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ABSTRACT

Cancer is an event associated with space and time. Counties relative risks esti-
mates can be obtained using Bayesian hierarchical models. The general objective
of the research was to obtain county based estimates through Bayesian hierarchi-
cal modeling of cervical, oesophageal and lung cancers in Kenya's counties from
2015 to 2016, period which complete data was available. Speci�c objectives were:
to model over-dispersion and conduct spatial correlations tests in order to model
three cancer cases distribution in Kenya' counties; to model cervical cancer cases
using Poisson-Gamma and spatial-temporal models; to model the e�ects of co-
variates on spatial-temporal distribution of oesophageal and lung cancer cases in
Kenya's counties. The data was obtained from National Cancer Registry (NCR)
which carried a 2�year retrospective study in ten counties. Cervical cancer cases
were 1064, oesophageal cancer cases 1599 while lung cancer cases were 256. A
simple Poisson log-linear model dispersion parameter for cervical was 31.202, oe-
sophageal was 49.241 and lung cancer cases was 6.134 which were greater than
1 indicating over dispersion. Spatial correlation tests conducted for the three
cancers revealed that there was no spatial auto correlations of the residuals since
for cervical cancer p-value=0.2104>0.05, oesophageal p-value= 0.4155>0.05 while
for lung cancer p-value=0.4120>0.05. The model revealed that the highest cervi-
cal cancer relative risk was in Embu=7.92 and lowest in Bomet which was 1.53.
The smoking and alcohol use interaction oesophageal cancer model revealed that
Bomet=11.16 had the highest risk while Kiambu had the lowest relative risk 0.6.
Smoking and alcohol use were signi�cant risk factors of oesophageal cancer. The
multiplicative e�ect of smoking was 1.012, thus 1.2 % higher to smokers compared
to non-smokers. Alcohol use was 1.0346 thus 3.5 % higher to alcohol users. The
interaction model revealed that oesophageal cancer was 16.88 % higher to alcohol
users while it was 4.60 % higher to smokers. The interaction model for lung cancer
revealed that in Nairobi=5.97 had highest risk while lowest in Kakamega=0.1. In
the lung cancer model the multiplicative e�ect of smoking was 1.4021, indicating
40.21 % higher to smokers as compared to non-smokers, 1.3689 for alcohol use
variable that is 36.89 % higher to alcohol users. In interaction model the e�ect
was 7.86 times higher for smokers. In conclusion, simple Poisson regression mod-
els were not appropriate to model the three cancers due to over dispersion nature
of the data sets. The spatial correlation tests revealed that there was no spatial
auto correlation for the three types of cancer. Application of Bayesian hierarchical
models enabled generation of relative risks and identi�cation of the risk patterns
of various counties, a major milestone since previous studies focused on speci�c
regions. We recommend that, since all counties had cervical cancer relative risk
greater than 1, step up screening and avail vaccines to the appropriate groups. To
mitigate oesophageal cancer, counties should create awareness on e�ects of smok-
ing and alcohol use. In case of lung cancer, counties with relative risks greater than
1 should disseminate information elaborating the e�ects of smoking and alcohol
use.
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CHAPTER ONE

1 INTRODUCTION

This chapter will focus on introduction, background of the study, statement of the

problem, justi�cation of the study, hypotheses and the research objectives.

1.1 Background of the study

Cancer is a generic term for a large group of diseases characterized by the growth

and spread of abnormal cells beyond their usual boundaries that can then invade

adjoining parts of the body and/or spread to other organs. Cancer arises when

normal cells transforms into tumor cell in various stages from per-cancerous lesion

to a malignant tumour. According to the International Agency for Research on

Cancer (IARC), the global cancer burden is estimated to have risen to 18.1 million

new cases and 9.6 million deaths in 2018. One in 5 men and one in 6 women world-

wide develop cancer during their lifetime, and one in 8 men and one in 11 women

die from the disease. In Africa, Cancer is an emerging health problem where in

2012 new cancer cases were about 847,00 and 519,00 deaths, three quarters of

those deaths occurred in sub-Saharan region (Parkin et al., 2014).

In Kenya cancer cases and mortality rate has risen drastically to worrying levels.

In 2018, cancer was ranked as the third leading cause of deaths in Kenya after

infectious and cardiovascular diseases. The annual incidence of cancer in Kenya

was estimated to be 47,887 new cancer cases, with an annual mortality of 32,987 in

2018. Among men, prostate, oesophageal and colorectal were the leading cancers,

while among women, breast, cervical and oesophageal cancers were most common.

The leading cause of cancer death in Kenya was oesophageal cancer contributing

13.2 % (4,351 deaths) of cancer mortality. According to data from World Health

Organization in 2020, in Kenya breast cancer was the most prevalent followed by

cervical cancer among women.
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Studies to analyze its dynamics may aide in implementation of strategies and in-

terventions to modify risk behaviors among the people. Mapping cancer rates is

important for visualizing spatial or spatial- temporal patterns that may help iden-

tify di�erences in disease burden for di�erent geographic locations while locating

areas with high rates of cancer. Identi�cation of high disease burden areas will help

in prioritization of cancer control e�orts and strategies.According to the Interna-

tional Agency for Research on Cancer Bray et al. (2018), 11 infectious agents have

been classi�ed and established carcinogenic agents in humans namely: Helicobac-

ter pylori, Hepatitis B Virus (HBV), Hepatitis C virus (HCV), Human Immunod-

e�ciency Virus type 1 (HIV-1), Human Papillomavirus (HPV), Epstein-Barr virus

(EBV), Human Herpes Virus type 8 (HHV-8; also known as Kaposi's sarcoma

herpes virus), Human T-cell Lymphotropic Virus type 1 (HTLV-1), Opisthorchis

Viverrini, Clonorchis sinensis, and Schistosoma haematobium. Other virus asso-

ciated cancers include: Kaposi's sarcoma (caused by human herpes virus 8), adult

T-cell leukemia (caused by human T-cell leukemia virus type 1), and lymphomas

caused by Epstein Barr virus (Epstein et al., 1964).

Kenya is divided into 47 administrative units (See Figure 1.1) referred to as coun-

ties and covers an area of 582,650 km square with an population of 47.5 Million

people in 2019. The study sought to create a spatial-temporal models to analyze

the spatial dynamics of cancer cases in Kenya from data obtained in two years

(2015 and 2016) by Nairobi Cancer Registry (NCR).
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Figure 1.1: Kenya Counties

1.2 Statement of the problem

Events that occur anywhere are associated with location and time thus spatial and

temporal components of these events can be combined to demonstrate aspects re-

lated to when and where these events occurred. Cancer is also an event associated

with space and time therefore analysis can be done on cancer data to determine

its spread, patterns and trends to come up with ways to halt its spread (Mwangi,

2014). Kenya is lagging behind due to lack of nationwide data for all cancer cases

since it has only two cancer registries namely; Nairobi Cancer Registry (NCR)

and Eldoret Cancer Registry (ECR). This has grossly hindered the cancer preva-

lence studies (Mwangi, 2014). Non-availability of substantive county based data

hinders awareness programs, establishment and accessibility of cancer screening
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and treatment facilities. Incidence rates available does not re�ect county based

estimates they are inadequate and non-informative on distribution of cancer cases

in counties in Kenya. Availability of county-based estimates and spatial-temporal

distribution of cancer cases will aide development of targeted county strategies,

promote awareness, and implementation of universal coverage of key cancer con-

trol interventions which will be vital in halting and reducing the rising burden of

cancer in Kenya.

1.3 Justi�cation of the study

According to Mathers et al. (2005)national estimates of cancer incidence and mor-

tality are predominantly based on data from population-based cancer registries

(PBCR), most of which cover relatively limited sub-national populations. Can-

cer prevalence studies require detailed data from all over the country about the

cancer types, age, gender, location and status of health facilities dedicated to can-

cer cases. The study sought to develop appropriate spatial-temporal models to

provide estimates of the distribution of cancer cases in counties neighbouring the

counties where the cancer data is available.

1.4 Objectives

1.4.1 General objective

The general objective of the research was to obtain county based estimates through

Bayesian hierarchical modeling of cervical, oesophageal and lung cancers in Kenya's

counties from 2015 to 2016.

1.4.2 Speci�c objectives

1. To conduct over-dispersion test and model spatial correlations for cervical,

oesophageal and lung cancer cases distribution in Kenya's counties.
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2. To model cervical cancer cases using Poisson-Gamma and Spatial-temporal

models.

3. To model the e�ects of covariates on spatial-temporal distribution of oe-

sophageal and lung cancer cases in Kenya's counties.

1.5 Research Questions and Hypotheses

1. Hypotheses for the �rst objective

H0: Cervical, oesophageal and lung cancer cases are not over dispersed.

H1: Cervical, oesophageal and lung cancer cases are over dispersed.

H0: Cervical, oesophageal and lung cancer cases are randomly disbursed.

H1:Cervical, oesophageal and lung cancer cases are not randomly disbursed.

2. What are the relative risks of cervical cancer cases in counties in Kenya?

3(a) Hypotheses for oesophageal cancer

H0: Smoking is not a risk factor for oesophageal cancer.

H1: Smoking is a risk factor for oesophageal cancer.

H0: Alcohol use is not a risk factor for oesophageal cancer.

H1:Alcohol use is a risk factor for oesophageal cancer.

H0: Smoking is a not a signi�cant risk factor for oesophageal cancer when con-

trolling for alcohol use.

H1:Smoking is a signi�cant risk factor oesophageal cancer when controlling for

alcohol use.

3 (b) Hypotheses for lung cancer.

H0: Smoking is not a risk factor for lung cancer.

H1: Smoking is a risk factor for lung cancer.

H0: Alcohol use is not a risk factor for lung cancer.

H1: Alcohol use is a risk factor for lung cancer.

H0: Smoking is a not a signi�cant risk factor for lung cancer when controlling for

alcohol use.

H1: Smoking is a signi�cant predictor for lung cancer when controlling for alcohol



6

use.

1.6 Signi�cance of the study

A better characterization of the county di�erences in cancer distribution would

guide the awareness campaign, detection programs and enable e�ective treatment

of detected cases reducing cancer mortality rates and su�ering of the ailing pa-

tients. The study sought to add to the existing body of knowledge which would

inform the National Government and County Governments in policy formulation

to address the cancer burden in Kenya.

1.7 Delimitation of the study

This study was carried out using cancer cases data available in some counties in

Kenya. The data was obtained from National Cancer Registry which in 2015 and

2016 conducted a county based surveillance study of all reported cancer cases in

hospitals in various counties in Kenya.

1.8 Limitation

In this study, main limitation was obtaining adequate data since data available

was for ten counties out of forty seven.
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CHAPTER TWO

2 LITERATURE REVIEW

2.1 Introduction

This chapter provides the literature in relation to over-dispersion model, spatial

correlation test and Bayesian hierarchical models. Further, it provides literature

of the previous studies on cervical, oesophageal and lung cancers.

2.2 To model over-dispersion and conduct spatial correla-

tions tests for cervical, oesophageal and lung cancer

cases distribution in Kenya's counties.

The number of occurrence of any event within a speci�ed time can be described

as counting data. In the case of the dependent variable is a count and researcher

is interested in how this count changes as the explanatory variable increases count

data regression model is used (Esin, 2018).Counts are positive and for rare events

the Poisson distribution instead of normal distribution is appropriate. Simple

Poisson log-linear model has been applied widely to model count data. It is suit-

able for modeling equi-dispersed (i.e an equal mean and variance) distribution.

However, the model is not applicable to data set which contains substantial over

dispersion. According to Esin (2018)in many instance real data do not adhere to

this assumption (over- or under-dispersed data) and the inappropriate imposition

of Poisson regression model may underestimate the standard errors and overstate

the signi�cance of regression coe�cients. Therefore, assessment of presence of over

or under dispersion in the data set should be conducted by �rst computing the

residuals from a simple Poisson log-linear model before proceeding to model the

diseases.

Surveys are designed for obtaining reliable estimates in the whole population or
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in some sub-populations called planned domains. However, it is quite common

in practice to use survey data for estimating indicators of non-planned domains

(small areas) with small samples sizes. There is a growing demand for estimates

for smaller areas or domains. Such estimates are now routinely calculated using

the so-called indirect or model-based approach. This uses auxiliary information

for the small areas of interest and has been characterized in the statistical lit-

erature as �borrowing strength� from the relationship between the values of the

response variables and the auxiliary information(Saei and Chambers, 2005). Small

area estimation deals with inference problems for this kind of domains. In these

cases, direct estimators might have large sampling errors. Direct estimators can

be improved by assuming regression models that link all the sample data by intro-

ducing a relation between the variable of interest and a set of explanatory variables

(Benavent and Morales, 2016).

Gómez-Rubio et al. (2010) noted that,when some areas are not included in the

survey, it is still possible to provide estimates for those areas by relying on the

�tted Bayesian models (using in-sample areas) and their spatial correlation to

o�-sample areas. Area level covariates are still required in all areas to compute

the small area estimates. As expected, these estimates are less accurate than in

the case with survey data in all areas but, despite the loss of performance, the

results are still reasonable and have lower bias and better coverage than traditional

synthetic estimates. When data are very sparse, spatial random e�ects can be

incorporated at a regional level, so that larger-scale spatial patterns are modeled.

This can help to cope with large amounts of areas with no direct observations and

provide reliable results.

Having only a small sample (and possibly an empty sample) in a given area, the

only possible solution to the estimation problem is to borrow information from

other related data sets (Chandra, 2003). The methods used for small area esti-

mation can be divided accordingly by the related data sources that they employ,

whether cross - sectional (from other areas), past data or both. Based on the
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level of auxiliary information available methods can also be divided into area level

and unit level small area models(Rao, 2003).The spatial (and spatial-temporal)

modeling literature centers around two main data types: areal (or lattice) and

point-referenced (or geo-statistical). Point-referenced data structures are based

on the exact geographical location of an observation being recorded, generally in

the form of latitude and longitude co-ordinates (Anderson and Ryan, 2017). This

form of data is commonly used for monitoring environmental outcomes, where

spatial modeling approaches can be used to characterize the nature of an environ-

mental outcome across the entire study region based on a �nite set of monitoring

stations. According to Lee et al. (2018)areal databases provide data on a set of K

areal units for N consecutive time periods, yielding a rectangular array of K Ö N

spatial-temporal observations. The motivations for modeling these data are varied,

and include estimating the e�ect of a risk factor on a response see Wake�eld (2007)

and Lee et al. (2009), identifying clusters of contiguous areal units that exhibit

an elevated risk of disease compared with neighboring areas (see Charras-Garrido

et al. 2012, and Anderson et al. 2014), and quantifying the level of segregation in

a city between two or more di�erent groups (see Lee et al. 2015).

Areal data structures are based on the study region being partitioned into a set

of non-overlapping sub-regions known as areal units�for example, a county being

divided into a set of postcode areas. Areal data are commonly used in health

applications, where con�dentiality issues prevent the exact geographical locations

of disease cases being recorded. Instead, only the patient's areal unit is recorded,

and the data consists of an aggregated count for each individual areal unit (An-

derson and Ryan, 2017). However, a common challenge when modeling areal

data is that of spatial-temporal auto-correlation, namely that observations from

geographically close areal units and temporally close time periods tend to have

more similar values than units and time periods that are further apart. Temporal

auto-correlation occurs because the data relate to largely the same populations in

consecutive time periods, while spatial auto-correlation can arise for a number of
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reasons.

The �rst is unmeasured confounding, which occurs when a spatially patterned risk

factor for the response variable is not included in a regression model, and hence

its omission induces spatial structure into the residuals. Other causes of spatial

auto-correlation include neighborhood e�ects, where the behaviors of individu-

als in an areal unit are in�uenced by individuals in adjacent units, and grouping

e�ects, where groups of people with similar behaviors choose to live close to-

gether(Lee et al., 2018). The spatial-temporal models allow for spatial-temporal

auto-correlation via random e�ects, which capture the auto-correlation in the dis-

ease data Lawson (2013a). In this study spatial correlation test was conducted to

establish the nature of correlation.

2.3 To model cervical cancer cases using Poisson-Gamma

and spatial-temporal models.

A normal Poisson model does not account for extra variance, to take into ac-

count the extra variance a Poisson-Gamma model is applicable as an alternative.

A Poisson-Gamma distribution can be seen as a mixed model, in which gamma

distributed random-e�ects for each area are consideredNeyens et al. (2012). The

Bayesian inference combines the prior distribution on model parameters and the

data likelihood to derive the posterior distribution which summarizes the behav-

ior of the parameters in light of the observed data. According to Lawson (2013a),

Bayesian hierarchical models that incorporate time and area e�ects provide addi-

tional insights in terms of the interpretability and similarity based on the neigh-

borhood structure of areas and adjacent times. However, incorporating time and

area e�ects results in increasingly complex model structures which can substan-

tially increase the computational time required to estimate these models. Mapping

county level estimates provides greater understanding of the trends and variabil-

ity in spatial-temporal patterns of less common causes of mortality outcomes not

possible by examination of direct national and state estimates Schaible (1996) or
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by examination of direct county level estimates.

There are many examples of Bayesian Hierarchical models for small samples and

data with excess zeros in the literature. Recently, these methods have gained pop-

ularity in epidemiology and public health studies. Khana et al. (2018a)examined

existing hierarchical Bayesian spatial-temporal models that account for extra un-

certainty, inherent spatial auto-correlation, and the time dependent structure of

the data to produce smoothed model based yearly county level Suicide Rates in

the software R-INLA. Myer et al. (2017) used a Bayesian Integrated Laplace Ap-

proximation and Stochastic Partial Di�erential Equations (SPDE) method to �t a

spatio-temporal model of West Nile Virus (WNV) infection rates in Su�olk County,

Long Island, mosquitoes. Oleson and Wikle (2013) used a spatial-temporal hurdle

model based on a Gaussian latent process to predict infectious disease outbreak

risk via migratory waterfowl vectors.Cnaan et al. (1997) used the INLA approach

to implement Bayesian spatial and spatial-temporal zero-in�ated models.Other

popular models include the Besag-York-Mollié (BYM) model for disease-mapping

with extensions for regional data Besag et al. (1991), continuous-indexed Gaus-

sian models (Yue and Wang, 2014,Diggle and Lophaven, 2006). Cervical cancer

is an event associated with space and time, consequently counties relative risks

estimates can be obtained using Bayesian hierarchical models even in if there are

no co-variates.

Among women cervical cancer was the fourth prevalent cancer worldwide (Vidoni

et al., 2021). Earlier a study by (Bray et al., 2018) revealed that cervical cancer

was the second leading cause of cancer death contributing 10% (3,266 deaths)

while breast cancer was third with 7.7% (2,553 deaths). Human Papillomavirus

(HPV) infection which is transmitted through direct contact is the cause of almost

all cervical cancers (Fontham et al., 2020). According to (Schaafsma et al., 2015)

sexually transmitted HPV genotypes, notably HPV16 cause virtually all cervical

cancers world-wide if not controlled immunologically or by screening. The control

strategies for cervical cancer includes early screening, vaccination against HPV,



12

treatment of per-cancerous lesions, diagnosis and treatment of invasive cervical

cancer and palliative care (WHO, 2020). Cervical cancer screening aides in detec-

tion of abnormalities which can be treated and pre-cancers which may progress

into actual cancer thus reducing cervical cancer incidences, deaths and morbidity

related to treatment(Schaafsma et al., 2015).

