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Abstract

Cholera is a gastrointestinal disease caused by a bacterium called Vibrio cholerae.
The spread of the disease depends largely on social and environmental factors
such as, eating food or drinking water contaminated with feaces from an infected
person. Cholera outbreaks, for instance, in Kenya have led to deaths and hospi-
talisation. Since cholera spreads and kills very fast, the effectiveness of control
strategies such as vaccination, water chlorination and therapeutic treatment may
be enhanced by the use of media alert and awareness campaigns. This aspect has
not been considered in existing cholera models. In this study, the impact of media
coverage on the spread of cholera was investigated using a mathematical model.
The specific objectives of the study were to construct a mathematical model for
cholera transmission incorporating media coverage, to analyse the stability of equi-
librium points of the model and to evaluate the role of media coverage as a disease
control strategy. Positivity and boundedness of solutions was established to ensure
that the model was biologically meaningful. The model was thereafter analysed
using the stability theory of differential equations. The basic reproduction num-
ber R0, was derived using the next generation matrix approach. The existence of
equilibrium points of the model was determined. The results of stability analysis
showed that the disease free equilibrium was both locally and globally asymptoti-
cally stable when R0 < 1 while the endemic equilibrium was locally asymptotically
stable when R0 > 1. Simulation analysis done using existing epidemiological data
graphically confirmed the validity of the analytic results. The simulation results
also showed that when media coverage was efficient (ρ = 0.9, where 0 < ρ < 1
measures the efficacy of media coverage) the number of cholera infectives decreased
faster, while inefficient media reporting (ρ = 0.4) on an outbreak and the preven-
tive measures led to increased cases of infection, implying that, media alert and
awareness campaigns are vital in controlling the spread of cholera. Based on this
study, it is recommended that health practictioners embrace the use of efficacious
means of media coverage to publicise awareness campaigns of an outbreak and the
preventive measures.
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Chapter 1

Introduction

Infectious diseases are still the leading cause of death and morbidity in the world.

New infections such as Ebola, Zika, SARS and Swine flu emerge everyday lead-

ing to unprecedented numbers of death. Mathematical modelling is an important

tool used in analysing the dynamics of these diseases. Mathematical models help

in understanding transmission of infections and assessing the potential impact of

control strategies in reducing death and morbidity. They use the most recent infor-

mation to extrapolate the state and progress of an outbreak and make predictions.

Subsequently, results drawn from these models help in determining optimal con-

trol strategies, predicting the impact of control strategies against infections and

quantifying uncertainties in these predictions (Keeling & Danon, 2009). In recent

times mathematical models have been used to explain the dynamics of various

infectious diseases including cholera, where our study is based. These models give

a greater understanding on the underlying biological mechanisms of a disease and

enables the precise prediction of its behaviour in the human population (Johnson,

2006).

1.1 Background of the Study

Cholera is a highly infectious disease which is endemic in many parts of Africa and

Asia. The disease is extremely virulent and kills very fast. Its spread depends on

social and environmental factors and therefore control measures should be based

on these factors.

1.1.1 History of Cholera

Cholera has been in existence for a long time. Records of the Greek physician Hip-

pocrates of around 460−377 B.C, describe a disease thought to be cholera (Handa,
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2016). However, it is German bacteriologist Robert Koch who is credited with the

discovery of the cholera organism during an outbreak in Egypt (Finkelstein, 1996).

Cholera as a disease gained global importance in 1817, with the first cholera pan-

demic occurring in India after the bacteria spread from its original reservoir in

the Ganges Delta. Since then, six other cholera pandemics have occurred in the

world (World Health Organization, 2010). The second pandemic began in 1829 in

Russia, spreading into Europe (Colwell, 1996), and by 1834, it had reached most

of the major cities in Canada and the United States. The third and most deadly

pandemic began in India in 1852 spreading to Europe, United States, Mexico and

West indies (Pollitzer, 1954). The worst single year of this pandemic was in 1854

when 23, 000 people died due to cholera in Great Britain alone (Mariam & Ronald,

n.d.). The fourth and fifth pandemics occurred in 1863 and 1881 respectively, but

were less lethal than the previous outbreaks. Here the disease further spread to

China, Japan, and South America. The sixth pandemic started in 1899−1923 and

greatly affected India, the North African coast and Arabia. During this pandemic,

an estimated 34, 000 people died in Egypt in a period of three months (Mariam

& Ronald, n.d.), while 4,000 other muslim pilgrims died during Hajj in Mecca

in 1902. After this period, cholera receded in most parts of the world though

it remained endemic in the Indian subcontinent. The seventh cholera pandemic

which was the most extensive started in 1961 in Indonesia spreading through Asia,

the Middle East and Africa (Faruque, Albert, & Mekalanos, 1998). The disease

had not re-appeared in Africa for over a very long time and it struck harder than

before with 90 percent of the cholera cases reported to the WHO in 1990 being

from Africa (Mariam & Ronald, n.d.). Since then, the cholera incidence has signif-

icantly decreased in developed countries but still remains prevalent in Africa. The

most recent severe epidemic in Africa occurred in Zimbabwe between 2008 and

2009 and caused 4, 287 deaths coupled with an economic collapse (Mukandavire

et al., 2011). Haiti also suffered from one of the most explosive cholera outbreaks

in mordern history from 2010 to 2011 after a devastating earthquake hit the coun-

try (Mintz & Tauxe, 2013). The epidemic occured because the Artibonite River;

which was the major source of drinking water, was contaminated by faecal mat-
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ter. By October of the same year, 473, 649 cholera cases and 6, 631 deaths had

been recorded by the WHO (Mariam & Ronald, n.d.). Cholera is now endemic

in many countries of the world especially in Africa, China and India (Skanchy,

Chantry, & Nielsen, 2009) where provision of safe drinking water and sanitation

is challenging. In countries like India and Bangladesh, cholera occurs seasonally

and this is associated with the flactuation in water temperatures, monsoon cycles,

El nino rains and Zoo plankton levels (Johnson, 2006).

1.1.2 Cholera and Vibrio cholerae

Cholera is caused by infection from Vibrio Cholerae. Vibrio cholerae is a comma

shaped, highly motile, gram negative bacterium as shown in Figure 1.1. and 1.2.

Figure 1.1: Electron microscope image of Vibrio cholerae bacteria

(Johnson, 2006)

Figure 1.2: Scanning electron microscope image of Vibrio cholera during early
infection

(Finkelstein, 1996)

The classification of the bacterium into serogroups is done on the basis of its so-

matic antigens (O antigens). There are over 200 O serogroups, but only two have
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been known to cause the disease namely, O1 and O139 which is also known as

Bengal (Reidl & Klose, 2002). The O1 serogroup causes majority of the outbreaks

while the O139 serogroup is confined to SouthEast Asia (World Health Organiza-

tion, 2015). V. cholerae O1 serogroup has two biotypes, the classical and the El

Tor (Nair et al., 2006). The infection caused by the classical biotype is usually

more severe than that of the El Tor biotype because the El Tor produces less

cholera enterotoxin (Colwell, 1996). A classic biotype attack creates antibodies

which, protect the body against recurrent infection by either of the two biotypes

(Handa, 2016). The O1 serogroup further contains three serotypes namely Inaba

, Ogawa and Hikojima which are found in both the El Tor and the Classical bio-

types (Finkelstein, 1996). The Non O1 and Non O139 serogroups do not generate

epidemics (Begum et al., 2006) though they can cause mild cases of diarrhoea .

The cholera bacterium has two reservoirs: humans and the aquatic environment

(Nelson, Harris, Morris, Calderwood, & Camilli, 2009). In the acquatic envi-

ronment, it occurs naturally (Colwell, 1996) attaching itself to surfaces provided

by plankton especially copepods, green algae and crustaceans. The Vibrios can

spread from the coastal areas where they exist naturally to inland areas through

waterways and the river network. In the inland areas, epidemic outbursts cause

the bacteria to spread further from one area to another (Bertuzzo et al., 2007).

Studies conducted in the recent years have also shown that global warming creates

a conducive environment for the bacteria to thrive (World Health Organization,

2015).

1.1.3 Transmission, Symptoms, Diagnosis and Treatment

Cholera is a waterborne disease. Humans acquire the bacterium through inges-

tion developing mild or no symptoms and shed the bacterium back to environment

through their stool and vomitus (Mari et al., 2011). Viable Vibrios can be found

in faecal matter for upto 50 days, on glass surfaces for upto a month, on coins

for seven days, in the soil for close to 16 days and on fingertips for 1 to 2 hours

(Center for Food Security and Public Health, 2004). The bacteria also survive

well in water and they may remain viable in shellfish and planktons in aquatic
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regions. Spread of the bacterium is through the sanitary route, that is, eating

food or drinking water contaminated with Vibrio cholerae and human-to- human

contact through the fecal oral route (Bakhtiar, 2016). The incubation period of

the disease is two hours to five days (World Health Organization, 2015). Once

ingested, the bacteria pass through the stomach’s gastric barrier and penetrate

the mucus lining of the intestinal epithelial cells. They then adhere, multiply and

colonize the intestinal epithelial cells producing cholera toxins (enterotoxin) (Reidl

& Klose, 2002). The infection cycle of the disease is shown in Figure 1.3 .

Figure 1.3: Infection cycle of Vibrio cholerae

(Reidl & Klose, 2002)

These toxins cause the intestines to secrete large amounts of fluids leading to loss

of water and salts and lead to the onset of the cholera symptoms (Faruque et

al., 1998). Signs and symptoms of the disease include profuse watery diarrhoea,

vomiting, acidiosis and muscular cramps (Keen & Bujalski, 1992). These can lead

to extreme dehydration as one can lose upto one litre of fluids per hour (Nelson

et al., 2009). If untreated, severe dehydration leads to death in just a few hours.

Unlike other diarrhoeal diseases, cholera is extremely virulent and can kill healthy

adults in a matter of hours.

Diagnosis of the disease is done by laboratory testing through culture of the stool.

