occurring  at  a  given  time.  Additionally,  the  survival  function  was  calculated,  which

represents the probability that an item will survive beyond a certain point in time. The

hazard function was also evaluated, which provides insights into the rate of failure over

time.

Moreover, the Weibull probability plot was utilized, which is a graphical tool that helps

to visualize the distribution of failure times. The results of the analysis presented not only

the failure times but also the rate of failure, which can provide valuable information for

predicting when future failures may occur. This assertion is also reported by other studies

by Zulkafli & Mat Dan (2016). The two parameters of the Weibull distribution were also

identified, allowing for a more complete understanding of the data. Lastly, the history of
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failure for each dataset was examined, providing insights into the underlying causes of

the failures and potential avenues for future improvements.

4.3.2 Effects of selected parameters on systems components

The analysis of failures was conducted by examining the data collected in terms of the

age of the machine versus the number of failures. Probability plots were employed to

accomplish this task, and the Weibull distribution was used to determine the shape and

scale of the data. For detailed information, please refer to Appendix 5. In this case, the

Weibull distribution was considered as a model for a linearly increasing failure rate. In

Figure  4.2,  system  component  X9 had  the  highest  value  of  2418.89  for  the  shape

parameter, while system component X1 had the lower value of 0.962948. The optimal

value was determined to be 1.46503, suggesting that the machines underwent early-life

wear and failures.

4.3.2.1 Effects of shape parameters on systems components

Figure 4.2 showcased the plots depicting the shape parameters for each system component. In

contrast, the system component X16 had the highest scale parameter value of 24873.2 hours, while

system component X18 had the lowest value of 4.426714 hours. However, the optimal value range

of 1231.69 to 1683.46 was obtained through the assessment of the response, MTBF. As the shape

value surpasses 1.46503 throughout the products' lifespan, the risk of wear-out failures steadily

increases. This assertion finds support in additional studies conducted by Marcello (2020) and Da

Silva et al. (2020), further validating its significance.
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Figure 4.2: Shape parameter comparison chart

4.3.2.2 Effects of scale parameters on Systems Components

Figure 4.3 illustrated the scale parameters corresponding to each system component of the critical

equipment. It became evident that the machines could not surpass the 1683.46-hour mark without

encountering rapid deterioration of worn-out parts.  From Figure 4.3, it  was observed that the

selvedge formation system in the rapier weaving machine suffered from fast wear-out failures

during the final period of its product life, requiring preventive operations approximately every

2195.58 hours. Similarly, the lubrication fabric take-up and let-off systems in both the airjet and

rapier weaving machines led to very fast wear-out failures, necessitating preventive operations

every 1231.69 hours.
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Figure 4.3: Scale parameter comparison chart

Furthermore, system components such as the reed system, warp let-off system, and fabric

take-up system experienced very fast wear-out failures during the final period of their

product life.  Therefore,  the optimal  hours for operations  before the next  maintenance

operation was carried out ranged from 1231.69 to 1683.46 hours as a preventive measure.

As reported by Pena et al. (2022), the hazard function described a slow but increasing

failure rate, with the largest increase occurring toward the end of the equipment's life,

indicating the need for more preventive maintenance measures within the 1231.69 and

1683.46-hour range.

4.3.2.3 Effects of Mean parameters on systems components

Figure  4.4  depicted  the  plot  showcasing  the  means  across  the  system  components,

facilitating a comprehensive comparison of the system breakdown hours. The highest

mean, recorded at 24011.5 hours, belonged to system component X16, while the lowest
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mean, measured at 3.81269 hours, corresponded to X18. Consequently, the optimal mean

failure time was determined to be 1524.30 hours. Any data that fell outside of these limits

could  potentially  indicate  inconsistent  and  unreliable  outcomes  of  the  preventive

maintenance strategy.

Figure 4.4:  Mean parameter comparison chart

4.3.2.4 Effects of STDev parameter on Systems Components

Figure 4.5 presented a plot illustrating the STDev parameter for all system components,

allowing for convenient comparison. Among the system components, the highest STDev

value  was  recorded  for  X14,  reaching  7643.126,  while  the  lowest  STDev  value  was

observed for X9, measuring 0.530333. Consequently, the optimal value for the STDev

parameter was determined to be 1057.73 hours.
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Figure 4.5:  STDev parameter comparison chart

4.3.2.5 Effects of Median parameter on systems components

Figure  4.6  displayed  a  plot  representing  the  Median  parameter  for  each  system

component,  enabling  convenient  comparisons  to  be  made.  Within  the  system

components,  the highest  median value was recorded for X16,  reaching 24266.8 hours,

while the lowest median value was found for X18 at 3.78242 hours. Subsequently, the

optimal median failure time was determined to be 1310.85 hours, with a corresponding

standard deviation of 1057.73 hours.
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Figure 4.6: Median parameter comparison chart

4.3.2.6 Effects of IQR parameters on systems components

Figure  4.7  showcased  a  plot  illustrating  the  IQR  parameters  for  each  system  component,

facilitating comparisons for analysis. Among the system components, the highest IQR value was

observed for X14, reaching 10477.9, while the lowest IQR value was found for X9 at 0.650468.