2.4 To model the e�ects of covariates on spatial-temporal

distribution of oesophageal and lung cancer cases in

Kenya's counties.

The use of Bayesian models in the areas of disease mapping, epidemiology, and

small area health applications is well established. Lee (2013) outlined that the

set of areal units on which data are recorded can form a regular lattice or di�er

largely in both shape and size, with examples of the latter including the set of

electoral wards or census tracts corresponding to a city or county. In either case

such data typically exhibit spatial auto-correlation, with observations from areal

units close together tending to have similar values. A proportion of this spatial

auto-correlation may be modeled by including known covariate risk factors in a

regression model, but it is common for spatial structure to remain in the residuals

after accounting for these covariate e�ects.

Speci�cally, in a Bayesian spatial-temporal model, the spatially structured and un-

structured random e�ects are used to model the inherent spatial auto-correlation

in the data, the correlated and uncorrelated time e�ects model the time dependent

structure of the data, time varying covariates model the extra uncertainty in the

data due to measured confounders, and the space-time interaction e�ects model

the residual spatial-temporal variation that are unaccounted for by the county and

time random e�ects to produce reliable model based yearly county level estimates

(Khana et al., 2018a). The small-scale geography (e.g. county level) data for a

less common cause of mortality outcome, in general, often exhibits strong spatial
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auto-correlation. According to Besag et al. (1991) time varying covariates can ac-

count for some of the spatial and temporal auto correlation. According to Lawson

(2013a), the residual spatial auto-correlation is accounted for by the introduction

of spatially structured random e�ects into the model.

The integrated nested Laplace approximation (INLA) modeling approach provides

the ability to use Bayesian inference with a latent Gaussian model �t to large data

sets in a short time while using fewer computing resources than commonly used

approaches such as the WinBUGS or JAGS Gibbs samplers, which use the more

standard and time-consuming Markov chain Monte Carlo algorithms (Rue et al.,

2009). The INLA approach is particularly well suited to spatial and temporal

models of disease incidence, because they are usually described using latent Gaus-

sian models with a hierarchical Bayesian framework (Schrödle and Held, 2011).

Existing Bayesian spatial-temporal modeling strategies can be applied via Inte-

grated Nested Laplace Approximation (INLA) in R to a large number of rare

causes of mortality outcomes to enable examination of spatial-temporal variations

on smaller geographic scales such as counties (Khana et al., 2018a). Khana et al.

(2018a) suggested that future analyses might not require too long of a stretch of

data in time in order to compute county level estimates since temporal random

e�ect was found to be an auto-regressive process of order 1 which dampens out

after a certain period of time.

The hierarchical Bayes statistical models employ multiple levels of modeling spec-

i�ed in a hierarchical order to estimate the posterior distributions of the model

parameters using the Bayes method. The observed data is combined with the mul-

tiple sub-level model speci�cations (prior distributions) and possible covariates to

estimate the posterior distribution via Bayes theorem (Khana et al., 2018a).

The modeling of spatially structured random e�ects via the adjacency matrix of

the counties by conditional auto-regressive priors was �rst proposed by (Besag

et al., 1991). To account for potential linear and non-linear trends and extra

variation in county level estimates over time, �xed, correlated and uncorrelated
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time e�ects and space time interaction e�ects are incorporated. Depending on

the nature of the data, a variety of latent models such as random walk-1, ran-

dom walk-2, besag, convolution among others can be implemented via R-INLA

software package to model the small area outcome and produce reliable smoothed

estimates. Adem et al. (2015) utilized Bayesian Hierarchical Generalized Linear

Mixed Models (GHGLMM) with spatial temporal methods to model Tuberculosis

cases in Kenya using Small Area Estimation. Lawson and Rotejanaprasert (2014)

utilized Bayesian clustering approach to assess the degree of spatial clustering of

geocoded data for pediatric brain cancer in Florida. They concluded that there

was excess risk in a number of relatively dispersed zip codes across the state but

it appeared there was some concentration of high risk in other areas.

Oesophageal cancer is the cancer that forms in tissues lining the oesophagus (the

muscular tube through which food passes from the throat to the stomach) (Can-

cer.Net, 2021). According to study �ndings by (Schaafsma et al., 2015),(Ferlay

et al., 2015) the rate of oesophageal cancer in Kenya was 17.6 per 100,000 which

was one of the highest incidence in the Africa continent and was the most common

male cancer in Eldoret. Hospital-based studies conducted in Tenwek hospital in

western Kenya by Tenge et al. (2009) revealed that male: female ratio of 1.6:1.12

indicating higher incidence rates among males than females. The reasons for the

high burden of oesophageal cancers in several parts of Eastern Africa and Southern

Africa are not fully understood. Tobacco and alcohol was shown to be clear risk

factors in South Africa Pacella-Norman et al. (2002) but obviously do not explain

the high rates in East Africa compared with other regions (Korir et al., 2015).

Kenya is one of a few countries that lie on Africa's oesophageal cancer corridor,

which is a region situated in the geographic area of the Eastern and Western rift-

valley and is reported to have the highest oesophageal cancer incidences in Africa

(Schaafsma et al., 2015). Therefore a study on the risk factors such as smoking

and alcohol use on oesophageal cancer was very appropriate.

In Kenya prostrate, oesophageal and colorectal cancers are the the most preva-
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lent among men while breast, cervical and oesophageal cancers are most common

among women. Oesophageal cancer contributes 13.2% of cancer mortality which

is the highest, cervical is the second contributing 10% of the cancer deaths while

breast cancer comes third at 7.7% (Bray et al., 2018).Patel et al. (2013) conducted

a study in Moi Teaching and Referral Hospital (MTRH) in Uasin Gishu County

where they identi�ed oesophageal cancer as the leading cancer in men. Kenya has

a few hospitals which treat oesophageal cancer patients, some of which include

Kenyatta National Teaching and Referral Hospital, Moi Teaching Referral Hos-

pital, Tenwek Mission Hospital, Kijabe Mission Hospital, M. P. Shah Hospital/

Cancer Care Kenya. People with oesophageal cancer may experience: di�culty

and pain with swallowing, burning in the chest, frequent choking on food and in-

digestion or heartburn (Cancer.Net, 2021). (Odera et al., 2017) identi�ed alcohol

drinking, genetic factors, dietary change/food preparation, and consumption of

hot food as the main risk factors for oesophageal cancer in Kenya, they noted that

there is a need to investigate the causal relationships between these major risk

factors and the development of oesophageal cancer in Kenya. Recent studies on

oesophageal cancer has focused on speci�c regions, therefore mapping its rates,

identifying the risk factors as well as locating counties with high rates will help

them prioritize control strategies and design ways to modify risk behaviors.

Lung cancer is the cancer that forms in tissues of the lung, usually in the cells lin-

ing air passages. According to Bray et al. (2018) worldwide, lung cancer remains

the leading cause of cancer incidence and mortality, with 2.1 million new lung

cancer cases and 1.8 million deaths predicted in 2018, representing close to 1 in

5 (18.4%) cancer deaths. According to American Cancer Society (2021), the two

main types are small cell lung cancer and non-small cell lung cancer. The main

risk factor for lung cancer is smoking resulting 80% of deaths, where the percent-

age might be higher for small cell lung cancer (SCLC). Other risk factors includes:

Exposure to asbestos and radon a radioactive gas. Bandera et al. (2001)and Korte

et al. (2002)suggested smoking-adjusted association for high alcohol consumption.
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Clinical manifestations which may suggest lung cancer include: Respiratory symp-

toms:coughing, coughing blood, wheezing sound or shortness of breath. Systemic

symptoms: weight loss,weakness,fever, or clubbing of the �ngernails. Symptoms

due to the cancer mass pressing or adjacent structures: chest pain, bone pain,

superiorvena cava obstruction, or di�culty in swallowing (Kasper et al., 2015).

Therefore it is appropriate to conduct the study in Kenya to determine whether

smoking and alcohol use are risk factors in cancer patients in Kenya.
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CHAPTER THREE

3 METHODOLOGY

3.1 Introduction

This chapter will provide details of the methodologies to be applied in this study.

3.2 Methodologies for the Objectives

3.2.1 To model over-dispersion and conduct spatial correlations tests

in order to model cervical, oesophageal and lung cancer cases

distribution in Kenya's counties.

Poisson log-normal model

Assessment of presence of over dispersion in the data set was conducted by �rst

computing the residuals from a simple Poisson log-linear model. Poisson log-

linear model is a model for n responses, Y1, ..., Yn representing the cancer cases in

di�erent counties. There the distribution is

Yi ∼ Poisson(λi)

where λi is the rate parameter. The simple Poisson model is stated as follows:

logλi = β0 + β1xi1 + ...+ βpxip (3.1)

or equivalently

λi = eβ0+β1xi1+...+βpxip (3.2)

The covariates are treated as �xed constants and the model parameters are the

β = (β0, ...βp).
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Estimation

The model parameters are estimated using Maximum Likelihood Estimation (MLE)

methodology as illustrated below. Y1, ..., Yn are independent Poisson random vari-

ables, the likelihood is given by

l(β0, ...βp) = Πn
i=1

λYi
i e

−λi

Yi!
(3.3)

where λi is de�ned in terms of β0, ...βp and the covariates xi1, ..., xip via equation

(3.1). Settingxi1 = 1for all i, the log-likelihhood is then

l(β0, ...βp) =
n∑

i=1

Yilogλi − λi − logY ! (3.4)

=
n∑

i=1

Yi

(
p∑

j=0

βjxij

)
− e

∑p
j=0 βjxij − logYi!

the MLEs are solutions to system of score equations, for m = 0, ..., p

0 =
∂l

∂βm
=

n∑
i=1

xim(Yi − e
∑p

j=0 βjxij) (3.5)

These equations may be solved numerically using the Newton-Raphson method.

The model assumption of a Poisson distribution for Yi, is that the variance of Yi

must be equal to its mean which is rather restrictive.This is not usually the case,

if observed variance of Yi is larger than its mean-this is referred as over dispersion.

Spatial correlation test

De�nition: Consider a study area which comprises n counties. Let the observed

value of a variate, Y , in county i be yi. For every pair of counties, i and j, in the

study area the drawings which yield yi and yj are uncorrelated, then we say that

there is no spatial auto-correlation in the county system on Y . Conversely, spatial

auto-correlation is said to exist if the drawings are not all pairwise uncorrelated.

Measures of spatial auto-correlation describe the degree two which observations

(values) at spatial locations (whether they are points or areas), are similar to each
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other. So we need two things: observations and locations (Cli� and Ord, 1970).

Compute Moran's I

I =
n

n∑
i=1

(yi − ȳ)2

∑n
i=1

∑n
i=1wij(yi − ȳ)(yj − ȳ)∑n

i=1

∑n
i=1wij

(3.6)

Where wij are spatial weights. wij equals 1 for counties i and j that are deemed

neighbors and otherwise 0.

Moran's I, is an inferential statistic, and statistical signi�cance has to be deter-

mined before interpreting the index Moran (1950). This is done with a simple

hypothesis test, calculating a z-score and its associated p-value.

The null hypothesis for the test is that the data is randomly disbursed. The

alternate hypothesis is that the data is more spatially clustered than you would

expect by chance alone. Two possible scenarios are: A positive z-value: data

is spatially clustered in some way. A negative z-value: data is clustered in a

competitive way.

3.2.2 To model cervical cancer cases using Poisson-Gamma and Spatial-

temporal models.

Standardized Incidence Ratios

Suppose that the index sϵ(1, 2, ..., S) represents the geographically connected re-

gions. The spatially correlated e�ects in INLA are introduced by assuming that

neighboring regions are more alike than two arbitrary regions. Two regions s and

s′ are neighbors if they share a common boundary. Moraga (2018),outlines that

disease risk estimates in areas can be obtained by computing the Standardized

Incidence Ratios. For area i, i = 1, ..., n, the SIR is obtained as the ratio of

the observed to the expected disease counts: SIRi =
Yi

Ei
. The expected counts

represent the total number of disease cases that one would expect if the popula-

tion of the speci�c area behaved the way the standard (or regional) population
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behaves. The expected counts can be calculated using indirect standardization

as Ei =
∑m

j=1 r
(s)
j nj, where r

(s)
j is the disease rate in stratum j of the standard

population, and nj is the population in stratum j of the speci�c area. The SIR

corresponding to area i, SIRi, indicates whether the area i has more (SIRi > 1),

equal (SIRi = 1) or fewer(SIRi < 1) cases observed than expected from the stan-

dard population. When applied to mortality data, the ratio is commonly known

as the Standardized Mortality Ratio (SMR).

Although in some situations SIRs can give a sense of the disease's spatial variabil-

ity, very extreme values can occur in areas with small populations owing to the

small sample sizes involved. In contrast, disease models are preferred to obtain

disease risks estimates because they enable to incorporate covariates and borrow

information from neighboring areas to improve local estimates, resulting in the

smoothing or shrinking of extreme values based on small sample sizes(Moraga,

2018).

Although SIRs can be useful in some settings, in regions with small populations or

rare diseases the expected counts may be very low and SIRs may be misleading and

insu�ciently reliable for reporting. Therefore, it is preferred to estimate disease

risk by using models that enable to borrow information from neighboring areas,

and incorporate covariates information resulting in the smoothing or shrinking of

extreme values based on small sample sizes (Lawson, 2013a).

Bayesian hierarchical models speci�cations

Full Bayesian Hierarchical models that is, Poisson-gamma (PG) and Spatial-

temporal models with assumption that the response variable was generated by

a Poisson process (count data) were formulated to model cervical cancer cases.

Fully Bayesian model involve setting prior for group-level parameters as well as

hyper-parameters.

(i) Poisson-Gamma model

A Poisson-Gamma (PG) model, with two-level hierarchy Neyens et al. (2012) was

considered. Considering observed counts Yi in area i, are modeled using a Poisson
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distribution with mean Eiθi, where Ei is the expected counts and θi is the relative

risk in area i. The relative risk θi quanti�es whether area i has higher (θi > 1)

or lower (θi < 1) risk than the average risk in the standard population (Moraga,

2018). For example, if θi = 2, this means that the risk of area i is two times the

average risk in the standard population. The two level hierarchy Poisson-Gamma

model can be written as:

yi ∼ Poisson(Eiθi); (3.7)

θi ∼ Gamma(α, β); (3.8)

α|ν ∼ hα(ν)

β|ρ ∼ hβ(ρ)

θ has a Gamma(α, β) distribution at the �rst level of hierarchy while at the second

level α has a hyper prior distribution hα and β will be hβ.

Due to the conjugacy between the Poisson and gamma distributions, a closed-form

posterior distribution can be provided and is given by a gamma distribution with

parameters yi + α and Ei + β, respectively.

In �rst level is assumed that the random variable yi has Poisson distribution or

written as yi ∼ Poisson(eiµiθi) with probability density function :

g(yi|eiµiθi) =
e−(eiµiθi)(eiµiθi)

yi

yi!
, yi = 0, 1, ... (3.9)

where µi = µ(xi
−
, β
−
) is regression model, xi = (x1i, x2i, ..., xpi)

T is a vector of
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covariates and β
−
= (β1,β2,, ..., βp)

T is regression coe�cients. In the second stage, it

is assumed the parameter due to the conjugacy between the Poisson and gamma

distributions, a closed-form posterior distribution can be provided and is given

by a gamma distribution with parameters θi has Gamma distribution or θi ∼

Gamma(α, β)with probability density function (prior on θ) is:

k(θi) =
βα

Γ(α)
e−βθiθi

α−1, θi > 0 (3.10)

based on equation above the joint probability density function is obtained as fol-

lows:

h(yiθi) =
e−(eiµiθi)(eiµiθi)

yi

yi!

βα

Γ(α)
e−βθiθi

α−1, yi = 0, 1, ...; θi > 0 (3.11)

The marginal probability density function is as follows

m(yi) =

∞∫
0

h(yi, θi)dθi

=

 yi + α− 1

α− 1

( α

eiµi + α

)α(
1− α

eiµi + α

)yi

(3.12)

The distribution of equation above is Negative-Binomial with mean and variance

for yi respectively are as follows:

E(Yi|β
−
, α) = eiµi

and

V ar(Yi|β, α
−

) = eiµi

(
1 +

eiµi

α

)
The posterior distribution for θi is estimated as follows

=
(eiµi + α)yi+α

Γ(yi + α)
e−(eiµi+α)(θi)

yi+α−1, θi > 0 (3.13)
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Based on equation above, posterior distribution for θi is obtained as : θi|yi, β, α ∼

Gamma(yi + α, eiµi + α)

Thus, the posterior mean and posterior variance obtained from this Bayes estimate

for θi are:

θ̂i
B(β, α) = EB(θi|yi, β, α) =

(yi + α)

(eiµi + α)

and

V arB(θi|yi, α, v) =
(yi + α)

(eiµi + α)2

According to Miaou and Lord (2003) in statistical literature, Poisson-Gamma

model has also been de�ned as:λi = f(X;β)exp(εi) = µiexp(εi) and where, f(.)

is a function of the covariates X, β is a vector of coe�cients and εi is the model

error independent of all covariates.

This model only introduces a spatially-unstructured over dispersion factor and that

it does not take into account spatial correlation of the data (Neyens et al., 2012).

Poisson-Gamma model has been criticized because of the mentioned disadvantage

together with the di�culty to include covariates. They has also shown to be

inferior to more complex models such as the Conditional Auto-regressive (CAR)

convolution models (Lawson et al., 2000). To address the issue of over dispersion,

spatial correlation models which include terms for both the over dispersion and

the correlated heterogeneity (CH) are utilized.

(ii) Spatial-temporal model

Spatial-temporal model is generated from Generalized Linear Mixed Models (GLMMs).

GLMMs is a class of additive structured regression models which have been ex-

tensively used to model spatial data in di�erent areas such as in epidemiology,

agriculture, demography, economy and image analysis. Their main assumption

of the models is that the distribution of the response variableyi belongs to an

exponential family of the form yi/θi, ϕ1 ∼ p(.) de�ned as,

p(yi/θi,ϕ1) = exp

(
yiθi − b(θi)

a(ϕ1)
+ c(yi, ϕ1)

)
(3.14)
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for i = 1, ..., n observations and θi is the scalar canonical parameter, while a(ϕ1)

and c(yi, ϕ1) are known functions. The mean ui = E(yi/βf
i(.), ϕ1) can be linked

to structured additive predictor ηi which accounts for various covariates in an

additive way:

g(µi) = ηi = β0 +
n∑

i=1

fi(µi) +
m∑
k=1

βkxki + εi (3.15)

Upon varying the form of the functions fi(·), this formulation can accommodate

a wide range of models, standard and hierarchical regression, spatial and spatial-

temporal models or time series. Spatial and spatial temporal models were adopted

in our study. Wherefi(.) are unknown functions of the covariates used to model

temporal and spatial dependencies and also used to relax the linear relationships

of the covariates. The β′
ks represents the linear e�ects of the covariates x

′s and

ε′is are unstructured terms. Generally the models are described into levels, that

is, data likelihood and prior distributions as discussed below;

Level 1: Data likelihood

The region of interest S is the corresponding set of responses S = S1, . . . , Sn,

and the vector of known o�sets O = (O1, . . . , On)
T . The spatial pattern of the

response is the matrix of covariates x=(xT1 , . . . , x
T
n )

Tand a series of random e�ects

ϕ = (ϕ1, . . . , ϕn), the latter of which are included to model any spatial auto-

correlation that remains in the data after the covariate e�ects have been accounted

for (Lee, 2013). The vector of covariates for areal unit Si are denoted by xTi =

(1;xi1, . . . , xip), the �rst of which corresponds to an intercept term. The general

model is an extension of a generalized linear model and is given by

Yi|µi ∼ f(yi|µi, v
2)fori = 1, ..., n (3.16)

g(µi) = xTi β + ϕi +Oi (3.17)
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Response Y comes from the exponential family of distributions f(yi | µi, v
2),.