In places with limited or no laboratory testing, Rapid Diagnostic Tests (RDT) are

used to alert public officials on the presence of the disease. However, the sensitiv-
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ity and specificity of these tests is not the best (Centers for Disease Control and

Prevention, n.d.).

Treatment of cholera is based on the severity of dehydration of the patient. Simple

oral rehydration solutions containing salts and glucose are used to treat mild to

moderate cases, while for severe cases, treatment is based on aggressive intravenous

rehydration solutions like the Ringer’s lactate solution (World Health Organiza-

tion, 2015). Antibiotics can also be used to treat severe dehydration cases though

their mass use is discouraged due to development of resistance. People with lower

immunity such as those suffering from malnutrition, HIV and those with blood

group O are more susceptible to cholera attacks (Finkelstein, 1996).

1.1.4 Prevention and Control

Public health goals that can help prevent the spread of the disease are improved

food safety, provision of clean drinking water and proper disposal of human waste.

Health education is another important factor in prevention as it raises public

awareness on preventive measures. This reminds the communities to practice

good hygiene measures such as washing hands with soap after visiting the toilets

and before handling or eating food, safe preparation of food, safe storage of food,

chlorination of water and breastfeeding. Modern communication gadgets like mo-

bile phones, radios, newspapers and televisions should be used in disseminating

health education messages and carrying out awareness campaigns (World Health

Organization, 2010). Both religious and community leaders should be included in

the social mobilization process. Apart from the above, strengthening surveillance

and early warning can greatly help in detecting initial cases and putting in place

control measures.

The tools for cholera control include: Proper and timely management of cases

in treatment centres, sufficient medical supplies to manage cases, improved public

information and communication, specific training of personnel for proper manage-

ment of cases, proper management of waste, vector control, improved access to

water and sanitation and improved hygiene and food practices (World Health Or-
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ganisation, n.d.). Immunization by two oral cholera vaccines Dukoral and Shanchol

can also be done to control cholera in high risk areas (World Health Orginization,

2004)

Diarrhoeal diseases like cholera cause most global death in children under the

age of five. An estimated 2, 195 children die daily due to these diseases; this is

more than the deaths caused by AIDS, malaria and measles combined (Center

for Disease Control and Prevention, 2013). Cholera affects millions of people

worldwide with an estimated 1.4 - 4.3 million cases and 28, 000 - 142, 000 deaths

reported per year (World Health Organization, 2015). The disease is more com-

mon in developing countries especially Africa, parts of Asia and South and Central

America where there is inadequate sanitation and lack of clean water. In 2012 , 25

African nations reported 94, 553 cholera cases with 1, 834 deaths due to Cholera

over the same period (Mintz & Tauxe, 2013). In Kenya, Cholera has been en-

demic with periodic outbreaks of the disease occurring especially during the rainy

season. In February 2015, a cholera outbreak alert was issued by the Director of

medical services after an increase in cases of acute watery diarrhoea (International

Federation of the Red Cross and Red Crescent Societies, 2015). This followed the

outbreak that had affected 21 of the 47 counties since December 2014. During this

period 7,000 cases had been reported with 100 deaths caused due to the disease

(European Commission Humanitarian Aid Office, 2015). In November 2015, the

cholera outbreak that had been spreading reached the Daadab refugee complex

causing 1,000 cases and 10 deaths (United Nations High Commision for Refugees,

2015). By May 2016, 30 out of the 47 counties had been affected by the disease

with 23 counties managing to successfully control the outbreaks. However, there

is still a high risk of outbreak waves. The most active counties associated with the

sporadic outbreaks of Cholera are Mandera, Wajir, Garissa, Tana river, Tharaka

Nithi and Narok. Currently, Mandera county is the most affected as it is expe-

riencing a dual outbreak of Cholera and Chikungunya that started in April 2016

(Medecins Sans Frontieres, 2016). Nationally, Kenya has had a total of 14, 878

cholera cases with 234 deaths recorded between December 2014 and May 2016
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(United Nations Children’s Emergency Fund, 2016).

1.2 Statement of the Problem

Developing countries carry the highest burden of childhood mortality with an es-

timated 9.2 million deaths reported each year. Diarrhoeal diseases are the leading

cause of preventable death in children under the age of five years. Cholera, a highly

infectious and fatal disease, is one of the bacterial caused diarrhoeal diseases. Fail-

ure to communicate about an outbreak of such a highly infectious disease can lead

to very high proportions of infections in a population leading to hospitalisation

or even death. Existing cholera models have centered on vaccination, therapeutic

treatment and water sanitation as control strategies whose effectiveness may be

greatly enhanced by use of print and electronic media which reaches many people

faster and is cost effective. We therefore model the impact of media coverage on

the spread of cholera.

1.3 Objectives of the Study

The main objective of this study was to investigate the impact of media coverage

on the spread of cholera.

The specific objectives of this study were to:

(i) Construct a mathematical model for cholera transmission incorporating media

coverage.

(ii) Analyse the stability of the equilibrium points of the model.

(iii) Evaluate the role of media coverage as a disease control strategy

1.4 Significance of the Study

Cholera is a disease which is highly infectious and endemic in kenya. This study

will therefore assist health practitioners and policy makers to understand the dy-
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namics of cholera transmission and come up with effective ways of relaying infor-

mation about the disease and its preventive measures so as to reduce the cases

of infection. It will also contribute to the intervention strategies for control of

cholera and form a foundation for more research about cholera in Kenya.

1.5 Justification of the Study

Many Kenyan households still find it challenging to access safe drinking water and

proper sanitation, conditions which, provide a favourable environment for trans-

mission of cholera. Poor hygiene practices associated with poverty (42 percent of

the kenyan population live below the poverty line) enables the disease to spread

very fast. Reduction of these cholera cases is important in achieving global sus-

tainable development goals number two and six, that is, ensuring healthy lives

and promoting well being for all at all ages and ensuring availability and sustain-

able management of water and sanitation for all respectively. Last but not least,

the causative agent of cholera is extremely virulent and has a short incubation

period and thus it’s more likely to lead to a high mortality rate if immediate med-

ical attention is not provided. Since existing cholera models have focused solely

on vaccination, treatment and water sanitation we add the component of media

to our system of differential equations to investigate its effect in control of the

disease.
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Chapter 2

Literature Review

2.1 Introduction

The focus of this chapter is on literature in mathematical modelling of infectious

diseases, mathematical models for cholera and epidemic models incorporating me-

dia coverage.

Cholera is an acute infectious disease. Susceptible individuals are exposed to the

bacterium that causes cholera from infected individuals or from the environment.

It is characterized by severe diarrhoea and vomiting. The disease usually results

from poor sanitation, poor food hygiene and untreated water. The cholera bacte-

ria produces a toxin which prevents the body from absorbing liquids hence leading

to dehydration. If left untreated, infected people may die from severe dehydration

within two to three hours (Ochoche, 2013). Treatment is based on the severity

of dehydration of the patient. Simple oral rehydration solutions are used to treat

mild to moderate cases while severe cases use aggressive intravenous rehydration.

Public health goals that can help prevent and control the spread of the disease

are improved food safety, provision of safe drinking water, proper sanitation, and

strengthening surveillance. Health education is also very important in raising pub-

lic awareness on preventive measures. The media can be used in disseminating

health education messages (World Health Orginization, 2004).

2.2 History of Modelling of Infectious Diseases

Mathematical modelling is the representation of the behaviour of an object in

terms of mathematical terminologies. These models are used to aid policy makers

in decision making, test the effects of introducing changes in a system and develop

scientific understanding of systems (Marion, 2008). Mathematical models can be
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classified as deterministic or stochastic according to the type of outcome it pre-

dicts. Deterministic models assume certainty of parameters in all its aspects while

stochastic models allow for probabilistic variation of events by random processes.

In mathematical epidemiology, these mathematical models have three aims: to un-

derstand the mechanisms of the spread of a disease, to forecast the future course

of the disease and to come up with control strategies for the disease.

One of the earliest mathematical models was formulated in 1760 by David Bernoulli

to evaluate the effectiveness of vaccination in the control of the small pox virus

(Murray, 2002). Although this was among the earliest models, deterministic mod-

elling of infectious diseases is said to have started in the 20th century (Hethcote,

2000). In 1906, Hamar developed a discrete time model which was deterministic

in nature, to explore the repeated occurrence of the measles epidemic (Hethcote,

2000). In 1911, Ross developed a simple epidemic model for malaria (Bubniakova,

2007). Kermack and McKendrick published papers on epidemic models in 1927, 1932

and 1933, which greatly influenced the development of compartmental mathemat-

ical modelling. These models are still widely used in some epidemic situations

(Murray, 2002). Modelling of infectious diseases grew drastically in the middle of

the 20th century and since then a variety of models have been formulated, analysed

and applied to infectious diseases. Special models have been developed for dis-

eases like HIV, malaria, cholera, smallpox, whooping cough, measles, gonorrhea,

syphilis and chickenpox.

2.3 Mathematical Models for Cholera

The dynamics of the cholera disease involve multiple interactions between the hu-

man host, the pathogen and the environment (Nelson et al., 2009). A number of

models have been formulated to understand the complex dynamics of this disease.

A simple deterministic model was developed by Codeço (2001) to examine the role

of aquatic reservoirs in the persistence of endemic cholera. This is done by use of

a Susceptible -Infected -Recovered (SIR) model incorporating aquatic population

of Vibrio cholerae. Three hypothetical communities are used to illustrate the dy-

namics, these are the endemic, epidemic and cholera free populations. Qualitative
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results of the cholera free population shows that the disease can be minimized

by preventing water contamination, drinking of untreated water and by diluting

cholera diarrhea using large quantities of water. The results of the model show

that the importance of the aquatic reservoir is dependent on the sanitary condi-

tions of a community and that the rate of cholera reproduction is a product of

social and environmental factors. However, this model does not incorporate com-

munication which can greatly influence social and environmental factors therefore

changing the dynamics of the disease.