The optimal IQR, calculated between the first and third quartiles (Q1 and Q3), was determined to

be 1384.70 hours. This value provides valuable insight into the survival rate of the component. It

is important to note that Q3 from the IQR marks the point at which wear increases, eventually

leading to failures of machine components.
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Figure 4.7: IQR parameter comparison chart 

4.3.2.7 Effects of AD parameters on systems components

Figure 4.8 presented a plot illustrating the AD (Anderson-Darling) parameters for each system

component. The AD values =< 0.376 indicated that the data fit a Weibull distribution, implying

that  failures  followed  this  distribution  pattern.  AD  values  >  0.376  indicated that,  failures

persisted until the maintenance team was able to address and handle the machines appropriately.
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Figure 4.8: Comparison of AD values of system components 

4.3.3 Analysis of MTBF

Figure 4.9 illustrates the probability density function, Weibull plot, hazard function, and

survival function of the responses for MTBF. 

Shape 1.46503
Scale 1683.46
Mean 1524.30
StDev 1057.73
Median 1310.85
IQR 1384.70
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Figure 4.9 portrayed the shape parameter for the systems as 1.46503, with a scale value

of 1683.46. Notably, a shape value of 1.46503 suggests that most failures are attributable

to early wear-out failure,  indicating the presence of premature failures upon machine

installation. The unusual values observed in system components X4, X11, and X12 indicate

inconsistencies in the approach, resulting in lengthy maintenance intervals that do not

align with preferred maintenance practices. Pena et al. (2022) reported that some early

wear-out  failures  stem  from  the  utilization  of  low-quality  parts  and  substandard

installation  procedures.  A  shape  value  equal  to  or  greater  than  1.46503  signifies  an

increasing failure rate during the initial stages of operation. However, the lower limit of

shape parameter  reveals the actual  maintenance  scenario and failure model  at  REAL.

Consequently,  the average Mean Time Between Failures (MTBF) amounts to 1471.05

hours. The survival function indicates that the system components exhibit a 50% survival

rate at 1683.46 hours.

4.4 Results of system data analysis

The validation of results obtained from Monte Carlo simulation was a critical  step in

assessing  the  reliability  and  maintenance  requirements  of  critical  equipment.  In  this

study, validation was achieved using regression analysis, where input parameters were

established using Monte Carlo simulation, Weibull distribution, and probability analysis.

The regression model demonstrated a strong relationship (R-square = 85.56%) between

18 input variables and the mean time between failures (MTBF). A sensitivity analysis

was conducted to rank the variables based on their influence on the MTBF. Variables

with significant influence required proper maintenance, while those with lesser influence
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indicated  good  maintenance  practices.  These  findings  were  supported  by  previous

studies.

4.4.1 Validation of the Results from Monte Carlos simulation

From  the  critical  equipment,  the  input  parameters  were  established  as  the  system

components that are prone to failure and are subject to maintenance activities.  In this

case, all the input variables were obtained following the Monte Carlos simulation and

Weibull  distribution  and probability  analysis.  In  the  simulation,  1000 random dataset

were  established  for  each  input  variable.  The  model  equation  is  used  to  calculate

simulated outcomes as used by Wisniewski (2019). From the X1 to X18 input variables

and Y which are the response variables, the model equation 4.5 was obtained. 

The deduced regression equation was as follows;

Y = -17267 

+ 0.00712 X1 + 0.0104 X2 + 0.01112 X3 - 0.0206 X4 - 1.001 X5- 0.0124 X6 - 0.0288 X7 - 0.0298 X8 + 20.3 X9 + 0.0

548 X10 - 0.00259 X11-0.0144 X12 + 0.0105 X13 

- 0.00161 X14 + 0.51 X15 + 0.00154 X16 + 0.30017 X17- 398.04 X18 4.5

The value of R square was 85.56% which implies that the variation in Y (MTBF) is a

result of the entire input variables. Therefore, the model explains all the variability of the

response data around its mean. The same assertion is documented in additional studies by

Marcello (2020) and Da Silva et al. (2020). For instance, 1683.46 hours is the mean time

between failures; therefore, there should be a preventive maintenance activity once in this

duration on the various systems before the anticipated breakdown occurs.
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4.4.2 The influence of the input variable on the output MTBF

A sensitivity analysis was conducted on the regression model to determine the degree of

influence of each variable on the response.  The descending order to influence that the

input variable has on the output (MTBF) variable is in the following order: Number of

failures (both), selvedge formation system (rapier), reed system (air-jet), machine main

drive  system(rapier),  connectivity  system  (rapier),  harness  frames  system  (air-jet),

machine drive system (air-jet),  lubrication main drive (both), connectivity system (air-

jet), reed system (rapier), warp let-off system(rapier), selvedge formation system (air-jet),

fabric  take-up  system  (rapier),  fabric  take-up  system  (air-jet),  total  time  (both),

lubrication fabric take-up (both) and let off and lastly warp let-off system (air-jet). 

