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ABSTRACT 

Accurate forecasting is becoming increasingly important due to the energy 

consumption's rapid rise. To manage and plan the use of energy resources efficiently, 

it is crucial to predict the demand for electricity, whose high increase in Uasin Gishu 

City has had a negative impact on the reliability of the electrical supply. The utility 

company KPLC) presently forecasts medium-term electricity demand through feeder 

load checks to support decision-making on operations, maintenance or infrastructure 

development planning, but this has not been sufficient to address the impact on power 

stability. Therefore, the main objective of this study was to model and simulate a hybrid 

model to forecast short-term electricity demand in Uasin Gishu County. The specific 

objectives were to determine the short-term electricity demand profile as affected by 

weather variables, time effects, economic factors and Load parameters, apply an Hybrid 

model based on Adaptive Neuro-fuzzy inference System (ANFIS) to estimate load 

demands from an hour to a week ahead, and assess the system’s performance. Using 

temperature, wind speed, humidity, and historical load data as the primary parameters, 

this study describes the development and application of an ANFIS-based STLF model 

for the power networks in the Uasin Gishu County. Past load data from Kenya's 

electricity networks and meteorological data from the cloud data base 

www.timeanddate.com were used to test and validate the model. An adaptable neuro-

fuzzy inference system (ANFIS) was used for machine learning-based electricity 

predictions. The forecasting model was constructed using a total of 49,860 dataset 

points, with training accounting for 75% of the work and checking and validation 

accounting for 15%. The novelty of this research lies in the large quantity of availed 

data, input parameters, validation of the ANFIS model for the training, testing, and 

validation data using four different membership functions: triangular, trapezoidal, 

generalized bell shaped, and Gaussian curve shaped, which produced the mean absolute 

percentage error (MAPE) values of 0.588, 0.359, 0.671, and 0.567, respectively. The 

effectiveness of the suggested approach is demonstrated by the evaluation of trained 

FIS results and a separate set of data based on Uasin Gishu county's electricity demand 

estimates. The suggested model's efficacy is clearly demonstrated by its average mean 

absolute percentage error of 0.0997%. The acquired results and forecasting 

performance demonstrate the viability of the suggested strategy and demonstrate the 

significant influence of meteorological variables on the short-term load demand profile. 
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CHAPTER ONE: INTRODUCTION 

1.1 Background and Motivation for the Study 

Electrical energy ranks among the most important energies in human life. People want 

a high-quality life as the economy grows, therefore demand for electrical energy in 

industries, commerce, and for personal use is increasing. As a result, the electric sector 

must produce electricity and construct power substations in order to meet the energy 

needs of users. Because electric energy cannot be stored economically and has the 

characteristic of production and consumption occurring at the same time, it is critical 

to accurately forecast the electric load and achieve supply and demand equilibrium in 

order to avoid producing too much electric energy or causing outage accidents due to 

insufficient electric energy. More production of electric energy than demand is 

inefficient; nevertheless, insufficient production of electric energy will result in 

consumer complaints and dissatisfaction. According to Bunn et al, a 1% increase in 

forecasting error increases annual operational costs by £10 million. Accurate 

forecasting of electric load can improve the electric industry's management 

performance as well as reduce the frequency of outages, increasing customer happiness 

and the electric industry's image. This study examined how the passage of time,Load 

parameters and meteorological variables has had on short term load profile and 

electricity demand forecasting in Uasin Gishu County.  

A specific forecasting process can be characterized as follows, depending on the period 

of interest: 

 Long-term load forecasting (LTLF): is for a period ranging from one year to 

twenty years. This form of projection is crucial for strategic planning, new 

generating building, and the development of the power supply and delivery 

system (generation units, transmission system, and distribution system). 



2 
 

 Medium-term load forecasting (MTLF): is used for maintenance scheduling and 

planning fuel purchases, as well as energy trading and revenue assessment for 

utilities, and is normally for a month to a year. 

 Short-term load forecasting (STLF): is for time intervals of one hour to one 

week. 

1.2 Electricity Load forecasting 

Load forecasting is done using historical load data as well as other influencing factors. 

Therefore, the following parameters must be considered in the analysis for accurate 

electricity demand forecasting. 

 Data on electricity: Electricity consumption over time. 

 Time effects: season, hour, holidays, etc. 

 Weather data: Temperature, humidity, rainfall, wind speed, and other weather 

data. 

 Economic Data from the utility company: Electricity prices, promotions, and 

marketing initiatives. 

 Social – political data, Cultural and behavioral aspects data and political 

elements that a country is currently experimenting with. 

 

1.2.1 Classification of Demand Forecasting Techniques 

The current and future electricity demand, as well as load pattern changes, must be 

accurately estimated when planning and operating an electric power system. Accurate 

forecasting leads to significant operating and maintenance cost savings, improved 

power supply and delivery system reliability, and informed development decisions. 

Engineers used charts and tables to manually estimate future demand in the past. 

Because of the non-stationarity of the load forecast process, as well as the complicated 
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relationship between meteorological variables and electric load, these traditional 

methods were rendered obsolete, as they assumed a simple linear relationship during 

the prediction process. Smoothing techniques, regression procedures, and statistical 

analysis were all used in traditional Short term electric load forecasting (STELF) 

processes. Peak load models and load shape models are among the statistical models 

utilized in STELF. These methodologies and models are reliable, but they are unable to 

adjust to odd weather circumstances and a variety of seasonal activities, which have a 

non-linear relationship with the daily load. As a result, their load projections are not as 

precise as they would want to be in the presence of such situations. The following is a 

timeline of how predicting methodologies have changed over time. 

 Traditional Forecasting Approaches: In the beginning, 

traditional/conventional mathematical techniques were used to forecast future 

load demands. Multiple Regression, Exponential Smoothing, and Iterative 

Reweighted Least-Squares are examples of regression methods. 

 Modified Traditional forecasting approaches: In order to enable them to 

automatically adjust the forecasting model's parameters in response to changing 

environmental conditions. Stochastic Time Series Techniques, Support Vector 

Machines, and Adaptive Demand Forecasting are a few of the methods used. 

 Soft Computing Techniques: Soft computing techniques have grown in 

popularity during the past few decades. A novel technique called soft computing 

imitates the human mind's exceptional capacity to reason and learn in 

ambiguous and imprecise situations. It's becoming more and more used as a 

means of assisting computer-based intelligent systems in mimicking the human 

mind's aptitude for approximation rather than precise reasoning methods. 

examples include fuzziness and neural networks.  
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A load forecasting method should have all the following characteristics: causation, 

reproducibility, functionality, sensitivity, and simplicity. The three main groups into 

which the models are typically separated are those used for statistical analysis, those 

used for artificial intelligence, and those used for Grey prediction. Statistical methods 

are built on a mathematical model of the load curve. Just a few statistical methods that 

have been used regularly include regression processes, time series methods, and 

exponential smoothing. The time series approaches, for instance, presuppose that the 

only factor influencing future load demand is past demand. When the variables that 

influence load demand suddenly change, statistical models' accuracy deteriorates. The 

fundamental drawback of statistical modeling is that it relies on the availability of 

enough data samples, a variety of complex variables, and a number of statistical data 

assumptions to predict outcomes accurately. 

Artificial intelligence (AI)-based forecasting models have shown improved non-

linearity and other issue handling capabilities. They don't require intricate mathematical 

formulas or a quantitative relationship between inputs and outputs, which is their 

fundamental advantage. These techniques include genetic algorithms, fuzzy logic, 

expert systems, artificial neural networks, and particle swarm optimization. One 

disadvantage of artificial intelligence (AI) systems is that the volume of training sample 

data limits how accurate they can be. The Grey model focuses on model uncertainty 

and lack of enough information in analysing and understanding systems through 

research on conditional analysis, prediction and decision-making. This model is 

suitable for application to system analysis, data processing, modelling, prediction, 

decision-making, and control. The model was developed to overcome the challenges 

associated with statistical analysis and AI forecasting models. The chaotic evolutionary 
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algorithm, which mixes fuzzy logic and regression techniques, is one example of a 

hybrid load forecasting method that successfully blends statistical and AI methods. 

1.3 Requirements of the STLF Process 

A module for anticipating short-term load is present in almost all energy management 

systems used in contemporary control centers. A strong STLF system should be 

accurate, quick to respond, quick to identify poor data, friendly to use, quick to retrieve 

data, and quick to generate forecasting results. 

i. Accuracy  

The accuracy of STLF's prediction is its most crucial criteria. The foundation of 

efficient dispatch, system dependability, and electricity markets requires good 

accuracy. Making the forecasting outcome as accurate as feasible is the primary 

objective of most STLF literatures, as well as of this thesis. 

ii. Speed 

 Utilizing the most recent historical data and weather forecast data aids in improving 

accuracy.  The forecasting program must, therefore, meet the fundamental criteria of 

forecasting speed. Programs that need excessively extended training periods should be 

discontinued and replaced with innovative methods that reduce training requirements. 

Typically, fewer than 20 minutes should satisfy the basic need of a day forecasting.. 

iii. Friendly Interface  

The load forecasting interface should be simple, practical, and intuitive to use. Whether 

using images or tables, users may readily specify what they wish to forecast. The result 

should also be presented in both graphical and numerical form so that users may quickly 

access it. 
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iv. Automatic Data Access  

The database contains historical load, weather, and other load-related information. The 

STLF system ought to be able to automatically access it and obtain the required 

information. Additionally, it should be able to automatically access the weather forecast 

online via the Internet or through a specific communication line. This lessens the 

workload for the dispatchers.  

v. Automatic Forecasting Result Generation Multiple models are frequently 

used in a single STLF system to lower the possibility of individual forecasts 

being inaccurate. Such a system has historically required the operators' 

meddling. To put it another way, the operators must select a weight for each 

model in order to produce the combinatorial result. For convenience, the system 

should produce the final forecasting result in accordance with the historical 

days' forecasting behavior.  

vi. Portability  

The characteristics of load profiles vary amongst power systems. A typical STLF 

software application is therefore only appropriate for the domain for which it was 

designed. A generic STLF software application that is transferable from one grid to 

another could potentially greatly minimize the amount of time needed to develop 

separate software for multiple sites. This is a very complex requirement for the load 

forecasting that has not yet been fully realized 

1.4 Limitation of Forecasting 

There are several benefits to forecasting, including the following: 

i. Idea Generation - For operations to produce accurate forecasts, gaining 

knowledge is essential. By using forecasting, you can develop the habit of 
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predicting future demand by analyzing both historical and current data. By 

doing this, you will improve your ability to predict changes in demand. It will 

also give you information about the health of your company's supply chain and 

give you the chance to make any necessary modifications or adjustments based 

on fresh data obtained from real-time data. 

ii. Recognizing Past Errors - Forecasting also gives you the ability to base 

judgments on past mistakes and may offer suggestions for how to avoid 

repeating them in the future. After each forecast, you don't start over. Even if 

your prediction couldn't have been further from the truth, it still offers a place 

to start. Reviewing the instances and causes of events that didn't turn out as you 

had anticipated is typical, and you should see an improvement in your forecasts. 

Additionally, you'll develop the practice of thinking back on your prior 

performance as a whole. 

iii. Cost reduction - Given that forecasting can lower the amount of errors caused 

by adhering to a timetable based on the past, cost reduction is another important 

consideration in manufacturing operations. Your ability to anticipate demand 

will help you improve the efficiency of every step of the supply chain. You will 

eventually be able to lower surplus inventory levels and boost overall 

profitability because you can anticipate what customers will want and when 

they'll want it. 

The following are some forecasting-related drawbacks: 

i. The accuracy of forecasts is never 100%. - Future predictions can never be 

made with absolute certainty, and forecasts are never 100% accurate. Your 

projections will never be completely accurate, even if you have a superb 

procedure in place and hiring forecasting specialists. Particularly during times 
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of crisis, some markets and products will experience high levels of volatility. 

Understanding what elements affect your demand can perhaps help with making 

forecasts during this period because the coronavirus has undoubtedly amplified 

and increased this volatility within the industry. Nevertheless, the primary flaw 

in projections is that they are usually never accurate, which causes either an 

excess or a shortfall of inventories. 

ii. It could require a lot of effort and time. Data collection, organization, and 

coordination are all components of forecasting. Businesses will hire demand 

planners, and it will be their team's responsibility to make the projection. To 

perform this job well, demand planners will need a lot of assistance from the 

sales and marketing teams. Processes are frequently labor- and labor-intensive, 

which adds to the overall time required. If you have the correct technology in 

the right area, the problem is significantly reduced 

iii. Might be Expensive - In particular, accurate forecasting can be very expensive. 

Spending the money, time, and resources necessary will result in a forecast that 

is adequate and nearly correct. It costs more to use high-quality tools when a 

team of demand planners is hired, which is a considerable expenditure. Despite 

being expensive, you should quickly see a return on this investment over time, 

and your forecast should be considerably more accurate, saving you money and 

paying for itself in the long run. 