Codeço’s model is modified by Hartley, Glen, and Smith (2006) to include a hy-

perinfectious state of the bacterium. This is based on laboratory observations

which suggest that the passage of the O1 Inaba El Tor cholera bacterium through

the gastrointestinal tract results in a short lived, hyperinfectious stage of the bac-

terium which decays in a matter of hours to a state of lower infectiousness. The

model results show that interventions should target to minimize the risk of trans-

mission of the short lived hyperinfectious state of toxic Vibrio cholerae in order

to limit the spread of cholera. The model does not incorporate media which can

effectively disseminate public health education on good hygiene practices to min-

imize the risk of infection.

A model is developed by Mukandavire et al. (2011) to study the 2008-2009 cholera

outbreak in Zimbabwe. This is a simplified version of the model by Hartley et

al. (2006). In his model, he explores the ”fast” human-to-human and ”slow”

environment-to-human transmission modes of cholera. His results show that both

modes of transmission contributed in sustaining cholera outbreaks in Zimbabwe

and that prevention of the outbreaks can be done through mass vaccination with

a cholera vaccine that has moderate uptake. However, the model does not include

the use of media as a tool for disseminating information on the availability of these

vaccines.

A mathematical model to investigate the role of human mobility in long range

spread of cholera is developed by Mari et al. (2011). The model is applied in

Kwazulu Natal province in South Africa. It explains that infected persons spread

the bacteria to other water reservoirs that are far away through movements. Peo-
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ple can also be exposed from other destinations and bring the bacteria back to

the community. Model simulation and analysis of the basic reproduction num-

ber shows that although availability of clean water and toilets plays a big role in

cholera incidence, human mobility is key in spread of the disease outside its hydro-

logical catchments. However, the model does not incorporate any control strategy.

Besides, a media alert on an outbreak would greatly alter human movement and

thus impact on the spread of the infection.

A model that investigates the effects of control measures like vaccination, thera-

peutic treatment and water sanitation on the dynamics of cholera is developed by

J. Wang and Modnak (2011). Numerical simulations done on the model show that

the various control measures are closely interrelated and that the strength of one

measure as an optimal strategy depends on its relative cost and the population

setting. The implementation of these measures can be greatly enhanced by public

health education communicated via the media which is not incorporated in the

model.

A model is developed by X. Wang, Gao, and Wang (2015) to study the impact

of human behaviour on cholera dynamics. It uses a system of ordinary differen-

tial equations that incorporates human behaviour and includes dependent contact

rates and the rate of host shedding. The model is then extended to a reaction-

convection- diffusion partial differential equation. This is done to investigate the

interaction among human behaviour, the host, the pathogen and the disease trans-

mission dynamics. It assumes that the population is well aware of the development

and severity of the disease. Analysis of the quantitative results shows that hu-

man behaviour changes after knowledge of the outbreak with people reducing their

contact with the infected persons, eating well cooked food and improving their hu-

man waste disposal. The outcome of these changes the rate at which the disease

spreads, the risk of infection in the environment and the epidemic and endemic

levels. The significant contribution of the knowledge of the development and sever-

ity of the disease through media and other sources has not been incorporated in

the model instead it is assumed that people will be aware of the presence of the

disease.
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A model that explicitly accounts for the role of the river networks in transporta-

tion and distribution of Vibrio cholerae between several human communities is

developed by Bertuzzo et al. (2007) and applied to the Kwa-Zulu Natal province

of South Africa. The model concludes that waterways and river networks play

a significant role in transportation and redistribution of free living Vibrios and

thus hydrological controls should be based on this. However, the model does not

include the role of media, as a means to convey information on water sanitation

and chlorination which reduces the amount of Vibrios in the environment and

consequently limits the spread of Vibrios through the waterways.

A mathematical model for cholera transmission is developed and fitted for inci-

dence data reported in Haiti by Andrews and Basu (2011). The model is used to

provide projections of future morbidity and mortality due to cholera and to pro-

duce comparative estimates of the effects of proposed interventions. The model

findings show that reduced consumption of contaminated water, vaccination and

expanded use of antibiotics will avert thousands of death due to cholera. The

model does not input the use of media in mass education on these preventative

and control measures.

A compartmental model that allows for person- to-person and waterborne trans-

mission of cholera is developed by Tulte et al. (2011) to predict the sequence and

timing of cholera epidemics in Haiti and to explore the potential effects of disease

intervention strategies. The results show that the basic reproduction number for

cholera is between 2.06 − 2.78 and that public heath interventions and vaccina-

tion substantially affect the disease transmission. The media plays a great role in

relaying public health messages, yet its importance has been understated in this

model.

A model is formulated in the framework of optimal control by Bakhtiar (2016), to

discuss the optimal intervention strategies for cholera by education and chlorina-

tion. Education is divided into human-to-human related education and human-

to-environment related education. It is found that direct education is the best

control strategy in the control of cholera as compared to chlorination. However,

the model does not put into account the great role that the media plays in edu-
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cating the masses on how to control the spread of cholera. All these models talk

about control measures that can be used to reduce the spread of cholera, yet they

do not include the use of media in creating awareness on these control strategies.

We therefore develop a cholera model that includes media as a control strategy

for the disease.

2.4 Mathematical Models Incorporating Media Coverage

Media coverage has been known to greatly influence an individuals behaviour as

well as government policies on prevention and control of infectious diseases (Misra,

Sharma, & Shukla, 2011).

Tchuenche and Bauch (2012) developed a model on the dynamics of an infec-

tious disease where media coverage influences transmission. A signal function

capturing the media coverage over time was incorporated into the model using

an exponentially decreasing function. The authors observed that media coverage

(which encompasses designed programs that take efforts to a critical breadth and

depth of effort) does not eradicate the disease because the media signal fades when

the prevalence and incidence decline to small values, but it contributes in the con-

trol process or strategy via information dissemination, which can help to a greater

extent to reverse the escalation of an epidemic.

Cui, Sun, and Zhu (2007) formulated a Susceptible Exposed Infected (SEI) model

to analyse the impact of media on the control of infectious diseases. Numerical

simulations done on this model show that the presence of media alert shortens the

time of the secondary peak in the transmission of a disease while lack of media

alert can lead to multiple outbreaks of a disease.

Analysis of the impact of media on influenza is done by Tchuenche, Dube, Bhunu,

Smith, and Bauch (2011) on a deterministic transmission and vaccination model.

Optimal control theory is used to investigate the relative impact of costs on vac-

cination and media coverage. Simulations done on the model show that more

people get access to media and vaccination if the costs are kept mimimal while

an increase in costs reduces the degree of vaccination and media coverage and

thus increases the number of infectives. The simulations also suggest that though
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media can encourage vaccination among people, it can also trigger an epidemic if

it promotes overconfidence in the idea that a vaccine can fully protect a person

from a disease.

Zuo and Liu (2014) formulate and analyse a model on the effect of awareness

programs on an epidemic with time delay. Numerical simulations of the model

suggest that increasing the implementation and dissemination rates of awareness

programs reduces the number of people infected with a disease in the population.

An influenza model that includes the dynamics of twitter is developed by Huo

and Zhang (2016). Since twitter is popular in providing both positive and neg-

ative information, its influence on people is discussed. Sensitivity analysis done

on the model shows that negative information on twitter about influenza is less

significant than positive information about the disease. Therefore, increasing the

infuence of positive information by twitter about influenza and keeping the rates

of transmission low is essential in the control of influenza.

Zhao and Zhao (2016) perform bifurcation analysis on an SIR model incorporat-

ing media coverage. Their analysis of the stability of the disease free equilibrium

shows that it cannot be affected by a delay in media coverage while the endemic

equilibrium can be affected by a time delay. Numerical simulations done on this

model conclude that communication about an epidemic should be done swiftly in

order to contain it.

A Susceptible Infected Recovered Susceptible (SIRS) epidemic model incorporat-

ing media coverage with time delay is developed and analysed by Zhao, Lin, and

Dai (2014). The analysis shows that if the delay of information about and ap-

praisal of an epidemic on media coverage is too large, it will lead to repeated

episodes of epidemic which is unfavourable for the containment of the epidemic.

It is, therefore, helpful for the control of an epidemic to communicate about the

outbreaks as soon as possible. It is also important to formulate a mathemati-

cal model for cholera that will incorporate media coverage as a disease control

startegy.
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Chapter 3

Methodology

3.1 Introduction

In this chapter we construct a mathematical model by developing a system of

ordinary differential equations. Positivity and boundedness of solutions is checked

by integrating the system of equations at time t ≥ 0. The next generation matrix

approach is used to calculate the basic reproduction number of the system. The

local stability of the disease free equilibrium is analysed by using the techniques

by Van den Driessche and Watmough (2002). The global stability of the disease

free equilibrium is analysed by using the Castillo - Chavez theorem. The existence

of the endemic equilibrium is checked using the Descartes’ rule of signs. The local

stability of the endemic equilibrium is analysed by evaluating the Jacobian matrix,

and finally sensitivity analyses of the various parameters on the basic reproduction

number is carried out using the normalized forward sensitivity index.

3.2 Model Description and Formulation

To achieve the objectives of this study a mathematical model based on a system

of ordinary differential equations for the dynamics of cholera incorporating media

coverage was formulated.

3.2.1 Model Assumptions

The model assumes that

(i) Infected people develop a transient immunity after they recover.

(ii) The rate of transfer from one compartment to another is constant.
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(iii) The population is homogenous.

(iv) The population of the susceptible is replenished at a constant rate Λ.