The variation on the contribution of each input variable on the influence it has on the

MTBF is a result of the contribution each variable has on the number of failures recorded

in the critical equipment. The number of failures recorded in each system significantly

impacts on the output variables while warp let-off system on air-jet has fewer influences.

Those variables with less influence imply that they are under proper maintenance, while

systems  such  as  the  selvedge  formation  system  on  rapier  machines  have  poor

maintenance due to increased failures. Other studies, such as Mostafa et al. (2015) and Li

et al. (2016), have also reported the same assertion.

4.4.3 The effects of the arrangement sequence of input variables on the MTBF  

The results of the Model Building Sequence and the incremental effects of input variables

demonstrated a statistically significant relationship between the Y and X variables in the

models,  with a significance  level  of  P<0.10,  as shown in Appendix  6. Similarly,  the
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model  building  process  and  inclusion  of  specific  x  variables  demonstrate  a  notable

increase in the R-square value. For example, when considering variables X1, X9, X11, X17,

and X18, the regression model explains a substantial 95.67% of the variation observed in

the output variable Y.

Table 4.2 Variation in MTBF due to input variables

R2 95.5 95.67 95.64 95.52 95.63 95.43 95.52 95.63

Model building sequence and incremental impact of X variables

X1 95.50(3) 95.67(4) 95.43(3

)
X2 95.50(4)

X3 95.50(5)

X4 95.52(5)

X5 95.52(4)

X6 95.52(3)

X7 95.52 (3)

X8 95.52 (5)

X9 95.67(5) 95.52(4)

X10 95.64 (4)

X11 95.67(3) 95.64(3)

X12 95.64(5)

X13 95.63(4)

X14 95.63(3)

X15 95.63(3)

X16

X17 55 (1) 55 (1) 55(1) 55 (1) 55 (1) 55 (1) 55 (1) 55 (1)

X18 80 (2) 80 (2) 80(2) 80 (2) 80 (2) 80 (2) 80 (2) 80 (2)

It was established that all the input variables had a significant impact on the variation of

MTBF,  as  evident  in  Table  4.2.  The  response  variable,  MTBF,  was  found  to  be
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influenced by X1 to X18 in the regression model, with an R-Squared value greater than

95%. This observation indicated that all the variables were responsible for the variance in

MTBF.  In  essence,  this  was  done  to  validate  the  impact  the  variables  have  on  the

response. Additionally, there were large residuals and unusual input values in the data,

which  suggested  failures  occurring  at  the  extreme  age  of  the  machine.  As  noted  by

previous studies by ÖzcAn et al. (2020), the presence of large residual values of input

variables  also  strongly  influenced  the  model.  Furthermore,  ÖzcAn et  al.  (2020)  also

found that  the presence of large residual  values and unusual  input values  in the data

implied that there were issues with the timing and frequency of maintenance activities

that were impacting the performance of the system. Such inconsistencies implied issues

with the maintenance strategy, incoherent schedules, and unscheduled downtime, which

may have contributed to the presence of the large residuals.

CHAPTER FIVE: CONCLUSION AND RECOMMENDATIONS

5.1 Conclusion
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The  study  aimed  to  establish  an  effective  maintenance  schedule  and  parameters  for

critical equipment in the weaving section of REAL's textile manufacturing processes. To

achieve this, three specific objectives were identified. Firstly, data on failures and their

frequency in the weaving section were collected. Secondly, a model was developed to

predict maintenance timing and component failures. Finally, system data was analyzed to

optimize  the  maintenance  schedule  and  parameters  for  the  critical  equipment.  By

fulfilling these objectives, the study aimed to enhance efficiency, minimize downtime,

and maintain smooth operations in the weaving section.

1. The most critical  equipment  was the loom, with the highest risk priority  number

score of 124, while the Yarn Warping Machine had the lowest score of 20.

2. The mapping out of critical equipment revealed an over-reliance on run-to-failure

maintenance  and  identified  inconsistencies  and  incoherence  in  the  preventive

maintenance  strategy,  highlighting  the  importance  of  addressing  issues  like  poor

installation,  unclear  inventory,  communication  failures,  and  improper  training.

Consequently, a proactive maintenance approach is necessary to optimize machine

performance and minimize unplanned downtime.

