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ABSTRACT

The continuous water quality monitoring (WQM) of watersheds and the existing water supplies is a crucial step in realizing sus-
tainable water development and management. However, the conventional approaches are time-consuming, labor intensive,
and do not give spatial-temporal variations of the water quality indices. The advancements in remote sensing techniques
have enabled WQM over larger temporal and spatial scales. This study used satellite images and an empirical multivariate
regression model (EMRM) to estimate chlorophyll-a (Chl-a), total suspended solids (TSS), and turbidity. Furthermore, ordinary
Kriging was applied to generate spatial maps showing the distribution of water quality parameters (WQPS). For all the samples,
turbidity was estimated with an R? and Pearson correlation coefficient (r) of 0.763 and 0.818, respectively while TSS estimation
gave respective R? and r values of 0.809 and 0.721. Chl-a was estimated with accuracies of R2 and r of 0.803 and 0.731, respect-
ively. Based on the results, this study concluded that WQPs provide a spatial-temporal view of the water quality in time and
space that can be retrieved from satellite data products with reasonable accuracy.
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HIGHLIGHTS

® Remote sensing could avail a cost-effective option for the continuous monitoring of watersheds and water resources.
® Satellite-derived data could inform water quality monitoring decisions.

® Ordinary Kriging enabled the development of water quality spatial distribution maps for the water supply reservoir.

® An empirical multivariate regression modeling (EMRM) approach is used for the development of model coefficients.
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1. INTRODUCTION

The world’s population is fast growing and this keeps on pushing more people to settle in fragile ecosystems
mainly the shores of lakes and rivers, and coastal regions (Bar-Massada et al. 2014). The increasing anthropo-
genic activities in these areas are a major threat to most of the world’s freshwater resources (Vorésmarty et al.
2010) and could create irreversible negative impacts, especially in a changing climate. Continuous watershed
monitoring is a crucial concept that will help realize sustainable water supplies. According to Najafzadeh &
Niazmardi (2021), the quality of surface water plays a key role in the sustainability of ecological systems. Measur-
ing water quality parameters (WQPs) is of high importance in the management of surface water resources.
Furthermore, the treatment and supply of water to meet the needs of the various end users require an understand-
ing of the real-time quality of water at the source which influences the choice of chemicals and quantities used in
the treatment process.

Eldoret is a fast-growing town with an estimated urban population of 475,716 in 2019 and a growth rate of
3.82% per annum. According to the Eldoret Water and Sanitation (ELDOWAS) Company, the demand for
water in Eldoret Municipality is estimated at 60,000 m®/day, against production of 36,400 m®/day (Kimutai
et al. 2018). According to Kibii et al. (2021), mismanagement in the catchment is partly responsible for the
huge disparity between demand and supply due to the recent conversion of forested land into subsistence agri-
culture. This has led to flash floods, erosion, and sedimentation which decrease the quality of surface water.
In addition, competing users and uses have contributed to a substantial increase in freshwater requirements. Fur-
thermore, factors such as climate change, population growth, and inadequate conservation practices in the
catchment negatively impact the water quality as exhibited through increased turbidity and algal blooms
(Ontumbi et al. 2015; Barasa & Perera 2018).

Monitoring surface water quality is crucial mainly in the context of increasing freshwater demands and waste-
water discharged to the environment (Chen & Han 2018). The traditional approach of water quality monitoring
(WQM) entails the collection of samples in the field followed by a water quality analysis in the laboratory. How-
ever, the approach is time-consuming, labor intensive, and it does not give the spatial-temporal variations of the
water quality indices (WQIs). Furthermore, reliance on conventional methods also limits the possibility of moni-
toring, forecasting, and managing entire water bodies due to the large extent of the water surface, lack of spatial-
temporal data on a regional scale, and geographical limitations (Gholizadeh et al. 2016).