3.2.2 Model Parameters and Variables

The model subdivides the human population into classes of susceptible S, infected

I and recovered R with the total population

N(t) = S(t) + I(t) +R(t) (3.1)

The concentration of Vibrios in the environment (contaminated water) is denoted

by B. Susceptible individuals acquire cholera infection through ingesting environ-

mental Vibrios from contaminated water reservoirs or through human to human

transmission after ingestion of hyperinfectious Vibrios at the rates

λe =
βeB

κ+B
and λh = βhI

respectively, with the subscripts e and h representing the environmental-to-human

and human-to-human transmissions as proposed in the model by Mukandavire et

al. (2011). We extend the model by Mukandavire et al. (2011) to incorporate the

effects of media coverage in the transmission dynamics of the infection. µ denotes

the natural death rate, Λ is the rate at which individuals are recruited into the

susceptible population, βe is the rate of ingestion of Vibrios from the environment,

ρβe (0 < ρ < 1) is the reduced rate of ingestion of Vibrios from the environment

due to media coverage, where ρ measures the efficacy of media coverage. This

means that when ρ is close to 1 the media is very effective and the environmental

transmission is close to zero and when ρ is near zero the media is not as effective

and the environmental transmission is high. βh is the rate of human to human

transmission, ρβhI
m+I

is the reduced rate of contact with infected persons due to media

alert where the function I
m+I

is a continuous bounded function which takes into

account disease saturation or psychological effects, κ is the pathogen concentration

that yields 50% chance of contracting cholera, γ is the rate of recovery from cholera,
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δ is the death rate due to cholera, m is the effect of media coverage, σ is the rate of

human contribution to Vibrio cholerae and ξ is the death rate of Vibrio cholerae.

3.2.3 The flow chart diagram

The resulting flow chart diagram is shown in Figure 3.1

Figure 3.1: Flow chart diagram

3.2.4 Model Equations

By including the effects of media coverage on cholera transmission the rates of λe

and λh now become,

λe = βe −
ρβeB

κ+B
and λh = βh −

ρβhI

m+ I

The flow diagram then gives rise to the following system of ordinary differential

equations.

dS(t)

dt
= Λ− (βe − ρβe)

S(t)B(t)

κ+B(t)
− (βh −

ρβhI(t)

m+ I(t)
)S(t)I(t)− µS(t)

dI(t)

dt
= (βe − ρβe)

S(t)B(t)

κ+B(t)
+ (βh −

ρβhI(t)

m+ I(t)
)S(t)I(t)− (γ + µ+ δ)I(t)

dB(t)

dt
= σI(t)− ξB(t)

dR(t)

dt
= γI(t)− µR(t) (3.2)
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These equations form the model system. For simplicity in working out we let

S(t) = S,B(t) = B, I(t) = I, R(t) = R, so that our new system becomes.

dS

dt
= Λ− (βe − ρβe)

SB

κ+B
− (βh −

ρβhI

m+ I
)SI − µS

dI

dt
= (βe − ρβe)

SB

κ+B
+ (βh −

ρβhI

m+ I
)SI − (γ + µ+ δ)I

dB

dt
= σI − ξB

dR

dt
= γI − µR (3.3)

3.3 Model Analysis

We establish the well posedness of the model by showing that its solutions are

positive and bounded.

3.3.1 Boundedness of Solutions

We show that our solutions are bounded in the invariant region Ω where Ω =

{(S, I, R,B) : N ≤ Λ
µ
}.

Theorem 3.1. The solutions of the model are contained in the feasible region Ω.

Proof. Taking the time derivative of N(t) from (3.3) we have

dN

dt
= Λ− µS − (γ + µ+ δ)I + γI − µR (3.4)

dN

dt
= Λ− µ(S + I +R)− δI

dN

dt
≤ Λ− µN

dN

dt
+ µN ≤ Λ (3.5)

Using the integrating factor eµt to solve (3.5) we get

N ≤ Λ

µ
+ e−µtC
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At t = 0

N(0)− Λ

µ
≤ C

N ≤ Λ

µ
+ (N(0)− Λ

µ
)e−µt

where N(0) is the initial population. As t→∞

lim
t→∞

N (t) ≤ Λ

µ

which implies

0 ≤ N ≤ Λ

µ
.

The solutions are bounded in the invariant region Ω.

3.3.2 Positivity of Solutions

This model monitors a population, therefore, we assume that all associated param-

eters are non-negative at all times for all t ≥ 0. We show that all state variables

in the equations above will remain non-negative and that all the solutions with

positive initial data, will remain positive for t ≥ 0.

Theorem 3.2. Let the initial conditions be {S(0), (B(0), I(0), R(0)) ≥ 0} ∈ Ω,

then the solution set {S(t), I(t), B(t), R(t)} of the model system is positive for all

t > 0.

Proof. From the first equation of (3.3)

dS

dt
= Λ− (βe − ρβe)

SB

κ+B
− (βh −

ρβhI

m+ I
)SI − µS

dS

dt
≥ −(βe − ρβe)

SB

κ+B
− (βh −

ρβhI

m+ I
)SI − µS

= −[(βe − ρβe)
B

κ+B
+ (βh −

ρβhI

m+ I
)I + µ]S.

Separating by variables and integrating both sides gives

∫
dS

S
≥ −

∫
[(βe − ρβe)

B

κ+B
+ (βh −

ρβhI

m+ I
)I + µ]dt
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lnS ≥ −[(βe − ρβe)
B

κ+B
+ (βh −

ρβhI

m+ I
)I + µ]t+ c1

S(t) ≥ e−[(βe−ρβe) B
κ+B

+(βh−
ρβhI

m+I
)I+µ]t × ec1

S(t) ≥ e−[(βe−ρβe) B
κ+B

+(βh−
ρβhI

m+I
)I+µ]t ×K

where K = ec1

S(t) ≥ Ke−[(βe−ρβe) B
κ+B

+(βh−
ρβhI

m+I
)I+µ]t.

Using the initial condition t = 0 we have S(0) = K which implies that

S(t) ≥ S(0)e−[(βe−ρβe) B
κ+B

+(βh−
ρβhI

m+I
)I+µ]t.

Therefore S(t) ≥ 0 for all t ≥ 0.

From the second equation of (3.3)

dI

dt
= (βe − ρβe)

SB

κ+B
+ (βh −

ρβhI

m+ I
)SI − (γ + µ+ δ)I

we have,
dI

dt
≥ −(γ + µ+ δ)I.

We integrate by separation of variables to get;

∫
dI

I
≥
∫
−(γ + µ+ δ)dt

lnI(t) ≥ −(γ + µ+ δ)t+ c2

I(t) ≥ e−(γ+µ+δ)t+c2

I(t) ≥ e−(γ+µ+δ)t × ec2

I(t) ≥ e−(γ+µ+δ)t ×K1

where K1 = ec2 . Therefore,

I(t) ≥ K1e
−(γ+µ+δ)t.
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At t = 0 we have I(0) = K1, hence

I(t) ≥ I(0)e−(γ+µ+δ)t

Which implies that;

I(t)≥ 0 for all t ≥ 0

From the third equation of (3.3),

dB

dt
= σI − ξB

dB

dt
≥ −ξB

Separation of variables and integration gives

∫
dB

B
≥ −

∫
ξdt

lnB(t) ≥ −ξt+ c3

B(t) ≥ e−ξt × ec3

B(t) ≥ K2e
−ξt

where K2 = ec3 , at t = 0 we have B(0) = K2 which implies that

B(t) ≥ B(0)e−ξt

and therefore B(t) ≥ 0 for all t ≥ 0.

From the fourth equation of (3.3)

dR

dt
= γI − µR

we have
dR

dt
≥ −µR
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Separating by variables and integrating gives

∫
dR

R
≥
∫
−µdt

lnR(t) ≥ −µ(t) + c4

R(t) ≥ e−µ(t)+c4

R(t) ≥ e−µ(t) × ec4

R(t) ≥ e−µ(t) ×K3

R(t) ≥ K3e
−µ(t)

where K3 = ec4 . At t = 0 we have R(0) = K3, hence

R(t) ≥ R(0)e−µ(t)

which implies that;

R(t) ≥ 0 for all t ≥ 0.

All the state variables are positive for all time t. The solutions are therefore non

negative for t≥ 0 and are bounded in the invariant region Ω and thus the model

is mathematically well posed and biologically meaningful in the feasible region

Ω.

3.4 Stability Analysis of Equilibrium Points

An equilibrium is defined as a constant solution of a model system. The equi-

librium points of the model system are obtained by setting the right hand side

of the differential equations to zero and solving each to get a constant solution.

These points are also reffered to as steady state solutions. Epidemiological models

usually have two equilibrium points, namely, the disease free equilibrium and the

endemic equilibrium.

The existence of the equilibrium points of the model is determined with respect

to the basic reproduction number, derived using the next generation matrix ap-
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proach. Stability analysis of the model is done to determine the conditions for the

spread of the disease in a given population. Since R(t) = N(t) − S(t) − I(t), we

will leave it out of the stability analysis of equilibrium points.

3.4.1 Disease Free Equilibrium Point(DFE)

The disease-free equilibrium (E0) is a point where the disease is not present in the

population. This means that cholera is absent in the human population and the

environment and therefore I, B and R = 0 because there is no disease to recover

from. From our model equations, we get

S ′(t) = Λ− µS

I ′(t) = 0

B′(t) = 0

Thus, the disease free equilibrium of the system (E0) is given by (Λ
µ
, 0, 0). The basic

reproduction number R0 is the threshold parameter that is used in determining

the dynamics of a model. When R0 < 1 the disease-free equilibrium is said to be

locally asymptotically stable while when R0 > 1 it is said to be unstable.

3.4.2 Basic Reproduction Number

The basic reproduction number; commonly denoted as R0, in a given population is

the average number of secondary infections caused by a single infectious individual

during his or her entire life time as an infective when introduced into a totally

or purely susceptible population (Van den Driessche & Watmough, 2002). R0

measures the potential of the bacteria to spread within the human population.

This number is very important because it is directly related to the effort required

to eliminate an infection. If R0 < 1, then each infected individual in his entire life

time as an infective will produce less than one infected individual on average and

so the disease will die out of the population. On the other hand, if R0 > 1, then

each infected individual in his entire lifetime as an infective will produce more

than one infected individual, and thus the disease will spread or the pathogen

will be able to invade a susceptible population. When a disease is endemic, we
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can provide useful guidance for public health policies by determining the most

appropriate control measures that will effectively reduce the basic reproduction

number to less than one.