3. The  Monte  Carlo  simulation  and  Weibull  distribution  analysis  yielded  valuable

findings  regarding  the  maintenance  requirements  and  failure  patterns  of  critical

equipment, which facilitated the optimization of maintenance schedules, prediction

of component failures, and reduction of downtime. The shape parameter of 1.46503

obtained  indicated  early  wear-out  failures,  and  an  optimal  maintenance  schedule

range of 1231.69 to 1683.46 hours was determined.
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4. The validation of results obtained from Monte Carlo simulation through regression

analysis showed a strong relationship (R-square = 85.56%) between input variables

and mean time between failures (MTBF), indicating the influence of various system

components on maintenance requirements. 

5. A  sensitivity  analysis  ranked  the  variables  based  on  their  influence  on  MTBF,

indicating the need for proper maintenance for variables such as X17 and X18 with

significant influence. 

6. The  arrangement  sequence  of  input  variables  further  demonstrated  a  statistically

significant  relationship,  with specific  variables  increasing the R-square value and

explaining a substantial portion of up to 95.67% of the variation in MTBF. 

7. The  presence  of  large  residuals  and  unusual  input  values  suggested  issues  with

maintenance strategy and schedules,  impacting system performance.  AD values ≤

0.376 indicated Weibull distribution fit, while AD values > 0.376 implied persistent

failures until addressed by the maintenance team.

5.2 Recommendations

5.2.1 Guidelines for Efficient Operations and Maintenance of Weaving Section

1. The maintenance team should engage in gathering information on each machine.

The repairs  and parts replacement should be invoked by a maintenance guideline

obtained from the document with the model and serial numbers of the parts.

2. A baseline  should  be developed on machine  usage,  for  instance,  the  machine

downtime, amount of time spent by the technicians, amount of time between repairs,

and technician's response time in the preventive maintenance program.
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3. The technician should maintain a preventive maintenance checklist that helps in

estimating the amount of time needed in a particular machine.

4. Cleaning of the machine should be done using a brush as opposed to blowing air

to the parts.

5. Big data is beginning to play a more significant part in machine maintenance and

can improve performance. The strategy is advised for REAL to set up preventative

maintenance routines that lower downtime and save money on maintenance. Big data

serves  as  a  foundation  for  increasing  equipment  lifespan,  minimizing  needless

preventive maintenance, and streamlining spare part inventories. 

6. Condition-Based Maintenance  monitoring  technique  needs  to  be  employed  by

employees  with  the  aim of  keeping  a  close  eye  on  the  vibrations,  oil,  electrical

circuit, and pressure for analysis. 

7. Develop an efficient maintenance schedule for the machines by deploying parts

and technicians at the locations on time.

8. Engage in continuous training of technicians in order to increase their efficiency

and equip them with necessary skills.

9. Establish maintenance procedures for repairs. Furthermore, a list of internal and

outsourced maintenance tools should be prepared. A review of the well-grounded

inventory  and  servicing  of  the  machines  should  be  done  on  a  weekly,  monthly,

quarterly, semi-annual, and annual basis.

10. Prioritize maintenance operations, breakdown maintenance, and services should

be scheduled on annual or bi-annual intervals. Routine maintenance practices can be

categorized as high, medium, and low priority tasks.
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11. Develop consistency in the inspection as an ongoing project and avoid skipping

the routine.

12. Always  seek  improvements  as  far  as  maintenance  procedures  and  plans  are

concerned.

13. An ICT should be on boarded into the maintenance team in order to handle the

connection and the programming of the connectivity system.

5.2.2 Proposed Areas for Future Research

1. Finally, the study recommends conducting further research on the scheduling of

maintenance activities for industrial equipment, particularly focusing on aspects that

are not related to maintenance management strategies. By exploring situations such

as  unplanned,  reactive  maintenance,  preventive  maintenance,  and  predictive

monitoring,  this  research  can  provide  valuable  insights  and  contribute  to  the

development  of  more  comprehensive  and  effective  maintenance  scheduling

approaches.

2. Additionally,  it  is  recommended to conduct  a  future study on the relationship

between optimized time schedules and production per shift  specifically  for jigger

dyeing  machines.  By  investigating  the  impact  of  various  time  schedules  on

production  efficiency,  this  research  can  offer  valuable  insights  into  optimizing

scheduling strategies for enhanced productivity in jigger dyeing operations.
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APPENDICES

Appendix 1:Interview/ Questions

How often do you encounter secondary damage complications?

☐Very Often

☐Once In A While

☐Rarely

Leave a Note: 

…………………………………………………………………………………

Are secondary damages a major concern to the department?

☐YES

☐NO

Leave a Note: 

…………………………………………………………………………………

Do you spend overtime performing maintenance on the machines?

☐YES

☐NO

☐SOMETIMES

Leave a Note: …………………………………………………………………………

Are you comfortable and satisfied while operating the machines?