1.5 Adaptive Neuro –fuzzy inference System (ANFIS) model 

ANFIS technique was first developed in 1993.It is a combination of neural networks 

and fuzzy-logic to leverage on their strengths and address their short falls, this makes 

it excellent for complicated and uncertain data. It is a data learning technique that use 

fuzzy logic to turn provided inputs into desired outputs using highly interconnected 
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Neural network processing elements and information connections that are weighted to 

translate numerical inputs into outputs. The properties of a fuzzy inference technique 

are updated by ANFIs using the neural network learning method. The proposed ANFIS 

may construct a feedback mapping based on human understanding (in the form of a 

fuzzy if then rule) and particular input data pairs by using a hybrid learning approach. 

The ANFIS architecture is used in the simulation in order to visualize nonlinearities, 

detect nonlinear elements on a control line, and anticipate chaotic time series.  

1.5.1 ANFIS Architecture 

The ANFIS architecture is shown in Figure 1.1 and consists of five levels and nodes 

(Jaya et al, 2011). ANFIS employs five network layers to carry out the subsequent fuzzy 

inference procedures: (1) Fuzzification of the input, (2) application of the fuzzy 

operator, (3) normalization, (4) defuzzification, and (5) output summation 

 

Fig 1.1: ANFIS architecture (Jaya et al., 2011) 
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i. Fuzzification, the first layer: 

• The neuron here represents fuzzy sets, which are utilized as an antecedent to 

fuzzy rules. 

• The neuron gets the crisp input and determines which fuzzy set it belongs to. 

The role of the node is given by; 

𝜇𝐴(𝑥) =
1

1+|
𝑥−𝐶𝑖

𝑎𝑖
|
2𝑏        (2) 

Where x, y are the neuron's inputs Linguistic labels (Ai, Bi) 

Where ai, bi, and ci are the premise parameter set. 

The bell-shaped function in the Sugeno model changes as the values of these parameters 

change. 

ii. Fuzzy Rule, 2nd layer 

• Each fixed node performs has an output equal to the total of all incoming signals 

from layer 1, rendering it a layer of fixed nodes. 

• The firing strength refers to the output of each layer 2 node. 

            For layer 2, the node function is: 

 𝑂2,𝑖 = 𝑤𝑖 = 𝜇𝐴𝑖(𝑥)𝜇𝐵𝑖(𝑦),𝑖=1,2      (3) 

iii. Normalization, the third layer. 

• Each stable node in this tier is identified by the letter "N." 

• The ith node calculates the activation level of the ith rule in relation to the 

combined firing strength of all rules.𝑜3,𝑖 = �̅�𝑖 =
𝑤𝑖

𝑤1+𝑤2
ⅈ = 1,2  (4) 
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iv. Defuzzification is the fourth layer. 

• This layer has only one node, which is a fixed node. The overall output is 

calculated as the sum of all incoming signals. As a result, the entire result is; 

            𝑂5,𝑖 = ∑ �̅�𝑖𝑓𝑖𝑖 =
𝛴𝑖𝑤𝑖𝑓𝑖

𝛴𝑖𝑤𝑖
      (5) 

v. The output node the fifth Layer, its single, calculates the overall output via 

summing all incoming signals.  

1.5.2 ANFIS Learning Algorithm 

Neural-fuzzy systems combine artificial neural networks and fuzzy set theory, making 

them incredibly powerful. The fuzzy system is a neural network structure with 

knowledge distributed across connection strengths, and neural networks are well-

known for their ability to learn and adapt to new or changing environments in order to 

improve performance. They also have the benefit of simplifying the transition of the 

final system into a series of if-then rules.  The values of a collection of adjustable 

parameters through which the nodes are connected determine an adaptive network's 

overall input-output behavior (Jang, 1995.) The adaptive system applies a hybrid 

learning technique to identify parameters for Sugeno-type fuzzy inference systems. It 

combines a combination of the least-squares methodology and the back-propagation 

gradient descent method for training FIS parameters for the membership function to 

model a particular collection of training data (Rezaei, Hosseini, & Mazinani, 2014). 

The network's learning process is broken into two stages. In the forward phase of the 

learning method, consequential parameters determine the least squares estimate. The 

error signals, which are the derivatives of the squared error with respect to each node 

output during the backward phase, travel from the output layer to the input layer. The 

gradient descent method is used in this backward step to modify the parameters for the 

premise. A neural network's learning or training phase is the process of determining 
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parameter values that are appropriate for the training dataIn order to reduce training 

error, other strategies might be applied during ANFIS training. A mix of the least 

squares algorithm and the gradient descent technique is used to find the best settings. 

The main benefit of a hybrid technique is that it converges much faster because neural 

networks' backpropagation process has smaller search space dimensions (Hamdan & 

Garibaldi, 2010). ANFIS is a fuzzy Sugeno model incorporated in an adaptive system 

that helps with model building and validation, making training and adaptation easier. 

 

Fig 1.2: ANFIS Learning algorithm. 

 

1.5.3 ANFIS Training Process 

The ANFIS training technique is as outlined, obtaining training data sets, checking data 

sets (input/output data pairings), and testing data sets are the first steps. An assortment 

of input and output vectors are used as part of the training and testing data to program 
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the ANFIS system. The membership functionality criterion value is determined by 

comparing the actual and desired outputs, and training and verification data sets are 

used to do this. 

i. Start 

ii. Data preprocessing; prepare data sets (training data, checking data, testing data) 

by arranging the data in matrix form 

iii. Generation of FIS models either by grid portioning or sub clustering. 

iv. Define the Input parameters of the fuzzy system and FIS method (sugeno or 

Mamdani) 

v. Select the MF type and number per input parameters, number of epochs and 

optimization method, 

vi. Load training and checking data from workspace to ANFIS. 

vii. Train the ANFIS model. 

viii. Load test data into ANFIS and test by plotting the generated FIS against the 

test data. 

ix. Examine the structure of ANFIS, as well as the generated rules and the output 

surface. 

x. Determine the system's performance by Evaluate the validation data against the 

trained FIS and Compute MAPE by plotting actual values against predicted 

values. 

Prepare the training, checking, and testing data sets and import them into a MATLAB 

workspace in matrix form, with the target output in the last column and the system's 

input parameters in the other columns. All of the data that is currently available is 

represented by the rows. The type of membership functions, the technique for 

generating FIS, and how many epochs are used are all decided by the system designer. 
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After loading the Training and Checking data into the ANFIS system, the training 

begins, with a total number of 200 epochs on a hybrid optimization approach with 0% 

error tolerance The incorporation of both training and checking data in ANFIS system 

training enhances the system's accuracy and efficacy by increasing the chances of it 

being understood. After the training is over, the ANFIS offers an evalfis function which 

can be used to gauge how well the system is working. The knowledge derived from the 

training result (fuzzy inference system) is created. The loading of a testing data set into 

ANFIS, is the first step in the research and assessment of system performance. The 

result of the evalfis function represents the system's response or the ANFIS system's 

final output. The proposed hybrid system's functionality and reliability are also 

determined by the correlation between the desired values (actual data) and the predicted 

values as the system output.  

1.6 Uasin Gishu County and Its Demographic nature 

Located in the formerly Rift Valley Province lies Uasin Gishu County. It shares borders 

with Elgeyo Marakwet County to the east, Trans Nzoia County to the north, and Nandi 

County to the south. With a population of 894,179 and 3,345 square kilometers of land 

(KNBS, 2015). According to kenya power records, UasingGishu county has an annual 

electricity uptake of approximately 232Gwhrs against ahuge electricity demand 

according to (Mutai, Sneider, & Kiprop, 2019). It is therefore crucial to create a model 

that could precisely forecast the electricity demand on a short-term basis and enable 

decision-making regarding day-to-day safe operation of the power system, especially 

actions that go toward alleviating breakdown, like optimal and dispatch power flow and 

load management. This is necessary because the current grid is already under stress 

from the rising household and industrial energy demands. 
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1.7 Statement of the Problem  

Due to the absence of an accurate instrument for predicting energy consumption, the 

effects of increased residential and commercial energy needs on the growth and 

management of the power system are not well understood. The significant rise in load 

demand and related effects on the reliability of the power supply in Uasin Gishu County 

make planning crucial and necessary. A noted rise in the frequency of power outages, 

low voltage, and load shedding for customers is a result of the unchecked rising demand 

for electricity. The recently commissioned Turkana wind power output has not been 

adequate to solve the spike in interruptions because of its intermittent nature. As a 

result, this study describes the creation and use of an ANFIS-based STLF model for 

Uasin Gishu networks that accounts for time, temperature, humidity, and wind speed 

as the main climatic variables affecting the load and allows rapid decision-making. 

Although the utility company currently inspects all feeder networks and equipment 

annually, allowing for decisions on infrastructure growth and system capacity upgrade, 

this has not been enough to stop the outages. In light of this, timely planning and 

decision-making from an hour to a week ahead depend on accurate short-term 

forecasting of electricity consumption. 

1.8 Justification 

The management and planning of power resources depend on the ability to forecast 

electricity consumption. The effectiveness of operations (STLF) is significantly 

impacted by short-term load forecasting (Bazmi, Daroody, & Gholamreza, 2012). 

Being extremely exact about the projected electric demand is crucial for energy 

producers, merchants, and system operators' business activities. The benefits of soft 

computing-based load forecasting and the increasing number of power outages, low 

voltage supply, and load shedding for customers as a result of the unchecked rising 



16 
 

demand for electricity that the traditional medium-term load checks conducted by Local 

Power Utility company (KPLC) have not adequately addressed served as the driving 

forces behind this project, respectively. For specific load centers, such as Uasin Gishu 

county, the utility company can prepare for peak electrical load reduction using a range 

of procedures, including electric load shedding, analytical operations like optimum 

power flow, and dispatch power flow on distribution line (feeders). Consequently, it is 

possible to decide quickly what corrective actions, such as load shedding, power 

purchases, and the activation of peaking units, should be prepared. 

1.8.1 Significance of the study 

Knowing the expected electric demand with high accuracy is a crucial aspect of any 

company for system operators, energy producers, and merchants. Better demand side 

management practices and more accurate forecasts from single end users, up to system 

scale, are required by the new energy market and the smart grid paradigm. The 

analytical load forecasting methods perform admirably under typical everyday 

conditions however, they are not continuously updated since they cannot provide 

satisfactory results when dealing with meteorological, social, or economic changes. The 

benefit of using soft computing techniques instead of mathematical models has been a 

driving force behind the existing research. The current research focuses short term 

electricity demand prediction through building a hybrid ANFIS model and training it 

with a large quantity of data. The motivation for this project came from the benefits of 

soft computing-based load forecasting and the observed rise in the number of power 

outages, low voltage supply, and load shedding for customers as a result of the 

unchecked rising demand for electricity that the medium-term load checks traditionally 

performed by Local Power Utility Company (KPLC) have not adequately addressed.  
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1.9 Main objective 

Develop a hybrid model based on Adaptive Neuro-Fuzzy Inference System for 

forecasting short-term electricity demand in Uasin Gishu County and evaluate its 

accuracy. 

1.9.1 Specific objective 

1. To determine the Short-term electricity demand profile as affected by Weather 

variables, time effects, economic factors and Load parameters. 

2. Develop and apply a hybrid model based on Adaptive Neuro-Fuzzy Inference 

System that can predict electricity demand from an hour ahead to a week ahead. 

3. Assess the performance (accuracy) and dependability of the model. 

1.10 Overview of the Thesis 

Chapter 2: Highlights the more often used methods for predicting electrical load. The 

focus is on ANFIS techniques that will be used to develop an STLF for the county of 

Uasin Gishu after reviewing the material already in existence and various techniques.  

Chapter 3: Explains the analysis methods utilized to put an STLF into place for Uasin 

Gishu county. We cover the procedures and Matlab® tools used to build an ANFIS and 

a commands to load training data.  

Chapter 4: shows the STLF simulation's results using several Membership functions 

and contrasts the predicted outcomes with the real 24-load from Kenya Power's Rivatex 

distribution substation. The short-term load profile's influence on real load and 

meteorological variables is shown in a time series correlation plot. 

 Chapter 5: Concludes the study's findings and research done. Future electrical STLF 

work for Uasin Gishu county is also recommended. 
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CHAPTER TWO: LITERATURE REVIEW 

2.1 Overview of Electricity Demand Forecasting 

Forecasting electric load is critical in the transmission and distribution of power, as well 

as in the control and adjustment of electricity, feeder dispatch, and the treatment of 

emerging situations. Because of the significance of country’s electric load, a variety of 

electric load forecasting models have been developed namely: Multiple regressions, 

Exponential smoothing, Iterative reweighted least squares, Adaptive load forecasting, 

Stochastic time series, ARMAX model based on genetic algorithm, Fuzzy logic, Neural 

network, Knowledge based expert systems. Several methods for forecasting electricity 

load demand have been developed and implemented. Some studies concentrate on 

model construction, while others employ iteration and regression techniques. The basic 

goal is to create a system or model that can forecast the load within the smallest possible 

error and within the time limit specified.  