These can be binomials: Gaussian or Poisson families. Expected value of Yiis

expressed as (Yi) = µi, where v2 i is an additional scale parameter required when

using the Gaussian family. The expected value of the answer is related to the

linear predictor through the invertible logic function g(.), like logit (binomial fam-

ily): identity functions (Gaussian family) or natural logarithm functions (Poisson

family). The vector of regression parameters is denoted by β = (β0, . . . , βp) and

nonlinear covariate e�ects can be incorporated into the above model by including

natural cubic splines or polynomial basis functions in X.

Level 2: Prior distributions

Independence priors

Lee (2013) outlined that for each regression parameter βj: independent Gaussian

priors are given. That is, βj ∼ N(mi, vj) for j = 0, . . . , p: and the software is

(mj = 0; vj = 1000). Gaussian probability scale parameter v2 is assigned a uniform

A distribution: v2 ∼ U(0,Mv): where the di�usion speci�cation Mv = 1000 is the

default value. Note that a commonly used alternative prior distribution for the

variance parameter is Conjugate Inverse Gamma Distribution. However, it is not

used here because it is di�cult to choose hyper parameters in such a way that it

is meaningless for very small values v2. Many di�erent random e�ects models can

be implemented. The simplest is independence prior

θ ∼ N(0, δ2)

δ2 ∼ U(0,Mσ)

; where θk replaces ϕk in the data likelihood. The variance parameter is assigned a

uniform prior on the interval (0,Mσ), where before the default value Mσ = 1000.

This speci�cation is appropriate when the covariates included in the model (3.11)
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remove all spatial structure of the response: leaving random e�ects to account for

possible e�ects of scattering (binomial model and Poisson models). However, in

most data sets there is likely to be residual spatial auto-correlation, in which case

one of the global priors described below is required.

Global Conditional Auto-regressive (CAR) priors

Four di�erent conditionally auto-regressive priors (CAR) are commonly used for

modeling spatial auto-correlation in the statistics literature, the intrinsic and

Besag,-York-Mollié ( BYM) models (Besag et al. 1991 ) as well as the alter-

natives developed by Leroux et al. (2000). Each model is a special case of a

Gaussian Markov random �eld (GMRF), and can be written in the general form

ϕ ∼ N(0, τ 2Q−1), where Q is a precision matrix that may be singular (intrinsic

model).

This matrix controls the spatial auto-correlation structure of the random e�ects,

and is based on a non-negative symmetric n × n neighborhood or weight matrix

W . A binary speci�cation based on geographical contiguity is most commonly

used, where wij = 1 if areal units (Si;Sj) share a common border (denoted i ∼ j),

and is zero otherwise. This speci�cation forces (ϕi, ϕj) relating to geographically

adjacent areas (that is wij = 1) to be correlated, whereas random e�ects relating

to non-contiguous areal units are conditionally independent given the values of

the remaining random e�ects.

CAR priors are commonly speci�ed as a set of n univariate full conditional distri-

butions

f(ϕi|ϕ−i) for k = 1, ..., n (whereϕi = (ϕ1, ..., ϕi−1, ϕi+1, ..., ϕn)), rather than via the

multivariate speci�cation described above. The �rst CAR prior to be proposed

was the intrinsic model(Besag et al., 1991), which is given by

ϕi|ϕ−i ∼ N(

∑n
i=1wijϕi∑n
i=1wij

,
τ 2∑n

j=1wij

) (3.18)

The conditional expectation is the average of the random e�ects in neighboring
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areas, while the conditional variance is inversely proportional to the number of

neighbors.

The latter is appropriate because if the random e�ects are spatially correlated,

then the more neighbors an area has the more information there is from its neigh-

bors about the value of its random e�ect.

In common with the other variance parameters, τ 2 is assigned a uniform prior on

the interval (0;Mτ ), with the default value being Mτ = 1000. The limitation with

this model is that it can only represent strong spatial auto-correlation, and is well

known to produce random e�ects that are overly smooth. Therefore, the same

authors proposed an extension to allow for both weak and strong spatial auto-

correlation, by replacing ϕiin (3.13) with θi + ϕi, which are respectively de�ned

by (3.14) and (3.15). This model is known as the BYM or convolution model,

and is the most commonly used CAR model in practice. However, it requires two

random e�ects to be estimated for each data point, whereas only their sum is

identi�able from the data. Therefore, Leroux et al. (2000) and Stern and Cressie

(1999) proposed alternative CAR priors for modeling varying strengths of spatial

auto-correlation, using only a single set of random e�ects. The model by Leroux

et al. (2000) is given by

ϕi|ϕ−i ∼ N(
ρ
∑n

i=1wijϕj

ρ
∑n

i=1wij + 1− p
,

τ 2

ρ
∑n

i=1wij + 1− ρ
) (3.19)

while the proposal of Stern and Cressie (1999) is

ϕi|ϕ−i ∼ N(
ρ
∑n

i=1wijϕj

ρ
∑n

i=1wij

,
τ 2

ρ
∑n

i=1wij

) (3.20)

In both cases ρ is a spatial auto-correlation parameter, with ρ = 0 corresponding

to independence, while ρ = 1 corresponds to strong spatial auto-correlation. A

uniform prior on the unit interval is speci�ed for , that is ρ ∼ U(0, 1), while

the usual uniform prior on the interval (0,Mτ ) is adopted for τ 2. In both cases

when ρ = 1 the intrinsic model proposed by Besag et al. (1991) is obtained, while
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whenρ = 0 the only di�erence is the denominator in the conditional variance.

The approaches for Bayesian inference on latent Gaussian models are Markov chain

Monte Carlo (MCMC) sampling and integrated nested Laplace approximation

(INLA). The high dimensionality of the latent �eld Θ and the strong correlation

within Θ and between Θ and Φ especially when the numbers of observations are

many leads to problems in convergence and computation time. INLA developed

by Rue et al. (2009) bypasses MCMC entirely by basing inferences on closed form

approximations making it computation e�cient compared to MCMC since it does

not use iterative computation techniques like MCMC. In our spatial-temporal

model INLA estimation was utilized.

Spatial-temporal model for this study

Spatial-temporal models for spatial data enables borrowing of information from

neighboring areas, and incorporate covariates information resulting in the smooth-

ing or shrinking of extreme values based on small sample sizes (Gelfand et al.

2010;Davis et al. 2009). The classical parametric formulation was introduced by

Bernardinelli et al. (1995), and assume that the linear predictor can be written

as:

ηit = β0 + υi + νi + βt (3.21)

This formulation includes spatial structured e�ects υi, unstructured components νi

and a main linear trend β, which represents the global time e�ect. The parameters

estimated by INLA are θ = {β0, β, υ, ν} and the hyper-parameters are represented

by ψ = {τυ, τν , τδ}.

Given y′is are the observed cervical cancer cases while E ′
is are the expected popu-

lation per county, y′is were assumed to be generated through a Poisson process as

shown in equation (3.20). y′is are modeled using a Poisson distribution with mean

Eiθi, where Ei is the expected counts and θi is the relative risk in area i. The

logarithm of the relative risk θi is expressed as the sum of an intercept that mod-

els the overall disease risk level, and random e�ects to account for extra-Poisson
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variability.

yi ∼ Po(Eiθi), i = 1, . . . , n, (3.22)

log(θi) = ηit = β0 + υi + νi + βt (3.23)

In equation (3.23):

1. log is a monotonic link function for count data. The logarithm of the relative

risk θi is expressed as the sum of an intercept that models the overall disease

risk level, and random e�ects to account for extra-Poisson variability.

2. β0 represents the overall risk in the region of study

3. the structured spatial e�ects, υi, were estimated at county level in which a

household was located and Kenya counties' boundaries were used to compute

the neighborhood information. The spatial e�ects by county to account for

strong spatial auto-correlation, and was modeled via normal conditionally

auto-regressive priors (CAR) Besag et al. (1991) where weights were as-

signed to each county according to adjacency; neighboring counties received

a weight of one while non-neighboring counties received a weight of zero.

Speci�cally, for i = 1, . . . ,m,counties and j = 1, . . . , T, years;ϕi|ϕ−i, τυ ∼

N(
∑n

i=1 wijϕi∑n
i=1 wij

, τ2∑n
j=1 wij

), 1
nδi

τu
, i ̸= j where, τυ is the conditional precision of

spatial random e�ects and δi is the neighborhood of the ith region, nδi is

the number of neighbours,
∑m

j=1wij , and the spatial weight, ωij equals 1

for counties i and j that are deemed neighbors and otherwise 0. According

to Bivand (2019)each county has at least one neighbor, and the number of

neighbors is determined empirically based on the spatial distribution of the

counties. The conditional precision of the spatial random e�ect was assigned

τυ ∼ Gamma (1, 0.001) prior.

4. unstructured random e�ects νi by county models residual spatial variation

not dealt with by our spatial random e�ects and was assigned a Normal
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prior,νi ∼ N(0, 1
τv
) , with precision, τv. The conditional precision of the

unstructured random e�ect was assigned τv ∼ Gamma (1, 0.001) prior.

The precision's for the intercept, �xed e�ects and the random e�ects were assigned

priors that are default in R-INLA. INLA assigns log (precisions) ~log-gamma (1,

0.001) priors(Bivand et al., 2015), (Rue et al., 2009).Various models can be �tted

by changing parametrisation of equation (3.23). The relative risks of each area

can be obtained without the covariates.

Parameters in spatial-temporal models in equation (3.23) are estimated by as-

signing Gaussian priors to β′
is, fi(.)

′sand ε′is. This can be represented as Θ =

(β′
ks, f

′
is, ...) where Θ is unobserved multivariate Gaussian random variable, whose

density π(Θ/ϕ) is controlled by a vector of hyper-parameters Φ (Rue and Martino,

2007).The latent Gaussian �eld Θ is assumed to have a Gaussian distribution with

zero mean and variance covariance matrix Q(ϕ2); with vector of hyper-parameters

de�ned as Φ = (ϕ1, ϕ2) which are not necessarily Gaussian (Martins et al., 2013a).

Latent Gaussian model is composed of three elements namely; the likelihood of

the data π(y/Θ), the Gaussian density of the random vector Θ,π(Θ/Φ) and the

prior distribution of the parameter vector π(Φ).

The posterior is therefore de�ned as

π(Θ,Φ/y)απ(Θ)π(Θ/Φ)
∏
i=1

π(yi/xi,Φ) (3.24)

The main inferential interest involves computing the posterior marginals for xiand

posterior marginals for Φ or some Φj.

Estimation of parameters in latent Gaussian models

Integrated nested Laplace approximation (INLA) methodology is an appropriate

inference based method for approximating the posterior marginals of the latent

Gaussian �eld π(xi/y), i = 1, ..., n in three steps.

The posterior marginals of the latent e�ects Θ are written as
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π(xi/y) =

∫
π(xi/Φ, y)π(Φ/y)dΦ (3.25)

π(Φi/y) =

∫
π(Φ/y)dΦ−j (3.26)

The posterior marginals
∼
π (xi/y) and

∼
π (Φi/y) can be approximated using the

Laplace approximation. The �rst approximation to π(Φ/y)using Gaussian distri-

butions is constructed as follows

π(Φ/y) =
π(Θ,Φ, y)

∼
πG (Θ/Φ, y)

|Θ=Θ∗(Φ) (3.27)

where
∼
πG (Θ/Φ, y) is a Gaussian approximation to the full conditional of Θ and

Θ∗(Φ) is the mode of the full conditional for Θ , for a given value of Φ. It involves

locating the mode of π̃(Φ/y) which is used to integrate out the uncertainty with

respect to Φ when approximating the posterior marginal of xi.

The posterior marginals of the latent �eld are supposed to start from
∼
πG (xi/Φ, y)

and approximate the density of xi/Φ, y with the Gaussian marginal derived from
∼
πG (Θ/Φ, y) i.e

π̃(xi/Φ, y) = N(xi; (Φ), δ
2
ii(Φ)) (3.28)

The marginals of the interest can be computed using numerical integration over a

multidimensional grid of values of Φ

∼
π (xi/y) =

∑
k

π̃(xi/Φk, y)π̃(Φk/y)△k (3.29)

where the sum is over the values of Φ with area weights △k , which would be equal

to 1 if all support points would be equi-distantly chosen(Rue and Martino, 2007).

The �rst step in INLA computation involves approximating the posterior marginal

of Φ by using Laplace approximation in equation (3.30).

The second step involves computing the Laplace approximation of π̃(xi/Φ, y) for
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selected values of Φ which improves the Gaussian approximation in equation (3.29)

π̃LA(xi/Φ, y)α
π(Θ,Φ, y)

π̃GG(Θ−i/xi,Φ, y)
|Θ−i=Θ−i∗(xi,Θ) (3.30)

where π̃GG(Θ−i/xi,Φ, y) is a Gaussian approximation to Θ−i/xi,Φ, y around its

modeΘ−i(xi,Φ). An improved version of π̃LA(xi/Φ, y) known as Simpli�ed Laplace

approximation was developed by(Rue et al., 2009). It involves a series of expansion

ofπ̃LA(xi/Φ, y) around xi = µi(Φ) which corrects for skewness and location and it

is also less computationally expensive (Rue et al., 2009). The third step involves

combining steps 1 and 2 using numerical integration in equation 3.29 (Rue et al.,

2009) .

3.2.3 To model the e�ect of covariates on spatial distribution of oe-

sophageal and lung cancer cases in Kenya's counties

To achieve this objective a Generalized Linear Mixed Model assuming a Poisson

distribution with spatial (structured and unstructured), interaction and temporal

random e�ects was used to characterize the relationships between cancer cases

and covariates. In this model the response variable was generated by a Poisson

process:

The Poisson regression model is

yi ∼ Poisson(µi)

µi = exp(Xiβ + offseti)

where yi is the observed cancer cases , Xi are the covariates for the ith observation

and o�set term represented theith population.The generalized linear mixed model

used to describe the cancer cases yi was of the form:
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g(µi) = β0 +
∑
j

βjXij + fstr(Si) + funstr(Si) + ftrend(time) (3.31)

Where fstr and funstr are structured and unstructured spatial e�ects of the coun-

ties.

1. g(.) is a monotonic link function, in this case the log.

2. β0 an overall intercept term. The intercept, β0 was assigned a �at prior.

3. βj represents vector of regression parameters, the parameter vector of the

covariates Xij (Alcohol use and Smoking). βjXij: is the ith row andjth

column of the covariates matrixX and β is a vector of regression parameters.

The β for �xed e�ects (βjX
′
ij) was assigned Normal priors β ∼ N(0, 100).

In our model β′
jsare the coe�cients of the proportion of smokers and alcohol

users of covariates.

4. the spatial e�ects, fstr(Si) modeled via normal conditionally auto-regressive

priors (CAR) (Besag et al., 1991). The conditional precision of the spatial

random e�ect was assigned τu ∼ Gamma (1, 0.001) prior.

5. unstructured random e�ects funstr(Si) by county, to model residual spatial

variation not dealt with by our spatial random e�ects was assigned a Normal

prior,funstr ∼ N(0, 1
τv
) , with precision τv ∼ Gamma (1, 0.001) prior.

6. Correlated random time e�ects ftrend(time) , to account for time depen-

dence, was modeled via �rst order random walk with precision ; conditional

precision was assigned τδ~ Gamma (1, 0.001) prior.

The parameters in this model were estimated using Integrated Nested Laplace

Approximation (INLA) methodology. Parameters of interest were used to calculate

the relative risks which were mapped into the di�erent geographical areas for the

di�erent years. The relative risk was presented as µi : (µi > 1) indicated higher

disease risk,(µi < 1) lower risk while (µi = 1) no risk.
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3.3 Model selection criteria

3.3.1 Deviance Information Criteria

The Deviance Information Criterion (DIC) Spiegelhalter et al. (2002) is a popular

information criterion designed for hierarchical models, and (in most cases) is well

de�ned for improper priors. Its main application is Bayesian model selection, but

it also provides a notion of the e�ective number of parameters. The deviance is

D(x, θ) = −2
∑

iϵI logπ(yi|xi, θ) + constant. The e�ective number of parameters

is the mean of the deviance minus the deviance of the mean. The mean of the

deviance can be computed in two steps: �rst, compute the conditional mean

conditioned on θ using univariate numerical integration for each i ∈ I; second,

integrate out θ with respect to π(θ|y). The deviance of the mean requires the

posterior mean of each xi,i ∈ I, which is computed from the posterior marginals

of xi's. Regarding the hyper-parameters, we prefer to use the posterior mode θ∗,

as the posterior marginal for θ can be severely skewed.

A set of models following the above general space time modeling approach was

explored to determine the contribution of di�erent components, namely, the corre-

lated and uncorrelated random time e�ects, spatially structured and unstructured

random e�ects, space time interaction term and the di�erent covariates to exam-

ine spatio-temporal variation in county level cancer rates. DIC is based on the

deviance of the model penalized for model complexity and its interpretation is

similar to the Akaike Information Criterion (AIC), with models having smaller

DIC being preferred.

3.4 Ethical Approval

The cancer registry had ethics approval from Scienti�c and Ethics Research (SERU

) unit from KEMRI and the Ministry of Health which allowed it to document

cancer occurrence in the country. The data was collected by active case �nding

methods whereby sta� from the registry visited various health facilities that diag-
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nose and treat cancer within the de�ned populations of coverage retrospectively

and prospectively.

3.5 Sample and Sampling Technique

The area of the study was the 47 counties in Kenya. In this study, count data

was considered thus the available count for each county was appropriate to be

applied in developing the models. Consequently, there was possibility of non

sampling error, to deal with it, the spatial temporal models applied distinguished

between uncertainty in the quantity of interest and sampling and non sampling

varianceForeman et al. (2012).

3.6 Data Analysis

Spatial-temporal models arise when data are collected across time as well as space

and has at least one spatial and one temporal property. An event in a spatial-

temporal data set describes a spatial and temporal phenomenon that exists at a

certain time t and location x. The data was obtained from a 2�year retrospective

County based surveillance study of all reported cancer cases in ten counties namely

Bomet, Embu, Kakamega, Kiambu, Machakos, Meru, Mombasa, Nairobi, Nakuru,

and Nyeri County conducted in 2015 and 2016 by National Cancer Registry in

Kenya. Period which complete data was available for the ten counties. Data sheet

had the following variables: sex, age at the time of diagnosis, place of residence,

smoking status, alcohol drinking status, and cancer diagnosis that was based on

the international classi�cation of disease for oncology (ICD-O). Cervical cancer

cases were 1064, oesophageal cancer cases 1599 while lung cancer cases were 256.