☐YES

☐NO

Leave a Note: 

…………………………………………………………………………………
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Appendix 2: Questionnaire

BM – Breakdown maintenance PM –Preventive maintenance

Your response to these questions will be highly appreciated.

1. What is the name of the department you work in?

2. What are the Types of Maintenance strategies in the department?

3. Do you have a Maintenance Policy? If any, provide it.

4. What is the approach of attending to machines?

5. What is the duration between the routine BM?

6. What Challenges do you face as a department?

7. Give the average duration needed to scan for failure?

8. Do you use the PM maintenance strategy often?

9. What is the total number of failures?

10. Number of failures that calls for BM

11. What is the average time to repair the machine?

12. What is the average time to the next machine failure?

13. Do you have a failure assessment policy?

14. What is the Average Daily machine uptime recorded?

15. What is the Average Daily machine downtime recorded?

16. List the PM Practices?

17. List the BM Practices?

18. What is the average duration needed for PM practices?

19. Number of machines on the floor

20. What is the number of machines that are not working?
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21. What is the number of employees in the maintenance departments?

22. What is the duration wasted due to additional events?

23. In your opinion, which is the dominant strategy used in the department?
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Appendix 3:Weibull parameters results comparison.

X Shape parameter Scale parameter 
Rapier

weaving

machine

Reed system X1 0.962948 2672.12
warp let-off system X2 1.41806 1679.88
fabric take-up system X3 1.92714 2905.03
machine main drive system X4 2.07718 2470.29
selvedge formation system X5 107.874 2195.58
connectivity system X6 5.10607 5404.90

Air-jet

weaving

machine

s

weft feeders system X7 8.36824 1420.21
reed system X8 7.42371 5344.08
warp let-off system X9 2418.89 1000.75
fabric take-up system X10 24.6176 547754
machine drive system X11 2.94138 14728.8
harness frames system X12 1.88017 2139.04
selvedge formation system X13 0.987828 1151.01
connectivity system X14 1.84369 15294.9
 lubrication fabric take-up, and

let-off system

X15 222.157 1231.69

Total time operation time X16 14.8479 24873.2
lubrication main drive X17 1.88327 5673.38
Number of failures X18 3.03961 4.26714
MTBF Y 1.46503 1683.46
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Appendix 4: Model Summary

S    R-sq  R-sq(adj)  R-sq(pred)

404.541  85.56%     85.30%      84.91%

Coefficients

Term                               Coef  SE Coef  T-Value  P-Value   VIF

Constant                         -17267    24130    -0.72    0.474

X1 Age of the system            0.00712  0.00449     1.58    0.114  1.02

X2 Age of the system             0.0104   0.0126     0.83    0.409  1.02

X3 Age of the system            0.01112  0.00897     1.24    0.215  1.02

X4 Age of the system            -0.0206   0.0122    -1.69    0.092  1.02

X5 Age of the system             -1.001    0.502    -1.99    0.046  1.02

X6 Age of the system            -0.0124   0.0117    -1.06    0.290  1.01

X7 Age of the system            -0.0288   0.0688    -0.42    0.676  1.01

X8 Age of the system            -0.0298   0.0159    -1.87    0.062  1.01

X9 Age of the system               20.3     23.9     0.85    0.396  1.01

X10 Age of the system            0.0548   0.0484     1.13    0.258  1.02

X11 Age of the system          -0.00259  0.00281    -0.92    0.356  1.01

X12 Age of the system           -0.0144   0.0110    -1.31    0.192  1.02

X13 Age of the system            0.0105   0.0112     0.94    0.348  1.01

X14 Age of the system          -0.00161  0.00174    -0.93    0.354  1.02

X15 Age of the system              0.51     1.86     0.27    0.784  1.03

X16 Age of the system           0.00154  0.00676     0.23    0.820  1.04

X17 Age of the system           0.30017  0.00485    61.94    0.000  1.02



103

X18 Number of Events/Failures   -398.04     9.91   -40.16    0.000  1.02

Regression Equation

Y  Response  =  MTBF  =  -17267  + 0.00712 X1 Age of the system

+ 0.0104 X2 Age of the system

                    + 0.01112 X3 Age of the system - 0.0206 X4 Age of the system

                    - 1.001 X5 Age of the system - 0.0124 X6 Age of the system

                    - 0.0288 X7 Age of the system - 0.0298 X8 Age of the system

                    + 20.3 X9 Age of the system + 0.0548 X10 Age of the system

                    - 0.00259 X11 Age of the system - 0.0144 X12 Age of the system

                    + 0.0105 X13 Age of the system - 0.00161 X14 Age of the system

                    + 0.51 X15 Age of the system + 0.00154 X16 Age of the system

                    + 0.30017 X17 Age of the system - 398.04 X18 Number of Events/Failures
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Appendix 5: The appendix presents Weibull distribution analysis for the various

system components in the loom.
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Figure  3:  Distribution  and  probability  Plot  for  Reed  System  in  Rapier  Weaving