2.2 Previous Studies on Short term Load Forecasting Using ANFIS 

The creation of a short-term load forecasting model that predicts the electric load is 

shown in (Seema & Dr. Sharma, 2015). This model is based on the Adaptive Neuro 

Fuzzy Inference System (ANFIS). According to previous load data, time, temperature, 

and other factors, this report predicts the amount of electricity needed. The mean 

absolute percentage error (MAPE) for a specific Tuesday was found to be 5.705% based 

on the study performed on the ANFIS-based model. The acquired results and predicting 

performance demonstrate the value of the suggested methodology and demonstrate that 

a high accuracy model may be constructed with fewer historical data points. The work 

by (Amevi, Ternor, Asabre, Adjei, & Iddrisu, 2020) focuses on the accurate forecasting 

of electricity needs utilizing Ghana's historical data on electric load and the Adaptive 

Neuro-Fuzzy Inference System (ANFIS). The effectiveness of the ANFIS algorithm 
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was evaluated by contrasting its forecasts with those of the Support Vector Regression 

(SVR), Least Square Support Vector Machine (LS-SVM), and Auto-Regressive 

Integrated Moving Average forecast models (ARIMA). The results showed that the 

ANFIS algorithm can make predictions with high accuracy, that it converges more 

quickly with more training data, and that raising the membership function caused data 

overfitting, which had a negative impact on the RMSE values. The potential for the 

ANFIS algorithm to improve forecast accuracy while depending on high-quality 

training data and trustworthy parameter setup was demonstrated by comparison of the 

ANFIS findings to other previously utilized techniques of estimating power demands, 

including SVR, LS SVM, and ARIMA. 

Adaptive Neural-Fuzzy Inference System (ANFIS) was investigated in the (Zohreh, 

Hadi, Mahdi, & Mohammad-R, 2010) pape to analyze the design of Short-Term Load 

Forecasting (STLF) systems for the east of Iran. Using multiple ANFIS, this 

study forecasts consumption load. Entries into the multi-ANFIS system for the 

presented model include the day's date, the day's maximum and minimum temperature, 

the climate condition, the previous day's consumed load, and The findings indicate that 

temperature and features from 2, 7, and 14 days ago have a significant impact in load 

forecasting; they came to the conclusion that separating working days from holidays by 

adding a temperature time series improves load consumption predictions. In order to 

estimate the short-term electric load on the Power System of the Greek Island of Crete, 

(Kodogiannis & Petrounias, 2014) outlines the development of a novel hybrid 

intelligence model and verifies its predictions. A two-stage clustering method was 

utilized in the proposed system to determine the rules, the number of fuzzy sets, and the 

initial values of the parameters (centers and widths) of the fuzzy membership functions. 

The results for the lowest and highest load time series demonstrate that, in comparison 
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to conventional neural network models, the proposed load forecasting model provides 

forecasts that are significantly more accurate. 

Aqeel, Meysam, and Gholamreza, (2012) describes a paper in which an ANFIS network 

(adaptive neuro fuzzy inference system) was designed to map six parameters as input 

data for the State of Johor, Malaysia, including four demographic and economic 

parameters (e.g., employment, GDP, industry efficiency, and population) and two 

meteorological parameters related to annual weather temperature (e.g., minimum and 

maximum average annual temperature) to electricity demand as output variable. The 

network's MSE of 0.0016 demonstrated remarkable forecasting capability. To predict 

the load on an actual South African distribution network, an adaptive neuro-fuzzy 

inference system (ANFIS) was deployed (Sibonelo, Ali, & Rian, 2015). This research 

was done to look at the use of a potent of ANFIS approach in actual South African 

distribution networks load forecasting. Investigations also looked at the effects of 

temperature and real-world difficulties. It was found that the cleaned-up loading data 

and characteristics linked to loading time of day produced the best ANFIS forecast 

results. Without temperature as an input variable, the lowest attainable errors were a 

Symmetric Mean Absolute Percentage Error (sMAPE) of 0.207322, Mean Absolute 

Error (MAE) of 0.059294, and Root Mean Square Error (RMSE) of 0.081476. 

Additionally, it was shown that, in contrast to expectations, adding temperature to 

forecasts did not improve the accuracy. With properly processed data, the majority of 

artificial intelligence systems produce mean absolute percentage errors (MAPE) of 

under 2%. For a one-day hourly forecast, a MAPE of less than 5% is considered 

acceptable at the corporate level (Guo & Niu, 2008). 

 The application of neuro fuzzy logic for forecasting electricity demand based on a huge 

quantity of combined data of past electric loads, temperature, humidity, and wind speed 
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conditions has not been investigated despite the fact that many studies have been 

conducted on short and long term electricity demand/load forecasting. Therefore, the 

short-term load forecasting model developed in this study applies an Adaptive Neuro 

Fuzzy Inference System (ANFIS) that forecasts the electric load by taking into account 

time, temperature, humidity, wind speed, and previous load data. Historical load 

information is sourced from the Kenya Power-Rivatex distribution substation, while 

weather information is sourced from www.timeanddate.com. 

2.3 Factors Affecting Electricity Demand Forecasting 

Consumer load demand, as well as overall transmission line losses are influenced by a 

number of factors (Muhamma & Naeem, 2014). These variables factors, as well as their 

impact on electric power consumption are examined through Load analysis. Figure 2.1 

shows a sample load curve for a county in Kenya base average hourly usage. 

 

Fig 2.1: Load profile at Distribution Substation-Rivatex 
 

 

According to figure, electricity usage varies all through the day. Early mornings, when 

people are sleeping, have the lowest consumption levels. When people get ready for 

work, consumption gradually climbs between 4:30 and 9:00 a.m., between 10:00am 

and 10:30 a.m., a morning peak is seen, which can be explained by domestic tasks. The 

after-work, dinner, and bedtime activities are highlighted by the afternoon and evening 
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peaks. As a result, consumption patterns are influenced by consumer behavior and 

activities. 

The geographical location has an impact on energy use. It has been discovered that 

residences in rural locations use less energy than those in urban areas (Heinonen, 2014). 

Consumers in rural regions mostly use firewood and gas for heating and cooking, with 

RES accounting for a significant portion of the total. In addition, customers in urban 

areas utilize more electric HVAC (Heating, Ventilation, and Air Conditioning) systems 

and appliances. The weather is another component that is influenced by the 

geographical location. Consumers in hot-climate countries are more likely to utilize air 

conditioning (Qamber, 2012), resulting in a noon peak that lasts until the temperature 

drops. Load curves in cold-climate countries reach a peak anytime the temperature falls 

below a certain level due to heating systems. As a result, load curves follow the 

temperature patterns throughout the day. Tropical settings, such as Singapore (Chuan, 

2015), have a generally steady temperature, hence temperature has a small impact. 

Residences, offices, and colleges all have different consumption patterns (Sial, 2014). 

(Gul & Patidar, 2015). Between 30 and 45 percent of worldwide energy demand is 

accounted for by offices and institutions. The academic and administrative areas of 

universities experience a peak during the day till late afternoon. A second surge can be 

seen in the residential area until late at night, when students return to their dorms (Sial, 

2014). However, in office buildings, there is a peak between 10:00 and 16:00, after 

which consumption is rather low and stable (Gul & Patidar, 2015). 

Other variables that impacts on changes in load patterns Economic consideration, 

Client-related factors and Random Spikes. The state's economy has an impact on power 

demand. Economic factors are more important in long-term forecasting (Taylor & TX, 
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2010), although they can also affect the load curve in short-term load forecasting 

(Taylor & TX, 2010). Thus, in order to anticipate load, we must consider the country's 

economic status (GDP) as well as the country's industrial development for long-term 

load forecasting (Taylor & TX, 2010). The hourly load curves of affluent countries, for 

instance, differ from those of developing countries in their patterns. Due to the high 

level of industrial activity, the peak of the load profile curve for industrialized countries 

occurs between 11:00 and 4:00 pm. whereas the peak for developing countries occurs 

after 6:00 p.m. The cost of electricity and people's purchasing power have an impact on 

its consumption; as a result, the more expensive electricity is, the less it is utilized by 

home users. As a result, the daily load curve is influenced by the price of electricity 

(Taylor & TX, 2010). Peak load duration and incidence can be influenced by time of 

use pricing. Electricity is cheaper at night in several nations than during the day. As a 

result, time of use pricing can encourage domestic and industrial customers to alter their 

load, reducing peak shaving and filling the night valley. As a result, economic factors 

like as energy pricing, load management, and the degree of industrialization have a 

significant impact on average load and maximum demand in the system. In light of the 

foregoing, this element is not included as an input parameter to the model because it 

will have no effect on short-term forecasting in Kenya- Uasin Gishu County  

2.3.1 Weather Variables 

In load forecasting, the weather is an independent variable. Although the load profiles 

of industrial users can also be impacted by the weather, it has the greatest impact on 

home and agricultural consumers. Weather is frequently cited as a tipping point that 

can lead to system unreliability by lowering power supply efficiency. External factors 

such as unexpected sea breezes, after-moon thunderstorms, and back door fronts are 

just a few examples of what can lower the temperature, resulting in an inflated load 
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forecast (Rahman, 2002). The following weather factors are included in the weather 

factor (Franco & Sanstad, 2007) (Belzer, Scott, & Sands, 1996): Temperature, 

Humidity, Wind speed. 

a) Temperature: "The measurement of a body's degree of hotness or coolness," 

according to its definition. During the summer, temperature and load have a 

strong positive relationship, but during the winter, they have a strong negative 

relationship (Paravan, Debs, Hansen, Hirsch, & Golob.). This shows that larger 

loads are associated with greater temperature variations during dry (hot) 

seasons, but lower temperatures result in lower daily average loads and peak 

demand. In the summer, customers will use electricity for cooling (more air 

conditioners, refrigerators, and fans), but in the winter, electricity will be used 

for heating. As a result, during the winter, the connection between temperature 

and load consumption is negative or inverse. 

b) Humidity: It is used to describe the amount of moisture in the air and measured 

in percentages. Humidity can make a room feel warmer while having little effect 

on the actual temperature. Because evaporative cooling is used to control body 

temperature, humans are sensitive to humidity. In a humid atmosphere, the rate 

of evaporation via the skin (perspiration) is slower than normal. We sense the 

rate of heat transfer rather than the temperature in high humidified 

environments, thus we feel warmer. People's comfort levels drive the need for 

electricity. Humans may feel more at ease when the temperature is high and the 

relative humidity is low, or when the temperature is low and the relative 

humidity is high. It is appropriate to include both relative humidity and 

temperature in load forecasts because they have a combined impact on human 

comfort levels. In late spring, summer, and early autumn, Saifur Rahman (1990) 
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studied the effect of relative humidity. This was used to replace temperature in 

his model when the expected day's temperature was between 76°F and 91°F. 

Hor et al. (2005) discovered that including relative humidity in the model 

enhances monthly load forecast accuracy in the UK during the summer months.  

c) Speed of Wind: It is the measurement of air flow relative to the earth's surface 

over a given distance in a given time period." Wind speed is today measured 

with an anemometer, however it was previously measured using the Beaufort 

scale, which was based on people's observations of well-defined wind impacts. 

In cold weather, the wind speeds up heat loss, making people feel even colder 

(Bluestein, 2015). The NOAA NWS WCI measures the human-perceived 

equivalent temperature in cold weather, taking both temperature and wind speed 

into account. When there is low humidity, the wind speed decreases the apparent 

temperature and speeds up the evaporation of perspiration from the human 

body, resulting in a cooling effect. As a result, on a windy summer day (hot 

weather), power consumption is lower because fewer cooling appliances are 

used. As a result, a distribution load forecasting model must take wind speed 

into account as an influencing parameter that can both decrease and increase 

load consumption (during warmer seasons). The increase in load consumption 

is described by the wind chill index. The temperature that is perceived on 

exposed skin owing to the wind is known as the wind chill factor. It has the 

effect of bringing the temperature of the warmer bodies closer to that of the 

surrounding environment. People frequently utilize heating equipment to stay 

warm during wind chills. In direct proportion to wind speed is the rate of heat 

loss. The greater the wind speed, the more heat is lost, this phenomenon is 

referred to as wind chill. 



26 
 

2.3.2 Time effects – Holiday, Weekends etc. 

It's a variable that affects electric load at different times of the day, including weekdays 

and weekends. The time-dependent electric load variance can represent people's lives, 

such as work schedules, leisure time, and sleeping patterns. The load curves generated 

by Rivatex illustrate that the load curve has a time of day feature (Feinberg & 

Genethliou). 

 

Fig 2.2: Load profile of 3/1/2020 at Rivatex substation 

 

As shown by the hourly load curves, the load is modest and steady from 0.00 am to 

06.00 am. They rise from 07.00 a.m. to around 09.00 a.m., then are lowered or flattened 

till 13.00 a.m. to around 14.30 a.m., and then fall until 17.00 a.m., when they begin to 

rise again at 19.00 a.m. The maximum load demand is observed between 19.00 and 

21.00 hours, while the lowest load demand is observed after midnight. So, if we take a 

hard look at this load curve, we can observe that load demand mirrors the consumer's 

lifestyle The demand is lowered because no one is awake in the middle of the night. At 
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eight o'clock, when everyone is inside watching television and huddling up to the heat, 

the load is at its peak. The load curves are by definition periodic.  