The basic reproduction number depends mainly on the definition of the infected

and uninfected compartments. We determine R0 using the next generation matrix

approach (Van den Driessche & Watmough, 2002). Consider the next generation

matrix G made up of two m×m matrices F and V, such that

G = FV −1

and

F =
[

∂Fi(x0)
∂xj

]

V =
[

∂Vi(x0)
∂xj

]
Here, F is defined as the Jacobian of Fi, such that fi is the rate of appearance

of new infections in compartment i. V is the Jacobian of Vi, such that vi is the

rate of transfer of individuals from compartment i by all other means and xo is

the disease free equilibrium. The basic reproduction number R0 is given as the

dominant eigen value or the spectral radius of matrix G.

R0 = ρFV −1 (3.6)

We use the the second and third equation of system (3.3) to compute R0

dI

dt
= (βe − ρβe)

SB

κ+B
+ (βh −

ρβhI

m+ I
)SI − (γ + µ+ δ)I

dB

dt
= σI − ξB

From the two equations we get our F and V which are given by

F =

 (βe − ρβe) SB
κ+B

+ (βh − ρβhI
m+I

)SI

0
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V =

 (γ + µ+ δ)I

−σI + ξB


Calculating the Jacobian matrix at the disease free equilibrium gives us

F =

 βh
Λ
µ

(βe − ρβe) Λ
µκ

0 0


And

V =

 γ + µ+ δ 0

−σ ξ


On solving for the inverse of the matrix V, get

V −1 =

 1
(γ+µ+δ)

0

σ
ξ(γ+µ+δ)

1
ξ


Therefore

FV −1 =

 βhΛ
µ(γ+µ+δ)

+ (βe − ρβe) Λσ
µκξ(γ+µ+δ)

(βe − ρβe) Λ
µκξ

0 0


R0 =

Λ

µ(γ + δ + µ)
(βh +

(βe − ρβe)σ
κξ

)

3.4.3 Local Stability of the Disease Free Equiibrium

The following result is a proof of local stability of the disease free equilibrium and

the proof applies techniques used in (Van den Driessche & Watmough, 2002).

Theorem 3.3. : The disease free equilibrium is locally asymptotically stable if

R0 < 1 and is unstable if R0 > 1

Proof. To show this we first evaluate the Jacobian matrix of system at the DFE.

J =


−µ −βhΛ

µ
−(βe − ρβe) Λ

µκ

0 βh
Λ
µ
− (γ + µ+ δ) (βe − ρβe) Λ

µκ

0 σ −ξ
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One of the eigen values is −µ, we find the other eigen values by checking the signs

of the eigen values of the reduced block matrix given by

 βh
Λ
µ
− (γ + µ+ δ) (βe − ρβe) Λ

µκ

σ −ξ



Now let Tr be the Trace of A and α be the Determinant of A and consider the

linear system x′(t) = Ax(t) where

A =

 a b

c d


The following conditions can be shown.

(a) If α < 0, the characteristic roots of A will have opposite signs.

(b) If α > 0 and ∆ = Tr2 − 4α ≥ 0, the characteristic roots of matrix A will

have the same sign. The roots will be negative if Tr < 0 and positive if

Tr > 0.

(c) If α > 0, ∆ < 0 and Tr 6= 0 ,then the characteristic roots of A will be

imaginary with negative real part if Tr < 0 and a positive real part if

Tr > 0.

(d) If α > 0 and Tr = 0, matrix A will have purely imaginary roots.

The eigen values of Matrix A are obtained from the characteristic equation

λ2 − (a+ d)λ+ (ad− bc) = 0

λ2 − Trλ+ α = 0

λ =
Tr ±

√
Tr2 − 4α

2
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Thus

(a*) If α < 0, there exists two real eigen values of opposite signs.

(b*) If α > 0 and ∆ ≥ 0, there exists two real eigen values of the same sign as

the Trace.

(c*) If α > 0, ∆ < 0 and Tr 6= 0 ,there exists two complex conjugate eigen values

λ = p± ir.

(d*) If α > 0 and Tr = 0, there exists two purely imaginary complex conjugate

eigen values.

Using conditions (b) we can now determine the signs of the other eigen values. For

the two remaining eigen values to be negative, then α > 0 and Tr < 0. We now

find the conditions that make the determinant positive and the trace negative.

From the reduced block matrix the determinant is given by

− ξ
[
βh

Λ

µ
− (γ + µ+ δ)

]
− (βe − ρβe)

σΛ

µκ
(3.7)

If we let (βe − ρβe) = Q we will have,

−ξ
[
βh

Λ

µ
− (γ + µ+ δ)

]
− σQΛ

µκ

For the determinant to be positive

ξβh
Λ

µ
+
σQΛ

µκ
< ξ(γ + µ+ δ) (3.8)

Dividing both sides of (3.8) by ξ(γ + µ+ δ) gives

Λ

µξ(γ + δ + µ)
(ξβh +

σQ

κ
) < 1

Λ

µ(γ + δ + µ)
(βh +

(βe − ρβe)σ
κξ

) < 1 (3.9)
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Thus Ro < 1.

The trace of the reduced block matrix is given by

βh
Λ

µ
− ξ − (γ + µ+ δ). (3.10)

If we make γ + µ + δ be the subject of the formula and (βe − ρβe) = Q from the

basic reproduction number, we get

γ + µ+ δ =
Λ

µR0

[
βh +

Qσ

κξ

]
. (3.11)

Substituting (3.11) in (3.10) gives us

βh
Λ

µ
−
[

Λ

µR0

(βh +
Qσ

κξ
)

]
− ξ. (3.12)

The trace needs to be negative for us to have negative eigen values. Since all the

other parameters are negative, we find the conditions that make

βh
Λ

µ
− Λ

µR0

βh (3.13)

negative.

We can simplify (3.13) to get

βh
Λ

µ

[
1− 1

R0

]
< 0. (3.14)

Equation 3.14 can only be negative if R0 < 1.

It can be seen that the Jacobian matrix of the disease free equilibrium has negative

eigen values only when R0 < 1 and therefore, the DFE is locally asymptotically

stable. The results of the theorem therefore confirm the conditions for local sta-

bility as outlined in (Van den Driessche & Watmough, 2002).
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In terms of the disease spread, this means that, if there is a small pertubation on

the system, the system will still return to the disease free equilibrium.

3.4.4 Global Stability of the DFE

We use the Castillo-Chavez theorem (Castillo-Chávez, Feng, & Huang, 2002) to

investigate the global asymptotic stability of the disease free state. For the theorem

to work, we rewrite (3.3) in the form

dX

dt
= H(X,Z)

dZ

dt
= G(X,Z), G(X, 0) = 0 (3.15)

where X = S and Z = (I, B). Here the components of X ∈ R denote the unin-

fected individuals and the components of Z ∈ R2 denote the infected individuals.

The disease free equilibrium of the system now becomes E0 = (X∗, 0), X∗ = Λ
µ

.

To guarantee local asymptotic stability, the following two conditions must be met.

1. dX
dt

= H(X, 0), X∗ is globally asymptotically stable (GAS)

2. G(X,Z) = PZ − Ĝ(X,Z), Ĝ(X,Z) ≥ 0 for (X,Z) ∈ Ω

where P = DZG(X∗, 0) is an M matrix (the off diagonal elements of P are non-

negative) and Ω is the region where the model is biologically meaningful. If the

system (3.15) satisfies conditions 1 and 2 then the following theorem holds.

Theorem 3.4. The fixed point E0 = (X∗, 0) is a globally asymptotic stable equi-

librium of (3.15) provided that R0 < 1 and the assumptions 1 and 2 are satisfied.

Proof. Since X = S and Z = (I, B), then

H(X, 0) =
[

Λ− µS
]
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G(X,Z) = = PZ − Ĝ(X,Z) (3.16)

where

P =

 βhS − (γ + µ+ δ) (βe − ρβe)Sκ
σ −ξ


and the set Z = (I, B) is expressed as a column matrix to get

PZ =

 βhSI − (γ + µ+ δ)I + (βe − ρβe)SBκ
σI − ξB



G(X,Z) =

 (βe − ρβe) SB
κ+B

+ (βh − ρβhI
m+I

)SI − (γ + µ+ δ)I

σI − ξB


and

Ĝ(X,Z) =

 (ρβhI
m+I

)SI + (βe − ρβe) SB2

κ(κ+B)

0


Since 0 < ρ < 1, then Ĝ(X,Z) ≥ 0. The conditions 1 and 2 have been met and

therefore E0 is globally asymptotically stable.

This means that if there is a large perturbation on the system, it will still return

to the disease free equilibrium.

3.4.5 Endemic Equilibrium Point

This is where the basic reproduction number becomes greater than one and there-

fore, the disease spreads in the susceptible population. We denote our endemic

equilibrium point as E∗ = (S∗, I∗, B∗). To find this equilibrium point we equate

the right hand side of (3.3) to zero to get.

Λ− (βe − ρβe)
SB

κ+B
− (βh −

ρβhI

m+ I
)SI − µS = 0

(βe − ρβe)
SB

κ+B
+ (βh −

ρβhI

m+ I
)SI − (γ + µ+ δ)I = 0

σI − ξB = 0 (3.17)
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From this we get

B∗ =
σ

ξ
I∗ (3.18)

S∗ =
Λ

µ
− (γ + µ+ δ)I∗

µ
(3.19)

Substituting (3.18) and (3.19) in the second equation of (3.17) and solving gives

us I∗ = 0 and

AI∗3 +BI∗2 + CI∗ +D = 0 (3.20)

where

A = (ρ− 1)(γ + µ+ δ)βhσ

B = (1− ρ)βhΛσ − (γ + µ+ δ)[(βe − ρβe)σ +mβhσ + βhκξ − ρβhκξ + µσ]

C = (βe − ρβe)Λσ + [mΛσ + Λκξ − ρΛκξ]βh − (γ + µ+ δ)[m(βe − ρβe)σ +

mβhκξ +mµσ + µκξ]

D = m(βe − ρβe)Λσ +mβhΛκξ −m(γ + µ+ δ)µκξ

The endemic equilibrium of the system exists if the roots of AI∗3+BI∗2+CI∗+D =

0 are real and positive. We use the Descartes’ rule of signs to check the possible

number of real roots of our polynomial.

Theorem 3.5. The number of positive real roots of a polynomial is equal to the

number of sign changes in the coefficients of the terms.