Machine.
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Figure  2:  Distribution  and  probability  Plot  for  Warp  Let-Off  System  in  Rapier

Weaving Machine.
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Figure  3:  Distribution  and  probability  Plot  for  Fabric  Take-Up  System  in  Rapier

Weaving Machine.
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Figure 4: Distribution and probability Plot for Machine Main Drive System in Rapier

Weaving Machine.
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Figure 5: Distribution and probability Plot for Selvedge Formation System in Rapier

Weaving Machine.
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Figure 6: Distribution and probability Plot for Connectivity System in Rapier Weaving

Machine.
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Figure 7: Distribution and probability Plot for Weft Feeders System in Airjet Weaving

Machine.
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Figure  8:  Distribution  and  probability  Plot  for  Reed  System  in  Airjet  Weaving

Machine.
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Figure 9: Distribution and probability Plot for Warp Let-Off System in Airjet Weaving

Machine.
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Figure  10:  Distribution  and  probability  Plot  for  Fabric  Take-Up  System in  Airjet

Weaving Machine.
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Figure  411:  Distribution  and  probability  Plot  for  Machine  Drive  System in  Airjet

Weaving Machine.
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Figure  12:  Distribution  and probability  Plot  for  Harness  Frames  System in  Airjet

Weaving Machine.
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Figure 13: Distribution and probability Plot for Selvedge Formation System in Airjet

Weaving Machine.
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Figure 14: Distribution and probability Plot for Connectivity System in Airjet Weaving

Machine.
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Figure 15: Distribution and probability Plot for Lubrication Fabric Take-Up and Let

off in both Rapier and Airjet Weaving Machines.
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Figure 16: Distribution and probability  Plot  for Lubrication of main drive in both

Rapier and Airjet Weaving Machines.
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Figure 17: Distribution and probability Plot for Total Time for both Rapier and Airjet

Weaving Machines.
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Figure 18: Distribution and probability Plot for number of failures for both Rapier

and Airjet Weaving Machines.
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Figure 19: Distribution and probability Plot for Response, MTBF.
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Appendix 6

statistically significant (p < 0.10).
The relationship between Y and the X variables in the model is

Yes No

0 0.1 > 0.5

P < 0.001

model.
95.50% of the variation in Y can be explained by the regression

Low High

0% 100%

 R-sq = 95.50%

range of values for Yout = MTBF.
settings for the X variables that correspond to a desired value or
Yout = MTBF for specific values of the X variables, or find the
If the model fits the data well, this equation can be used to predict
 
X3 2̂, X4 2̂, X5 2̂, X1*X5, X2*X4, X4*X5
X5: X19
X4: X18
X3: X3
X2: X2
X1: X1
relationship between Y and the X variables:
The following terms are in the fitted equation that models the
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X1 X2 X3 X18 X19

Comments

Yout = MTBF vs X Variables

A gray background represents an X variable not in the model.

Multiple Regression for Yout = MTBF
Summary Report

% of variation explained by the model

Figure 1: Variation in MTBF due to reed system, warp let-off system, and fabric take-

up system in rapier machines and total time and number of failures.

Yout = MTBF =
+ 0.00449 X1*X5 - 0.000006 X2*X4 - 0.09056 X4*X5
1407.1 - 0.01471 X1 + 0.0294 X2 - 0.0344 X3 + 0.6454 X4 - 772.9 X5 + 0.000006 X3 2̂ + 0.000001 X4 2̂ + 93.88 X5 2̂

Step Change Step P Final P
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Add X3

Add X2*X4

Add X2

Add X1*X5

Add X1

Add X5̂ 2

Add X4*X5

Add X5

Add X4
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Increase in R-Squared %
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X3

X2

X1
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R-Squared %

X1: X1   X2: X2   X3: X3   X4: X18   X5: X19

Final Model Equation

Model Building Sequence
Displays the order in which terms were added or removed.

Incremental Impact of X Variables
Long bars represent Xs that contribute the most new

information to the model.

Each X Regressed on All Other Terms
Long bars represent Xs that do not help explain

additional variation in Y.

A gray bar represents an X variable not in the model.