The data in this study was analyzed using (INLA) and hglm packages in R-

programming statistical software. The packages contains functions for �tting

Bayesian Hierarchical Generalized Linear Mixed Models ( BHGLMMs) and Poisson-

Gamma models respectively.
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CHAPTER FOUR

4 RESULTS AND DISCUSSION

4.1 Introduction

Data in this study was analyzed using Spatial-temporal model R-packages. The

packages contains functions for Bayesian Hierarchical Generalized Linear Mixed

Model (BHGLMM). The study �ndings were presented based on each speci�c

objective.

4.2 To model over-dispersion and conduct spatial correla-

tions tests in order to model cervical, oesophageal and

lung cancer cases distribution in Kenya's counties.

4.2.1 Assessing the presence of over-dispersion and spatial correlation

for cervical cancer cases

The spatial-temporal models allow for spatial-temporal auto-correlation via ran-

dom e�ects, which capture the auto-correlation in the disease data after the ef-

fects of the known covariates have been accounted for. Therefore, assessment of

presence of over dispersion in the data set was conducted by �rst computing the

residuals from a simple Poisson log-linear model. A histogram was obtained shown

in Figure 4.1 in order to check distribution of the data.
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Figure 4.1: Histogram of cervical cancer cases.

Source: Author, 2021

The over dispersion was checked by �tting the Poisson log normal model in equa-

tion (3.1), the rule of thumb is that the deviance divided by the degrees of freedom

should be equal to 1.
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Table 1: Poisson log normal model for cervical cancer cases

Coe�cients df Estimate Std. Error z value p-value

Intercept 8.093e-11 2.501e-02 0 1

Akaike In-

formation

Criterion

(AIC)

4007.4

Null

deviance

(value)

3885.3 93

Residual

deviance

(value)

3885.3 93

In our case, the residual deviance 38885.3 with 93 degrees of freedom.The ratio of

deviance to df should be 1, but it in our case 3885.3/93= 47.77, indicating over

dispersion. A more formal over dispersion test was conducted.

Table 2: Over dispersion test for cervical cancer cases

Coe�cients Value z value p-value

Intercept 4.15 1.662e-05

Dispersion parameter 31.22017

The dispersion parameter is 31.2017, therefore, there is substantial over dispersion,

meaning that a simple Poisson regression was not appropriate to model the cervical

cancer data.

To quantify the presence of spatial auto-correlation in the residuals from this model

we computed Moran's I statistic Moran (1950) using equation (3.6), and conducted

a permutation test for each year of data separately. The permutation test has the
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null hypothesis of no spatial auto-correlation �the cervical cancer values are ran-

domly distributed across counties following a completely random process� and an

alternative hypothesis of positive spatial auto-correlation. The estimated Moran's

I statistic was 0.0399 and the p-value was 0.2104>0.05, suggesting there was no

unexplained spatial auto-correlation in the residuals.Therefore the cervical cancer

cases were not spatially clustered. Moran's I statistic is signi�cant and positive

when the observed values of locations within a certain distance (d) tend to be

similar, negative when they tend to be dissimilar, and approximately zero when

the observed values are arranged randomly and independently over space.

Moran I Statistics

Table 3: Moran I Statistics for cervical cancer cases

Statistic Observed rank p-value

0.0398 7850 0.2151
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4.2.2 Assessing the over dispersion and spatial correlation of oesophageal

cancer cases

A simple Poisson regression model was �tted as shown in the output below.

Table 4: Poisson log normal model for oesophageal cancer cases

Coe�cientsvalue df Estimate Std. Error z value p-value

Intercept 8.093e-

11

2.501e-02 0 1

Akaike In-

formation

Criterion

(AIC)

4007.4

Null

deviance

3885.3 93

Residual

deviance

3885.3 93

In our case, the residual deviance 38885.3 for 93 degrees of freedom.The ratio

of deviance to df should be 1, but it is 3885.3/93= 47.77,clearly there is over

dispersion. A over dispersion test was conducted as shown in output below.

Table 5: Over dispersion test for oesophageal cancer cases

Value z value p-value

Intercept 3.9725 3.555e-05

Dispersion parameter 49.409

The dispersion parameter is 49.2409 indicating substantial over dispersion, leading

to �tting other model which takes care of over dispersion instead of a simple

Poisson model.

Spatial auto correlation in our data was assessed by computing the residuals from

a simple Poisson log-linear model.
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The estimated Moran's I statistic was 0.0399 and the p-value is 0.4155>0.05,

indicating there was no spatial auto correlation for oesophageal cancer.

Table 6: Moran I Statistics for oesophageal cancer cases

Statistic Observed rank p-value

-0.011379 5846 0.4155

4.2.3 Assessing the over dispersion and spatial correlation of lung can-

cer data

A simple Poisson-model was �tted as shown in the results below to check over

dispersion.

Table 7: Poisson log normal model for lung cancer cases

Value df Estimate Std. Error z

value

p-value

Intercept 3.356e-11 8.084e-02 0 1

Akaike In-

formation

Criterion

(AIC)

484.23

Null

deviance

420.81 93

Residual

deviance

420.81 93

The residual deviance 420.81 for 93 degrees of freedom. The ratio of deviance to

df should be 1, but it is 420.81/93= 4.52 , indicating over dispersion. An over

dispersion test was conducted.
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Table 8: Over dispersion test for lung cancer cases

Value z value p-value

Intercept 2.2419 0.0124

Dispersion

parameter

6.134

The dispersion parameter is 6.1342 indicating substantial over dispersion, therefore

a simple Poisson regression was not appropriate to model the lung cancer data.

Model taking care of over dispersion was �tted in the sections below.

The Moran's I statistic was -0.0133 and the p-value is 0.4120>0.05, suggesting

there was no unexplained spatial auto correlation in the residuals.Therefore the

lung cancer cases were not spatially clustered.

Table 9: Moran I Statistics for oesophageal cancer cases

Statistic Observed rank p-value

-0.013258 5881 0.412

4.3 To model cervical cancer cases using Poisson-Gamma

and Spatial-temporal models.

4.3.1 Standard Incidence Ratio (SIR) map for cervical cancer cases

To display the distribution of noti�ed cases, Standard Incidence Ratio (SIR),

relative risks and cervical cancer distribution in Kenya, spatial temporal maps

were produced. This section display the distribution of noti�ed cases, Standard

Incidence Ratio (SIR) map, for all counties with noti�ed cervical cancer cases

over two years (2015-2016). SIRi indicates whether area has higher (SIRi > 1

), equal (SIRi = 1 ) or lower (SIRi < 1 ) risk than expected from the standard

population.
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Figure 4.2: Standardized Incidence Ratio (SIR).

Source: Author, 2021

Clearly, from Figure 4.2 in most counties there was great risk of cervical cancer

cases than expected from the standard population since all counties where data

was available had a SIR value greater than 1. Bomet Standardized Incidence Rate

value was 1.59, Embu =7.13, Kakamega =2.02, Kiambu =2.42, Machakos =3.44,

Meru=4.82, Mombasa =5.51, Nairobi=1.66, Nakuru =2.26, Nyeri =3.07. The

deep purple areas exhibited elevated risks (SIR > 1) while the light shaded areas

were low risk (SIR < 1).

4.3.2 Poisson-gamma model

A generalized linear mixed-e�ects model with both �xed e�ects and random e�ects

was explored for this study. A Poisson-Gamma model that take care of over

dispersion model and zero in�ated variables was �tted from equation (3.7) and

(3.8).The dispersion parameter for random e�ect was 1.8692 which was close to 1

and the Akaike Information Criterion (AIC) was 262.9605.
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Table 10: Poisson-Gamma model: Summary of the �xed e�ects estimates

Coe�cients Estimate Std.

Error

z value p-value

Intercept -0.3178 0.3731 -0.852 0.399

as.factor(NAME_1) Baringo 0.0144 2.5729

as.factor(NAME_1) Bomet 2.1385 0.4115

as.factor(NAME_1) Bungoma 0.0058 2.5734

...

The results in Table 11 indicates that, the highest burden of cervical cancer cases

was in Embu, Mombasa, Meru, Machakos and Nyeri counties respectively.

Table 11: Relative risks for cervical cancer Poisson-Gamma model

County Relative Risk

2015/2016

Bomet 2.14

Embu 9.89

Kakamega 2.78

Kiambu 3.40

Machakos 4.76

Meru 6.48

Mombasa 7.41

Nairobi 2.28

Nakuru 2.19

Nyeri 4.28

4.3.3 Spatial-temporal models for cervical cancer cases

Although Standardized Incidence Ratio(SIRs) can be useful in some settings, in

regions with small populations or rare diseases the expected counts may be very
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low and SIRs may be misleading and insu�ciently reliable for reporting. There-

fore, it is preferred to estimate disease risk by using models that enable to borrow

information from neighboring areas, and incorporate covariates information result-

ing in the smoothing or shrinking of extreme values based on small sample sizes

(Gelfand et al. 2010;Davis et al. 2009).

The �rst model was �tted based on equation (3.23) in R-INLA. The second model

was obtained where the assumption of linearity was released using a dynamic non

parametric formulation for the linear predictor de�ned in equation (3.23). The

model contained structured spatial e�ects, unstructured spatial e�ects while the

temporally structured e�ect were modelled dynamically (e.g. using a random

walk) through a neighboring structure.

A third model was expanding model (3.23) which allowed for an interaction be-

tween space and time, which explained di�erences in the time trend of cancer cases

for di�erent areas was implemented.

Table 12 presents the DIC components for the three models: the third model with

the dynamic parameterization of the time trend and the space-time interaction

had a smaller DIC suggesting that, despite the added complexity, this model had

a more appropriate �t to the data. For this reason this was the plausible model

and the relative risks were obtained from the model.

Table 12: Deviance Information Criterion (DIC) for the three Spatial-temporal
models

Model D̄ pD DIC

Model 1 167.4847 49.6866 217.1713

Model 2 175.0441 30.7786 205.8228

Model 3 174.5819 30.7797 205.3616

The key interest in this analysis of spatial-temporal models is the e�ects of the

disease risk, which for Poisson models are typically presented as relative risks.

The posterior relative risk distributions greater than 1 indicates an elevated risk

of the disease.
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The results in Table 13 were consistent with Poisson-Gamma model results above

since Embu county had the highest relative risk of cervical cancer followed by

Mombasa, Meru, Machakos and Nyeri, Kiambu, Kakamega,Nakuru, Nairobi and

Bomet respectively.

Table 13: Relative risks for cervical cancer spatial temporal model

County Relative Risks

2015/2016

Bomet 1.53

Embu 7.92

Kakamega 2.06

Kiambu 2.80

Machakos 3.48

Meru 4.43

Mombasa 5.12

Nairobi 1.63

Nakuru 1.95

Nyeri 3.33

In Figure 4.3 the light yellow coloured areas indicated low risk areas while the

purple area indicated an elevated cervical cancer risk, while in Figure 4.4 the

purple coloured areas indicated posterior probabilities above 0.8.
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Figure 4.3: Distribution of the county speci�c relative risks of cervical
cancer in the disease mapping model.

Source: Author, 2021

Figure 4.4: Map of the uncertainty for the spatial e�ect ζi:p(ζi > 1|y).

Source: Author, 2021
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4.4 To model the e�ects of covariates on spatial-temporal

distribution of oesophageal and lung cancer cases in

Kenya's counties.

4.4.1 Descriptive statistics for oesophageal cancer

Table 14: Distribution of oesophageal cancer by gender in 2015

Gender Count of Gender Percentage

Female 349 44.52

Male 435 55.48

Grand Total 784 100

According to data in Table 14, 435 (55.48%) of oesophageal cancer cases were male

while 349 (44.52%) of the cases were female.

Table 15: Distribution of oesophageal cancer by gender in 2016

Gender Count of Gender Percentage

Female 289 35.46

Male 526 64.54

Grand Total 815 100

In 2016 as shown in Table 5, 526 (64.54%) of oesophageal cancer cases were male

while 289(35.46%) of the cases were female.

4.4.2 Standardized Incidence Ratio (SIR) of oesophageal cancer

Clearly in most counties there was greater risk of oesophageal cancer cases than

expected from the standard population since all counties where data was available

had a SIR value greater than 1 except in Kiambu as shown in Table 16.
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Table 16: Oesophageal cancer Standardized Incidence Ratios (SIR)

County SIR 2015/2016

Bomet 10.09

Embu 4.25

Kakamega 1.91

Kiambu 0.87

Machakos 1.39

Meru 4.22

Mombasa 1.09

Nairobi 2.4

Nakuru 3.08

Nyeri 6.34

Standard Incidence Ratios(SIR) map was generated as shown in Figure 4.5 below

.

Figure 4.5: Standardized Incidence Rates (SIR) for oesophageal cancer.

Source: Author, 2021
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4.4.3 Spatial-temporal models for oesophageal cancer

Although SIRs can be useful in some settings, in regions with small populations or

rare diseases the expected counts may be very low and SIRs may be misleading and

insu�ciently reliable for reporting. Therefore, it is preferred to estimate disease

risk by using models that incorporates covariates and borrows information from

neighboring areas (Gelfand et al., 2010).

Four models were �tted based on equation (3.31), thereafter a most plausible

model was selected based on the smallest value of Deviance Information Criterion

(DIC).

Models where smoking was the covariate

Model 1: With structured, unstructured spatial e�ect, trend e�ects.

Model 2: With structured spatial e�ect, structured trend e�ect, global time e�ect

and a covariate.

Model 3: With structured, unstructured spatial e�ects, structured trend e�ects

and a covariate.

Model 4: structured spatial e�ect, structured time e�ect, space-time interaction

e�ects and a covariate.
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Table 17: Results for various oesophageal models �tted with smoking as the co-
variate

Variables Model 1 Model 2 Model 3 Model 4

Intercept

(eβ0)

0.001 0.9578 0.0005 0.0005

Smoking

(eβ1)

1.0121 1.0523 1.0121 1.0121

Year (eβ2) - 0.0004 - -

DIC 200.91 46067344 200.89 200.63

The multiplicative e�ect of smoking was observed to be eβ1=1.012, indicating that

oesophageal cancer was 1.2 % higher for smokers compared to non-smokers.

Table 17 presents the covariate estimates and DIC components for the four models:

despite the added complexity due interaction between space and time, Model 4

was more plausible since it had the lowest DIC value. The relative risk values

were obtained for the model as indicated in Table 18.

Table 18: The relative risks for counties with noti�ed oesophageal cancer cases
where smoking was the covariate

County Relative Risks

2015/2016

Bomet 11.71

Embu 2.91

Kakamega 2.28

Kiambu 0.68

Machakos 0.99

Meru 6.68

Mombasa 1.09

Nairobi 1.78

Nakuru 2.59

Nyeri 4.01
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Models where alcohol use was the covariate

In this section, four models were �tted similar to the four model above where

alcohol use was the covariate.

Table 19: Results for various models �tted with alcohol use as the covariate

Variables Model 1 Model 2 Model 3 Model 4

Intercept (eβ0) 0.0009 1.0725 0.0009 0.0009

Alcohol use

(eβ1)

1.0346 1.0460 1.0346 1.0346

Year (eβ2) - 0.0003 - -

DIC 182.63 81715841 182.74 182.60

Table 19 presents the covariate estimates and DIC components for the four models:

despite the added complexity due interaction between space and time, Model 4

was more plausible since it had the lowest DIC value. The multiplicative e�ect

of alcohol use was observed to be eβ1=1.0346, indicating that oesophageal cancer

is 3.5 % higher to alcohol users as compared to non-alcohol users. Subsequently,

relative risk values for the model were obtained as shown in Table 20 below.
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Table 20: The relative risks for counties with noti�ed oesophageal cancer cases
with alcohol use as the covariate

County Relative Risks

2015/2016

Bomet 11.75

Embu 2.80

Kakamega 2.43

Kiambu 0.64

Machakos 0.99

Meru 7.78

Mombasa 1.05

Nairobi 1.78

Nakuru 2.39

Nyeri 3.23

Spatial-temporal maps for oesophageal cancer model

Figure 4.6-4.7 shows the spatial-temporal distribution of the posterior estimates

of the relative risks from 2015 to 2016 after accounting for spatially random and

structured e�ects, temporal e�ects, space-time interactions and varying coe�cient

e�ects. These are interpreted as model-based relative risks. Counties with (µi >

1) had higher than expected risk from a standard population while those with

(µi < 1) have lower than expected risk. In Figures 4.6-4.7 an increased risk can

be seen in some parts of the country, characterized by a spatial relative risk above

1, and a posterior probabilities above 0.8.
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Figure 4.6: Spatial-temporal distribution of the relative risks for oesophageal can-
cer with smoking as the covariate.

Source: Author, 2021

Figure 4.7: Map of the uncertainty for the spatial temporal e�ects accounting for
smoking e�ect (oesophageal cancer) µi : p(µi > 1|y).

Source: Author, 2021
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Oesophageal cancer models where alcohol use and smoking were covari-

ates

Based on equation (3.31) three models incorporating various e�ects and covariates

were �tted as follows:

Model 1: With structured, unstructured spatial e�ect, trend e�ects.

Model 2: With structured spatial e�ect, structured trend e�ect, global time e�ect

as covariate.

Model 3: With structured spatial e�ect, structured time e�ect, space-time in-

teraction, alcohol use, smoking, year and alcohol use-smoking interaction as the

covariates.

Table 21: Results for various oesophageal models �tted with Alcohol, Smoking,
Year and an interaction as the covariate

Variables Model 1 Model 2 Model 3

Intercept

(eβ0)

0.0012 0.9980 0.0036

Alcohol (eβ1) 1.0639 1.0555 1.1688

Smoking(eβ2) 0.0982 0.9910 1.0460

Year - 0.0004 -

Alcohol*Smoking - - 0.9970

DIC 183.3621 73323521 173.3209

Table 21 presents the exponentiated covariate estimates and DIC components

for the three models: the third model was the most plausible despite the added

complexity due interaction between space and time as wel as alcohol use-smoking

interaction. The DIC value was 173.3209 which was the smallest. Since the

interaction term coe�cient value was less than 1, the conclusion was that, there

was no interaction e�ect and hence proceeded to interpret the main e�ects. In

this model the multiplicative e�ect of alcohol use was observed to be eβ1=1.1688,

indicating that oesophageal cancer was 16.88 % higher to alcohol users as compared
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to non-alcohol users. The multiplicative e�ect of smoking was observed to be

eβ1=1.0460, indicating that oesophageal cancer was 4.60 % higher to smokers as

compared to non-smokers.

Table 22: The relative risks for Model 3 where alcohol use and smoking were the
covariates

County Relative Risks

2015/2016

Bomet 11.16

Embu 3.04

Kakamega 2.6

Kiambu 0.67

Machakos 1.05

Meru 5.93

Mombasa 1.09

Nairobi 2.18

Nakuru 2.88

Nyeri 3.89

The results in Table 22 revealed that Bomet, Meru, Nyeri, Embu, Nakuru, Kakamega

and Nairobi counties had higher risk of oesophageal cancer respectively. The �nd-

ings were consistent with model above where alcohol use and smoking variables

were applied independently.
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According to study �ndings in Figure 4.8, the light yellow shaded areas were low

risk while the purple area exhibited the highest risk.

Figure 4.8: Spatial-temporal distribution of the relative risks for oesophageal can-
cer with alcohol use and smoking as the covariates.