According to Najafzadeh et al. (2021), WQIs are crucial in describing the essential characteristics of water pol-
lutants and this creates the need for accurate predictions of WQIs in order to gain insights into the patterns of
pollutants in natural streams. Furthermore, Najafzadeh et al. (2021) also note that one of the most difficult
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issues in the studies of water quality specifically, surface water resources, is getting an accurate estimate of WQIs.
Even though there are numerous conventional methodologies for evaluating the WQIs, the limitations that exist
among the traditional models have brought the need to employ data-driven models (DDMs) in assessing the
WQIs of natural streams. The WQM challenges can also be overcome by using satellite images which avail a
smart, rapid, and low-cost WQM tool.

The advancements in computer science and remote sensing techniques have made remote sensing find wider
applications in WQM (Usali & Ismail 2010; Gholizadeh ef al. 2016). The use of remote sensing techniques and
satellite images allows for continuous WQM over larger spatial and temporal scales thus improving the water
management practices for vast geographical areas (Japitana & Burce 2019). The concept could also be extended
to determine the impacts of anthropogenic activities in different catchments, pollution management, and water-
shed management. The development of WQM systems that incorporate remote sensing increases the efficiency
with which individuals respond to emergency ecological challenges such as point and non-point pollution,
algal blooms, and floods. Real-time measurements also enable data to be analyzed rapidly and effectively
while limiting errors that come with sample collection and laboratory analysis.

Ouma et al. (2018) note that empirical models leverage bivariate and/or multiple regressions between data
acquired from sensors and WQPs measured in situ by correlating the sensor radiance values and their band com-
binations with WQPs collected and measured based on the sensor overpass schedule. For instance, empirical
multivariate regression modeling (EMRM) simulations are done to determine the multivariate correlations
between the reflectance from sensor bands and WQPs measured in sifu. Furthermore, Najafzadeh ef al
(2018) also highlight the need for evolutionary computing-based formulations including the application of
equations extracted from gene expressive programming, and evolutionary polynomial regression (EPR) in the pre-
diction of WQPs. This is in line with the increasing recommendation over the last decade to use artificial
intelligence models in the prediction of WQPs.

Landsat-8 Operational Land Imager (OLI) is one of the intelligent tools that avails a simple, automated, fast,
inexpensive, and noninvasive technology for operational and productive aquatic environmental monitoring
(Garaba et al. 2015). Furthermore, the assessment of Landsat-8 imagery also allows for the identification of
the optically active water constituents based on their interaction with light and the subsequent energy change
of the incident radiation reflected from the water body (Garaba et al. 2015). Numerous algorithms have been
developed based on Landsat data for the retrieval of WQP values from remotely sensed imagery. Thus, Land-
sat-8 OLI is one of the tools that could be used to enable accurate and routine monitoring of water bodies in
line with the need for sustainable management of water resources.

According to Ouabo et al. (2020) suitable interpolation techniques can be applied to correctly sampled data in
order to make inferences on the distribution and variability of the WQPs at the unsampled locations. However,
there is a need to have detailed information on the distribution of WQPs in the reservoir so as to make precise
water quality predictions for a specific point in the reservoir. A study by Murphy ef al. (2010) compared the per-
formance of ordinary Kriging, inverse distance weighting (IDW), and universal Kriging for spatial interpolation of
WQPs. The Kriging-based methods gave better estimates compared to the IDW method with an accuracy of more
than 10%.

This study presents a smart WQM approach for the assessment and estimation of WQPs (turbidity, total sus-
pended solids (TSS), and chlorophyll-a (Chl-a)) in Two Rivers Dam, Uasin Gishu County in Kenya. The study
used satellite images acquired from Landsat-8 OLI. Ordinary Kriging was applied to estimate the WQPs at the
unsampled locations in the reservoir from which the spatial distribution maps were developed.

2. MATERIALS AND METHODS

2.1. Study area

Two Rivers Dam is located in Uasin Gishu County, Kenya at a longitude of 35° 35’ 14” and latitude of 0° 46’ 88"
as shown in Figure 1. The dam is one of three dams that serve Eldoret town and its surroundings and is situated at
the confluence of River Endoroto and River Ellegerini and which are both headwaters of River Sosiani. The other
sources are Elligrini and Chebara Dams.

The data used in this study were collected from the 13 sampling points, L1-L13 (Figure 1). A high concen-
tration of points was near the edges because of the highly variable water quality characteristics at these locations.
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Figure 1 | Two Rivers Dam reservoir and the selected sampling points.