2.3.3 Economic Factors 

Power demand is influenced by the state's economy. Economic considerations are more 

essential in long-term forecasting although they can also alter the load curve in short-

term load forecasting (Taylor & TX, 2010).  For long-term load forecasting, we must 

take into account both the country's economic condition (GDP) and its industrial 

development for example, there are differences between the typical load curves of 

developed and developing nations. The hourly load curve for developed countries peaks 

from 11:00 a.m. till 4:00 p.m. due to heavy industrial activity, whereas the peak for 

developing countries occurs after 6:00 p.m. Load Consumption is affected by energy 

costs and people's purchasing power; as a result, the more expensive electricity is, the 

less it is consumed by household users. The daily load curve is affected by power costs 

(Taylor & TX, 2010). Peak load duration and occurrence can be affected by time of use 

pricing. Electricity is cheaper at night in many nations than it is during the day. As a 

result, time of use pricing may encourage residential and commercial customers to alter 

their load patterns, lowering peak shaving and filling the night valley. The average load 

and maximum demand of the system are heavily influenced by economic factors such 

as energy prices, load management, and the degree of industrialization. 

2.3.4 Social - Political 

The electricity system is made up of various types of customers, including residential, 

agricultural, and industrial. Domestic consumer loads are generally predictable and 

obey strong statistical rules, whereas industrial and agricultural loads are extremely 

inductive, creating big spikes in the load curve when they start up and shut down. These 

spikes are characterized as random disturbances because the startup and shut-down of 
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these large loads are unpredictable in nature and there is no way to foresee when they 

will occur. Special occasions such as religious, political, or cultural festivals can also 

produce random disturbances. Special occasions include Eid al-Fitr and Christmas. 

Similarly, new year celebrations fall under this category of exceptional days that 

generate massive spike in the load curve due to increased television viewing.  

2.4 Forecasting Models 

2.4.1 End-use models  

The end-use approach predicts energy consumption directly utilizing a wealth of data 

on end use and end users, including appliances, customer usage, age, housing sizes, and 

so on. The projection is based on statistical information about customers as well as 

changing dynamics. The diverse applications of electricity in the residential, 

commercial, and industrial sectors are the subject of end-use models. These models 

work on the assumption that power consumption is derived from customer need for 

light, cooling, heating, and refrigeration, among other things. On the contrary hand, 

end-use models, describe energy demand as a result of the quantity of appliances on the 

market (Rice, Mustafa, & Engle, 1992). This method is, in theory, quite precise. 

However, the number and quality of end-use data are important considerations. The 

distribution of equipment age, for example, is crucial in this strategy for specific types 

of appliances. End-use forecasting necessitates a greater amount of knowledge about 

customers and their equipment rather than previous data. 

2.4.2 Econometric models  

The econometric method integrates economic theory with statistical tools to forecast 

electricity demand. The method calculates the links between energy consumption 

(dependent variables) and factors that influence consumption (independent variables). 

The least-squares approach or time series methods are used to calculate the 
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relationships. One of the options in this framework is to aggregate the econometric 

approach, which involves calculating consumption in different sectors (residential, 

commercial coal, industrial, and so on) as a result of weather, economic, and other 

variables, and then putting together estimates using recent historical data. When the 

econometric technique is combined with the end-use approach, behavioral factors are 

introduced into the equations.  

2.4.3 Statistical based learning Models 

End-use and econometric methodologies both necessitate a considerable amount of data 

about appliances, consumers, economics, and other factors. Their use is difficult and 

necessitates the involvement of humans. Furthermore, such information is frequently 

unavailable for specific consumers, thus, a utility maintains and supports a profile of a 

"average" customer or customers for various customer types. It becomes challenging 

for the utility to make estimates for sub-areas, also referred to as load pockets, for the 

following year. to avoid depending on unavailable information, to improve the accuracy 

of medium-term estimates, and to make them easier to understand. The investigation's 

primary subject was the summertime data. The multiplicative model below was found 

to be the most accurate after a number of load models were investigated (Willis, 1996.)  

𝐿(𝑡) = 𝐹(𝑑(𝑡), ℎ(𝑡)) ⋅ 𝑓(𝑤(𝑡)) + 𝑅(𝑡)      (1) 

Where 𝐿(𝑡) is the actual load at time 𝑡, 

𝑑(𝑡) is the day of the week, 

ℎ(𝑡) is the hour of the day, 

𝐹(𝑑, ℎ) is the daily and hourly component, 

𝑤(𝑡) is the weather data that include the temperature and humidity, 

𝑓(𝑤) is the weather factor, and 𝑅(𝑡) is a random error 
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In fact, w (t) is a vector made up of present and lagged weather variables. This 

represents the fact that electric load is influenced by weather not only in the present, 

but also in prior hours and days. The use of air conditioners increases when the hot 

weather lasts for several days, which is a well-known effect of so-called heat waves. 

Both medium- and long-term forecasting can benefit from the strategies provided. 

However, economic and demographic dynamic estimates should be included as input 

parameters for long-term forecasts (Willis, 1996.) Load forecasting can be done in a 

number of ways (Kyriakides and Polycarpou, 2007; Feinberg and Genethliou, 2005; 

Taylor and McSharry, in press; Hippert et al., 2001; Tzafestas and Tzafestas, 2001). 

Regression-based techniques, time-series approaches, artificial neural networks, and 

expert systems are just a few examples. A brief summary of some of the concepts and 

methodologies may be seen in the Fig.2.3. 

 

Fig. 2.3: Forecasting models (Kyriakides and Polycarpou, 2007). 
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Statistical techniques necessitate the use of a mathematical model that expresses the 

relationship between load and a number of input variables. For load forecasting, 

regression-based approaches, time series methods, state space models, and Kalman-

filtering are used.  

2.4.4 Artificial intelligence Models  

Fuzzy systems, artificial neural networks (ANN), evolutionary computation, and swarm 

intelligence are all topics that are usually referred to as computational intelligence. 

Neural networks and fuzzy logics are the subtypes of these domains that are most 

commonly used in load forecasting.  

a) Neural networks 

Neural networks are a type of computer network. The essential functioning principle of 

neural networks is based on that of human brains. They are made up of a lot of neurons. 

As illustrated in figure 2.4, a neuron collects the information it gets from its input nodes. 

It then determines its activity and propagates its response to other neurons through the 

output node. For a survey, neural networks are commonly used for load forecasting 

(Hippert et al. 2001) (Suhas & ALI, 2015). 

 

Fig. 2.4: Neural model (Suhas & ALI, 2015) 

  



32 
 

The neuron model is made up of three essential elements: 

1. A set of weights, each with its own strength. The weight wkj is multiplied by 

the signal xj connected to neuron k. An artificial neuron's weight can range from 

negative to positive. 

2. An adder for summing the input signals, which is weighted by the neuron's 

weights. 

3. A function for restricting the amplitude of a neuron's output. Due to the fact that 

it limits the output signal's amplitude range to a specific value, it is often referred 

to as a squashing function. 

b) Support vector machines (SVM)  

Support vector regression (SVR) has recently been used to the subject of load 

forecasting by (Chen et al. 2004), (Niu et al. (2007), (Hsu et al. 2006), Wang et al. 

(2007), Afshin and Sadeghian (2007), and Li et al. (2007), to mention a few. Support 

vector machines are extensively used for data classification and regression. They are 

non-linear approaches based on kernels. 

c) Fuzzy Logic:  

Fuzzy logic is a generalization of Boolean logic, which is commonly utilized in the 

design of digital circuits. A truth value of "0" or "1" is assigned to an input by Boolean 

logic. An input in fuzzy logic has a specified qualitative range associated with it (Suhas 

& ALI, 2015). Fuzzy logic is a type of many-valued logic that deals with approximate 

reasoning rather than precise reasoning. 
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Fig. 2.5: Block diagram of a fuzzy system 

 

2.5 Approaches to Load Forecasting 

Forecasts are created for a variety of reasons: day-to-day power system management 

(Kyriakides & Polycarpou, 2007) necessitates the prediction of load for the next day, 

whilst deciding whether or not to make large structural expenditures necessitates a far 

longer prediction horizon. The time-horizon, or lead time, can thus be used to 

distinguish forecasts: The goal of short-term load predictions (STLF) is to predict with 

a lead time of one hour to seven days. The study's main focus is on STLF because it 

provides necessary information for system management of day-to-day operations and 

unit commitment energy transactions, security analysis, economic dispatch, fuel 

scheduling, and system maintenance (Jain, Nigam, & Tiwar, 2012) (Shayeghi, 

Shayanfar, & Azimi, 2007) (Guo & Niu, 2008). STLF can also assist in the estimation 

of load flows and the making of decisions that will prevent overloading (Feinberg & 

Genethliou, 2006). Methods for anticipating short-term load demand include: 

2.5.1 Similar Day Look up Approach 

The similar day technique is based on looking up past data for days that were one, two, 

or three years ago and had characteristics comparable to the predicted day. Similar 
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weather conditions, as well as a similar day of the week or date, are among the 

characteristics. (2010, Qingqing, Yonggang, Xiaoqiang, Liangyi, and Xian) 

2.5.2 Regression based Approach  

Linear regression is a technique that looks at the dependent variable in relation to a set 

of independent variables. The dependent variables are considered initially because they 

are the ones that change the most. Demand for electricity is frequently the dependent 

variable in energy forecasting because it is reliant on production, which is dependent 

on independent variables (Jing-Min & Li-Ping, 2008). (Ruzic, Vuckovic, & Nikolic, 

2000). 

2.5.3 Time Series Forecasting 

Time series forecasting is based on the idea that by modeling patterns in a time series 

plot and extrapolating those patterns into the future, reliable predictions can be made. 

Time series analysis fits a model based on seasonality and trend using historical data as 

an input. In some cases, time series models can be accurate, but they are particularly 

difficult to use and require a lot of historical data. 

2.5.4 Soft Computing based approach  

The amazing capacity of the human mind to reason and learn in an environment of 

ambiguity and uncertainty is paralleled by these strategies. They include techniques 

such as artificial neural networks, fuzzy logic, expert’s system and Machine learning, 

although soft computing theory and techniques were first introduced in 1980s, it has 

now become a major research and study area in. 

2.5.5 Hybrid approach  

This technology employs two single model forecast approaches, resulting in a hybrid 

system capable of performing its own tasks. Because it performs various activities in 
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the system, combining and complementing them to attain a comparable goal, this sort 

of merging is beneficial in both control and pattern recognition. 

Many models, including traditional, Artificial Intelligence (AI), and hybrid models, 

have been developed to study short-term load forecasting. These models, however, have 

a variety of issues, such as sluggish convergence (conventional), high complexity (AI), 

and more. Given this, this work recommends a hybrid strategy that makes use of the 

Adaptive Neuro Fuzzy Inference System (ANFIS). ANFIS is an artificial intelligence 

method that is frequently and extensively used in literature. This method combines the 

advantages of fuzzy logic and artificial neural networks into a single tactic. The ANFIS 

topology combines a strong inference system with learning capability. ANFIS structure 

for Sugeno type can be broken down into five steps. First Stage: This layer is known as 

the fuzzification layer. During this step, the used parameters are referred to as premise 

parameters, and they are rearranged based on output error during each loop.  

Stage 2: It is possible to calculate the output of a fixed node whose input is the sum of 

all incoming signals. Every output from stage two affects the level at which the rule 

triggers in stage three. In a fuzzy system, the AND operator is known as the trigger 

level, and the firing strength is known as the norm operator. 

The third stage is the normalizing layer. For this layer, every firing power is once more 

arranged while taking into consideration each particular weight. 

 Stage 4: Defuzzication, which is a first estimation of the output for the real world. This 

layer is expressed as functions and features adaptive nodes.   

The final stage is the summation neuron, which is a fixed node that computes the final 

output as the sum of all incoming signals.  
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Adopting non-mathematical models as the research's major computing tools has several 

benefits, however, the primary difference is that the ANFIS method corresponds more 

fast with more training data and is capable of producing precise predictions. This benefit 

of soft computing-based load forecasting serves as the impetus for the current research. 

The following are the advantages of ANFIS. 

i. It refines fuzzy IF THEN rules to represent complicated system behavior. 

ii. It does not necessitate the use of human skill. 

iii. Simple to put into practice  

iv. It allows for quick and accurate learning. 

v. It provides required data sets, such as a wider range of membership 

functions to choose from, strong generalization capabilities, and superior 

explanation capabilities using fuzzy rules  

vi. It's simple to combine language and numerical skills while solving 

problems. 

 

Fig 2.6: Block diagram of Hybrid model. 
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The model work is divided into three stages: 

1. Fuzzy set-based classification: classification of training data into fuzzy sets; 

2. Neural network training: Neural network training for each hour of each day for 

which the load is to be projected using the training data for the class to which 

that hour belongs. 

3. Short-term load forecasting: Using a trained neural network, forecasting hourly 

load. 