Source: Author, 2021
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4.4.4 Descriptive statistics for lung cancer

Table 23: Distribution of lung cancer by gender in 2015

Gender Count of Gender Percentage

Female 48 43.24

Male 63 56.74

Grand Total 111 100

According to data in Table 23, 63 (56.74%) of lung cancer cases were male while

48 (43.24%) of the cases were female.

Table 24: Distribution of lung cancer by gender in 2016

Gender Count of Gender Percentage

Female 63 43.15

Male 83 56.85

Grand Total 146 100

According to the data in Table 24, in 2016 83(56.85%) of lung cancer cases were

male while 63(43.15%) of the cases were female.

4.4.5 Spatio-temporal models for lung cancer

Spatial-temporal model for lung cancer where smoking was the covari-

ate

In this section, four models based on equation (3.31) were �tted, where smoking

was the covariate. The models incorporated various spatial and temporal e�ects

as follows:

Model 1: With structured, unstructured spatial e�ect, trend e�ects.

Model 2: With structured spatial e�ect, structured trend e�ect, global time e�ect

and a covariate.



59

Model 3: With structured, unstructured spatial e�ects, structured trend e�ects

and a covariate.

Model 4: structured spatial e�ect, structured time e�ect, space-time interaction

e�ects and a covariate.

Table 25: Results for various models �tted with smoking as the covariate

Variables Model 1 Model 2 Model 3 Model 4

Intercept (eβ0) 0.0327 0.5886 0.0327 0.0343

Smoking (eβ1) 1.3324 1.1996 1.3338 1.4021

Year (eβ2) - 0.0612 - -

DIC 129.55 211.78 129.47 127.12

Table 25 presents the covariate estimates and DIC components for the four models,

Model 4 was selected since it had the lowest DIC value compared to others: The

multiplicative e�ect of smoking was eβ1=1.4021, indicating that lung cancer is

40.21 % higher to smokers as compared to non-smokers from the available data.

Table 26: The relative risks for counties with noti�ed lung cancer cases with
smoking as the covariate

County Relative Risks

2015/2016

Bomet 0.68

Embu 5.01

Kakamega 0.19

Kiambu 1.99

Machakos 3.26

Meru 2.42

Mombasa 1.30

Nairobi 3.69

Nakuru 2.02

Nyeri 4.98
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Relative risk greater than 1 indicated that the risk of developing lung cancer is

higher in the speci�c counties than in the standard population. The relative risks

in Table 16 indicated that majority of the counties where data was available had

higher risk of developing lung cancer with exception of Bomet and Kakamega.

In Figure 4.9 and 4.10 the light yellow coloured counties indicated low risk of

lung cancer while the purple coloured counties indicated higher relative risk and

probability value of more that 0.8.
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Figure 4.9: Spatial-temporal distribution of the relative risks for lung cancer with
smoking as the covariate.

Source: Author, 2021

Figure 4.10: Map of the probability for the spatial temporal e�ects accounting for
smoking e�ect (lung cancer) µi : p(µi > 1|y).

Source: Author, 2021
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Spatial-temporal model for lung cancer where alcohol use was the co-

variate

In this section, four models were �tted based on equation (3.31) where alcohol use

was the covariate. The four models contained various e�ects as outlined below.

Model 1: With structured, unstructured spatial e�ect, trend e�ects.

Model 2: With structured spatial e�ect, structured trend e�ect, global time e�ect

and a covariate.

Model 3: With structured, unstructured spatial e�ects, structured trend e�ects

and a covariate.

Model 4: structured spatial e�ect, structured time e�ect, space-time interaction

e�ects and a covariate.

Table 27: Results for various models �tted with alcohol use as the covariate

Variables Model 1 Model 2 Model 3 Model 4

Intercept (eβ0) 0.0302 0.6344 0.0347 0.0342

Alcohol use

(eβ1)

1.3689 0.05948 1.3716 1.3716

Year (eβ2) - 1.1817 - -

DIC 128.61 209.67 128.77 128.78

Table 27 presents the covariate estimates and DIC components for the four models,

Model 1 was selected since it had the lowest DIC value compared to others: The

study �ndings revealed, the multiplicative e�ect of alcohol use was eβ1=1.3689,

indicating that the risk of lung cancer is 36.89 % higher to alcohol users compared

to non-alcohol users.
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Table 28: The relative risks for counties with noti�ed lung cancer cases where
alcohol use is the covariate

County Relative Risk

2015/2016

Bomet 0.69

Embu 5.00

Kakamega 0.19

Kiambu 1.78

Machakos 3.74

Meru 2.54

Mombasa 1.30

Nairobi 4.08

Nakuru 1.80

Nyeri 5.97

The relative risks in Table 28 indicated that in majority of the counties where the

data was available the risk of developing lung cancer was higher than expected in

the standard population since the relative risk values were greater than 1.
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In Figure 4.11 the darker the colour the higher the relative risk as indicated in

the RR bar. Nyeri, Embu, Nairobi and Machakos Counties had the highest risks

respectively.The relative risk of the areas where the data was not available ranged

between 0.0539 and 0.7971. In Figure 4.12 the purple shaded areas indicated a

prpbability that the relative was greater than 1.

Figure 4.11: Spatial-temporal distribution of the relative risks for lung cancer with
alcohol use as the covariate.

Source: Author, 2021

Figure 4.12: Map of the probability values accounting for alcohol use (lung cancer)
µi : p(µi > 1|y).

Source: Author, 2021
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Lung cancer models where smoking and alcohol use were covariates

Three models based on equation (3.31) containing various e�ects as outlined below

were applied.

Model 1: With structured, unstructured spatial e�ect, trend e�ects.

Model 2: With structured spatial e�ect, structured trend e�ect, global time e�ect

and a covariate.

Model 3: structured spatial e�ect, structured time e�ect, space-time interaction

e�ects, alcohol use, covariate, smoking and interaction covariate.

Table 29: Results for various lung cancer models �tted with alcohol use, smoking,
year and an interaction as the covariate

Variables Model 1 Model 2 Model 3

Intercept (eβ0) 0.0332 0.4700 0.0961

Alcohol (eβ1) 1.0919 0.6838 0.5477

Smoking(eβ2) 1.2361 1.8112 8.8640

Year - 0.0755 -

Alcohol*Smoking(eβ3) - - 0.9277

DIC 131.014 203.088 127.059

Table 29 presents the covariate estimates and DIC components for the three mod-

els: the third model with a DIC value 127.059 was the most plausible despite the

added complexity due interaction between space and time a well as smoking and

alcohol use interaction term. The exponentiated coe�cient value was 0.9277 which

was less than 1 which means the interaction term was not signi�cant. The �ndings

in Model 3 revealed that the multiplicative e�ect of smoking was eβ2=8.8640 in-

dicating that smoking was a great risk factor for lung cancer in Kenya's counties.

The multiplicative e�ect of alcohol use was observed to be eβ1=0.5477 indicat-

ing that alcohol use was not a risk factor when modeled together with smoking.

Relative risks for the model were obtained as shown in Table 20..
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Table 30: The relative risks for counties with noti�ed lung cancer cases where
smoking and alcohol use were the covariates

County Relative Risks

2015/2016

Bomet 0.44

Embu 0.9

Kakamega 0.10

Kiambu 1.85

Machakos 1.58

Meru 2.64

Mombasa 1.91

Nairobi 5.97

Nakuru 1.25

Nyeri 3.56

The study �ndings in Table 30 revealed that Nairobi, Nyeri, Meru, Kiambu and

Mombasa had higher risk of lung cancer disease.
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In Figure 4.13 the purple coloured area indicated the county with highest risk of

lung cancer which was Nairobi while the light yellow coloured areas indicate the

low risk areas.

Figure 4.13: Spatial-temporal distribution of the relative risks for lung cancer with
alcohol use-smoking as the covariate.

Source: Author, 2021
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CHAPTER FIVE

5 SUMMARY, CONCLUSION ANDRECOMMEN-

DATIONS

5.1 Introduction

This chapter provides a summary of the major �ndings of this study and also

sets to draw conclusions and make recommendations and suggestions for further

research based on the results of this study.

5.2 Summary

Speci�c Objective 1:To model over-dispersion and conduct spatial corre-

lations tests for cervical, oesophageal and lung cancer cases distribution

in Kenya's counties.

Simple Poisson log normal regression models were not appropriate to model the

three cancers due to over dispersion nature of the data sets. The spatial correlation

tests revealed that there was no spatial auto correlation for the three types of

cancer.

Speci�c Objective 2:To model cervical cancer cases using Poisson-Gamma

and Spatial-temporal models.

The results revealed that counties where data was available among them Embu,

Mombasa, Meru, Machakos and Nyeri counties had very high risk of cervical can-

cer. In counties where data was not available the model showed relative risks

of cervical cancers was not very high but the risk was present, therefore spatial

temporal models are very appropriate to estimate relative risks of diseases even

when there is a small sample (and possibly an empty sample) in a given area by

borrowing information from other neighboring regions.
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Speci�c Objective 3:To model the e�ects of covariates on spatial-temporal

distribution of oesophageal and lung cancer cases in Kenya's counties.

The study revealed that Bomet had highest relative risk of oesophageal cancer, fol-

lowed by Meru, Nyeri, Embu, Nakuru, Kakamega Nairobi, Mombasa, Kiambu and

Machakos counties respectively. Other counties had relatively low relative risks

which ranged between 0.01-0.08, clearly even though the data was not available

in these counties application of spatio-temporal accounting for covariates revealed

that there was risk of oesophageal cancer in the counties. The study revealed that

smoking and alcohol use are signi�cant determinants of oesophageal cancer in

Kenya.The study �ndings were consistent with Odera et al. (2017) who, identi�ed

alcohol drinking, genetic factors, dietary change/food preparation, and consump-

tion of hot food as the main risk factors for oesophageal cancer. Patel et al. (2013)

showed that there was positive and statistically signi�cant relationship between

tobacco smoking and development of oesophageal in Kenya, where in one study

smokers had 2.51 odds of developing oesophageal cancer than non-smokers. Gen-

eration of spatio-temporal maps and identi�cation of the risk factors from various

counties with noti�ed oesophageal cancer cases is a major milestone since previous

studies on oesophageal cancer focused on speci�c regions. Previous studies had

indicated that oesophageal cancer was more prevalent in western region of Kenya,

but the study revealed that it is also prevalent in other counties such as Meru,

Embu and Nyeri.

As per the study �nding, it was evident that smoking and alcohol use were sig-

ni�cant risk factors for lung cancer in Kenya. Meta-analyses by Bandera et al.

(2001) indicated that the increased risk of lung cancer observed among alcoholics

is mainly attributable to such residual confounding, since no consistent association

was observed in never-smokers. Other risk factors include , indoor air pollution,

which includes coal burning in poorly ventilated houses, burning of wood and

other solid fuels, as well as fumes from high-temperature cooking using unre�ned

vegetable oils such as rapeseed oil, and occupational lung carcinogens such as
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asbestos, silica, radon, heavy metals and poly-cyclic aromatic hydrocarbons. Ac-

cording to Malhotra et al. (2016), some of priorities for the prevention of lung

cancer include control of occupational exposures, as well as indoor and outdoor

air pollution, and understanding the carcinogenic and preventive e�ects of dietary

and other lifestyle factors.

5.3 Recommendations

5.3.1 Recommendations for national and counties governments

We recommend that, since all counties had cervical cancer relative risk greater

than 1, step up screening and avail vaccines to the appropriate groups.

The national, county and private health institutions should work closely to create

awareness by disseminating information on oesophageal cancer and lung cancer

especially in high risk areas as revealed by the study.

To mitigate oesophageal cancer, counties should create awareness on e�ects of

smoking and alcohol use. In case of lung cancer, counties with relative risks

greater than 1 should disseminate information elaborating the e�ects of smoking

and alcohol use.

5.3.2 Recommendation for National Cancer Registry and other cancer

registries

Despite success of this study, the biggest impediment in spatial temporal study was

non-availability of adequate county data which could have provided more insight

on the distribution of the the cancers in Kenya. Therefore the National Cancer

Registry in collaboration with counties health departments should enhance cancer

data collection to facilitate research and to inform the appropriate measures to be

implemented to mitigate the increase of cancer cases.



71

5.3.3 Areas of further research

Further epidemiological studies can be conducted in areas with high relative risks

to �nd out the other risk factors resulting to higher cases for the three cancers. The

study obtain data for two years 2015 and 2016 from the National Cancer Registry,

this was a short time series, further study can be conducted comprising longer

periods of time to provide more insights and to compare the results with the ones

obtained in this study. The study clearly revealed the relative risks for cervical,

oesophageal and lung cancer in ten counties, subject to availability of more data

the model can be applied in future studies to provide the relative risks for the

remaining counties as well provide updated risks for the ten counties. Cancer is a

generic term for various types of cancers, therefore, the study was not exhaustive

of all cancers in Kenya, in the our continent and worldwide. Consequently, the

models applied in this study can be replicated to model other diseases in the

country and cancer in other regions.
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A APPENDICES

APPENDIX A: R-Codes for various objectives.

Assessing the over dispersion and spatial correlation of cer-

vical cancer cases

library(MASS)

library(sf)

library(maptools)

library(spdep)

library(maptools)

library(raster)

library(plyr) library(ggplot2)

library(rgdal)

library(SpatialEpi)

library("CARBayesdata")

library("sp")

Kenya<-getData("GADM", country="KE", level=0)

Kenya3<-getData("GADM", country="KE", level=1)

Kenya3

NAME_1<-Kenya3$NAME_1

NAME_1

CancerK4<-read.csv("D:\\JOSEPH KURIA FOLDER\\PHD 2019 TEX\\

November 2019\\

CORRECT DURING PREPARATION DOCUMENTS September 2021\\

Appendix R-Code\\Cervixdata.csv")

CancerK4
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Y7<-CancerK4$Cases Y7

Pop1<-CancerK4$Pop

Pop1 E7<-expected(Pop1,Y7, 1)

CancerK4$SIR<-Y7/E7

CancerK4$SIR

#

library("dplyr")

SIR.av2 <- summarise(group_by(CancerK4,NAME_1), SIR.mean2

=mean(SIR))

SIR.av2

SIR.av2<-as.data.frame(SIR.av2)

SIR.av2

NAME_1<-as.character(SIR.av2$NAME_1)

NAME_1

SIR.mean2<-SIR.av2$SIR.mean2

SIR.mean2

SIR.av2<-data.frame(NAME_1,SIR.mean2)

SIR.av2

ID<-as.character(seq(1,47))

library("spdep")

W.nb <- poly2nb(Kenya3, row.names = SIR.av2$NAME_1)

W.list <- nb2listw(W.nb, style = "B")

W <- nb2mat(W.nb, style = "B")

formula<- Y7 ~ o�set(log(E7))

model.c <- glm(formula = formula, family = "poisson",data=CancerK4)

summary(model.c)

library(AER)

dispersiontest (model.c)
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#Computing Moran I statistic

resid.glm <- residuals(model.c)

resid.glm

summary(model.c)$coe�cients

moran.mc(x = resid.glm[1:47], listw = W.list, nsim = 10000)

Assessing the over dispersion and spatial correlation of oe-

sophageal cancer cases

library(MASS)

library(sf)

library(maptools)

library(spdep)

library(maptools)

library(raster)

library(plyr) library(ggplot2)

library(rgdal)

library(SpatialEpi)

library("CARBayesdata")

library("sp")

Kenya<-getData("GADM", country="KE", level=0)

Kenya3<-getData("GADM", country="KE", level=1)

Kenya3

NAME_1<-Kenya3$NAME_1 NAME_1

OECdata<-read.csv("D:\\JOSEPH KURIA FOLDER\\PHD 2019 TEX\\

DatasetsandRcodes\\OECANCER 2021.csv")

OECdata

Y5<-OECdata$Cases Y5

Pop1<-OECdata$Pop

Pop1 E15<-expected(Pop1,Y5, 1)
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OECdata$SIR<-Y5/E15

OECdata$SIR

####

library("dplyr")

SIR.av2 <- summarise(group_by(OECdata,NAME_1), SIR.mean2 =mean(SIR))

SIR.av2

SIR.av2<-as.data.frame(SIR.av2)

SIR.av2

NAME_1<-as.character(SIR.av2$NAME_1)

NAME_1

SIR.mean2<-SIR.av2$SIR.mean2

SIR.mean2

SIR.av2<-data.frame(NAME_1,SIR.mean2)

SIR.av2

ID<-as.character(seq(1,47))

library("spdep")

W.nb <- poly2nb(Kenya3, row.names = SIR.av2$NAME_1)

W.list <- nb2listw(W.nb, style = "B")

W <- nb2mat(W.nb, style = "B")

formula13 <- Y5 ~ o�set(log(E15))

model3 <- glm(formula = formula13, family = "poisson")

summary(model3)

library(AER)

dispersiontest(model3)

#Computing Moran I statistic

resid.glm <- residuals(model3)

resid.glm

summary(model3)$coe�cients

moran.mc(x = resid.glm[1:47], listw = W.list, nsim = 10000)
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Assessing the over dispersion and spatial correlation of lung

cancer data

library(MASS)

library(sf)

library(maptools)

library(spdep)

library(maptools)

library(raster)

library(plyr)

library(ggplot2)

library(rgdal)

library(SpatialEpi)

library("CARBayesdata")

library("sp")

Kenya<-getData("GADM", country="KE", level=0)

Kenya3<-getData("GADM", country="KE", level=1)

Kenya3

NAME_1<-Kenya3$NAME_1 NAME_1

LCdata<-read.csv("D:\\JOSEPH KURIA FOLDER\\PHD 2019 TEX\\

DatasetsandRcodes\\Lungcancer Data.csv")

LCdata

Y6<-LCdata$Cases

Y6

Pop3<-LCdata$Pop

Pop3

L16<-expected(Pop3,Y6, 1)

LCdata$SIR<-Y6/L16

LCdata$SIR

####
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library("dplyr")

SIR.av3 <- summarise(group_by(LCdata,NAME_1), SIR.mean3 =

mean(SIR))

SIR.av3

SIR.av3<-as.data.frame(SIR.av3)

SIR.av3

NAME_1<-as.character(SIR.av3$NAME_1)

NAME_1

SIR.mean3<-SIR.av3$SIR.mean3

SIR.mean3

SIR.av3<-data.frame(NAME_1,SIR.mean3)

SIR.av3

library("spdep")

W.nb <- poly2nb(Kenya3, row.names = SIR.av3$NAME_1)

W.list <- nb2listw(W.nb, style = "B")

W <- nb2mat(W.nb, style = "B")

formula6 <- Y6 ~ o�set(log(L16))

model6 <- glm(formula = formula6, family = "poisson")

summary(model6)

library(MASS)

library(AER)

dispersiontest(model6)

#######

resid.glm <- residuals(model6)

resid.glm summary(model6)$coe�cients

moran.mc(x = resid.glm[1:47], listw = W.list, nsim = 10000)
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To model cervical cancer cases using Poisson-Gamma

and Spatial-temporal models.