2.2. Landsat image acquisition and processing

The study used Landsat-8 OLI images acquired between 25 November 2020 and 28 January 2021. The selection
of in situ sampling dates coincided with the satellite overpass schedule to a tolerance of + 1 day.

2.3. Determination of radiance and reflectance

Image processing was done using the Fast Line-of-sight Atmospheric Analysis of Hypercubes (FLAASH) model
where the digital numbers were converted to top-of-atmosphere (TOA) radiance through radiometric calibration.
The TOA radiance was then converted to TOA reflectance through atmospheric correction and the surface reflec-
tance was obtained after Dark Object Subtraction (DOS) (Ouma et al. 2018). After the DOS, the region of interest
(ROI) for each of the images was then extracted and used in the subsequent processing steps. The Two Rivers
Dam shapefile was then used to extract the ROI from the processed images and the ROI used for the subsequent
processing.

2.4. Laboratory WQP determination

A total of 78 water samples were collected for the entire sampling duration and the standard laboratory protocols
were applied in determining the concentration of turbidity, TSS, and Chl-a. For each of the three sampling dates,
two water samples were collected at each of the 13 points. Each sample and its replicate were then tested for
turbidity, TSS, and Chl-a, and the average value was recorded. Turbidity measurements were done in the labora-
tory using the Hanna Portable turbidity meter (model HI98703) and TSS was determined by the gravimetric
method (APHA 1975). Chl-a was determined by the spectrophotometric method where the optical density of
the extracted Chl-a was measured at four wavelengths (750, 663, 645, and 630 nm) and the resulting concen-
tration was determined based on the SCOR-UNESCO’s equations (SCOR-UNESCO 1966). A GPS receiver
was used to locate the sampling points during sample collection, thus, enabling meaningful seasonal inferences
to be made for the specific locations.
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2.5. Correlation of spectral reflectance with WQPs

The correlation analysis entailed overlaying the sampling points on the ROI extracted from the processed satellite
images for each of the sample collection days. An average spectral reflectance of 3 x 3 pixel neighborhood con-
figuration as proposed by Reddy (1997) was used in order to reduce errors in locating the sampling sites, correlate
the reflectance and the WQPs as well as address the high water quality variability since the sampling points were
close to the edges of the reservoir. Thus, the 3 x 3 window could include the shallow water near the banks. To
convert the surface reflectance values to remote sensing reflectance (Rrs), the surface reflectance values were
divided by = (Moses et al. 2015).

2.6. WQPs estimation using empirical regression modelling

The EMRM approach was used to correlate remote sensing reflectance and the WQPs measured in situ as
described in Ouma et al. (2018). The band combinations considered for EWRM analysis were single band,
band ratio, linear, and mixed combination.

The predicted and laboratory-measured water quality values were compared based on the EWRM algorithm
and the equations with the highest R? values were selected (Wang et al. 2006). Eight sampling points were
used in the development of the model. The appropriate regression equation was selected based on the value of
the coefficient of correlation (R) which was used as a measure of accuracy for the derived equations and five
points were used for model validation. The accuracy of the regression results was then determined using the coef-
ficient of determination, Pearson correlation coefficient, mean absolute error or bias, and normalized root mean
square error (NRMSE) estimators.

3. RESULTS AND DISCUSSION
3.1. Comparisons between spectral reflectance values and in situ WQPs
3.1.1. Turbidity

The average in situ turbidity for the entire sampling period varied between 4 and 17 NTU with an average of
7.69 NTU. The reservoir turbidity was generally low since sampling was done during the dry season. The
sampling was done between November and January which is a dry period meaning there was no sediment
inflow from rainwater discharge into the reservoir. Sediment loads could have also been reduced as a result of
plain sedimentation which refers to the quiescent settling of water in a reservoir for extended durations without
the aid of chemicals especially when the water source is polluted or highly turbid (Mehdinejad ef al. 2012). The
concept is more like natural water treatment that results in the settlement of suspended solids, removal of color,
hardness reduction, breakdown of organic chemicals, and unfavorable conditions that lead to the death of patho-
gens. The reflectance from the blue, green, and red bands yielded the highest correlation coefficient between
in situ and Landsat-derived water quality values as shown in Table 1. Ouma ef al. (2020) also demonstrated
that turbidity could be estimated using remote sensing by utilizing the green, blue, and red bands of Landsat-8
OLI. Similar results were also obtained by Lotfi ef al. (2019) with the highest correlation obtained between
the reflectance values of red and blue bands and iz situ turbidity. The significance of the red and blue band in
the estimation of turbidity is also emphasized in a study by Kalele (2019) where the best-performing model