2.6 Other Studies on Hybrid load demand models 

Hybrid methods integrate two or more procedures to solve some of the shortcomings 

of traditional methods. Many computational intelligence techniques, as well as hybrids 

of CI and traditional procedures, are widely used. As previously stated, particle swarm 

optimization (PSO) was used to determine the order and coefficients of an ARMAX-

model (Huang et al., 2005). In addition to fuzzy neural networks (Liao, 2007), neural 

networks (Bashir and El-Hawary, 2007), and support vector machines (Niu et al., 

2007a), particle swarm optimization has been applied with support vector machines 

(Wang et al., 2007). Genetic or other evolutionary algorithms are frequently used in 

conjunction with artificial neural networks (de Aquino et al., 2007). (El Desouky and 

colleagues, 2001). (2006) (Liao and Tsao). Genetic programming (Eiben and Smith, 

2003) was used directly in load forecasting (Huo et al. 2007). In essence, evolutionary 

algorithms work as demographically focused search or optimization heuristics that, just 

like in the natural world, use recombination, mutation, and selection to find workable 

solutions. Because they are both population-based and randomized algorithms, they 

should be more resistant to local optima convergence and noise (Kyriakides and 

Polycarpou, 2007). Additionally, unlike some older approaches, they do not make the 

same confining assumptions. Genetic programming is an evolutionary algorithm that 
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directly evolves "programs" or functions. Aside from genetic programming, 

evolutionary algorithms and PSO appear to be the most popular methods for selecting 

the best control parameter settings for the main approach. A pattern-base is constructed 

in (Guo & Niu, 2008) that employs classification and regression tree (CART) to identify 

distinct data patterns before using ANN to anticipate the load for each forecasting day. 

A wavelet fuzzy neural network (WFNN) with fuzzified wavelet inputs and a fuzzy 

neural network Choquet-integral (FNCI) as the output is described in (Hanmandlu 

&amp; Chauhan, 2011). WFNN performs better than its competitors. In the study 

(Honghui & Yongqiang, 2012), the model was used to compare load forecasting to the 

conventional ANN, and the results showed that the improved ANFIS has a greater 

accuracy and takes less training time than the ANN. In order to get over discontinuities 

and non-periodicity in load behavior and accuracy, a novel approach was described in 

(Mourad, Bouzid, & Mohamed, 2012). This strategy uses wavelet technology. With 

some data overlap, separate ANFIS (multi ANFIS) are were employed for each season 

of the year in (Souzanchi, Fanaee-T, Yaghoubi, & Akbarzadeh-T, 2010). Switching is 

a technique for preventing unwanted data from entering the system.Temperature and 

the load pattern from the previous day improve the method's accuracy and performance. 

A fuzzy regression was presented by (Hong & Wang, 2013). (Li, Cui, & Guo, 2014) 

employed a single spectrum analyser to decompose and reconstruct power load series 

(SSA). To predict hourly load, the load series is reconstructed and used in an 

Autoregressive (AR) model. An Artificial Neural Network (ANN) is used to handle the 

nonlinear and difficult problem of load forecasting (Bala, Yadav, Hooda, &amp; 

Registrar, 2014). The output of the constructed model is compared to utility data, and 

after numerous ANN architecture and training, a MAPE of 1.24 percent is achieved. 

'tansig' was the hidden layer in the presented multilayer ANN, and 'purelin' was the 
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output layer. A self-organizing map Neural Network is utilized to forecast a short-term 

load in (Valero, Aparicio, Senabre, &amp; Sancho, 2010). The method entailed energy 

pattern identification for the hourly load, which allowed for the determination of 

consumption behavior. A model is developed for predicting short-term electricity load 

(Bahrami, Hooshmand, amp; Parastegari, 2014). It was improved via particle swamp 

optimization and a Grey-model and wavelet-transform combination. The results reveal 

that the association between meteorological variables and load consumption varies 

depending on the season. To forecast short-term electrical load demand, a hybrid 

method is used in (Sudheer & Amp; Suseelatha, 2015). The first model employs triple 

exponential smoothing, whereas the second employs weighted closest neighbor. Both 

models are applied to the deconstructed data using deterministic and fluctuation series. 

The level of competency determines the approach used to project electric load 

requirements. The bulk of Artificial intelligence algorithms achieve a mean absolute 

percentage error (MAPE) of less than 2% with well-processed data. According to (Guo 

& Niu, 2008), at the corporate level, a MAPE of less than 5% for one-day hourly 

forecast is acceptable.).  

2.7 Membership Functions 

A membership function specifies the level of membership that a given input has in a 

set. In the fuzzification and defuzzification stages of a FIS, they are employed to 

translate fuzzy linguistic concepts from non-fuzzy input values and vice versa. The 

degree of the input function of a set is determined by an MF. Additionally, it is a curve 

that specifies how each input point is translated to a membership degree between 0 and 

1. Zadeh et al., 2007 established the notion of MF for the first time. One must take into 

account representation, construction, optimization, adaptivity, innovation, analytical 

structure, continuity, monotonicity, stability, resilience, computational cost, and control 
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performance when choosing which MFs to use. The focus of representation is on how 

to effectively and accurately describe an MF. A MF shape with simpler representations 

is often desirable, especially if the MF's parameters need to be tuned, because a simpler 

representation usually equals faster convergence. It is known as optimization to use a 

method to adjust the MFs' parameters. In general, MF shapes with higher efficiency of 

optimization are used. Expert knowledge and data-centric generation are two methods 

for creating MFs. 

2.7.1 Expert knowledge-based MF 

This Membership function is based on a group of experts deciding on specific intervals 

of a set to divide and hence generate a function (Casillas & Moreno, 2011). Expert 

knowledge-based MFs, on the contrary, it has a number of flaws, including a loss of 

accuracy due to bias (Guillaume, 2001) and a large rise in fuzzy rules for higher-

dimension situations. 

2.7.2 Data-centric techniques. 

This are another way to calculate membership function. Grid partitioning and fuzzy 

clustering are two examples of data-centric MF generation methods. The input space of 

the function is spread uniformly between curves (clusters) in grid partitioning, Figure 

2.7 illustrates this, showing that all curves for all three types of MFs are equally 

dispersed throughout the input space (triangular, Gaussian, and trapezoidal). 

  



41 
 

 
(a)                (b)                                          (c) 

Fig 2.7 (a) Triangular, (b) Gaussian and (c) Trapezoid membership function 

The clustering strategy, which is an unsupervised learning method in which data points 

are closely packed together in clusters according to metrics supplied, is an alternative 

to the grid partitioning method. The most common MFs are triangular and trapezoidal, 

as well as Gaussian, and none of them can be classified as the best form for all FIS 

solutions. The goal, type of data, and experimental results are typically taken into 

consideration while selecting the ideal forms for MFs. A triangular MF is characterized 

by a lower and upper limit, l and u, and a middle value, m, where l m u. (Vargas & M, 

2018), subsequently, The trapezoidal MF shown in Fig.2.9 is defined by a lower limit 

l, an upper limit u, a lower support limit m, and an upper support limit n, where l < m 

< n < u (Kreinovich, Kosheleva, & Shahbazova, 2020), As shown in Figure 2.8, a 

triangular MF is defined by the three parameters l, c, and u, whereas a trapezoidal MF 

is defined by the four parameters l, a, b, and u, as shown in Figure 2.9. 
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Fig 2.8: Triangular Membership function 

 

 
Fig 2.9: Trapezoidal Membership Function 

 

2.7.2.1 Formalization and the Results 

In many practical applications, however, it turns out that using simple triangular or 

trapezoid membership functions is enough to produce a decent quality outcome – for 
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example, a good quality control. A triangular membership function has the following 

form, for some parameters xe and ∆ > 0: (Kreinovich, Kosheleva, & Shabazova, 2018) 

• µ(x) = 0 for x ≤ xe−∆;  

• µ(x) = x−(xe−∆) ∆ for xe−∆ ≤ x ≤ xe;      (6) 

• µ(x) = (xe+∆) −x ∆ for xe≤ x ≤ xe+∆, and 

 • µ(x) = 0 for x ≥ xe+∆.  

Similar to this, the following is the form of a trapezoid membership function for certain 

parameters xe, δ, and ∆, for which 0 < δ < ∆:  

• µ(x) = 0 for x ≤ xe−∆;  

• µ(x) = x−(xe−∆) ∆ −δ for xe−∆ ≤ x ≤ xe−δ;     (7) 

• µ(x) = 1 when xe−δ ≤ x ≤ xe+δ;  

• µ(x) = (xe+∆) −x ∆ −δ for xe+δ ≤ x ≤ xe+∆, and  

• µ(x) = 0 for x ≥ xe+∆ 

From a purely mathematical perspective, many different types of membership functions 

can be created. In the majority of real-world scenarios, straightforward "trapezoid" 

membership functions—for which we use normal approximation to obtain both 

endpoints of the interval—perform effectively. The necessity to ensure that if the values 

x and x ′ are close, then the associated membership degrees (x) and (x′) should also be 

close was one of the fundamental reasons for fuzzy techniques. What is the best way to 

formalize this concept? When x and x ′ are near, i.e., when x ′ = x+x for some small x, 

the difference (x ′) (x) = (x+x) (x) between the respective values of the membership 

function can be written as ′(x)x+o(x) at least for smooth membership functions. As a 

result, needing a small difference is identical to requiring relatively low absolute value 

of the derivative | ′ (x)|. 
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There are two approaches to formalize this requirement: 

• we can demand that the derivative's worst-case value be small, or  

• we can require that the derivative's average – e.g., mean squared – value be small. 

The membership function that results is more in line with the original fuzzy idea as the 

related feature gets smaller. As a result, choosing a membership function with relatively 

low absolute value of the associated feature is sensible for both formalizations. This 

principle, which leads to triangular and trapezoid membership functions, is 

demonstrated in the following workout. 

The Outcomes of Formalization 

Definition 1. Consider two real numbers, x and x. Let us define the worst-case non-

fuzziness degree Dw() for any continuous nearly everywhere differentiable function (x) 

defined on the interval [x, x) as (Kreinovich, Kosheleva, & Shabazova, 2018) 

𝐷𝑊(𝜇′) = 𝑀𝑎𝑥|𝜇′(𝑥)|       (8) 

Proposition 1. All continuous virtually everywhere differentiable functions (x) defined 

on the interval [x, x] for (x) = 0 and (x) = 1 have the following linear function as their 

worst-case non-fuzziness function, and it has the highest worst-case non-fuzziness 

degree. 

 𝜇(𝑥) =
𝑥−𝑥

𝑥−𝑥.                     (9) 

Proposition 2. All continuous virtually everywhere differentiable functions (x) defined 

on the interval [x, x] for (x) = 1 and (x) = 0 have the same worst-case non-fuzziness 

degree, but the following linear function has the lowest value. 

𝜇(𝑥) =
𝑥−𝑥

𝑥−𝑥.        (10) 

Assuming that (x) = 0 for every x [xe, xe+] and (xe) = 1, the most fuzzy membership 

function – i.e., Due to Propositions 1 and 2, the function with the lowest worst-case 

non-fuzziness degree will be the matching triangle function. Similarly, if we suppose 
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that (x) = 0 for all x [xe, xe+] and (x) = 1 for all x [xe, xe+], then the most fuzzy 

membership function – i.e. The related trapezoid function will be the function with the 

fewest possible worst-case non-fuzziness degree. As a result, we have a relatively easy 

explanation for the widespread use of triangular and trapezoid membership functions. 

(2018, Kreinovich, Kosheleva, and Shabazova) As a result, this conclusion provides a 

theoretical explanation for the practical success of trapezoidal membership functions, 

which explains why I included it in the hybrid forecasting system modeling. 

The number of membership functions for each input was taken to be 3 3 3 3 in this 

study. The model was trained using four distinct membership functions in order to 

select the best system with the lowest RMSE error or computed MAPE (Triangular, 

Trapezoidal, generalized bell, Gaussian curve). Trimf was chosen as a starting point for 

this inquiry (Triangular membership function). 

2.8 Fuzzy Inference system  

Sugeno and Mamdani systems are two types of fuzzy inference systems supported by 

the Fuzzy Logic Toolbox. Sugeno FIS was chosen over Mamdani FIS for this model 

because Mamdani excels at human input while Sugeno excels at mathematical analysis. 

Output membership functions used in Sugeno fuzzy inference are either fixed or 

singletons. Sugeno defuzzification uses a weighted average or weighted sum of a small 

number of data points rather than determining the centroid of a two-dimensional area, 

making it more computationally efficient than Mamdani defuzzification (Honghui & 

Yongqiang, 2012). Each rule in the Sugeno system acts in the manner depicted in Figure 

2.10. The diagram depicts how the Sugeno model's rules work. Because the study 

system has four (4) input parameters, each one is given the values w, x, y, and z. 
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  Inputs Input MF 

 

 F1(W) 

 F2(X) 

 F3(Y)                                                W (firing strength) 

 Rule 

weight 

F1(W) F4(Z) 

 Z 

 Output                

Level 

                                            Z=ax+by+c 

Fig 2.10: Representing how rules in sugeno system operates 

 

Two values are generated by each rule. 

a) zi — Rule output level, 

zi=aiw+bix+cyi+diz+ei       (11) 

Here, w, x, y and z are the values of input 1, 2, 3 and 4, respectively, and ai, bi, ci, di, 

and ei are constant coefficients. For a zero-order Sugeno system, zi is a constant 

(a = b = c = d = e = 0). 

b) wi — Rule antecedent yielding a rule with a stronger firing force 

wi=And Method (F1(w), F2(x) F3(y) F4(z))    (12) 

Here, F1(...), F2(...), F3(...), and F4(...) are the membership functions for inputs 2, 3, and 

4, respectively. 