Poisson-gamma model for cervical cancer cases

library(MASS)

library(sf)

library(maptools)

library(spdep)

library(maptools)

library(raster)

library(plyr)

library(ggplot2)

library(rgdal)

library(SpatialEpi)

library("CARBayesdata")

library("sp")

Kenya<-getData("GADM", country="KE", level=0)

Kenya3<-getData("GADM", country="KE", level=1)

Kenya3

NAME_1<-Kenya3$NAME_1

NAME_1

#Reading in data

CancerK4<-read.csv("D:\\JOSEPH KURIA FOLDER\\PHD 2019 TEX\\

November 2019

\\CORRECT DURING PREPARATION DOCUMENTS September 2021\\

Appendix R-Code\\Cervixdata.csv")

head(CancerK4)

CancerK4 Cases<-CancerK4$Cases

Cases
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Pop<-CancerK4$Pop

#calculating expected cancer cases per county

E<-expected(Pop,Cases, 1)

#generating Standardized Incidence Rates

CancerK4$SIR<-Cases/E

CancerK4$SIR

Cervix<-data.frame(NAME_1,Cases,E)

Cervix$SIR<-Cases/E

Cervix$SIR Cervix

#Histogram of cervical cancer cases

hist(Cases, col="grey", border=NA, las=1,xlab="Cervical cancer cases",

main="Histogram of cervical cancer cases")

#Generating Poisson-Gamma model

library("hglm")

pois.gamma <-hglm(�xed = Cases~o�set(log(E)), random = ~1 |

NAME_1,�x.disp = 1, family =poisson(), rand.family =

Gamma(link = log), data = Cervix,calc.like = TRUE)

summary(pois.gamma)

print(pois.gamma,print.ranef = TRUE)

Spatial-temporal models for cervical cancer cases

library(MASS)

library(sf)

library(maptools)

library(spdep)
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library(raster)

library(plyr)

library(ggplot2)

library(rgdal)

library(SpatialEpi)

library("sp")

Kenya<-getData("GADM", country="KE", level=0)

Kenya3<-getData("GADM", country="KE", level=1)

Kenya3

NAME_1<-Kenya3$NAME_1

SCdata<-read.csv("D:\\JOSEPH KURIA FOLDER\\PHD 2019 TEX\\

November 2019

\\STcervixdata.csv")

head(SCdata)

Exp2015C<-expected(SCdata$Pop,SCdata$Obs2015, 1)

Exp2015C

Exp2016C<-expected(SCdata$Pop,SCdata$Obs2016, 1)

Exp2016C

SCdata$Exp2015C<-expected(SCdata$Pop,SCdata$Obs2015, 1)

SCdata$Exp2015C

SCdata$Exp2016C<-expected(SCdata$Pop,SCdata$Obs2016, 1)

SCdata$Exp2016C SCdata

Kenya3 <- merge(Kenya3, SCdata)

Kenya3

low.vector <- as.vector(as.matrix(SCdata[,2:3]))#by column

low.vector

E.vector <- as.vector(as.matrix(SCdata[,5:6]))#by column

E.vector

year <- numeric(0)
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for(i in 1:2){

year<- append(year,rep(i,dim(SCdata)[1]))

}

year

NAME_1<- as.factor(rep(SCdata[,1],2))

NAME_1

SCdata

dataSC<- data.frame(NAME_1,y= low.vector,E= E.vector,

ID.area=as.numeric(NAME_1), ID.area1=as.numeric(NAME_1),

year=year, ID.year = year, ID.year1=year,

ID.area.year = seq(1,length(NAME_1)))

dataSC

####SIR

datanew<-data.frame(NAME_1,y= low.vector,E= E.vector)

datanew

SIR<-datanew$y/datanew$E SIR

library("dplyr")

datanew<-data.frame(NAME_1,y= low.vector,E= E.vector,SIR)

datanew SIR.av <- summarise(group_by(datanew,NAME_1 ),

SIR.mean =mean(SIR))

SIR.av

SIR.av<-as.data.frame(SIR.av)

SIR.av

####

SIR.av1<-read.csv("D:\\JOSEPH KURIA FOLDER\\

PHD 2019 TEX\\DatasetsandRcodes

\\SIRCERVICAL.csv")

SIR.av1

SIR<-SIR.av1$SMR.mean
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Kenya3@data

Kenya3@data$SIR <- SIR

Kenya3@data$SIR

#Standardized Incidence Rates

library(lea�et)

pal <- colorNumeric(palette = "YlOrRd", domain = SIR)

pal

labels <- sprintf("<strong> %s </strong> <br/>

Pop: %s <br/> SIR: %s ",

Kenya3$NAME_1,

Pop, round(SIR, 2)

)%>% lapply(htmltools::HTML)

lSIR<- lea�et(Kenya3) %>%

addTiles() %>%

addPolygons( color = "grey", weight = 1, �llColor = ~

pal(SIR),

�llOpacity = 0.7, highlightOptions = highlightOptions

(weight = 4),

label = labels,

labelOptions = labelOptions(

noHide = FALSE,

style =

list(

"font-weight" = "normal",

padding = "3px 8px" ),

textsize = "15px", direction = "auto"

)

) %>%

addLegend(
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pal = pal, values = ~Kenya3@data$SIR , opacity = 0.7,

title = "SIR",

position = "bottomright" )

lSIR

###Models

library(spdep)

library(INLA)

nb <- poly2nb(Kenya3)

nb2INLA("Kenya3.adj", nb)

g <- inla.read.graph(�lename = "Kenya3.adj")

# Models without covariates

#Model 1 with Space (Structured), Unstructured, Time

formula1<- y ~1+ f(ID.area,model="bym",graph=g)+

f(ID.area1,year,model="iid")+year

Model1 <- inla(formula1,family="poisson",data=dataSC

,E=E,control.predictor=list(compute=TRUE),

control.compute=list(dic=TRUE,cpo=TRUE))

summary(Model1)

#Model 2

#space(structured) are modelled through BYM

#time is modelled via random walk (RW1)

#space (unstructured) modelled via iid

formula2 <- y ~ 1 + f(ID.area, model="bym",graph=g) +
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f(ID.year, model="rw1") + f(ID.year1, model="iid")

Model2 <-inla(formula2,family="poisson",data=dataSC,E=E,

control.predictor=list(compute=TRUE),

control.compute=list(dic=TRUE,cpo=TRUE))

summary(Model2)

#space(area) are modelled through BYM

#time is modelled via random walk (RW1)

#space-time interaction is modelled as exchangeable

formula3<- y ~ 1 + f(ID.area,model="bym",graph=g) +

f(ID.year,model="rw1") + f(ID.area.year,model="iid")

#To obtain the marginal of phij + gammaj we need to create the corresponding

linear combinations and include these in the model

lcs = inla.make.lincombs(ID.year = diag(2))

Model3<- inla(formula3,family="poisson",data=dataSC,E=E,

control.predictor=list(compute=TRUE), control.compute=

list(dic=TRUE,cpo=TRUE),

lincomb=lcs,control.inla = list(lincomb.derived.only=TRUE))

#Put the temporal e�ect (gammaj+phij) on the natural scale

summary(Model3)

#Compute the DIC as a tool for model choice

Model1$dic$dic

Model2$dic$dic

Model3$dic$dic

#DIC components: E�ective number of parameter (pd)

Model1$dic$p.e�

Model2$dic$p.e�
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Model3$dic$p.e�

#DIC components: mean.deviance

Model1$dic$mean.deviance

Model2$dic$mean.deviance

Model3$dic$mean.deviance

library(MASS)

library(lea�et)

head(Model3$summary.�tted.values)

RR <- Model3$summary.�tted.values[, "mean"]

RR

cbind(NAME_1,RR)

RR<-cbind(as.factor(NAME_1),round(as.numeric(RR),2))

RR

RRagg<-aggregate(RR[,2],list(RR[,1]), FUN=mean)

RRagg

RRnew<-RRagg$x

RRnew

LL <- Model3$summary.�tted.values[, "0.025quant"]

LL

LL<-cbind(as.factor(NAME_1),round(as.numeric(LL),2))

LLagg<-aggregate(LL[,2],list(LL[,1]), FUN=mean)

LLagg

LLnew<-LLagg$x

LLnew

UL <- Model3$summary.�tted.values[, "0.975quant"]

UL

UL<-cbind(as.factor(NAME_1),round(as.numeric(UL),2))

ULagg<-aggregate(UL[,2],list(UL[,1]), FUN=mean)

ULagg
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ULnew<-ULagg$x

ULnew

pal <- colorNumeric(palette = "YlOrRd", domain = RRnew)

labels <- sprintf("<strong> %s </strong> <br/>

Pop: %s <br/> RRnew: %s (%s, %s)",

Kenya3$NAME_1,

Pop, round(RRnew, 2),

round(LLnew, 2), round(ULnew, 2)

)%>% lapply(htmltools::HTML)

lRR <- lea�et(Kenya3) %>%

addTiles() %>%

addPolygons( color = "grey", weight = 1, �llColor = ~

pal(RRnew),

�llOpacity = 0.5, highlightOptions = highlightOptions

(weight = 4),

label = labels,

labelOptions = labelOptions(

noHide = FALSE,

style =

list(

"font-weight" = "normal", padding = "3px 8px" ),

textsize = "15px", direction = "auto" )

) %>%

addLegend(

pal = pal, values = ~RRnew, opacity = 0.5, title = "RR",

position = "bottomright" )

lRR

#### Probability map

pp<-Spatial.results$pp
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pp

library(lea�et)

pal <- colorNumeric(palette = "YlOrRd", domain = pp)

labels <- sprintf("<strong> %s </strong> <br/>

Pop: %s <br/> pp: %s ",

Kenya3$NAME_1, Pop, round(pp, 2)

)%>% lapply(htmltools::HTML)

lpp <- lea�et(Kenya3) %>%

addTiles() %>%

addPolygons( color = "grey", weight = 1, �llColor = ~ pal(pp),

�llOpacity = 0.7,

highlightOptions = highlightOptions(weight = 4),

label = labels,

labelOptions = labelOptions(

noHide = FALSE,

style =

list(

"font-weight" = "normal",

padding = "3px 8px" ), textsize = "15px", direction = "auto"

)

) %>%

addLegend( pal = pal, values = ~pp, opacity = 0.7, title = "pp",

position = "bottomright"

)

lpp

Spatial-temporal models for oesophageal cancer cases

Models where smoking is the covariate (oesophageal cancer)

library(MASS)
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library(sf)

library(maptools)

library(spdep)

library(raster)

library(plyr)

library(ggplot2)

library(rgdal)

library(SpatialEpi)

library("CARBayesdata")

library("sp")

library(INLA)

library(lea�et)

Kenya<-getData("GADM", country="KE", level=0)

Kenya3<-getData("GADM", country="KE", level=1)

Kenya3

NAME_1<-Kenya3$NAME_1 NAME_1

#plot(Kenya3)

SMdata<-read.csv("D:\\JOSEPH KURIA FOLDER\\PHD 2019 TEX\\

November 2019

\\STOEdataSmoke.csv")

head(SMdata)

Pop<-SMdata$Pop

Pop

Name<-ALdata$NAME_1

Name

Exp2015<-expected(SMdata$Pop,SMdata$Obs2015, 1)

Exp2015

Exp2016<-expected(SMdata$Pop,SMdata$Obs2016, 1)

Exp2016
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SMdata$Exp2015<-expected(SMdata$Pop,SMdata$Obs2015, 1)

SMdata$Exp2015

SMdata$Exp2016<-expected(SMdata$Pop,SMdata$Obs2016, 1)

SMdata$Exp2016

Kenya3 <- merge(Kenya3, SMdata)

Kenya3

low.vector <- as.vector(as.matrix(SMdata[,2:3]))#by column

low.vector

S.vector <- as.vector(as.matrix(SMdata[,5:6]))#by column

S.vector

E.vector <- as.vector(as.matrix(SMdata[,7:8]))#by column

E.vector

year <- numeric(0)

for(i in 1:2){

year<- append(year,rep(i,dim(SMdata)[1]))

}

year

NAME_1<- as.factor(rep(ALdata[,1],2))

NAME_1

SMdata

dataSM<-data.frame(y= low.vector, S=S.vector,E= E.vector,

ID.area=as.numeric

(NAME_1), ID.area1=

as.numeric(NAME_1), year=year, ID.year = year,

ID.year1=year,ID.area.year = seq(1,length(NAME_1)))

dataSM

###Models

nb <- poly2nb(Kenya3)
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nb2INLA("Kenya3.adj", nb)

g <- inla.read.graph(�lename = "Kenya3.adj")

### Models with covariates #Model 1 with Space (Structured), Unstructured,

Time and Alcohol use Covariate

formula.1<- y ~1+ f(ID.area,model="bym",graph=g)+

f(ID.area1,model="iid")+

f(ID.year,model="rw1")+S

Model.1 <- inla(formula.1,family="poisson",data=

dataSM,E=E, control.predictor=

list(compute=TRUE), control.compute=

list(dic=TRUE,cpo=TRUE))

summary(Model.1)

exp(-7.470)

exp(0.012)

#Model2 with year as the Space (Structured), Unstructured, Time and Alcohol

use Covariate

#global time e�ect

formula.2<- y ~1+ f(ID.area,model="bym",graph=g)+

f(ID.area1,year,model="rw1")

+year+S

Model.2<- inla(formula.2,family="poisson",

data=dataSM,E=E, control.predictor=

list(compute=TRUE), control.compute=

list(dic=TRUE,cpo=TRUE))

summary(Model.2)

#Model.2$�xede�ects

exp( 0.070 )

exp( -7.894 )

exp( 0.045)
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#Non Parametric model alpha + csii + gammaj + phij #No space time interaction

yet! #csii and are modelled through BYM #gammaj are modelled as RW1

#phij are modelled as exchangeable

#Space (Structured), Time (Structured), (and) Unstructured, and Alcohol use

Covariate

formula.3<- y ~ 1 + f(ID.area,model="bym",graph=g) +

f(ID.year,model="rw1")+

f(ID.year1,model="iid")+ S

Model.3<- inla(formula.3,family="poisson",data=

dataSM,E=E, control.predictor=

list(compute=TRUE), control.compute=

list(dic=TRUE,cpo=TRUE))

summary(Model.3)

exp(-7.470)

exp(0.012)

#Non Parametric model alpha + csii + gammaj + phij + deltaij

#csii are modelled through BYM #gammaj are modelled as RW1

#phij are modelled as exchangeable

#Interaction (deltaij) is modelled as exchangeable

formula.4<- y ~ 1 + f(ID.area,model="bym",graph=g) +

f(ID.year,model="rw1") + f(ID.area.year,model="iid")+S

#To obtain the marginal of phij + gammaj we need to create the corresponding lin-

ear combinations and include these in the model lcs = inla.make.lincombs(ID.year

= diag(2))

Model.4 <- inla(formula.4,family="poisson",

data=dataSM,E=E, control.predictor=

list(compute=TRUE), control.compute=

list(dic=TRUE,cpo=TRUE), lincomb=lcs,

control.inla = list(lincomb.derived.only=TRUE))
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#Put the temporal e�ect (gammaj+phij) on the natural scale

summary(Model.4)

exp( -7.033)

exp( 0.034)

##################################

#Computethe DIC as a tool for model choice

Model.1$dic$dic

Model.2$dic$dic

Model.3$dic$dic

Model.4$dic$dic

#DIC components: E�ective number of parameter (pd)

Model.1$dic$p.e�

Model.2$dic$p.e�

Model.3$dic$p.e�

Model.4$dic$p.e�

#DIC components: mean.deviance

Model.1$mean.deviance

Model.2$dic$mean.deviance

Model.3$dic$mean.deviance

Model.3$dic$mean.deviance

head(Model.4$summary.�tted.values)

#Obtaining Relative Risks, Upper and Lower limits.

RR <- Model4$summary.�tted.values[, "mean"]

RR

RR<-cbind(as.factor(NAME_1),round(as.numeric(RR),2))

RR

RRagg<-aggregate(RR[,2],list(RR[,1]), FUN=mean)

RRagg

RRnew<-RRagg$x
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RRnew

LL <- Model4$summary.�tted.values[, "0.025quant"]

LL

LL<-cbind(as.factor(NAME_1),round(as.numeric(LL),2))

LLagg<-aggregate(LL[,2],list(LL[,1]), FUN=mean)

LLagg

LLnew<-LLagg$x

LLnew

UL <- Model4$summary.�tted.values[, "0.975quant"]

UL

UL<-cbind(as.factor(NAME_1),round(as.numeric(UL),2))

ULagg<-aggregate(UL[,2],list(UL[,1]), FUN=mean)

ULagg

ULnew<-ULagg$x

ULnew

pal <- colorNumeric(palette = "YlOrRd", domain = RRnew)

labels <- sprintf("<strong> %s </strong> <br/>

Pop: %s <br/> RRnew: %s (%s, %s)",

Kenya3$NAME_1,

Pop, round(RRnew, 2),

round(LLnew, 2), round(ULnew, 2)

)%>% lapply(htmltools::HTML)

lRR <- lea�et(Kenya3) %>%

addTiles() %>%

addPolygons(

color = "grey", weight = 1, �llColor = ~ pal(RRnew), �llOpacity = 0.5,

highlightOptions = highlightOptions(weight = 4),

label = labels,

labelOptions = labelOptions(
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noHide = FALSE,

style =

list( "font-weight" = "normal",

padding = "3px 8px" ),

textsize = "15px", direction = "auto" )

) %>%

addLegend(

pal = pal, values = ~RRnew, opacity = 0.5, title = "RR",

position = "bottomright" )

lRR

#### Probability map

pp<-Spatial.results$pp

pp

library(lea�et)

pal <- colorNumeric(palette = "YlOrRd", domain = pp)

pal

labels <- sprintf("<strong> %s </strong> <br/>

Pop: %s <br/> pp: %s ",

Kenya3$NAME_1,

Pop, round(pp, 2)

)%>% lapply(htmltools::HTML)

lpp <- lea�et(Kenya3) %>% addTiles() %>%

addPolygons(

color = "grey", weight = 1, �llColor = ~ pal(pp),

�llOpacity = 0.7,

highlightOptions = highlightOptions(weight = 4),

label = labels,

labelOptions = labelOptions(

noHide = FALSE,
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style =

list(

"font-weight" = "normal",

padding = "3px 8px" ),

textsize = "15px", direction = "auto" )

) %>%

addLegend( pal = pal, values = ~pp, opacity = 0.7, title = "pp",

position = "bottomright" )

lpp

Models where alcohol use was the covariate (oesophageal cancer)

library(MASS)

library(sf)

library(maptools)

library(spdep)

library(raster)

library(plyr)

library(ggplot2)

library(rgdal)

library(SpatialEpi)

library("CARBayesdata")

library("sp")

library(INLA)

library(lea�et)

Kenya<-getData("GADM", country="KE", level=0)

Kenya3<-getData("GADM", country="KE", level=1)

Kenya3

NAME_1<-Kenya3$NAME_1 NAME_1

#plot(Kenya3)
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ALdata<-read.csv("D:\\JOSEPH KURIA FOLDER\\PHD 2019 TEX\\

November 2019

\\STOEdataAlcohol.csv")

head(ALdata)

Pop<-ALdata$Pop

Pop

Name<-ALdata$NAME_1

Name

Exp2015<-expected(ALdata$Pop,ALdata$Obs2015, 1)

Exp2015

Exp2016<-expected(ALdata$Pop,ALdata$Obs2016, 1)

Exp2016

ALdata$Exp2015<-expected(ALdata$Pop,ALdata$Obs2015, 1)

ALdata$Exp2015

ALdata$Exp2016<-expected(ALdata$Pop,ALdata$Obs2016, 1)

ALdata$Exp2016

Kenya3 <- merge(Kenya3, ALdata)

Kenya3

low.vector <- as.vector(as.matrix(ALdata[,2:3]))#by column

low.vector

A.vector <- as.vector(as.matrix(ALdata[,5:6]))#by column

A.vector

E.vector <- as.vector(as.matrix(ALdata[,7:8]))#by column

E.vector

year <- numeric(0) for(i in 1:2){ year<- append(year,

rep(i,dim(ALdata)[1])) }

year

NAME_1<- as.factor(rep(ALdata[,1],2)) NAME_1 ALdata

dataAL<- data.frame(y= low.vector, A=A.vector,E= E.vector,
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ID.area=

as.numeric(NAME_1),

ID.area1=as.numeric(NAME_1), year=year, ID.year = year,

ID.year1=year, ID.area.year = seq(1,length(NAME_1)))

dataAL

dataAL$SIR<-dataAL$y/dataAL$E

dataAL$SIR

dataAL

###Models

nb <- poly2nb(Kenya3)

nb2INLA("Kenya3.adj", nb)

g <- inla.read.graph(�lename = "Kenya3.adj")

### Models with covariates #Model 1 with Space (Structured), Unstructured,

Time and Alcohol use Covariate

formula.1<- y ~1+ f(ID.area,model="bym",graph=g)+

f(ID.area1,model="iid")+

f(ID.year,model="rw1")+A

Model.1 <- inla(formula.1,family="poisson",data=dataAL,E=E,

control.predictor=list(compute=TRUE),

control.compute=list(dic=TRUE,cpo=TRUE))

summary(Model.1)

exp(-6.997)

exp(0.034)

#Model2 with year as the Space (Structured), Unstructured, Time and Alcohol

use Covariate #global time e�ect

formula.2A<- y ~1+ f(ID.area,model="bym",graph=g)+

f(ID.area1,year,model="rw1")
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+year+A

Model.2A <- inla(formula.2A,family="poisson",

data=dataAL,E=E, control.predictor=

list(compute=TRUE), control.compute=

list(dic=TRUE,cpo=TRUE))

summary(Model.2A)

#Model.2$�xede�ects

exp( 0.070 )

exp( -7.894 )

exp( 0.045)

#Non Parametric model alpha + csii + gammaj + phij

#No space time interaction yet!