Table 1 | Regression equations for turbidity, Chl-a, and TSS estimation (B2 = blue, B3 = green and B4 = red)

Regression equation Band Combination R? R NRMSE Bias
25/11/2020  Turbidity  y=—1,169x2+ 3,694x — 2,908 (B1/B4) + B2 0.797  0.720 0.257 0.084
TSS y=—5,340In(x) + 2,754 B3/B2 0.788  —0.808  0.704 -9.981
Chl-a y = 7,820x2-20,734x + 13,767 B1/B3 0.802  0.854 0.227 3.092
11/12/2020  Turbidity =~ y=68,165x% —15,713x+908.2 B3+ B4 + Bl 0.757  0.886 0.631 -1.572
TSS y = 635.9¢%3-6% B4 0.853  0.723 0.376 2.660
Chl-a y =7,556x2-6,881x + 1,591 (B4/B1) +B4 0.682  0.648 0.525 10.966
28/01/2021  Turbidity = y=29.02In(x) + 117.7 B4 0.688  0.620 0.364 —0.402
TSS y=—6,131x%+ 25,640x-23,721  (B1/B4) + Bl 0.757  0.700 0.497 15.862
Chl-a y =—9,145x% 4 9,639x-2,444 B4/B1 0.926  0.691 0.676 16.234
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was a combination of the reflectance values of the red and blue bands with R and RMSE values of 0.841 and
0.828, respectively. Furthermore, the model validation dataset resulted in R and RMSE values of 0.832 and
0.430, respectively. The results from this study show that turbidity for inland waters can be estimated using
remote sensing reflectance values from the visible bands of the satellite imagery.

3.1.2. Total suspended solids

The average in situ TSS for the entire sampling period varied between 247 and 321 mg/L with an average of
277.91 mg/L. The highest concentration of TSS was recorded at the points where River Endoroto and River Elle-
gerini entered the reservoir since the inflow from the two rivers agitated and suspended the settled sediments
from the bottom of the reservoir. Based on the EWRM algorithmic approach shown in Table 1, TSS was best
estimated from the coastal aerosol, blue, green, and red bands.

The results in Table 1 relating B3 (green) and B2 (blue) gave an R? value of 0.788. This can be compared with
the results of Jaelani et al. (2016) where the logarithmic regression algorithm based on the band ratio of the
remote sensing reflectance of B2 (blue) to B3 (green) gave an R? value of 0.79. The concept was also established
in a study by Ouma et al. (2020) where the liner regression model from the band ratio between the B3 (green) and
B2 (blue) resulted in an R? value of 0.9249. From this study, the single B4 (red) regression model yielded the high-
est R? value of 0.853. This can be compared to the study by Yanti et al. (2016) where it was established that the
estimation and mapping of TSS concentration can be done using a single B4 (red) band. In the study, the single
band linear regression model relating iz situ TSS to remote sensing reflectance (Rrs) of B4 (red) gave an R? value
of 0.5431. In comparison with the other studies, Yanti ef al. (2016) concluded that the red band alone is not that
informative in the retrieval of TSS. However, in this study, the red band alone was quite informative in the retrie-
val of TSS from the reservoir. However, just like Yanti ef al. (2016) suggested, combining the red band and other
visible bands proved to be quite effective in the estimation and mapping of the WQPs in this reservoir. The results
from this and similar studies show that TSS can be estimated with relatively high accuracy from the visible bands
of satellite imagery. Generally, the nRMSE and Bias errors for this study were also lower compared to the TSS
values measured in situ and this proves that the method is sufficient for estimating the TSS concentration of
inland waters.