Proof. We first check the sign of A which is the coefficient of I3. Since all the

parameters used are positive and 0 < ρ < 1, them ρ − 1 is negative and the sign

becomes negative.

Next we check the sign of D.

D = m(βe − ρβe)Λσ +mβhΛκξ −m(γ + µ+ δ)µκξ (3.21)
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Dividing through (3.21) by
m(γ + µ+ δ)µκξ

m(γ + µ+ δ)µκξ

gives us

[[ Λ

µ(γ + δ + µ)
(βh +

(βe − ρβe)σ
κξ

)]− 1

]
m(γ + µ+ δ)µκξ (3.22)

Since R0 is [
Λ

µ(γ + δ + µ)
(βh +

(βe − ρβe)σ
κξ

)

]
(3.22) becomes

(R0 − 1)[m(γ + µ+ δ)µκξ] (3.23)

The endemic equilibrium exists when R0 > 1 therefore, D is positive. Now that

A is negative and D is positive, we can conclude that there will be a sign change

regardless of the sign of B and C. Equation (3.20) has atleast one positive real

root and hence the endemic equilibrium exists.

3.4.6 Local Stability of the Endemic Equilibrium

Theorem 3.6. The endemic equilibrium E∗ of our system is locally asymptotically

stable when R0 > 1.

Proof. For the endemic equilibrium to be asympotically stable, we show that the

eigen values of the Jacobian matrix will have negative real parts. The Jacobian

matrix of the system evaluated at the endemic equilibrium is given by


− (βe−ρβe)B∗

κ+B∗ − (βh − ρβhI
∗

m+I∗ )I∗ − µ −[βh − ρβhI
∗(2m+I∗)

(m+I∗)2
]S∗ − (βe−ρβe)s∗κ

(κ+B∗)2

(βe−ρβe)B∗

κ+B∗ + (βh − ρβhI
∗

m+I∗ )I∗ [βh − ρβhI
∗(2m+I∗)

(m+I∗)2
]S∗ − (γ + µ+ δ) (βe−ρβe)s∗κ

(κ+B∗)2

0 σ −ξ
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if we take

X =
(βe − ρβe)B∗

κ+B∗
+ (βh −

ρβhI
∗

m+ I∗
)I∗ (3.24)

Y = [βh −
ρβhI

∗(2m+ I∗)

(m+ I∗)2
]S∗ (3.25)

Z =
(βe − ρβe)S∗κ

(κ+B∗)2
(3.26)

Then the matrix is simplified to

J(E∗) =


−X − µ −Y −Z

X Y − (γ + µ+ δ) Z

0 σ −ξ



The characteristic equation of the Jacobian matrix at J(E∗) is given by

a0λ
3 + a1λ

2 + a2λ+ a3 = 0

where

a0 = 1

a1 = −Y + (γ + µ+ δ) + ξ + (X + µ)

a2 = (X + µ)[−Y + (γ + µ+ δ) + ξ]− Y ξ + (γ + µ+ δ)ξ − σZ +XY

a3 = (X + µ)[−Y ξ + (γ + µ+ δ)ξ − σZ]−XσZ +XY ξ

We use the Routh Hurwitz stability criterion to show that the roots of the char-

acteristic equation are negative. As per the criterion, the following is true.

All the roots of a polynomial with real coefficients have negative real parts when

all the coeffients are positive and a1a2 − a3 > 0.

We show that a1 > 0, a2 > 0, a3 > 0. At the endemic equilibrium the right hand

side of the second and third equation of (3.3) becomes zero, giving us
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(γ + µ+ δ)I∗ = (βe − ρβe)
S∗B∗

κ+B∗
+ (βh −

ρβhI
∗

m+ I∗
)S∗I∗ (3.27)

Substituting (3.18) in (3.27) and dividing through by I∗ yields

(γ + µ+ δ) = (βe − ρβe)
S∗σ

κξ + σI∗
+ (βh −

ρβhI
∗

m+ I∗
)S∗. (3.28)

We also substitute (3.18) in (3.24) and (3.26) to get

X =
(βe − ρβe)σI∗

κξ + σI∗
+ (βh −

ρβhI
∗

m+ I∗
)I∗ (3.29)

Y =

[
βh −

ρβhI
∗(2m+ I∗)

(m+ I∗)2

]
S∗ (3.30)

Z =
(βe − ρβe)S∗κξ

(κξ + σI∗)2
(3.31)

X, Y and Z are all positive, therefore, we show that all the other coefficients are

also positive. For a1 to be positive we need to show that

− Y + (γ + µ+ δ) + ξ > 0 (3.32)

Substituting (3.28) and (3.30) in (3.32) gives us

−
[
βh−

ρβhI
∗(2m+ I∗)

(m+ I∗)2

]
S∗+ (βe−ρβe)

S∗σ

κξ + σI∗
+ (βh−

ρβhI
∗

m+ I∗
)S∗+ ξ. (3.33)

If [
βh −

ρβhI
∗(2m+ I∗)

(m+ I∗)2

]
<

[
βh −

ρβhI
∗

m+ I∗

]
(3.34)

then (3.32) will be positive. (3.34) can be reduced to

2m+ I∗

(m+ I∗)2
>

1

m+ I∗
. (3.35)

This shows that (3.32) is positive and therefore a1 > 0.

Next we show that a2 > 0. Since we have already proved that −Y +(γ+µ+δ)+ξ >
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0, it suffices to show that −Y ξ + (γ + µ+ δ)ξ − σZ > 0, that is,

Y ξ + σz < (γ + µ+ δ)ξ (3.36)

Substituting (3.30) and (3.31) in (3.36) gives us[
βh−

ρβhI
∗(2m+ I∗)

(m+ I∗)2

]
S∗ξ+(βe−ρβe)

S∗σκξ

(κξ + σI∗)2
< (βe−ρβe)

S∗σξ

κξ + σI∗
+(βh−

ρβhI
∗

m+ I∗
)S∗ξ

(3.37)

Since S∗ξ is common, we divide through by it to get

[
βh−

ρβhI
∗(2m+ I∗)

(m+ I∗)2

]
+(βe−ρβe)

σκ

(κξ + σI∗)2
< (βe−ρβe)

σ

κξ + σI∗
+

[
βh−

ρβhI
∗

m+ I∗

]
(3.38)

Considering the proof of (3.34) we are left to show that

[
(βe − ρβe)

σκ

(κξ + σI∗)2

]
<

[
(βe − ρβe)

σξ

κξ + σI∗

]
(3.39)

We can simplify (3.39) to

κ

(κξ + σI∗)2
<

1

κξ + σI∗
(3.40)

which holds hence a2 > 0. Using the same method we can show in a similar way

that a3 > 0. We now show that a1a2 − a3 > 0. let

a = −Y + (γ + µ+ δ) + ξ

b = X +m

c = −Y ξ + (γ + µ+ δ)ξ − σZ

Substituting this in a1a2 − a3 > 0, we get

(a+ b)ba+ c(a+ b) + (a+ b)XY − (bc−XσZ +XY ξ) > 0 (3.41)

since all other parameters are positive we simplify and show that

[(a+ b)− ξ]XY > 0 (3.42)
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This is true if (a+ b)− ξ is positive. Resubstituting the values of a and b in (3.42)

gives, [
− Y + (γ + µ+ δ) + ξ +X + µ− ξ

]
(3.43)

which is positive since X > Y and therefore, a1a2 − a3 > 0 holds.

It can now be seen that all the coefficients are positive and therefore the eigen

values of the characteristic polynomial have negative real parts and the endemic

equilibrium is locally asymptotically stable.

3.5 Sensitivity Analysis

The basic reproduction number is very important in the effort required to eradi-

cate a disease. We carry out sensitivity analysis of the Basic reproduction number

with respect to the model parameters to access the relative impact of each of the

parameters in the transmission and prevalence of the disease. This will enable us

to determine which intervention strategy is most effective in the control of cholera

transmission. The normalized forward sensitivity index is used to calculate sensi-

tivity.

We define the normalized forward sensitivity index of the basic reproduction num-

ber with respect to a parameter A (Sirajo, Niniuola, Omotayo, & Usman, 2013)

as

SR0
A =

∂R0

∂A
× A

R0

Therefore, the sensitivity index of R0 on parameter Bh is given by

SR0
βh

=
∂R0

∂βh
× βh
R0

where
βh
R0

=
βhκξµ(γ + δ + µ)

Λ[κξβh + (βe − ρβe)]

∂R0

∂βh
=

Λ

µ(γ + δ + µ)
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thus

SR0
βh

=
Λ

µ(γ + δ + µ)
× βhκξµ(γ + δ + µ)

Λ[κξβh + (βe − ρβe)]

=
βhκξ

κξβh + (βe − ρβe)σ

Likewise, the sensitivity index of ρ is given by

SR0
ρ =

∂R0

∂ρ
× ρ

R0

where
ρ

R0

=
ρκξµ(γ + δ + µ)

Λ[κξβh + (βe − ρβe)σ]

∂R0

∂ρ
=

−Λσβe
κξµ(γ + δ + µ)

Therefore

SR0
ρ =

−Λσβe
κξµ(γ + δ + µ)

× ρκξµ(γ + δ + µ)

Λ[κξβh + (βe − ρβe)σ]

=
−ρβeσ

κξβh + (βe − ρβe)σ

Similarly, we have the following sensitivity indices for the other parameters

SR0
βe

=
(βe − ρβe)σ

κξβh + (βe − ρβe)σ

SR0
σ =

(βe − ρβe)σ
κξβh + (βe − ρβe)σ

SR0
Λ = 1

SR0
κ =

−(βe − ρβe)σ
κξβh + (βe − ρβe)σ

SR0
ξ =

−(βe − ρβe)σ
κξβh + (βe − ρβe)σ

SR0
µ =

−(γ + δ + 2µ)

(γ + δ + µ)

SR0
γ =

−γ
γ + δ + µ

SR0
δ =

−δ
γ + δ + µ
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Remark 3.7

From the results of Sirajo et al. (2013), it follows that, a positive index sign

indicates that an increase in the parameter’s value will result in an increase in the

value of the reproduction number and a reduction in the parameter’s value will

reduce the value of the reproduction number. A negative index sign indicates that

an increase in the parameter’s value will result in a reduction in the value of the

reproduction number and a reduction in the parameter’s value will result in an

increase in the value of the reproduction number.
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Chapter 4

Results and Discussion

4.1 Introduction

In this chapter we give the results and carry out numerical simulations to confirm

the validity of these results and to illustrate the long term behaviour of the system.