W 

X 

Y 

Z 

 

AND 

Output MF 
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The result of each rule is the weighted output level, which is calculated by multiplying 

wi by zi. 

The system's final output, which is calculated as the weighted average of all rule 

outputs, is given by; 

Final Output = 
∑ 𝑊𝑖𝑍𝑖𝑛

𝑖=𝑙

∑ 𝑤𝑖𝑛
𝑖=𝑙

       (13) 

where n is the number of rules. 

2.8.1 Advantages of Sugeno Fuzzy inference method 

Compared to Mamdani, Sugeno has a number of advantages. 

1. Its calculation is quick. 

2. Compatible with adaptive and optimization approaches 

3. It ensures that the output surface is consistent. 

Sugeno is the optimal model in this case since each rule is linearly dependent on the 

four input variables. The Sugeno method is appropriate for interpolating a large number 

of linear controllers that will be used in a dynamic nonlinear system under various 

operating conditions. Historical loads, for example, have been found to alter drastically 

with changes in meteorological variables such as humidity, wind speed, and 

temperature. As a natural and effective gain scheduler, Sugeno fuzzy inference systems 

are well adapted to the task of smoothly interpolating linear gains throughout input 

space. In a similar vein, a Sugeno system, which interpolates between numerous linear 

models, is particularly well suited for modeling nonlinear systems (Azadeh A. , Saberi, 

Gitiforouz, & Saberi, 2009). As mentioned earlier, there are 4 input variables and 1 

output variable, accordingly. This is because the four inputs were historical load, 

temperature, wind speed, and humidity, which are all characteristics that influence 
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short-term load predictions. The output parameter was set to 1 since just one output was 

required: the expected load. 

2.9 Measure and Testing of Forecasting Performance 

It is vital to choose the suitable criteria for a particular application because there are no 

global performance criteria (Seo, Kwan, & Chai, 2018) .Accordingly, several statistical 

criteria were used to evaluate the validity of the models that were categorized into 

absolute, relative, and dimensionless errors. There are three main indicators to take into 

account, however there are virtually infinite numbers of metrics that can be used to 

measure forecast accuracy and error: There are three main indicators to take into 

account, however there are virtually infinite numbers of metrics that can be used to 

measure forecast accuracy and error:  

1. Forecast Bias 

The difference between predicted and actual demand is known as forecast bias.                        

Forecast Bias = S (Forecast - Actual Demand) 

The graph is used to see if your forecasts tend to over-forecast (i.e., the forecast is higher 

than the actual) or under-forecast (i.e., the forecast is lower than the actual) (i.e., the 

forecast is less). You can use the formula to change this metric to a percentage. 

Forecast Bias Percentage = SForecast / (S Actual Demand) 

Forecast bias is distinct in that it identifies whether your projections are routinely over- 

or under-forecasting, allowing for necessary adjustments. 

2. Mean Average Deviation (MAD) 

The MAD indicator shows the average distance between your forecasts and the actual 

demand. As the MAD metric measures deviation, or error, in units, it is suitable for 

comparing the results of two or more forecast models applied to the same variable (e.g., 
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product, product category, labor). In contrast, it is inappropriate to compare various 

data sets using average deviations because they are arbitrary. Mean Absolute Percent 

Error – and MAD – Mean Absolute Deviation – are two of the most commonly used 

forecast accuracy / error assessments. 

3. Mean Absolute Percentage Error (MAPE) 

Mean Absolute Percentage Error (MAPE) and Root Mean Square Error (RMSE) are 

two terms for the same. MAPE is extremely similar to MAD, with the exception that it 

expresses forecast inaccuracy as a percentage (rather than units) of actual demand. 

MAPE is a simple and easy-to-understand means of quantifying forecast error because 

it estimates the average percentage points your projections are wrong by. 

MAPE = 1/n S|(Forecast - Actual Demand)/(Actual Demand)| 100 

MAPE = 
100

𝑛
∑ |

𝐴𝑡−𝐹𝑡

𝐴𝑡
|𝑛

𝑡=1       (14) 

Where "n" is the absolute number of predictions and "Ft, At" are the expected and actual 

values. The residual errors are measured by MAPE and RMSE, which provide a broad 

picture of the difference between expected and actual values. Except for MAPE, all 

methods have output that is scaled. Because the input data for model estimation, 

preprocessed data, and raw data have various scales (Azadeh A., Saberi, Gitiforouz, & 

Saberi, 2009) (Akdemir & Cetinkaya, 2012), The disadvantage of MAPE is that it does 

not reveal if the forecast is over- or under-forecasting. MAPE approach is utilized in  
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CHAPTER THREE: METHODOLOGY 

3.1 Introduction 

The quantitative research methodologies were utilized to construct and compile a model 

that were used to anticipate short-term electricity demand projections in Uasin Gishu 

County. According to Stake, 2010 a quantitative methodology is appropriate in a study 

that attempts to explain a specific occurrence by analyzing and interpreting data. 

Because the primary goal of this research is to develop a forecasting model using 

previous data on loads and meteorological variables, quantitative data collecting was 

the best option. 

3.2 Experimental analysis on weather variables impact on short-term Load Profile 

Load demand is influenced by a number of factors. These variables factors identified 

as well as their impact on electric power consumption were examined (Muhamma & 

Naeem, 2014) 

1) Effects of time; The load variation follows specific principles depending 

on the. “time point" of the day. 

2) Meteorological factors; weather data; temperature, humidity, wind 

speed and rainfall 

3) Economic factors –state of development of a country, people’s buying 

power, time of use pricing, energy cost 

4) Social factors/political –customer effects/source of random disturbance 

5) Geographical location – Load demand varies based on geographical 

location of consumer. 

The most well-known techniques for assessing the relation between household energy 

use and factors affecting it are correlation analysis and regression modeling. The 

estimation of these components via regression modeling, however, is fraught with 
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uncertainty. The Correlation time series plot of past load of electricity consumption and 

weather data of temperature, humidity and wind speed revealed a trend that positively 

relates with the published literature that load demand alter drastically with changes in 

meteorological variables and with significant impact on short term load profile. The 

analysis was carried out with a different batch of historical data of Load, temperature, 

wind speed, humidity and time gave a consistent trend as illustrated. 

3.2.1 Effects of Time Factor 

Load consumption fluctuates not just between seasons but also all throughthe the day. 

Early mornings, when people are sleeping, have the lowest consumption levels. When 

people get ready for work, consumption gradually climbs between 7:30 and 10:00 a.m., 

between 10:30 and 11:30 a.m., a morning peak is seen, which can be explained by 

domestic tasks. The after-work, dinner, and bedtime activities are highlighted by the 

afternoon and evening peaks. As a result, consumption patterns are influenced by 

consumer behavior and activities. 

 
Fig 3.1: Load Profile 03/01/2020 at Rivatex distribution substation 
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The load variation follows specific principles depending on the "time point" of the day. 

The load is low from 0.00 am to 06.00 am, then begins to rise from 07.00 a.m. to 

approximately 09.00 a.m., flattens till 13.00 a.m. to around 14.30 a.m., and then again 

falls until 17.00 a.m. when they begin to rise at 19.00 a.m. It can be observed that the 

highest load demand occurs between 19.00 and 21.00 hours, while the lowest load 

demand occurs after midnight. This load curve reflects the consumer’s lifestyle as far 

as load demand is concern. The load curves are inherently periodic, as represented on 

figure 3.1 

3.2.2 Combine effects of weather variables (Temperature, humidity, wind speed)  

Relative humidity and temperature have a combined impact on human comfort levels. 

Humidity raises the perception of temperature severity, causing individuals to use more 

cooling equipment. As a result, the hourly load pattern will display a high value during 

humid days. Figure 3.2, shows that temperature and load have An increase in 

temperature led to an increase in the demand for electricity, showing a strong positive 

association as depicted in the figure indicating that when temperatures are high, 

consumers use electricity more for cooling purposes, such as using the refrigerator, air 

conditioner, and fan, and when temperatures are low, there is a negative or inverse 

relationship between temperature and load consumption. 
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Fig. 3.2: A 24-hour Correlation curves at Rivatex Substation in Uasin Gishu. 

 

Apparent temperature is greatly dependent too on wind speed and humidity. The speed 

of the wind lowers the apparent temperature and increases the rate of perspiration 

resulting in a cooling effect when there is low humidity (Muhamma & Naeem, 2014). 

As it is seen in figure 3.2, 3.3 on a windy day in hot weather, electricity usage is reduced 

because fewer cooling appliances are utilized. Therefore, Load demand is low on a 

humid windy day in Uasin Gishu County. 
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Fig. 3.3: Correlation Graph of Actual Load and Weather Variables 

 

The real load curve over time is positively correlated and in line with existing literature 

when compared to the plotted variables of temperature, humidity, and wind speed 

(Muhamma & Naeem, 2014). In light of this, it can be argued that meteorological 

elements such as temperature, humidity, and wind speed have a substantial impact on 

short-term load forecasting. 

3.2.3 Pearson Correlation test  

The Pearson correlation measures the degree to which two variables are linearly related. 

Its values can range from -1 to 1, with -1 being a wholly negative linear correlation, 0 

signifying no relationship, and 1 signifying a wholly positive correlation. One utilizes 

Pearson's r to determine whether there is a relationship between or among variables. 
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Figure 3.4: Correlation among the variables with Load 

 

A moderate positive correlation is shown in the preceding graph. A positive linear line 

can be seen because of the positive slope between variables of temperature and wind 

speed, which indicates that if one variable rises, the other one will as well. This indicates 

a straight proportionality between the changes in the Load when the two variable 

change with coefficient values of +0.47 and +0.42 respectively. In contrast, the scatter 

plots for humidity in the graph are not as near the straight line. 

The correlation is roughly -0.5 and is negative linear. Since the slope is negative, a 

change in Humidity variable will have an inverse relationship to a change in the Load. 
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Table 1: Correlation coefficients of the variables  

  Load Temperature Wind speed Humidity 

Load 1    

Temperature 0.4704977 1   

Wind speed 0.4176507 0.7403399 1  

Humidity -0.507843 -0.9057923 -0.7898062 1 

 

However, strong positive correlation is noted in temperature and wind speed with a 

coefficient of 0.74 and a strong inverse correlation is confirmed between Humidity and 

temperature and between Humidity and Wind speed with a negative coefficient of -0.91 

and -0.79 respectively 

3.3 Data Collection  

A record analysis was used as the main data collection method in this study. According 

to (Bahrami, Hooshmand, & Parastegari, 2014), this is a type of quantitative research 

method in which researchers examine and interpret data from records or documents in 

order to gain a better understanding of the phenomenon under investigation. The 

literature on load forecasting was assessed using high-quality, scholarly-reviewed 

articles from Google Scholar. Historical load data was obtained from the KPLC Rivatex 

substation database in Uasin Gishu County, and weather records of temperature, 

humidity and wind speed were obtained from the website www.timeanddate.com. The 

rationale for this data gathering method is that scheme triangulation may be done from 

a range of articles in order to obtain the best and most fantastic information, and it helps 

cooperation finding that is also related to quality data. 

3.4 Data description and Pre-processing  

Data considered in this study includes hourly loads from January 1, 2019 to June 30, 

2020. The time of day, temperature, humidity, wind speed, and past load are used as 

input variables in the Adaptive Neuro-fuzzy based inference system (ANFIS) to 

estimate the load forecast for the Uasin Gishu county over the next hour to seven days 



57 
 

a s the training, checking, and testing dat., a total of 49860 hourly data for the years 

2019 and 2020 were used in a matrix structure with a percentage proportion of 75:15:15.  

 

Fig 3.4: Training Data for one year 

 

The first five (5) columns, which are te hour of the day, temperature, humidity, wind 

speed, and historical electric loads, respectively, constitute the inputs to the ANFIS 

model. The final column displays the ANFIS model's desired output. Each hour of the 

day has a certain allocated temperature, humidity, wind speed, and past loads set into 

it. 
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Table 2:  Training data set  

 

Table 3: Checking data 

 

Table 4. Testing data sets generated after every one hour. 