3.1.3. Chlorophyll-a

During the entire sampling period, the average in sitfu Chl-a ranged between 23.58 and 83.15 mg/L with an aver-
age of 46.51 mg/L. From Table 1, the highest concentration of Chl-a was recorded in the same regions where high
values of TSS were observed. The inflow of water from River Endoroto and River Ellegerini increases the con-
centration of particulate matter and nutrients at these points. This is because farming is the leading economic
activity around the reservoir and this means that the observed Chl-a concentrations can be linked to diffuse pol-
lution by fertilizer leachate from the nearby farms, specifically, an influx of total phosphorous and total nitrogen
which are the main variables that contribute to nutrient enrichment. Consequently, the concentration of Chl-a
which is the response variable increases. The problem is further worsened by the rainy season which facilitates
significant nutrient runoff followed by a dry season, which provides perfect conditions for algae incubation
(KDHE 2011). Furthermore, the increased concentration of particulate matter provides attachment sites for
the algae and this enables the algal bloom concentration to be propagated thus leading to the observed high con-
centration of both TSS and Chl-a in the same regions.

The Rrs based on coastal aerosol, green, and red bands gave the best estimate of Chl-a. Similar results were also
obtained by Jaelani ef al. (2016) where Chl-a concentration retrieval algorithms based on band ratios involving
B1, B2, B3, and B4 gave a high determination coefficient (R2> 0.5). The study by Watanabe et al. (2015)
where the Rrs spectra computed from in situ data showed high absorption at the blue (B2) and red (B4) spectral
regions with the reflection peak being at the green (B3) region and the beginning of the near-infrared region close
to the end of the red edge (B4) also confirms that B2, B3, and B4 can be used to estimate Chl-a from Landsat OLI
images. As opposed to the study by Lai ef al. (2021) which states that the best band combination for the retrieval
of Chl-a is that which includes the blue and near-infrared bands, the near-infrared band is not that informative in
the retrieval of Chl-a in this reservoir. Regardless, Lai ef al. (2021) also acknowledge that if only the near-infrared
and blue bands are used for Chl-a retrieval, then the correlation is not ideal. Like most of the cited studies, the
current study showed that satellite data such as that from Landsat-8 OLI coastal aerosol, blue, green, and red can
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be used for estimating and monitoring the seasonal variations of Chl-a in reservoirs and this could help detect, in
advance, the occurrence of possible algal blooms.

3.2. Model validation using estimated and in situ water quality measurements

The validation of the developed regression algorithms was done using data from five sampling stations (L1, L2,
L4, L5, and L9 in Figure 1). Table 2 presents calibration and validation results.

Table 2 | Validation results for in situ and estimated water quality measurements

Water quality parameter Estimation method Sample (n) Min. Max. Med. Avg. SsD CV (%) SE
25/11/2020 Turbidity In situ 13 4.00 10.00  8.00 7.38 1.94 2625 0.54
Landsat-8 OLI 13 4.50 10.13 749 7.44 196 2631 0.54
TSS In situ 13 250.6 3004 273.00 271.15 15.04 555 4.17
Landsat-8 OLI 13 253.75 300.67 26823 268.17 13.37 499 3.71
Chl-a In situ 13 23.08 5942 3514 37.17 11.04 29.71 3.06
Landsat-8 OLI 13 2358 60.67 3397 37.44 12.08 32.26 3.35
11/12/2020 Turbidity In situ 13 4.00 13.00 6.00 7.08 263 37.15 0.73
Landsat-8 OLI 13 4.02 1290 6.27 6.25 224 3592 0.62
TSS In situ 13 205.80 349.40 287.60 28142 3457 1229 9.59
Landsat-8 OLI 13 200.02 333.88 285.62 279.89 29.82 10.66 8.27
Chl-a In situ 13 31.36 83.40 4340 50.86 17.38 34.17 4.82
Landsat-8 OLI 13 31.87 83.15 57.02 5235 1416 27.06 3.93
28/01/2021 Turbidity In situ 13 3.00 17.00 10.00 8.62 3,55 41.18 0.98
Landsat-8 OLI 13 5.38 16.86  6.89 7.99 297 3722 0.82
TSS In situ 13 207.60 321.30 284.80 281.17 3156 1123 8.75
Landsat-8 OLI 13 207.85 308.58 287.54 285.07 26.64 9.35 7.39
Chl-a In situ 13 2422 80.86 39.78 44.75 19.19 42.88 5.32
Landsat-8 OLI 13 29052 7622 4556 49.73 1589 3194 441