Multiple Regression for Yout = MTBF
Model Building Report

Figure 2: Modeling report for MTBF, reed system, warp let-off  system, and fabric

take-up system in rapier machines and total time and number of failures.
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large residuals that could have a strong influence on the model.
regression model. Ideally, the points should fall randomly on both sides of zero. Identify any
Look for patterns, such as strong curvature or clusters, that may indicate problems with the

Look for these patterns:

Large Residuals

Unusual X Values

Clusters

Unequal Variation

Multiple Regression for Yout = MTBF
Diagnostic Report

Figure 3: Fitting values of reed system, warp let-off system, and fabric take-up system

in rapier machines and total time and number of failures.

statistically significant (p < 0.10).
The relationship between Y and the X variables in the model is

Yes No

0 0.1 > 0.5

P < 0.001

model.
95.43% of the variation in Y can be explained by the regression

Low High

0% 100%

 R-sq = 95.43%

range of values for Yout = MTBF.
settings for the X variables that correspond to a desired value or
Yout = MTBF for specific values of the X variables, or find the
If the model fits the data well, this equation can be used to predict
 
X1 2̂, X4 2̂, X5 2̂, X4*X5
X5: X18
X4: X17
X1: X4
relationship between Y and the X variables:
The following terms are in the fitted equation that models the
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Is there a relationship between Y and the X variables? Comments

Yout = MTBF vs X Variables

A gray background represents an X variable not in the model.

Multiple Regression for Yout = MTBF
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% of variation explained by the model

Figure 4: Variation in MTBF due to machine main drive system, selvedge formation

system, and connectivity system in rapier machines and the total time and number of

failures.
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Yout = MTBF = 1406.4 - 0.0183 X1 + 0.6308 X4 - 766.1 X5 + 0.000004 X1 2̂ + 0.000001 X4 2̂ + 94.28 X5 2̂ - 0.08958 X4*X5

Step Change Step P Final P
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X1: X4   X2: X5   X3: X6   X4: X17   X5: X18

Final Model Equation

Model Building Sequence
Displays the order in which terms were added or removed.

Incremental Impact of X Variables
Long bars represent Xs that contribute the most new

information to the model.

Each X Regressed on All Other Terms
Long bars represent Xs that do not help explain

additional variation in Y.

A gray bar represents an X variable not in the model.

Multiple Regression for Yout = MTBF
Model Building Report

Figure 5: Modeling report for MTBF, machine main drive system, selvedge formation

system, and connectivity system in rapier machines and the total time and number of

failures.
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regression model. Ideally, the points should fall randomly on both sides of zero. Identify any
Look for patterns, such as strong curvature or clusters, that may indicate problems with the

Look for these patterns:
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Unusual X Values
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Unequal Variation

Multiple Regression for Yout = MTBF
Diagnostic Report

Figure 6: Fitting values of machine main drive system, selvedge formation system, and

connectivity system in rapier machines and the total time and number of failures.
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statistically significant (p < 0.10).
The relationship between Y and the X variables in the model is

Yes No

0 0.1 > 0.5

P < 0.001

model.
95.52% of the variation in Y can be explained by the regression

Low High

0% 100%

 R-sq = 95.52%

range of values for Yout = MTBF.
settings for the X variables that correspond to a desired value or
Yout = MTBF for specific values of the X variables, or find the
If the model fits the data well, this equation can be used to predict
 
X5 2̂, X1*X4, X2*X4, X2*X5, X3*X4, X4*X5
X5: X18
X4: X17
X3: X9
X2: X8
X1: X7
relationship between Y and the X variables:
The following terms are in the fitted equation that models the
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Is there a relationship between Y and the X variables? Comments

Yout = MTBF vs X Variables

A gray background represents an X variable not in the model.

Multiple Regression for Yout = MTBF
Summary Report

% of variation explained by the model

Figure 7: Variation in MTBF due to weft feeder system, reed system, and warp let-off

system in air-jet machine and total time and number of failures.

Yout = MTBF =
- 0.02156 X2*X5 + 0.01092 X3*X4 - 0.08871 X4*X5
56301 + 0.1487 X1 + 0.0402 X2 - 55.3 X3 - 10.28 X4 - 661.2 X5 + 94.35 X5 2̂ - 0.000036 X1*X4 + 0.000009 X2*X4
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Final Model Equation

Model Building Sequence
Displays the order in which terms were added or removed.

Incremental Impact of X Variables
Long bars represent Xs that contribute the most new

information to the model.

Each X Regressed on All Other Terms
Long bars represent Xs that do not help explain

additional variation in Y.

A gray bar represents an X variable not in the model.

Multiple Regression for Yout = MTBF
Model Building Report

Figure 8: Modeling report for MTBF, weft feeder system, reed system, and warp let-off

system in air-jet machine and total time and number of failures.
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Multiple Regression for Yout = MTBF
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Figure 9: Fitting values of weft feeder system, reed system, and warp let-off system in

air-jet machine and total time and number of failures.

statistically significant (p < 0.10).
The relationship between Y and the X variables in the model is

Yes No

0 0.1 > 0.5

P < 0.001

model.
95.64% of the variation in Y can be explained by the regression

Low High

0% 100%

 R-sq = 95.64%

range of values for Yout = MTBF.
settings for the X variables that correspond to a desired value or
Yout = MTBF for specific values of the X variables, or find the
If the model fits the data well, this equation can be used to predict
 
X4 2̂, X5 2̂, X1*X3, X2*X4, X2*X5, X4*X5
X5: X18
X4: X17
X3: X12
X2: X11
X1: X10
relationship between Y and the X variables:
The following terms are in the fitted equation that models the
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A gray background represents an X variable not in the model.