 

OUTPUT

Date & Time Load Data Temprature Windspeed Humidity TARGET

1 1/1/2019 0:00 106 14 19 55 214

2 1/1/2019 1:00 78 13 13 63 222

3 1/1/2019 2:00 82 12 11 67 210

4 1/1/2019 3:00 68 12 6 72 232

5 1/1/2019 4:00 78 12 6 72 226

6 1/1/2019 5:00 54 10 13 88 234

7 1/1/2019 6:00 62 10 11 88 230

8 1/1/2019 7:00 98 9 19 87 262

9 1/1/2019 8:00 90 15 13 72 284

10 1/1/2019 9:00 106 17 20 64 302

11 1/1/2019 10:00 102 18 26 52 302

INPUTS

Training Data 75%

OUTPUT

Date & Time Load Data Temprature Windspeed Humidity TARGET

9116 2/11/2020 2:00 268 12 9 72 236

9117 2/11/2020 3:00 264 12 13 77 226

9118 2/11/2020 4:00 264 11 9 67 234

9119 2/11/2020 5:00 264 12 17 67 254

9120 2/11/2020 6:00 268 10 15 71 312

9121 2/11/2020 7:00 290 11 17 72 390

9122 2/11/2020 8:00 330 13 15 63 398

9123 2/11/2020 9:00 378 17 9 59 470

9124 2/11/2020 10:00 410 20 4 43 464

9125 2/11/2020 11:00 398 24 7 27 472

9126 2/11/2020 12:00 414 25 0 28 498

9127 2/11/2020 13:00 416 25 13 26 510

INPUTS

Checking Data-15%

OUTPUT

Date & Time Load Data Temprature Windspeed Humidity TARGET

10635 4/14/2020 9:00 446 20 15 73 490

10636 4/14/2020 10:00 490 21 13 64 520

10637 4/14/2020 11:00 516 22 9 61 522

10638 4/14/2020 12:00 538 23 7 53 528

10639 4/14/2020 13:00 492 24 7 54 538

10640 4/14/2020 14:00 482 24 17 47 502

10641 4/14/2020 15:00 498 21 19 73 518

10642 4/14/2020 16:00 494 20 15 73 522

10643 4/14/2020 17:00 470 19 11 78 464

10644 4/14/2020 18:00 416 19 7 83 420

10645 4/14/2020 19:00 474 18 6 88 468

INPUTS

Testing 15%
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3.5 Model Development and Analysis 

3.5.1 ANFIS-Based Model Design 

For the objective of short-term electricity demand forecasting, MATLAB R2018a was 

used to model the ANFIS (Adaptive neuro fuzzy inference system).  

Type  of MFs No. of  input MFs  No. of Rules No. of Epocs 

Trapezoidal, 

Generalized bell, 

triangular,  

gauss 

3:3:3:3 81 200 

 

Each of the four input parameters contain three membership functions, resulting in 

Eighty-one (81) fuzzy rules. Historical load data (A), temperature (degrees Celsius), 

humidity (percent), and wind speed (km/hr.) are the input parameters. The 

aforementioned specified parameters were used for the ANFIS model's design. 

- Membership function type 

- Membership count function 

-Optimization method   

- Data volume. 

- Number of input variables 

The actions taken by ANFIS include: 

-Receiving the training data;  

-Mapping the input traits to the membership functions;  

-Receiving the training data defining outputs in accordance with the rules;  

-Applying particular rules to the input data from the previous phase; 

 -Mapping output features to output membership functions; and 

 -Estimating the network's overall output as a single valued output. 
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Fig. 3.5: ANFIS structure. 

 

3.6 Data Presentation and ANFIS training 

The desired input/output relationship is learned during training by changing the 

membership function parameters in the desired way. The network is repeatedly shown 

the training data set (epochs) until convergence is reached (usually when root mean 

square error between output and target is minimized). The finished matrix is then saved 

in a computer location and transformed from a.mat to a.dat format that is usable by 

ANFIS using the MATLAB code "dlmwrite ('filename.dat', [variables])".  

 

The testing data set is used for model validation, which is the procedure by which the 

input vectors from input/output data sets on which the FIS was not trained are presented 

to the trained FIS model to see how well the FIS model predicts the matching data set 

output values. You can assess the fuzzy inference system's ability to generalize using 

the testing data set.  



61 
 

 
Fig. 3.6: Layout plot of Trained FIS against the Testing data  

 

The following Ten steps were followed to developed, train and test the ANFIS model 

in this study as illustrated below. 

Step 1. Pre-processing data (prepare the data sets in matrix form) 

Step 2: Define the fuzzy system’s input & output parameters and choose FIS method 

Step 3. Loading training data (39,460) and checking data (6,080) 

Step 4: Define the ANFIS training parameters: Mode of FIS generation, Number of 

Epochs, optimization method, Type and number of MF per input 

Step 5: Training the ANFIS Model. 

Step 6: Load testing data from workspace (6,080) and Plot it against the trained FIS. 

Step 7: Export trained FIS to MATLAB workspace 

Step 8: Load Forecasting: and Load Validation data 1,248 and it against the Trained 

FIS 

Step 9: Validate model accuracy by Computing Mean absolute percentage error.  

Step 10: Plot forecasted values against the actual system load 

The flow chart in Figure 3.7 gives a summary of the proposed forecasting model. 
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Fig. 3.7: A Flow Chart of the proposed model development 

  

The membership function was successfully tuned using the ANFIS modeling criterion 

to reduce output error and increase performance index. The grid partition approach is 

used to construct the rules after the training data has been loaded successfully. A 

method for initializing the structure in a fuzzy inference system is called grid 

partitioning. By listing all potential combinations of the membership functions of all 
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inputs, this approach generates rules. Based on input patterns, the training process 

automatically modifies the membership functions. 

3.6.1 Fuzzy rule generation and membership function selection 

The following commands were used to load the respective data sets into the MATLAB 

RX2018a workspace in matrix form: 

Trainingdata=[];  

Checkingdata=[];  

Testingdata=[]; 

The creation of the rules is one of the key features of a fuzzy model. The construction 

of rules that connect the fuzzy input and the desired output are discussed in this section. 

Figure 3.8 shows the whole structure of fuzzy logic system included input, reasoning 

rules and also the proposed output. The inference rules relate the input to the output and 

every rule represents a fuzzy relation. 

 

Fig 3.8:  Structure of ANFIS 

 

This fuzzy logic designer tool allows creation and test of the fuzzy inference systems 

for simulating complicated system behavior. Fuzzy inference systems (FIS) are systems 

that map inputs to outputs using fuzzy set theory. The program can add, remove, specify 
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input and output variables, as well as the kind of membership functions, in addition to 

adding and removing them. There are a variety of strategies available to create the fuzzy 

inference system, but the study in this case uses Grid partitioning instead of subtractive 

clustering because of the following benefits: Grid partitioning divides input variable 

ranges uniformly and establishes input membership functions to produce a single-

output Sugeno fuzzy system. The fuzzy rule base has a rule for each combination of an 

input membership function. The number of membership functions for each input was 

taken to be 3 3 3 3 and the model trained using four distinct membership functions in 

order to choose the best system with the lowest RMSE error and computed MAPE 

(Triangular, Trapezoidal, generalized bell, Gaussian curve). By inserting the relevant 

data function, the data was loaded into the ANFIS system from the MATLAB 

workspace ready for training  

The training data is then trained against the checking data using a hybrid optimization 

strategy. As previously indicated, this stage uses a neural adaptive learning strategy 

such as the hybrid method, which combines back propagation and the least squares 

method to automatically update parameters. In this design, the number of epochs in the 

model was set at 200. The grid partition approach is used to construct the rules after the 

training data has been loaded successfully. The rule set has( 81 = 34 ) rules because 

there are four inputs and three membership functions. A method for initializing the 

structure in a fuzzy inference system is called grid partitioning. By listing all potential 

combinations of the membership functions of all inputs, this approach generates rules. 
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Fig. 3.9: The Generated Rules by the trained ANFIS model 

 

3.6.2 ANFIS Electricity Demand Forecasting 

The result of the system is generated using the evalfis function. The method aids the 

research in generating an outcome by evaluating the developed fuzzy inference system 

(FIS) against the input (Testing data). 

Thus; Anfis_outputmf1 = evalfis (input, FIS); 

Where: 

 ANFIS output is the name of the function that represent forecasted load values. 

 The input consists of the Testing data that has been loaded into the MATLAB 

workspace but without the output values. 

 The Fuzzy Inference System (FIS) is a memory that stores both training and 

checking data using a membership function. For the remaining four membership 

functions, the process is repeated calculating the result of the testing set using a 

trained adaptive neuro-fuzzy inference system and contrasting it with the 

intended output of the testing data set. The aimed value and predicted value are 
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shown in figure. The Mean Absolute Percentage Error (MAPE) for each 

membership function is then calculated in order to find the Optimal membership 

function with the lowest MAPE value. The system was then modelled for the 

short-term demand forecast using the membership function with the least 

MAPE error in training and computing, as shown in the findings. Once a 

suitable MF has been selected, the trained FIS and Testing data (input variables) 

are evaluated using the evalfis function, and MAPE is computed: 

Anfis_output = evalfis (input, FIS),  

Hence: Anfis_output (prediction) = evalfis (testing data, FIS) 

 

3.7 Evaluating the ANFIS based Model’s reliability 

A model's design serves as an approach to an objective, but its effectiveness is 

determined by the accuracy of the predicted results. The performance of the training set 

and the test set must be fairly similar as one of the main reliability tests for a solid 

system. The performance of the model when put through common procedural and 

statistical tests like the mean absolute percentage error serves as the primary indicator 

of such a model (MAPE). The anticipated outputs are assessed for the ANFIS-Based 

model using the MATLAB toolbox and the command line displayed below. 

• Calling the Neuro-fuzzy Editor by its name, "ANFIS," with the command "anfisedit" 

• Data loading command; Trainingdata=[]; Checkingdata=[]; Testingdata=[]; 

• Use the command: evalfis to assess the output of ANFIS. 

        i.e Prediction made by Anfis output = Evalfis (testing data, FIS) 

The anticipated output values will be acquired from the command line above and will 

thus fit in with the established procedural and statistical measurements. This will be 
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accomplished by using procedural and statistical tools like the Mean Absolute 

Percentage Error (MAPE) Microsoft Excel Statistical package. 

In order to assess the ANFIS approach, equation 14's computation of the Mean Absolute 

Percentage Error (MAPE) was used. The average percentage points of the projections 

inside a set of validation data are estimated using the concept MAPE. One of the key 

factors determining the forecast method accuracy level is the MAPE error, which 

measures how accurate the organization's forecasting approach was. Because it 

calculates the average percentage points of the projections in a data collection, it is an 

easy to use and comprehend method of evaluating forecast error. 

MAPE = 
100

𝑛
∑ |

𝐴𝑡−𝐹𝑡

𝐴𝑡
|𝑛

𝑡=1      

  

Where "n" is the absolute number of predictions and "Ft, At" are the expected 

and actual values. 
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CHAPTER FOUR: RESULTS AND DISCUSSIONS 

4.1 Introduction 

The results obtained in this research confirms the applicability as well as the efficiency 

of the hybrid system to execute short term electricity demand forecast. The model was 

validated with a distinct batch of data for an hour, 24 hours and a week a head prediction 

and the results analyzed and discussed for consistency 

4.2 Model Design and training Details  

The model's input variables are temperature, humidity, wind speed, and historical load 

information, as was mentioned in the part before. Based on these data, an ANFIS 

network with a Sugeno-style inference system has been constructed, which maps the 

input data to the output data and uses these four independent variables to produce output 

data (electricity demand).  

The model was created with the use of MATLAB 2018a. Each input data set was 

subjected to the application of four different membership functions, including 

trapezoidal, triangular, gaussian, and generalized bell. The Model's design parameters 

and training results are as shown in the table. 

Table 5: The Model design details and Training results 

ANFIS Modelling 

  

Membership Functions 

trapmf gbellmf gausmf trimf 

Training RMSE 48.85 49.23 49.45 49.85 

Computed MAPE 0.35949 0.67097 0.56682 
0.5879 

input variables 4 

optimization method Hybrid 

FIS generation method Grid partitioning 

Number of iterations 200 epochs 

FIS method Sugeno 

Tolerance error 0 

Output 1 
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Two (2) sets were chosen to train the network out of the four (4) data sets that were 

available. In order to test the trained network, one (1) set of data was used, and another 

set was used to validate the network. This process makes sure that the intended network 

performs well with any type of data. Root means square error (RMSE) for training the 

data was 485 after the network had been trained. As a result of the low training error, 

the trained network was able to provide highly accurate estimates of separate set of data 

meant to test reliability of the model 

4.2.1 Prediction results per type of membership function. 

The table 5. Shows the evaluated output data obtained for the four different membership 

function applied in the model, the full table of results is attached in appendix 2. 