The EMRM algorithm used for the prediction of WQPs is a DDM and DDMs have been frequently used to
assess the water quality index (WQI) for natural streams (Najafzadeh ef al. 2021). The results from all the
sampling dates show that TSS had the highest variation in concentration followed by Chl-a and turbidity.
Based on the standard deviation (SD), coefficient of variance (CV), and standard error (SE) metrics, the satellite
imagery tended to mostly underestimate the concentration of the WQPs but with a very small margin as seen
through the low coefficient of variation values. The accuracies obtained based on the EMRM can be compared
to the results obtained by Najafzadeh ef al. (2021) who used four well-known DDMs including EPR, M5 Model
Tree (MT), Gene-Expression Programming (GEP), and Multivariate Adaptive Regression Spline (MARS) for the
prediction of the WQI in Karun River, Iran. The number of DDMs feeding-input variables was controlled through
techniques like Forward Selection (FS), and Gamma Test and the FS-M5 MT gave the best estimate of the WQI.
Even though in this study the number of input variables was not controlled because of their low numbers (only
three inputs specifically turbidity, TSS, and Chl-a), great accuracies were still achieved as shown through the vali-
dation results in Table 2. This shows that the EMRM approach is a reliable DDM for the estimation of WQPs
from Landsat-8 OLI. Najafzadeh & Niazmardi (2021) also developed a Multiple Kernel-Support Vector
Regression (MKSVR) algorithm to estimate chemical oxygen demand (COD) and biological oxygen demand
(BOD) of Karun River, Iran using different WQPs as input variables. The MKSVR model performed best in esti-
mating BOD with a correlation coefficient R of 0.8 and RMSE of 4.76 mg/l. In comparison with this study, the
MKSVR model is more accurate since the EWRM algorithm gave lower correlation coefficient values as shown in
Table 1. Even so, the relatively high accuracies could also be attributed to the high number of input parameters
considered all of which affect water quality. The idea of using more input parameters to increase the accuracy of
WQPs predictions is also supported by the findings from the study by Najafzadeh ef al. (2018) where nine input
parameters (specifically, Ca®", Na*, Mg?", NO*", NO3, PO;~ , EC, PH, and turbidity) were used to estimate
BOD, COD, and dissolved oxygen using evolutionary computing-based formulations. All three models tested
achieved high-performance accuracies as indicated by correlation coefficient (R) of 0.86, 0.76, and 0.84 for
GEP, MT, and EPR, respectively.
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3.3. Graphical analysis of in situ and Landsat-estimated validated results

A graphical analysis of in situ and Landsat-estimated validation results for turbidity, TSS, and Chl-a for the
respective data collection dates are presented in Figures 2-4. The error bars represent the coefficient of variation
values between Landsat-estimated and in situ results. The results from Figure 3 show that some Landsat-predicted
measurements coincided with the actual measured values mainly for TSS where the coefficient of variation for
the Landsat-estimated measurements was 11%. However, there were slight variations for some points where
Landsat OLI either overestimated or underestimated the predicted values mostly with a small error margin
since the coefficient of variation was less than 30% for almost all the points.

In situ and sensor-estimated turbidity values

—@— [n situ turbicity
—&— Landsat § OLI estimated turbidity

Turbidity (NTU)
[- 3

o 1 2 3 4 3 6 7 8 2 10 11 12 13 14
Sampling Points

In situ and sensor-estimated TSS values

—&—In si1 TSS
—&— Landsat 8 OLI estimated TSS

1SS (mg/l)
&
(=]

[+] 1 2 3 4 s ] 7 8 9 10 11 12 13 14
Sampling Points

In situ and sensor-estimated Chl-a values

—&— In situ Chl-a
—&— Landsat § OLI estimated Chl-a

Chl-a(mg/)

[+] 1 2 3 Bl s L 7 8 @ 10 11 12 13 14
Sampling Points

Figure 2 | Turbidity, TSS, and Chl-a variations for data collected on 25/11/2020.