#csii and are modelled through BYM

#gammaj are modelled as RW1

#phij are modelled as exchangeable

#Space (Structured), Time (Structured), (and) Unstructured, and Alcohol use

Covariate

formula.3A<- y ~ 1 + f(ID.area,model="bym",graph=g) + f(ID.year,

model="rw1")+ f(ID.year1,model="iid")+ A

Model.3A <- inla(formula.3A,family="poisson",data=dataAL,E=E,

control.predictor=list(compute=TRUE), control.compute=

list(dic=TRUE,cpo=TRUE))

summary(Model.3A)

#Non Parametric model alpha + csii + gammaj + phij + deltaij

#csii are modelled through BYM #gammaj are modelled as RW1

#phij are modelled as exchangeable
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#Interaction (deltaij) is modelled as exchangeable

formula.4A<- y ~ 1 + f(ID.area,model="bym",graph=g) +

f(ID.year,model="rw1") + f(ID.area.year,model="iid")+A

#To obtain the marginal of phij + gammaj we need to create the corresponding lin-

ear combinations and include these in the model lcs = inla.make.lincombs(ID.year

= diag(2))

Model.4A <- inla(formula.4A,family="poisson",data=dataAL,E=E,

control.predictor=

list(compute=TRUE), control.compute=

list(dic=TRUE,cpo=TRUE),

lincomb=lcs,control.inla =

list(lincomb.derived.only=TRUE))

#Put the temporal e�ect (gammaj+phij) on the natural scale

summary(Model.4A)

exp( -7.033)

exp( 0.034)

######################################

#Computethe DIC as a tool for model choice

Model.1A$dic$dic

Model.2A$dic$dic

Model.3A$dic$dic

Model.4A$dic$dic

#DIC components: E�ective number of parameter (pd)

Model1$dic$p.e�

Model2$dic$p.e�

Model3$dic$p.e�

#DIC components: mean.deviance
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Model1$mean.deviance

Model2$dic$mean.deviance

Model3$dic$mean.deviance

head(Model.1$summary.�tted.values)

#Obtaining Relative Risks, Upper and Lower limits.

RR <- Model4$summary.�tted.values[, "mean"]

RR

RR<-cbind(as.factor(NAME_1),round(as.numeric(RR),2))

RR

RRagg<-aggregate(RR[,2],list(RR[,1]), FUN=mean)

RRagg

RRnew<-RRagg$x

RRnew

LL <- Model4$summary.�tted.values[, "0.025quant"]

LL

LL<-cbind(as.factor(NAME_1),round(as.numeric(LL),2))

LLagg<-aggregate(LL[,2],list(LL[,1]), FUN=mean)

LLagg

LLnew<-LLagg$x

LLnew

UL <- Model4$summary.�tted.values[, "0.975quant"]

UL

UL<-cbind(as.factor(NAME_1),round(as.numeric(UL),2))

ULagg<-aggregate(UL[,2],list(UL[,1]), FUN=mean)

ULagg

ULnew<-ULagg$x

ULnew

pal <- colorNumeric(palette = "YlOrRd", domain = RRnew)

labels <- sprintf("<strong> %s </strong> <br/>
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Pop: %s <br/> RRnew: %s (%s, %s)",

Kenya3$NAME_1,

Pop, round(RRnew, 2),

round(LLnew, 2), round(ULnew, 2)

)%>% lapply(htmltools::HTML)

lRR <- lea�et(Kenya3) %>%

addTiles() %>%

addPolygons(

color = "grey", weight = 1, �llColor = ~ pal(RRnew), �llOpacity = 0.5,

highlightOptions = highlightOptions(weight = 4),

label = labels,

labelOptions = labelOptions(

noHide = FALSE,

style =

list( "font-weight" = "normal",

padding = "3px 8px" ),

textsize = "15px", direction = "auto" )

) %>%

addLegend(

pal = pal, values = ~RRnew, opacity = 0.5, title = "RR",

position = "bottomright" )

lRR

#### Probability map

pp<-Spatial.results$pp

pp

library(lea�et)

pal <- colorNumeric(palette = "YlOrRd", domain = pp)

pal

labels <- sprintf("<strong> %s </strong> <br/>
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Pop: %s <br/> pp: %s ",

Kenya3$NAME_1,

Pop, round(pp, 2)

)%>% lapply(htmltools::HTML)

lpp <- lea�et(Kenya3) %>% addTiles() %>%

addPolygons(

color = "grey", weight = 1, �llColor = ~ pal(pp),

�llOpacity = 0.7,

highlightOptions = highlightOptions(weight = 4),

label = labels,

labelOptions = labelOptions(

noHide = FALSE,

style =

list(

"font-weight" = "normal",

padding = "3px 8px" ),

textsize = "15px", direction = "auto" )

) %>%

addLegend( pal = pal, values = ~pp, opacity = 0.7, title = "pp",

position = "bottomright" )

lpp

Oesophageal cancer models where smoking and alcohol use were covari-

ates

library(MASS)

library(sf)

library(maptools)

library(spdep)

library(raster)
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library(plyr)

library(ggplot2)

library(rgdal)

library(SpatialEpi)

library("CARBayesdata")

library("sp")

library(INLA)

library(lea�et)

Kenya<-getData("GADM", country="KE", level=0)

Kenya3<-getData("GADM", country="KE", level=1)

Kenya3

#obtaining the county names

NAME_1<-Kenya3$NAME_1

NAME_1

#loading the data

ALdata<-read.csv("D:\\JOSEPH KURIA FOLDER\\PHD 2019 TEX\\

November

2019 \STOEdataAlcohol.csv")

ALdata

SMdata<-read.csv("D:\\JOSEPH KURIA FOLDER\\PHD 2019 TEX\\

November 2019\\STOEdataSmoke.csv")

head(SMdata)

Pop<-SMdata$Pop

Pop

Exp2015<-expected(SMdata$Pop,SMdata$Obs2015, 1)

Exp2015

Exp2016<-expected(SMdata$Pop,SMdata$Obs2016, 1)

Exp2016

SMdata$Exp2015<-expected(SMdata$Pop,SMdata$Obs2015, 1)
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SMdata$Exp2015

SMdata$Exp2016<-expected(SMdata$Pop,SMdata$Obs2016, 1)

SMdata$Exp2016

SMdata

Kenya3 <- merge(Kenya3,SMdata)

Kenya3

low.vector <- as.vector(as.matrix(SMdata[,2:3]))#by column

low.vector

S.vector <- as.vector(as.matrix(SMdata[,5:6]))#by column

S.vector

A.vector <- as.vector(as.matrix(ALdata[,5:6]))#by column

A.vector

E.vector <- as.vector(as.matrix(SMdata[,7:8]))#by column

E.vector

year <- numeric(0)

for(i in 1:2){

year<- append(year,rep(i,dim(SMdata)[1]))

}

year

NAME_1<- as.factor(rep(SMdata[,1],2))

NAME_1

dataSM<- data.frame(y= low.vector, S=S.vector, A=A.vector,E= E.vector,

ID.area=as.numeric(NAME_1), ID.area1=as.numeric(NAME_1),

year=year, ID.year = year, ID.year1=year,

ID.area.year =seq(1,length(NAME_1)))
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dataSM

###Models

nb <- poly2nb(Kenya3)

nb2INLA("Kenya3.adj", nb) g <- inla.read.graph(�lename = "Kenya3.adj")

### Models with covariates

#Model 1 with Space (Structured), Unstructured, Time and Alcohol use Covariate

formula.1<- y ~1+ f(ID.area,model="bym",graph=g)+ f(ID.area1,

model="iid")+f(year,model="rw1")+A+S

Model.1AS<- inla(formula.1,family="poisson",data=dataSM, E=E,

control.predictor=list(compute=TRUE),

control.compute=list(dic=TRUE,cpo=TRUE))

summary(Model.1AS)

exp(-6.710)#intercept

exp(0.062)#Smoking covariate

exp(-0.018)#Alcohol covariate

#Model2 with year as the Space (Structured), Unstructured, Time and Alcohol

use Covariate

#global time e�ect

formula.2AS<- y ~1+ f(ID.area,model="bym",graph=g)+

f(ID.area1,year,

model="rw1")+

year+A+S

Model.2AS<- inla(formula.2AS,family="poisson",data=dataSM,E=E,

control.predictor=list(compute=TRUE),
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control.compute=list(dic=TRUE,cpo=TRUE))

summary (Model.2AS)

#Model.2AS$�xed e�ects

exp(-0.002 )#intercept

exp( -7.737)#year

exp(-0.009)#smoking covariate

exp0.054 )#alcohol covariate

#Non Parametric model alpha + csii + gammaj + phij + deltaij

#csii are modelled through BYM

#gammaj are modelled as RW1

#phij are modelled as exchangeable

#Interaction (deltaij) is modelled as exchangeable

formula.33AS<- y ~ 1 + f(ID.area,model="bym",graph=g) +

f(ID.year,model="rw1") +

f(ID.area.year,model="iid")+A+S+S*A

#To obtain the marginal of phij + gammaj we need to create the corresponding

linear combinations and include these in the model

lcs = inla.make.lincombs(ID.year = diag(2))

Model.3smA<- inla(formula.3smA,family="poisson",data=

dataLSM,E=E, control.predictor=list(compute=TRUE),

control.compute=list(dic=TRUE,cpo=TRUE), lincomb=lcs,

control.inla = list(lincomb.derived.only=TRUE))



114

#Put the temporal e�ect (gammaj+phij) on the natural scale

summary(Model.3AS)

exp(-5.621 )#Intercept coe�cient

exp( 0.156)# Smoking covariate coe�cient

exp(0.045)#Alcohol use covariate coe�cient

exp(-0.003)#Interaction of alcohol use and smoking interaction coe�cient

#Computethe DIC as a tool for model choice

Model.1AS$dic$dic

Model.2AS$dic$dic

Model.3AS$dic$dic

#Obtaining relative risks and spatial-temporal maps

RRLSA <- Model.3AS$summary.�tted.values[, "mean"]

RRLSA

RRLSA<-cbind(as.factor(NAME_1),round(as.numeric(RRLSA),2))

RRLSA

RRLSAGagg<-aggregate(RRLSA[,2],list(RRLSA[,1]), FUN=mean)

RRLSAGagg

RRnew<-RRLSAGagg$x

RRnew

cbind(NAME_1,RRnew)

#lower limit relative risks

LLAS<- Model.3AS$summary.�tted.values[, "0.025quant"]

LLAS

LLASG<-cbind(as.factor(NAME_1),round(as.numeric(LLAS),2))

LLASG

LLASGagg<-aggregate(LLASG[,2],list(LLASG[,1]), FUN=mean)

LLASGagg

LLnew<-LLASGagg$x
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LLnew

#upper limit relative risks

ULAS <- Model.3AS$summary.�tted.values[, "0.975quant"]

ULAS

ULASG<-cbind(as.factor(NAME_1),round(as.numeric(ULAS),2))

ULASG

ULASGagg<-aggregate(ULASG[,2],list(ULASG[,1]), FUN=mean)

ULASGagg

ULnew<-ULASGagg$x

ULnew

cbind(NAME_1,ULnew )

# producing spatial-temporal map

pal <- colorNumeric(palette = "YlOrRd", domain = RRnew)

labels <- sprintf("<strong> %s </strong> <br/>

Pop: %s <br/> RRnew: %s (%s, %s)",

Kenya3$NAME_1,

Pop, round(RRnew, 2),

round(LLnew, 2), round(ULnew, 2)

)%>% lapply(htmltools::HTML)

lRRnew <- lea�et(Kenya3) %>%

addTiles() %>%

addPolygons(

color = "grey", weight = 1, �llColor = ~ pal(RRnew),

�llOpacity = 0.5,

highlightOptions = highlightOptions(weight = 4), label = labels,

labelOptions = labelOptions(

noHide = FALSE,

style =

list( "font-weight" = "normal",
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padding = "3px 8px" ),

textsize = "15px", direction = "auto"

)

) %>%

addLegend(

pal = pal, values = ~RRnew, opacity = 0.5, title = "RR",

position = "bottomright" )

lRRnew

Spatio-temporal models for lung cancer

Spatio-temporal model for lung cancer where smoking was the covariate

library(MASS)

library(sf)

library(maptools)

library(spdep)

library(raster)

library(plyr)

library(ggplot2)

library(rgdal)

library(SpatialEpi)

library("CARBayesdata")

library("sp")

library(INLA)

library(lea�et)

Kenya<-getData("GADM", country="KE", level=0)

Kenya3<-getData("GADM", country="KE", level=1) Kenya3

NAME_1<-Kenya3$NAME_1

NAME_1
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#Reading in the dataset

LSMdata<-read.csv("D:\\JOSEPH KURIA FOLDER\\PHD 2019 TEX\\

November 2019\\LCSM.csv")

head(LSMdata)

Pop1<-LSMdata$Population

Pop1

Name<-LSMdata$NAME_1

Name

Exp2015SM<-expected(LSMdata$Population,LSMdata$Obs2015, 1)

Exp2015SM

Exp2016SM<-expected(LSMdata$Population,LSMdata$Obs2016, 1)

Exp2016SM

LSMdata$Exp2015SM<-expected(LSMdata$Population,LSMdata$Obs2015, 1)

LSMdata$Exp2015SM

LSMdata$Exp2016SM<-expected(LSMdata$Population,LSMdata$Obs2016, 1)

LSMdata$Exp2016SM

Kenya3 <- merge(Kenya3,LSMdata)

Kenya3

LSMdata

low.vector <- as.vector(as.matrix(LSMdata[,2:3]))#by column

low.vector

S.vector <- as.vector(as.matrix(LSMdata[,5:6]))#by column

S.vector

E.vector <- as.vector(as.matrix(LSMdata[,7:8]))#by column

E.vector

year <- numeric(0)

for(i in 1:2){

year<- append(year,rep(i,dim(LSMdata)[1]))

}
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year

NAME_1<- as.factor(rep(LSMdata[,1],2))

NAME_1

LSMdata

dataLSM<- data.frame(y= low.vector, S=S.vector,E= E.vector,

ID.area=as.numeric(NAME_1), ID.area1=as.numeric(NAME_1),

year=year,ID.year = year, ID.year1=year,

ID.area.year = seq(1,length(NAME_1)))

dataLSM

###Models

nb <- poly2nb(Kenya3)

nb2INLA("Kenya3.adj", nb) g <- inla.read.graph(�lename = "Kenya3.adj")

### Models with covariates

#Model 1 with Space (Structured), Unstructured, Time and Smoking Covariate

formula.1sm<- y ~1+ f(ID.area,model="bym",graph=g)+

f(ID.area1,model="iid")+f(year,model="rw1")+S

Model.1sm <- inla(formula.1sm,family="poisson",

data=dataLSM,E=E, control.predictor=

list(compute=TRUE),
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control.compute=list(dic=TRUE,cpo=TRUE))

summary(Model.1sm)

exp(-3.421)

exp(0.287 )

#Model2 with year as the Space (Structured), Unstructured, Time and Smoking

Covariate

#global time e�ect

formula.2sm<- y ~1+ f(ID.area,model="bym",graph=g)+

f(ID.area1,year,model="rw1")+year+S

Model.2sm <- inla(formula.2sm,family="poisson",

data=dataLSM,E=E, control.predictor=

list(compute=TRUE), control.compute=

list(dic=TRUE,cpo=TRUE))

summary(Model.2sm)

#Model.2$�xede�ects

exp( -0.530 )

exp( -2.794 )

exp( 0.182)

#Non Parametric model alpha + csii + gammaj + phij

#No space time interaction yet! #csii and are modelled through BYM #gammaj

are modelled as RW1

#phij are modelled as exchangeable
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#Space (Structured), Time (Structured), (and) Unstructured, and Smiking as

Covariate

formula.3sm<- y ~ 1 + f(ID.area,model="bym",graph=g) +

f(ID.year,model="rw1")+ f(ID.year1,model="iid")+ S

Model.3sm <- inla(formula.3sm,family="poisson",data=

dataLSM,E=E, control.predictor=list(compute=TRUE),

control.compute=list(dic=TRUE,cpo=TRUE))

summary(Model.3sm)

exp( -3.420 ) exp( 0.288 )

#Non Parametric model alpha + csii + gammaj + phij + deltaij

#csii are modelled through BYM

#gammaj are modelled as RW1

#phij are modelled as exchangeable

#Interaction (deltaij) is modelled as exchangeable

formula.4sm<- y ~ 1 + f(ID.area,model="bym",graph=g) +

f(ID.year,model="rw1") + f(ID.area.year,model="iid")+S

#To obtain the marginal of phij + gammaj we need to create the corresponding

linear combinations and include these in the model

lcs = inla.make.lincombs(ID.year = diag(2))

Model.4sm <- inla(formula.4sm,family="poisson",

data=dataLSM,E=E, control.predictor=
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list(compute=TRUE), control.compute=list(dic=TRUE,cpo=TRUE),

lincomb=lcs,control.inla = list(lincomb.derived.only=TRUE))

#Put the temporal e�ect (gammaj+phij) on the natural scale

summary(Model.4sm)

exp( -3.371)

exp( 0.338)

Model.4A$mean

#Computethe DIC as a tool for model choice

Model.1sm$dic$dic

Model.2sm$dic$dic

Model.3sm$dic$dic

Model.4sm$dic$dic

#DIC components: E�ective number of parameter (pd)

Model.1sm$dic$p.e�

Model.2sm$dic$p.e�

Model.3sm$dic$p.e�

Model.4sm$dic$p.e�

#DIC components: mean.deviance

Model.1sm$mean.deviance

Model.2sm$mean.deviance

Model.3sm$mean.deviance

Model.4sm$mean.deviance

#Obtaining relative risks and spatial-temporal maps

#Obtaining Relative Risks, Upper and Lower limits.