Multiple Regression for Yout = MTBF
Summary Report

% of variation explained by the model

Figure 10: Variation in MTBF due to fabric take-up system, machine drive system,

and harness frames system in air-jet machines and total time and number of failures.
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Yout = MTBF =
+ 0.000002 X2*X4 - 0.00611 X2*X5 - 0.08902 X4*X5
562 + 0.1331 X1 + 0.01234 X2 + 0.240 X3 + 0.6000 X4 - 702.2 X5 + 0.000002 X4 2̂ + 96.26 X5 2̂ - 0.000046 X1*X3
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Final Model Equation

Model Building Sequence
Displays the order in which terms were added or removed.

Incremental Impact of X Variables
Long bars represent Xs that contribute the most new

information to the model.

Each X Regressed on All Other Terms
Long bars represent Xs that do not help explain

additional variation in Y.

A gray bar represents an X variable not in the model.

Multiple Regression for Yout = MTBF
Model Building Report

Figure 11: Modeling report for MTBF, fabric take-up system, machine drive system,

and harness frames system in air-jet machines and total time and number of failures.
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Figure 12: Fitting values of fabric take-up system, machine drive system, and harness

frames system in air-jet machines and total time and number of failures.
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statistically significant (p < 0.10).
The relationship between Y and the X variables in the model is

Yes No

0 0.1 > 0.5

P < 0.001

model.
95.63% of the variation in Y can be explained by the regression

Low High

0% 100%

 R-sq = 95.63%

range of values for Yout = MTBF.
settings for the X variables that correspond to a desired value or
Yout = MTBF for specific values of the X variables, or find the
If the model fits the data well, this equation can be used to predict
 
X2 2̂, X5 2̂, X2*X4, X2*X5, X4*X5
X5: X18
X4: X17
X2: X14
relationship between Y and the X variables:
The following terms are in the fitted equation that models the
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A gray background represents an X variable not in the model.

Multiple Regression for Yout = MTBF
Summary Report

% of variation explained by the model

Figure 13:  Variation  in  MTBF due to  selvedge formation  system and connectivity
system in the air-jet machine as well as lubrication fabric take-up and let off total time,
and number of failures.

Yout = MTBF =
- 0.08775 X4*X5
1426.6 - 0.01014 X2 + 0.6263 X4 - 747.7 X5 + 0.000000 X2 2̂ + 94.57 X5 2̂ + 0.000001 X2*X4 - 0.002146 X2*X5
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Final Model Equation

Model Building Sequence
Displays the order in which terms were added or removed.

Incremental Impact of X Variables
Long bars represent Xs that contribute the most new

information to the model.

Each X Regressed on All Other Terms
Long bars represent Xs that do not help explain

additional variation in Y.

A gray bar represents an X variable not in the model.

Multiple Regression for Yout = MTBF
Model Building Report

Figure 14: Modeling report for MTBF, selvedge formation system and connectivity
system in the air-jet machine as well as lubrication fabric take-up and let off, total time
and number of failures.
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Figure 15: Fitting values of selvedge formation system and connectivity system in the
air-jet machine as well as lubrication fabric take-up and let off, total time and number
of failures.

statistically significant (p < 0.10).
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settings for the X variables that correspond to a desired value or
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If the model fits the data well, this equation can be used to predict
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The following terms are in the fitted equation that models the

10000

5000

0

X1 Age of th X9 Age of th X11 Age of t X17 Age of t X18 Age of t

Is there a relationship between Y and the X variables? Comments

Yout = MTBF vs X Variables

A gray background represents an X variable not in the model.

Multiple Regression for Yout = MTBF
Summary Report

% of variation explained by the model

Figure 16: Variation in MTBF due to reed system (rapier), machine drive system (air-

jet), warp let-off system (air-jet), total time, and number of failures.
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Yout = MTBF =
+ 0.00738 X2*X3 + 0.000002 X3*X4 - 0.00569 X3*X5 - 0.09001 X4*X5
93095 - 0.01149 X1 - 91.8 X2 - 7.38 X3 + 0.6015 X4 - 700.3 X5 + 0.000002 X4 2̂ + 94.56 X5 2̂ + 0.00379 X1*X5
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Figure 17: Modeling report for MTBF, reed system (rapier), machine drive system 

(air-jet), warp let-off system (air-jet), total time and number of failures.
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Figure 18: Fitting values of reed system (rapier), machine drive system (air-jet), warp

let-off system (air-jet), total time, and number of failures.
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