In Figure 3, the actual and predicted values followed a similar trend line with most points coinciding with
actual and predicted turbidity and TSS values. For Chl-a, notable variations were at points (4, 5, and 12) and
points (6 and 7) where Landsat-8 values were overestimated and underestimated, respectively, by a significant
margin. Figure 4 shows that there was a significant variation of the actual and predicted values specifically for
turbidity and Chl-a. Landsat underestimated the turbidity values while Chl-a values were overestimated. How-
ever, there was a slight variation between Landsat-predicted and in sifu TSS since Landsat estimated the TSS
values with a coefficient of variation of less than 10%.
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Figure 3 | Turbidity, TSS, and Chl-a variations for data collected on 11/12/2020.

The model results can be compared with the results from the study by Nafsin & Li (2022) which investigated
the effectiveness of four stand-alone machine learning (ML) algorithms and six novel hybrid algorithms in pre-
dicting the 5-day BOD of Buriganga River, Bangladesh. The Random Forest-Support Vector Machine
(RF-SVM), Artificial Neural Network-Support Vector Machine (ANN-SVM), and Gradient Boosting Machine-
Support Vector Machine (GBM-SVM) achieved high prediction accuracies of 91, 89.6, and 88.8%, respectively.
This means that the ML algorithms, just like the EWRM algorithm, can also be used to improve the accuracy of
water quality parameter predictions from satellite imagery. The high prediction accuracies could significantly
reduce the coefficient of variation between in situ and Landsat-predicted WQPs.

Overall, Landsat-8 OLI performed well in the prediction of WQPs with reasonable variation based on the SD,
CV, and SE metrics. Generally, the effectiveness of atmospheric correction plays a great role in dictating the accu-
racy of water quality modeling (Bonansea et al. 2019). It is clear that satellite images like those obtained from
Landsat-8 OLI can be used as a cost-effective and high-frequency tool for monitoring the water quality of
inland waters if adequate radiometric and atmospheric corrections are done.

3.4. Spatial distribution and variability of in situ and estimated WQPs

It is important to determine the spatial distribution of the WQPs in order to visualize the variation in water qual-
ity for the entire reservoir from the sampled locations. The spatial maps for the distribution and variability of the
observed and estimated WQPs were developed using ordinary Kriging to enable further model performance
analysis.
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Figure 4 | Turbidity, TSS, and Chl-a variations for data collected on 28/01/2021.

3.4.1. Turbidity distribution

The measured and estimated turbidity distribution and variation for the selected dates are shown in Figure 5. The
in situ measured and Landsat-estimated turbidity distributions specifically for dates 11/12/2020 and 28/01/2021
were closely correlated. Notably, the highest concentration points were at (L10 and L13 for data collected on
25/11/2020 and L11 for data collected on both 11/12/2020 and 28/01/2021). However, from the statistical
results, the regression models for all 3 days estimated the turbidity in the reservoir with an accuracy of more
than 0.7. This means that the discrepancy noted for the measured and estimated turbidity on 25 November
2020 through a shift in the highest concentration point from point L11 in the laboratory-derived spatial map
to point L2 in Landsat-predicted map could be attributed to the Landsat’s overestimation and underestimation
of predicted turbidity at points L1 and L11, respectively. Overall, the Landsat-8 OLI estimations in this study
are similar to the observations reported by Ouma ef al. (2020) in that estimated results are closely correlated
with in situ turbidity both in spatial location and aerial distribution.