4.2 Results

All state variables were found to be positive and bounded meaning that the model

was biologically meaningful.

The disease free equilibrium (DFE) at (S,I,B) existed and was given by (Λ
µ
, 0, 0),

while the endemic equilibrium point was shown to exist with B∗ = σ
ξ
I∗ and

S∗ = Λ
µ
− (γ+µ+δ)I∗

µ
.

The Basic reproduction number R0, which was the threshold parameter of the

model was found to be R0 = Λ
µ(γ+δ+µ)

(βh + (βe−ρβe)σ
κξ

).

Analysis of the DFE showed that it was both locally and globally stable when

R0 < 1 which means that if the basic reproduction number is kept below unity,

the number of people infected reduces and thus the disease spread reduces.

The endemic equilibrium was locally stable when R0 > 1 which means that if

the disease exists, it can be kept at managable levels and therefore prevent an

epidemic from occuring.

The parameters βe, βh, σ and Λ were found to have a positive sensitivity index

which means that their levels should be reduced inorder to reduce the basic re-

production number and the disease spread.

The parameters ρ, κ, γ and ξ had a negative sensitivity index which means that

their levels should be increased inorder to reduce the basic reproduction number

and the disease spread.
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ρ which is the efficacy of media coverage has an inverse relationship with the

spread of the disease, such that whenever it is high the disease spread reduces and

when it is low the disease spread increases.

4.3 Model parameters and values

Numerical simulations were carried out using MATLAB software to illustrate the

behaviour of our system for different values of the model parameters. Some of the

parameters which are compatible with cholera have been obtained from literature

while others have been estimated. The parameter values are shown in Table 4.1.

Table 4.1: Model Parameters and Values

Symbol Value Source
Λ 9.6274× 10−5/day (Lawi, Mugisha, & Omolo, 2011)
µ 2.537× 10−5/day (Lawi et al., 2011)
βe 0.75/day Estimate
βh 1/day Estimate
κ 106cells/ml (Codeço, 2001)
γ 5people/day (Hartley et al., 2006)
δ 4.0× 10−4/day (Mari et al., 2011)
m 0.00001 Varies
σ 10cells/ml-day (J. Wang & Modnak, 2011)
ξ 0.23/day (Mari et al., 2011)
ρ 0.6 Varies

4.4 Simulation and Intepretation

To be able to illustrate the behaviour of solutions with time, there must be a

susceptible human population and Vibrios in the environment therefore, S(t) > 0,

B(t) > 0, I(t) ≥ 0 and R(t) ≥ 0. With these conditions in mind, we consider the

following initial values S(t) = 10, I(t) = 1, R(t) = 1 and B(t) = 100. When we

calculate R0 from the values shown in Table 4.1, we get its value to be 0.7589 < 1.
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Figure 4.1: Numerical solutions when R0 < 1

Figure 4.1 shows that when R0 < 1 all the trajectories of infectives converge to

zero regardless of the values of ρ. Consequently, our cholera free state can only be

asymptotically stable supporting Theorem 3.3.

Figure 4.2: Numerical solutions when R0 > 1

Using the values in Table 4.1 and changing the value of βh to 5, to get R0 > 1, we

compute the value of R0 = 3.794 > 1. When R0 > 1, the cholera free equilibrium

becomes unstable and the endemic equilibrium becomes stable. Consequently, the

endemic equilibrium is asymptotically stable. Figure 4.2 shows that all solutions

of S(t) and I(t) converge to E∗ when R0 > 1 supporting Theorem 3.6.
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Figure 4.3: Cholera infectives in the absence of media coverage (m = 0 and ρ
= 0)

Lack of media coverage about an outbreak of the disease causes the number of

infectives to first rise steadily as many people are not yet aware about the out-

break and the preventive measures before it starts droping as the susceptibles are

depleted from the population as shown in Figure 4.3.

Figure 4.4: Cholera infectives in the presence of media coverage (m = 0.00001
and ρ = 0.6)

In the presence of the media coverage the number of infectives decreases sharply

as many people are aware of the outbreak and take precautionary measures to

prevent infection as shown in Figure 4.4.
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Figure 4.5: Cholera infectives with different values of ρ

When the media is very effective in reporting about the outbreak of the disease

and the preventive measures, the infectious individuals are eliminated faster from

the population, while if there is ineffective or no media coverage then the infection

spreads for a longer time in the population as shown in Figure 4.5.

Figure 4.6: Cholera Susceptibles with different values of ρ

When the media is very effective in reporting about an outbreak, many people

take precautionary measures and the rate of infection reduces, this causes the

number of susceptibles to remain high in the population, while if there is ineffective

media coverage, the infection spreads and the number of susceptible individuals

are depleted from the population as shown in Figure 4.6.
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Chapter 5

Conclusions and Recomendations

5.1 Conclusion

In this study, a mathematical model based on a system of ordinary differential

equations incorporating media coverage has been formulated and analysed with

an aim of investigating the effect of media as a disease control strategy.

Analysis of the model shows that there exists a region where the model is math-

ematically and epidemiologically well posed because its solutions were positive

and bounded. Computation of the basic reproduction number, which was the

threshold parameter, was done using the next generation matrix approach. It was

determined that when R0 < 1, cholera does not spread.

Stability analysis of the cholera model showed that the disease free equilibrium

is both locally and globally asymptotically stable when the basic reproduction

number is less than unity. Ideally, this means that keeping R0 less than unity is

a possible strategy for curbing the spread of the disease. Analysis of the endemic

equilibrium shows its existence when R0 > 1. Furthemore, the endemic equilib-

rium is also locally asymptotically stable. This shows that when R0 > 1, the

disease persists and spreads in the population.

Sensitivity analysis of the model shows that a reduction in the rate of human to

human transmission, environment to human transmission, rate of recruitment of

susceptibles and the rate of human shedding of Vibrio cholerae to the environment

is required to reduce the basic reproduction number and the disease spread. On

the other hand, an increase in the rate of media efficacy, pathogen concentration

required for someone to catch the disease, rate of recovery, and the rate of death of

Vibrio cholerae is required to reduce the basic reproduction number and to lower



47

the disease spread.

Numerical Analysis of the model supports the fact that both the disease free and

endemic equilibriun are stable. It also shows that lack of effective media report-

ing on the presence of the disease and preventive measures greatly increases the

number of people infected by cholera.

5.2 Recommendation

Cholera still remains endemic in many countries with most African countries ex-

periencing sporadic outbreaks. The findings of this study show that lack of or

inefficient media reporting of an outbreak of the disease and the preventive mea-

sures leads to increased cases of infection. Therefore, we recommend that policy

makers and health practitioners should embrace the use of efficacious means of

media coverage to carry out massive awareness campaigns on preventive measures

whether there is an epidemic or not.

5.3 Future Work

The model has some limitations. We did not carry out optimal control and cost

effective analysis of different cholera intervention strategies, which can be explored

in future to find out which strategy is the best in the control of cholera.

The model can also be extended to incorporate environmental factors such as

climate change, sea surface temperature, zooplankton levels and human mobility

which have been known to greatly influence the occurence of cholera.
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Appendix

Appendix A

Matlab Codes Used for Simulating the Cholera Model

clear

options=odeset(’RelTol’,1e-4,’AbsTol’,[1e-4 1e-4 1e-4 1e-4]);

[T1,Y1]=ode45(’be1’,[1:0.1:10],[10,1,100,1],options);

[T2,Y2]=ode45(’be2’,[1:0.1:10],[10,1,100,1],options);

[T3,Y3]=ode45(’be3’,[1:0.1:10],[10,1,100,1],options);

[T4,Y4]=ode45(’be4’,[1:0.1:10],[10,1,100,1],options);

[T5,Y5]=ode45(’be5’,[1:0.1:10],[10,1,100,1],options);

plot(T1,Y1(:,2),’--’,T2,Y2(:,2),’-b’,T3,Y3(:,2),’-r’,

T4,Y4(:,2),’g’,T5,Y5(:,2),’k’, ’LineWidth’,2);

xlabel ’Time(days)’;

ylabel ’ Solutions of I(t)’;

h=legend(’rho=0.6’,’rho=0.9’,’rho=0.4’,’rho=0’,’rho=0.7’,1);

\includegraphics [width=4in]{Figure4.1}

clear

options=odeset(’RelTol’,1e-4,’AbsTol’,[1e-4 1e-4 1e-4 1e-4]);

[T1,Y1]=ode45(’be1’,[0:0.1:10],[10,1,100,1],options);

[T2,Y2]=ode45(’be2’,[0:0.1:10],[10,1,100,1],options);

[T3,Y3]=ode45(’be3’,[0:0.1:10],[10,1,100,1],options);

plot(T1,Y1(:,2),’--’,T2,Y2(:,2),’-b’,T3,Y3(:,2),’-r’,’LineWidth’,3);

xlabel ’Time(days)’;

ylabel ’I(t)’;

h=legend(’rho=0.6’,’rho=0.9’,’rho=0.4’,1);

\includegraphics [width=4in]{Figure4.5}

clear



54

options=odeset(’RelTol’,1e-4,’AbsTol’,[1e-4 1e-4 1e-4 1e-4]);

[T1,Y1]=ode45(’be1’,[0:0.1:10],[10,1,100,1],options);

[T2,Y2]=ode45(’be2’,[0:0.1:10],[10,1,100,1],options);

[T3,Y3]=ode45(’be3’,[0:0.1:10],[10,1,100,1],options);

plot(T1,Y1(:,1),’--’,T2,Y2(:,1),’-b’,T3,Y3(:,1),’-r’,’LineWidth’,3);

xlabel ’Time(days)’;

ylabel ’S(t)’;

h=legend(’rho=0.6’,’rho=0.9’,’rho=0.4’,1);