RR <- Model4$summary.�tted.values[, "mean"]

RR
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RR<-cbind(as.factor(NAME_1),round(as.numeric(RR),2))

RR

RRagg<-aggregate(RR[,2],list(RR[,1]), FUN=mean)

RRagg

RRnew<-RRagg$x

RRnew

LL <- Model4$summary.�tted.values[, "0.025quant"]

LL

LL<-cbind(as.factor(NAME_1),round(as.numeric(LL),2))

LLagg<-aggregate(LL[,2],list(LL[,1]), FUN=mean)

LLagg

LLnew<-LLagg$x

LLnew

UL <- Model4$summary.�tted.values[, "0.975quant"]

UL

UL<-cbind(as.factor(NAME_1),round(as.numeric(UL),2))

ULagg<-aggregate(UL[,2],list(UL[,1]), FUN=mean)

ULagg

ULnew<-ULagg$x

ULnew

pal <- colorNumeric(palette = "YlOrRd", domain = RRnew)

labels <- sprintf("<strong> %s </strong> <br/>

Pop: %s <br/> RRnew: %s (%s, %s)",

Kenya3$NAME_1,

Pop, round(RRnew, 2),

round(LLnew, 2), round(ULnew, 2)

)%>% lapply(htmltools::HTML)

lRR <- lea�et(Kenya3) %>%

addTiles() %>%
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addPolygons(

color = "grey", weight = 1, �llColor = ~ pal(RRnew), �llOpacity = 0.5,

highlightOptions = highlightOptions(weight = 4),

label = labels,

labelOptions = labelOptions(

noHide = FALSE,

style =

list( "font-weight" = "normal",

padding = "3px 8px" ),

textsize = "15px", direction = "auto" )

) %>%

addLegend(

pal = pal, values = ~RRnew, opacity = 0.5, title = "RR",

position = "bottomright" )

lRR

#### Probability map

pp<-Spatial.results$pp

pp

library(lea�et)

pal <- colorNumeric(palette = "BuPu", domain = pp)

pal

labels <- sprintf("<strong> %s </strong> <br/>

Pop: %s <br/> pp: %s ",

Kenya3$NAME_1,

Pop, round(pp, 2)

)%>% lapply(htmltools::HTML)

lpp <- lea�et(Kenya3) %>%

addTiles() %>%

addPolygons(
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color = "grey", weight = 1, �llColor = ~ pal(pp),

�llOpacity = 0.7,

highlightOptions = highlightOptions(weight = 4),

label = labels,

labelOptions = labelOptions(

noHide = FALSE,

style = list( "font-weight" = "normal",

padding = "3px 8px"

),

textsize = "15px", direction = "auto"

)

) %>%

addLegend(

pal = pal, values = ~pp, opacity = 0.7, title = "pp",

position = "bottomright" )

lpp

Spatio-temporal model for lung cancer where alcohol use was the co-

variate

library(MASS)

library(sf)

library(maptools)

library(spdep)

library(raster)

library(plyr)

library(ggplot2)

library(rgdal)

library(SpatialEpi)

library("CARBayesdata")
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library("sp")

library(INLA)

library(lea�et)

Kenya<-getData("GADM", country="KE", level=0)

Kenya3<-getData("GADM", country="KE", level=1) Kenya3

NAME_1<-Kenya3$NAME_1

NAME_1

#Reading in the dataset

LALdata<-read.csv("D:\\JOSEPH KURIA FOLDER\\PHD 2019 TEX\\

November 2019\\LCSM.csv")

head(LALdata)

Pop<-LALata$Population

Pop

Name<-LALdata$NAME_1

Name

Exp2015<-expected(LALdata$Population,LALdata$Obs2015, 1)

Exp2015

Exp2016<-expected(LALdata$Population,LALdata$Obs2016, 1)

Exp2016

LALdata$Exp2015<-expected(LSMdata$Population,LSMdata$Obs2015, 1)

LALdata$Exp2015

LALdata$Exp2016<-expected(LSMdata$Population,LSMdata$Obs2016, 1)

LALdata$Exp2016

Kenya3 <- merge(Kenya3,LALdata)

Kenya3

LALdata

low.vector <- as.vector(as.matrix(LALdata[,2:3]))#by column

low.vector

A.vector <- as.vector(as.matrix(LALdata[,5:6]))#by column
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A.vector

E.vector <- as.vector(as.matrix(LALdata[,7:8]))#by column

E.vector

year <- numeric(0)

for(i in 1:2){

year<- append(year,rep(i,dim(LALdata)[1]))

}

year

NAME_1<- as.factor(rep(LALdata[,1],2))

NAME_1

dataLAL<- data.frame(y= low.vector, A=S.vector,E= E.vector, ID.area=

as.numeric(NAME_1), ID.area1=as.numeric(NAME_1),

year=year, ID.year = year, ID.year1=year,

ID.area.year =seq(1,length(NAME_1)))

dataLAL

###Models

nb <- poly2nb(Kenya3)

nb2INLA("Kenya3.adj", nb) g <- inla.read.graph(�lename = "Kenya3.adj")

### Models with covariates

#Model 1 with Space (Structured), Unstructured, Time and Alcohol useCovariate

formula.1AL<- y ~1+ f(ID.area,model="bym",graph=g)+

f(ID.area1,model="iid")+f(year,model="rw1")+A

Model.1AL <- inla(formula.1AL,family="poisson",data=dataLAL,E=E,
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control.predictor=list(compute=TRUE),

control.compute=list(dic=TRUE,cpo=TRUE))

summary(Model.1AL)

exp(-3.500)

exp(0.314 )

#Model2 with year as the Space (Structured), Unstructured, Time andAlcohol

useCovariate

#global time e�ect

formula.2AL<- y ~1+ f(ID.area,model="bym",graph=g)+

f(ID.area1,year,model="rw1")+year+A

Model.2sm <- inla(formula.2AL,family="poisson",data=dataLAL,E=E,

control.predictor=list(compute=TRUE),

control.compute=list(dic=TRUE,cpo=TRUE))

summary(Model.2AL)

#Model.2AL$�xede�ects

exp( -0.455)

exp( -2.822)

exp( 0.167)

#Non Parametric model alpha + csii + gammaj + phij #No space time interac-

tion yet! #csii and are modelled through BYM #gammaj are modelled as RW1

#phij are modelled as exchangeable #Space (Structured), Time (Structured),

(and) Unstructured, and Smiking as Covariate

formula.3AL<- y ~ 1 + f(ID.area,model="bym",graph=g) +
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f(ID.year,model="rw1")+

f(ID.year1,model="iid")+ S

Model.3AL<- inla(formula.3AL,family="poisson",data=dataLAL,E=E,

control.predictor=list(compute=TRUE),

control.compute=list(dic=TRUE,cpo=TRUE))

summary(Model.3AL)

exp( -3.361)

exp( 0.316 )

#Non Parametric model alpha + csii + gammaj + phij + deltaij

#csii are modelled through BYM

#gammaj are modelled as RW1

#phij are modelled as exchangeable

#Interaction (deltaij) is modelled as exchangeable

formula.4AL<- y ~ 1 + f(ID.area,model="bym",graph=g) +

f(ID.year,model="rw1") + f(ID.area.year,model="iid")+A

#To obtain the marginal of phij + gammaj we need to create the corresponding

linear combinations and include these in the model

lcs = inla.make.lincombs(ID.year = diag(2))

Model.4AL <- inla(formula.4sm,family="poisson",data=dataLAL,E=E,

control.predictor=list(compute=TRUE),

control.compute=list(dic=TRUE,cpo=TRUE), lincomb=lcs,
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control.inla = list(lincomb.derived.only=TRUE))

#Put the temporal e�ect (gammaj+phij) on the natural scale

summary(Model.4AL)

exp( -3.376)

exp( 0.316)

Model.4AL$mean

#Computethe DIC as a tool for model choice

Model.1AL$dic$dic

Model.2AL$dic$dic

Model.3AL$dic$dic

Model.4AL$dic$dic

#DIC components: E�ective number of parameter (pd)

Model.1AL$dic$p.e�

Model.2AL$dic$p.e�

Model.3AL$dic$p.e�

Model.4AL$dic$p.e�

#DIC components: mean.deviance

Model.1AL$mean.deviance

Model.2AL$mean.deviance

Model.3AL$mean.deviance

Model.4AL$mean.deviance

#Obtaining Relative Risks, Upper and Lower limits and spatial temporal maps.

RR <- Model4$summary.�tted.values[, "mean"]

RR

RR<-cbind(as.factor(NAME_1),round(as.numeric(RR),2))

RR

RRagg<-aggregate(RR[,2],list(RR[,1]), FUN=mean)

RRagg
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RRnew<-RRagg$x

RRnew

LL <- Model4$summary.�tted.values[, "0.025quant"]

LL

LL<-cbind(as.factor(NAME_1),round(as.numeric(LL),2))

LLagg<-aggregate(LL[,2],list(LL[,1]), FUN=mean)

LLagg

LLnew<-LLagg$x

LLnew

UL <- Model4$summary.�tted.values[, "0.975quant"]

UL

UL<-cbind(as.factor(NAME_1),round(as.numeric(UL),2))

ULagg<-aggregate(UL[,2],list(UL[,1]), FUN=mean)

ULagg

ULnew<-ULagg$x

ULnew

pal <- colorNumeric(palette = "YlOrRd", domain = RRnew)

labels <- sprintf("<strong> %s </strong> <br/>

Pop: %s <br/> RRnew: %s (%s, %s)",

Kenya3$NAME_1,

Pop, round(RRnew, 2),

round(LLnew, 2), round(ULnew, 2)

)%>% lapply(htmltools::HTML)

lRR <- lea�et(Kenya3) %>%

addTiles() %>%

addPolygons(

color = "grey", weight = 1, �llColor = ~ pal(RRnew), �llOpacity = 0.5,

highlightOptions = highlightOptions(weight = 4),

label = labels,
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labelOptions = labelOptions(

noHide = FALSE,

style =

list( "font-weight" = "normal",

padding = "3px 8px" ),

textsize = "15px", direction = "auto" )

) %>%

addLegend(

pal = pal, values = ~RRnew, opacity = 0.5, title = "RR",

position = "bottomright" )

lRR

#### Probability map

pp<-Spatial.results$pp

pp

library(lea�et)

pal <- colorNumeric(palette = "BuPu", domain = pp)

pal

labels <- sprintf("<strong> %s </strong> <br/>

Pop: %s <br/> pp: %s ",

Kenya3$NAME_1,

Pop, round(pp, 2)

)%>% lapply(htmltools::HTML)

lpp <- lea�et(Kenya3) %>%

addTiles() %>%

addPolygons(

color = "grey", weight = 1, �llColor = ~ pal(pp),

�llOpacity = 0.7,

highlightOptions = highlightOptions(weight = 4),

label = labels,
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labelOptions = labelOptions(

noHide = FALSE,

style = list( "font-weight" = "normal",

padding = "3px 8px"

),

textsize = "15px", direction = "auto")

) %>%

addLegend(

pal = pal, values = ~pp, opacity = 0.7, title = "pp",

position = "bottomright" )

lpp

Lung cancer models where smoking and alcohol use were covariates

library(MASS)

library(sf)

library(maptools)

library(spdep)

library(raster)

library(plyr)

library(ggplot2)

library(rgdal)

library(SpatialEpi)

library("CARBayesdata")

library("sp")

library(INLA)

library(lea�et)

Kenya<-getData("GADM", country="KE", level=0)

Kenya3<-getData("GADM", country="KE", level=1)

Kenya3



133

#obtaining the county names

NAME_1<-Kenya3$NAME_1

NAME_1

#loading the data

LSMdata<-read.csv("D:\\JOSEPH KURIA FOLDER\\PHD 2019 TEX\\

November 2019\\LCSM.csv")

head(LSMdata)

LALdata<-read.csv("D:\\JOSEPH KURIA FOLDER\\PHD 2019 TEX\\

November 2019\\

LCAL.csv")

head(LALdata)

Pop1<-LSMdata$Population

Pop1

LSMdata$Obs2015

Exp2015SM<-expected(LSMdata$Population,LSMdata$Obs2015, 1)

Exp2015SM Exp2016SM<-expected(LSMdata$Population,LSMdata$Obs2016, 1)

Exp2016SM

LSMdata$Exp2015SM<-expected(LSMdata$Population,LSMdata$Obs2015, 1)

LSMdata$Exp2015SM

LSMdata$Exp2016SM<-expected(LSMdata$Population,LSMdata$Obs2016, 1)

LSMdata$Exp2016SM

Kenya3 <- merge(Kenya3,LALdata)

Kenya3

LALdata

low.vector <- as.vector(as.matrix(LALdata[,2:3]))#by column

low.vector

S.vector <- as.vector(as.matrix(LSMdata[,5:6]))#by column

S.vector

A.vector <- as.vector(as.matrix(LALdata[,5:6]))#by column
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A.vector

E.vector <- as.vector(as.matrix(LALdata[,7:8]))#by column

E.vector

year <- numeric(0)

for(i in 1:2){

year<- append(year,rep(i,dim(LALdata)[1]))

}

year

NAME_1<- as.factor(rep(LALdata[,1],2))

NAME_1

dataLSMA<- data.frame(y= low.vector, S=S.vector, A=A.vector,

E= E.vector, ID.area=as.numeric(NAME_1), ID.area1=

as.numeric(NAME_1), year=year, ID.year = year,

ID.year1=year, ID.area.year =

seq(1,length(NAME_1)))

dataLSMA

###Models

nb <- poly2nb(Kenya3)

nb2INLA("Kenya3.adj", nb) g <- inla.read.graph(�lename = "Kenya3.adj")

### Models with covariates

#Model 1 with Space (Structured), Unstructured, Time and Alcohol useCovariate

formula.1smA<- y ~1+ f(ID.area,model="bym",graph=g)+

f(ID.area1,model="iid")+

f(year,model="rw1")+A+S

Model.1smA<- inla(formula.1AL,family="poisson",data=
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,E=E,

control.predictor=list(compute=TRUE),

control.compute=list(dic=TRUE,cpo=TRUE))

summary(Model.1smA)

exp(-3.406)#intercept

exp(0.212)#Smoking covariate

exp(0.088)#Alcohol covariate

#Model2 with year as the Space (Structured), Unstructured, Time and Alcohol

use Covariate

#global time e�ect

formula.2smA<- y ~1+ f(ID.area,model="bym",graph=g)+

f(ID.area1,year,model="rw1")+year+A

Model.2smA <- inla(formula.2smA,family="poisson",data=

dataLSMA,E=E, control.predictor=list(compute=TRUE),

control.compute=list(dic=TRUE,cpo=TRUE))

summaryModel.2smA)

#Model.2smA$�xede�ects

exp( -0.755 )#intercept

exp( -2.583)#year

exp( 0.594)#smoking covariate

exp(-0.380)#alcohol covariate

#Non Parametric model alpha + csii + gammaj + phij + deltaij
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#csii are modelled through BYM

#gammaj are modelled as RW1

#phij are modelled as exchangeable

#Interaction (deltaij) is modelled as exchangeable

formula.3smA<- y ~ 1 + f(ID.area,model="bym",graph=g) +

f(ID.year,model="rw1") + f(ID.area.year,model="iid")+A+S+S*A

#To obtain the marginal of phij + gammaj we need to create the corresponding

linear combinations and include these in the model

lcs = inla.make.lincombs(ID.year = diag(2))

Model.3smA<- inla(formula.3smA,family="poisson",

data=dataLSMA,E=E, control.predictor=

list(compute=TRUE), control.compute=

list(dic=TRUE,cpo=TRUE), lincomb=lcs,

control.inla = list(lincomb.derived.only=TRUE))

#Put the temporal e�ect (gammaj+phij) on the natural scale

summary(Model.3smA)

exp(-2.342 )#Intercept coe�cient

exp( 2.182)# Smoking covariate coe�cient

exp(-0.602)#Alcohol use covariate coe�cient

exp(-0.075)#Interaction of alcohol use and smoking interaction coe�cient

#Computethe DIC as a tool for model choice

Model.1smA$dic$dic

Model.2smA$dic$dic
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Model.3smA$dic$dic

#Obtaining relative risks and spatial-temporal maps

RRLSA <- Model.3smA$summary.�tted.values[, "mean"]

RRLSA

RRLSA<-cbind(as.factor(NAME_1),round(as.numeric(RRLSA),2))

RRLSA

RRLSAGagg<-aggregate(RRLSA[,2],list(RRLSA[,1]), FUN=mean)

RRLSAGagg

RRnew<-RRLSAGagg$x

RRnew

cbind(NAME_1,RRnew)

#lower limit relative risks

LLAS<- Model.3smA$summary.�tted.values[, "0.025quant"]

LLAS

LLASG<-cbind(as.factor(NAME_1),round(as.numeric(LLAS),2))

LLASG

LLASGagg<-aggregate(LLASG[,2],list(LLASG[,1]), FUN=mean)

LLASGagg

LLnew<-LLASGagg$x

LLnew

#upper limit relative risks

ULAS <- Model.3smA$summary.�tted.values[, "0.975quant"]

ULAS

ULASG<-cbind(as.factor(NAME_1),round(as.numeric(ULAS),2))

ULASG

ULASGagg<-aggregate(ULASG[,2],list(ULASG[,1]), FUN=mean)

ULASGagg

ULnew<-ULASGagg$x

ULnew
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cbind(NAME_1,ULnew )

# producing spatial-temporal map

pal <- colorNumeric(palette = "YlOrRd", domain = RRnew)

labels <- sprintf("<strong> %s </strong> <br/>

Pop: %s <br/> RRnew: %s (%s, %s)",

Kenya3$NAME_1,

Pop, round(RRnew, 2),

round(LLnew, 2), round(ULnew, 2)

)%>% lapply(htmltools::HTML)

lRRnew <- lea�et(Kenya3) %>%

addTiles() %>%

addPolygons(

color = "grey", weight = 1, �llColor = ~ pal(RRnew),

�llOpacity = 0.5,

highlightOptions = highlightOptions(weight = 4), label = labels,

labelOptions = labelOptions(

noHide = FALSE,

style =

list( "font-weight" = "normal",

padding = "3px 8px" ),

textsize = "15px", direction = "auto"

)

) %>%

addLegend(

pal = pal, values = ~RRnew, opacity = 0.5, title = "RR", position = "bottom-

right" )

lRRnew
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APPENDIX B: PUBLICATIONS

Paper I: Poisson-Gamma and Spatial-Temporal Models: with

Application to Cervical Cancer in Kenya's Counties
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Paper II: Spatial-temporal Modelling of Oesophageal and

Lung Cancers in Kenya's Counties
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