3.4.2. TSS distribution

The spatial maps for TSS distribution in the dam show a high correlation between the laboratory measurements
and estimations from Landsat OLI, as illustrated in Figure 6. The highest TSS concentration for both laboratory
and in situ measurements were recorded at sampling points L10 (L11 and L13) and (L4, L9, and L13) on 25
November 2020, 11 December 2020, and 28 January 2021, respectively. This means that for each of the data col-
lection days, the peak locations of high TSS concentrations are in near-perfect coincidence between measured
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Figure 5 | Measured and estimated turbidity distribution and variation from 25/11/2020 to 28/01/2021. (a) Measured and
estimated turbidity measurements on 25 November 2020. (b) Measured and estimated turbidity measurements on 11
December 2020. (c) Measured and estimated turbidity on 28 January 2021.

values and satellite-derived estimates. Notably, almost all the places that have a high TSS concentration also have
a high concentration of turbidity. This could be explained based on the findings by Lottfi ef al. (2019) which con-
firmed that the total amount of suspended solids is a determining factor that contributes to an increase in
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Figure 6 | Measured and estimated TSS distribution and variations from 25/11/2020 to 28/01/2021. (a) Measured and esti-
mated TSS on 25 November 2020. (b) Measured and estimated TSS on 12 December 2020. (c) Measured and estimated TSS on

28 January 2021.

turbidity. The spatial interpolation results confirm that Landsat performed best in the estimation of TSS concen-
tration. Thus, the sensor can satisfactorily be used for estimating and mapping TSS distribution in reservoirs.

3.4.3. Chl-a distribution

Figure 7 shows measured and estimated Chl-a distribution and variation for the sampling period. For data col-
lected on date 25/11/2020, the lowest Chl-a concentration was recorded at points L1, L4, and L10 for both
laboratory and in sifu measurements. On the other hand, the highest Chl-a concentration was recorded at
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Figure 7 | Measured and estimated Chl-a distribution and variations from 25/11/2020 to 28/01/2021. (a) Measured and esti-
mated Chl-a on 25 November 2020. (b) Measured and estimated Chl-a on 12 December 2020. (c) Measured and estimated Chl-a
on 28 January 2021.

points (L11 and L13) and point L8 for data collected on dates 11/12/2020 and 28/01/2020, respectively. The
areas with a high concentration of Chl-a are close to the regions where River Endoroto enters the reservoir.
This could be explained by the river draining adjoining areas of the catchment where agriculture, tourism, and
manufacturing are the main economic activities that introduce several point and non-point pollutants. Further-
more, sampling was carried out during the dry season and this means that there was decreased nutrient
transport into the dam. However, Poddar ef al. (2019) note that phytoplankton blooms are expected during
the dry season due to the conducive water temperatures and the presence of pre-deposited nutrients carried by
the rivers during the rainy season. Consequently, high Chl-a is observed at these points close to where the
rivers enter the reservoir.
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The algorithmic models developed in this study could be used for the prediction and mapping of turbidity, Chl-a,
and TSS in Two Rivers Dam reservoir.

4. CONCLUSION

The study evaluated the performance of Landsat-8 OLI in predicting the turbidity, TSS, and Chl-a for an
inland water reservoir based on in situ measurements at specified sampling points in the reservoir. The results
revealed that the mean values of laboratory-measured turbidity, TSS, and Chl-a were 7.69 NTU, 277.9 mg/L,
and 46.51 mg/L, respectively and this was highly comparable to Landsat-8 estimated values of 7.22 NTU,
277.71 mg/L, and 46.51 mg/L, respectively. For all the samples, turbidity was estimated using a polynomial
regression model with both R? and Pearson correlation coefficient (r) greater than 75%. TSS was best esti-
mated by exponential and polynomial regression models with respective mean R? and r of 0.809 and
0.721. Chl-a was best estimated using polynomial regression models with mean R? and r of 0.803 and
0.731, respectively.

From the study, it has been shown that satellite images including Landsat-8 OLI images avail a cheap and
cost-effective tool for reservoir WQM and management. The remote sensing approach ensures continuous
water quality assessment and/or management and increases spatial-temporal reservoir monitoring. However,
in order to improve the effectiveness and reliability of Landsat-8 OLI in water quality parameter retrieval, it
is recommended that the development of the model coefficients be based on data collected on a larger
extent of the reservoir for the different seasons in a year. In line with this, model transfer functions should
also be developed to enable the algorithms to be used for water quality predictions in other reservoirs
within the same location. To apply these models to other localities, the model coefficients must be revised
in line with the reservoirs’ hydrological characteristics and the seasonal variations in the specific climatic
and hydrological conditions.
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