\includegraphics [width=4in]{Figure4.6.png}

clear

options=odeset(’RelTol’,1e-4,’AbsTol’,[1e-4 1e-4 1e-4 1e-4]);

[T2,Y2]=ode45(’be2’,[0:0.1:10],[10,1,100,1],options);

plot(T2,Y2(:,2),’-b’,’Linewidth’,3);

xlabel ’Time(days)’;

ylabel ’I(t)’;

\includegraphics [width=4in]{Figure4.4}

clear

options=odeset(’RelTol’,1e-4,’AbsTol’,[1e-4 1e-4 1e-4 1e-4]);

[T4,Y4]=ode45(’be4’,[1:0.1:10],[10,1,100,1],options);

plot(T4,Y4(:,2),’-b’,’Linewidth’,3);

xlabel ’Time(days)’;

ylabel ’ Solutions of I(t)’;

\includegraphics [width=4in]{Figure4.3}

function dy=be1(t,y)

lam=9.6274*10e-5;

mu=2.537*10e-5;

betae=0.75;

alpha=1;

kappa=1000000;

gamma=5;

delta=0.0004;
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m=0.00001;

sigma=10;

xi=0.23;

rho=0.6;

dy=[0 0 0 0]’;

dy(1)=lam-(betae-rho*betae)*((y(1)*y(3))/(kappa+y(3)))-

(alpha-(rho*alpha*y(2)/(m+y(2))))*y(1)*y(2)-mu*y(1);

dy(2)=(betae-rho*betae)*((y(1)*y(3))/(kappa+y(3)))+

(alpha-(rho*alpha*y(2)/(m+y(2))))*y(1)*y(2)-(gamma+mu+delta)*y(2);

dy(3)=sigma*y(2)-xi*y(3);

dy(4)=gamma*y(2)-mu*y(4);

function dy=be2(t,y)

lam=9.6274*10e-5;

mu=2.537*10e-5;

betae=0.75;

alpha=1;

kappa=1000000;

gamma=5;

delta=0.0004;

m=0.0001;

sigma=10;

xi=0.23;

rho=0.9;

dy=[0 0 0 0]’;

dy(1)=lam-(betae-rho*betae)*((y(1)*y(3))/(kappa+y(3)))-

(alpha-(rho*alpha*y(2)/(m+y(2))))*y(1)*y(2)-mu*y(1);

dy(2)=(betae-rho*betae)*((y(1)*y(3))/(kappa+y(3)))+

(alpha-(rho*alpha*y(2)/(m+y(2))))*y(1)*y(2)-(gamma+mu+delta)*y(2);

dy(3)=sigma*y(2)-xi*y(3);

dy(4)=gamma*y(2)-mu*y(4);

function dy=be3(t,y)

lam=9.6274*10e-5;

mu=2.537*10e-5;
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betae=0.75;

alpha=1;

kappa=1000000;

gamma=5;

delta=0.0004;

m=0.000001;

sigma=10;

xi=0.23;

rho=0.4;

dy=[0 0 0 0]’;

dy(1)=lam-(betae-rho*betae)*((y(1)*y(3))/(kappa+y(3)))-

(alpha-(rho*alpha*y(2)/(m+y(2))))*y(1)*y(2)-mu*y(1);

dy(2)=(betae-rho*betae)*((y(1)*y(3))/(kappa+y(3)))+

(alpha-(rho*alpha*y(2)/(m+y(2))))*y(1)*y(2)-(gamma+mu+delta)*y(2);

dy(3)=sigma*y(2)-xi*y(3);

dy(4)=gamma*y(2)-mu*y(4);

function dy=be4(t,y)

lam=9.6274*10e-5;

mu=2.537*10e-5;

betae=0.75;

alpha=1;

kappa=1000000;

gamma=5;

delta=0.0004;

m=0;

sigma=10;

xi=0.23;

rho=0;

dy=[0 0 0 0]’;

dy(1)=lam-(betae-rho*betae)*((y(1)*y(3))/(kappa+y(3)))-

(alpha-(rho*alpha*y(2)/(m+y(2))))*y(1)*y(2)-mu*y(1);

dy(2)=(betae-rho*betae)*((y(1)*y(3))/(kappa+y(3)))+

(alpha-(rho*alpha*y(2)/(m+y(2))))*y(1)*y(2)-(gamma+mu+delta)*y(2);

dy(3)=sigma*y(2)-xi*y(3);
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dy(4)=gamma*y(2)-mu*y(4);

function dy=be5(t,y)

lam=9.6274*10e-5;

mu=2.537*10e-5;

betae=0.75;

alpha=1;

kappa=1000000;

gamma=5;

delta=0.0004;

m=0.000015;

sigma=10;

xi=0.23;

rho=0.7;

dy=[0 0 0 0]’;

dy(1)=lam-(betae-rho*betae)*((y(1)*y(3))/(kappa+y(3)))-

(alpha-(rho*alpha*y(2)/(m+y(2))))*y(1)*y(2)-mu*y(1);

dy(2)=(betae-rho*betae)*((y(1)*y(3))/(kappa+y(3)))+

(alpha-(rho*alpha*y(2)/(m+y(2))))*y(1)*y(2)-(gamma+mu+delta)*y(2);

dy(3)=sigma*y(2)-xi*y(3);

dy(4)=gamma*y(2)-mu*y(4);

clear options=odeset(’RelTol’,1e-4,’AbsTol’,[1e-4 1e-4 1e-4 1e-4]);

[T1,Y1]=ode45(’bee1’,[0:0.001:5],[10,1,100,1],options);

[T2,Y2]=ode45(’bee2’,[0:0.001:5],[10,1,100,1],options);

[T3,Y3]=ode45(’bee3’,[0:0.001:5],[10,1,100,1],options);

[T4,Y4]=ode45(’bee4’,[0:0.001:5],[10,1,100,1],options);

plot(T1,Y1(:,1),’--r’,T1,Y1(:,2),’-b’,’LineWidth’,3);

xlabel ’Time(days)’;

ylabel ’Solutions of S(t) and I(t)’;

h=legend(’S(t)’,’I(t)’,1);

\includegraphics [width=4in]{Figure4.2}

function dy=bee1(t,y)
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lam=9.6274*10e-5;

mu=2.537*10e-5;

betae=0.75;

alpha=5;

kappa=1000000;

gamma=5;

delta=0.0004;

m=0.00001;

sigma=10;

xi=0.23;

rho=0.6;

dy=[0 0 0 0]’;

dy(1)=lam-(betae-rho*betae)*((y(1)*y(3))/(kappa+y(3)))-

(alpha-(rho*alpha*y(2)/(m+y(2))))*y(1)*y(2)-mu*y(1);

dy(2)=(betae-rho*betae)*((y(1)*y(3))/(kappa+y(3)))+

(alpha-(rho*alpha*y(2)/(m+y(2))))*y(1)*y(2)-(gamma+mu+delta)*y(2);

dy(3)=sigma*y(2)-xi*y(3);

dy(4)=gamma*y(2)-mu*y(4);

function dy=bee2(t,y)

lam=9.6274*10e-5;

mu=2.537*10e-5;

betae=0.75;

alpha=5;

kappa=1000000;

gamma=5;

delta=0.0004;

m=0.0001;

sigma=10;

xi=0.23;

rho=0.9;

dy=[0 0 0 0]’;

dy(1)=lam-(betae-rho*betae)*((y(1)*y(3))/(kappa+y(3)))-

(alpha-(rho*alpha*y(2)/(m+y(2))))*y(1)*y(2)-mu*y(1);

dy(2)=(betae-rho*betae)*((y(1)*y(3))/(kappa+y(3)))+
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(alpha-(rho*alpha*y(2)/(m+y(2))))*y(1)*y(2)-(gamma+mu+delta)*y(2);

dy(3)=sigma*y(2)-xi*y(3);

dy(4)=gamma*y(2)-mu*y(4);

function dy=bee3(t,y)

lam=9.6274*10e-5;

mu=2.537*10e-5;

betae=0.75;

alpha=5;

kappa=1000000;

gamma=5;

delta=0.0004;

m=0.000001;

sigma=10;

xi=0.23;

rho=0.4;

dy=[0 0 0 0]’;

dy(1)=lam-(betae-rho*betae)*((y(1)*y(3))/(kappa+y(3)))-

(alpha-(rho*alpha*y(2)/(m+y(2))))*y(1)*y(2)-mu*y(1);

dy(2)=(betae-rho*betae)*((y(1)*y(3))/(kappa+y(3)))+

(alpha-(rho*alpha*y(2)/(m+y(2))))*y(1)*y(2)-(gamma+mu+delta)*y(2);

dy(3)=sigma*y(2)-xi*y(3);

dy(4)=gamma*y(2)-mu*y(4);

function dy=bee4(t,y)

lam=9.6274*10e-5;

mu=2.537*10e-5;

betae=0.75;

alpha=5;

kappa=1000000;

gamma=5;

delta=0.0004;

m=0;

sigma=10;

xi=0.23;
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rho=0;

dy=[0 0 0 0]’;

dy(1)=lam-(betae-rho*betae)*((y(1)*y(3))/(kappa+y(3)))-

(alpha-(rho*alpha*y(2)/(m+y(2))))*y(1)*y(2)-mu*y(1);

dy(2)=(betae-rho*betae)*((y(1)*y(3))/(kappa+y(3)))+

(alpha-(rho*alpha*y(2)/(m+y(2))))*y(1)*y(2)-(gamma+mu+delta)*y(2);

dy(3)=sigma*y(2)-xi*y(3);

dy(4)=gamma*y(2)-mu*y(4);
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Appendix

Appendix B

List of Publications

(1) Musundi, B.O., Lawi, G.O., and Nyamwala, F.O. (2016). Math-

ematical Analysis of a Cholera Transmission Model Incorporat-

ing Media Coverage. International Journal of Pure and Applied

Mathematics, 111 (2), 219-231.
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