Table 6: Sample of Predicted results per applied membership function 

              PREDICTED VALUES PER MEMBERSHIP FUNCTION 

TIME ACTUAL 

LOAD 

trimf trapmf gbell gauss 

0:00 366 369.2020325 348.6693 364.3357 356.2205 

1:00 326 349.6344019 330.5988 345.3045 336.7928 

2:00 344 338.5786516 319.7566 334.1122 325.4892 

3:00 312 322.1650841 326.116 327.5587 324.9823 

4:00 320 312.1157867 315.2737 316.954 313.9405 

5:00 344 322.1650841 326.116 327.5587 324.9823 

6:00 362 323.5242477 327.8396 323.1304 324.1892 

7:00 370 344.4376727 350.5974 350.3903 350.3847 

8:00 442 428.0997863 427.3486 428.2072 427.4879 

9:00 504 482.9131286 481.9687 482.7689 484.8494 

10:00 528 506.6091951 498.507 508.0424 506.0644 

11:00 526 511.3173101 503.3588 505.9635 503.9954 

12:00 542 508.038064 505.1615 517.5597 517.5077 

13:00 536 504.246552 511.5156 511.4669 511.2731 

14:00 486 483.0998602 488.5399 485.0191 486.7128 

15:00 518 478.6155758 481.1917 477.6604 479.7069 

16:00 536 477.0250749 496.9887 489.1713 488.3515 

17:00 492 471.1768859 489.3301 481.4525 480.9621 

18:00 482 467.1795261 458.5181 459.844 463.7864 

19:00 502 500.2333054 515.3005 491.5629 494.8387 

20:00 604 580.5817216 418.6778 484.6551 525.9687 

21:00 572 537.0441482 480.7639 500.9402 520.9013 

22:00 506 503.08823 501.9223 501.5845 502.7096 

23:00 434 427.4012745 425.3061 423.4494 424.6639 
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Using the model's four different membership functions, which are described below, the 

mean absolute percentage error was calculated and determined. You may assess how 

well the models match the data by looking at the models training RMSE index, which 

is automatically calculated between the desired and output values and then averaged 

over all the data. Furthermore, it can give information regarding the model's future 

consistency. ANFIS's ability to make better predictions on data for which there has been 

no prior training is demonstrated by the fact that the RMSE values associated with the 

suggested model are quite low for the trapezoidal membership function, with a value of 

48.85. 

Triangular (trimf) = 0.5879      

Trapezoidal (trapmf)=0.35949 

Gaussian (gaussmf)=0.56682 

General bel shaped (gbellmf)l = 0.67097 

Since the Trapezoidal membership function had the lowest MAPE value, its generated 

FIS was chosen to train the input/output data pattern because it minimizes the RMSE. 

The same generated FIS was loaded from workspace and plotted against testing data to 

test the model, as shown in Figure 4.1. The similarities between the curves, as can be 

observed, suggest that the model has an exact prediction that fits the actual data. 
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Fig 4.1: A 24-hour Prediction Output per MF used in the ANFIS model. 

4.3 Models Validation  

4.3.1 Hourly prediction results 

To verify the model reliabilty, a separate data set of 1248 data points was employed, 

which was evaluated to the trained FIS using the evalfis function, resulting in 

Forecasted results. 

After the ANFIS network training is completed, next hour load forecast for the 

upcoming hours can be calculated from the generated FIS. For example, if we want to 

forecast the load at 1400hrs of June 29th, 2020. One set of inputs is given as follows:  

 Temperature = Tjune/29/2020/1400hrs 

 Humidity = Hjune/29/2020/1400hrs 

 Current--hour load = CL1300hrs  

 wind speed = Wjune/29/2020/1400hrs 

 Time of the day = TOD 1400hrs  
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With the help of the aforementioned notion, the predicted load for the following hour 

was calculated for all 1248 validation data points for 2020 as well as for a few chosen 

days. Using the results, the mean absolute percentage error (MAPE) was also 

determined. 

Table 7: Models prediction results of Monday 29/06/2020 

Time Actual load Predicted Values 

0:00 302 273.1509408 

1:00 274 257.600437 

2:00 260 255.2973447 

3:00 260 253.9637516 

4:00 260 255.2973447 

5:00 266 256.7923795 

6:00 290 269.1527781 

7:00 348 328.8149748 

8:00 406 384.8333902 

9:00 464 449.7864242 

10:00 476 474.038521 

11:00 492 479.1442256 

12:00 496 484.2499302 

13:00 484 477.6253169 

14:00 456 453.9980676 

15:00 496 478.6685273 

16:00 468 469.7682382 

17:00 448 450.8245226 

18:00 424 429.9842984 

19:00 492 476.8765476 

20:00 548 529.3728987 

21:00 506 504.0862314 

22:00 434 437.7745278 

23:00 350 364.9495632 
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Table 8: Hourly forecasting results of Wednesday 17.06.2020   

WEDNESDAY 17/06/2020 

Time Actual load Predicted Values 

0:00 368 362.8655668 

1:00 318 326.9157523 

2:00 332 342.9516874 

3:00 312 314.6005598 

4:00 316 321.5704406 

5:00 328 342.9516874 

6:00 350 357.7618253 

7:00 374 368.3874248 

8:00 420 434.3609778 

9:00 500 481.790223 

10:00 534 509.4422696 

11:00 520 504.541897 

12:00 516 509.1810124 

13:00 520 506.5242985 

14:00 496 474.6136447 

15:00 538 494.4157705 

16:00 548 510.9255252 

17:00 514 477.8218635 

18:00 456 470.6416341 

19:00 492 480.7921166 

20:00 618 589.8122141 

21:00 576 535.3388644 

22:00 500 489.8709569 

23:00 408 427.5176497 

 

Plotting the actual load versus the ANFIS load for values from tables 9 to 10 is shown 

in the graph of Figures 4.2 to 4.6. 
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Fig. 4.2: The Model Forecast results of Monday 29.06.2020 . 

 

 

Fig. 4.3: The Model Forecast results of Monday 17.06.2020 . 
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Table 9: Hourly forecasting results of Thursday 18.06.2020 and 25.06.2020  

                                      Model Forecasted results 

THURSDAY 18/06/2020  THURSDAY 25/06/2020 

Time Actual 

load 

Predicted 

Values 

 Time Actual 

load 

Predicted Values 

0:00 350 362.50103  0:00 366 372.1130018 

1:00 330 317.9567657  1:00 338 347.1155677 

2:00 310 330.4291597  2:00 290 334.6431737 

3:00 288 312.611454  3:00 276 320.3890091 

4:00 312 315.9391928  4:00 308 334.6431737 

5:00 316 326.6298162  5:00 298 320.3890091 

6:00 326 348.7497824  6:00 314 336.4249443 

7:00 386 371.2921405  7:00 374 364.4954247 

8:00 444 410.2993592  8:00 444 397.8854054 

9:00 468 487.8414242  9:00 488 470.369241 

10:00 506 510.7543636  10:00 504 496.5659038 

11:00 522 500.4480189  11:00 524 501.9248968 

12:00 512 497.4149103  12:00 510 520.2651331 

13:00 510 500.0934233  13:00 518 506.1451313 

14:00 458 487.4212568  14:00 486 498.9948216 

15:00 522 512.7538232  15:00 512 512.530631 

16:00 508 527.0769588  16:00 526 501.3640697 

17:00 476 496.9536583  17:00 476 503.096106 

18:00 470 445.2855279  18:00 462 478.7925962 

19:00 520 475.0835942  19:00 502 485.0418129 

20:00 580 611.1227645  20:00 538 586.5998802 

21:00 528 561.8628368  21:00 500 536.304358 

22:00 464 485.0525476  22:00 424 474.0757724 

23:00 372 404.241177  23:00 348 409.0753221 

 

A whole week projection, as shown in figure 4.4, shows a nearly same Load curve flow, 

meaning that the error rate is quite low and that the model produced a better outcome. 
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Fig. 4.4: A Week plot curve of forecasted load values against the actual load 

 

The link between inputs and outputs achieved by the created ANFIS system is depicted 

in the 3-D surface plot produced by the designed ANFIS model in figure 4.5. The link 

between the input parameters of historical electric load, temperature, humidity, and 

wind speed and the output, which is the forecasted load for the next hour. As seen in 

this graph, there is a tendency for the load to be high at somewhat high temperatures. 

 

Fig. 4.5: The surface plot the ANFIS Output 
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4.4 Discussion 

This study selection criterion of input variables based on a time series correlation plots 

(Pearson’s correlation analysis) and the huge amount of hourly data availed for training 

the model enhanced the performance of the ANFIS model. 

Table 10: Pearson’s correlation analysis 

  Load Temperature Wind speed Humidity 

Load 1    

Temperature 0.4704977 1   

Wind speed 0.4176507 0.7403399 1  

Humidity -0.507843 -0.9057923 -0.7898062 1 

 

A positive correlation with load was revealed among the variables of temperature, wind 

speed while an inverse correlation was noted for Humidity variable of +0. 5, +0.4 and 

–0.5 respectively. Accordingly, the approach of including both training and checking 

data in training the ANFIS system shortens the time of training due to enhanced learning 

(mapping of input and output vectors). 

The ANFIS modeling approach utilized in this work exemplifies why choosing the 

membership function to use, together with the volume of input data, significantly 

increases the validity of the forecasting model developed. This study considers 

modeling ANFIS with a trapezoidal Membership function because, in comparison to 

ANFIS models based on triangular MF, generalized bellvMF, and gauss MF, which had 

MAPE values of 0.59, 0.57, and 0.67 respectively, it provided a forecast result with a 

minimum error of MAPE value 0.35. 

The actual load deviates just slightly from the expected load, as seen in figures 4.2 to 

4.4. The aforementioned Matlab command line that was presented in 4.1 was used to 

determine the predicted load values in tables 6 to 8. All 1248 validated data points were 
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analyzed in order to assess the model's validity. These research employed mean 

absolute percentage error as the statistical metrics (MAPE). 

The models' accuracy to predict short-term load demand with a lead time of 1hr - 7days 

is demonstrated by a Mean absolute percentage error (MAPE) result of 0.0977%, which 

is based on estimations of the average percentage points of the projections in a data set 

of 624 data points of actual and forecasted values from a validation data. 
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CHAPTER FIVE: CONCLUSION AND RECOMMENDATIONS 

5.1 Conclusion  

Modeling and forecasting electricity consumption is crucial in the power industry, 

especially when implementing sustainable energy policies. When demand grows at a 

faster rate, accurate electricity demand forecast is critical. A model that can accurately 

forecast the next hour's load should therefore be designed. According to input factors 

including the time of day, temperature, humidity, wind speed, and previous load, an 

ANFIS-based model was developed in this study project to forecast the next hour load 

to 7 days. 

The large amount of hourly data available for training the model and the time series 

correlation plots-based selection criteria of input variables used in this study both 

improved the performance of the ANFIS model. Temperature and wind speed showed 

a positive correlation with load, but humidity showed an inverse correlation (+0. 5, 

+0.4, and -0.5, respectively. 

Utilizing MATLAB® R2018a, the ANFIS-based model was developed. According to 

the results of this study, the ANFIS-based model offers an improved modeling tool for 

forecasts. Although there are several benefits to non-mathematical models, the 

fundamental advantage of the ANFIS technique is that it corresponds more quickly. In 

contrast to ANFIS models based on triangular MF, generalized bell MF, and gauss MF, 

which had MAPE values of 0.59, 0.57, and 0.67 respectively, it provided a forecast 

result with a minimum error of MAPE value 0.35. This study therefore considers 

modeling ANFIS with a trapezoidal Membership function. Based on estimation of the 

average percentage points of the projections in a data set of 624 data points of actual 

and predicted loads from a separate set of validation data, a final MAPE result of 0.0977 

illustrates that the model achieved the expected accuracy to predict short-term 
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electricity demand with a lead time of 1hr - 7day. However, hourly load data for one 

grid was obtained and utilized to offline train and test the model. To ensure that the 

model is suitable for a range of load patterns, it must be validated using data sets from 

other grids. 

5.1.1 Limitations of the study 

1. The model underwent offline testing and instruction. 

2. The information on hourly load was derived from a single grid. The models 

developed here must be tested on data sets from other grids in order to 

demonstrate their suitability for use with various load patterns. 

3. This thesis bases all of the aforementioned accomplishments on simulations and 

experiments, which are used to make its findings. No mathematical proofs were 

offered to justify the same. 

4. The conclusions of this thesis need to be confirmed in more application fields 

in order to increase the robustness and generality of this approach. 

5.2 Recommendation  

The load variation follows specific principles depending on the "time point" of the day. 

For example, the daily load curve for Uasin Gishu county from Rivatex distribution 

substation showed that the loads begin to rise at 6 a.m. and peaked around 9 a.m., after 

which they remained stable at a low level until around noon to 2 p.m. when they begin 

to rise again, therefore, for higher accuracy of the short-term forecasting, I suggest that 

the day of the week component be further studied in future studies as one issue that 

should be considered. For instance, weekends and holidays are times of the week when 

loads may be high due to the fact that most people are at home or low due to the closure 

of the majority of energy-intensive businesses. 
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In order to produce a more accurate estimate of future demand, further research on this 

subject can incorporate additional data into the network, such as sky cover and rainfall. 

In summary, the proposed hybrid model based on Adaptive Neuro-Fuzzy Inference 

System is recommended for more accurate short-term electricity demand forecasting in 

both the residential and industrial sectors of Uasin Gishu County. 
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APPENDICES 

Appendix 1: Training data, checking data and Testing data 

Training data, Checking data, Testing data.xlsx 

 

Appendix 2: Predicted values Per Membership Function 

Testing data & MAPE Results per MF.xlsx 
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