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Acute myeloid leukemia (AML) is an infrequent disease, and it is associated with high
morbidity and mortality. It harbors a unique configuration of cytogenetic abnormalities and
molecular mutations that can be detected using microscopic and molecular methods
respectively. These genetic tests are core elements of diagnosis and prognostication in
high-income countries. They are routinely incorporated in clinical decision making, allowing
for the individualization of therapy. However, these tests are largely inaccessible to most
patients in Kenya and therefore no data has been reported on this group of patients. The
main purpose of this study is to describe the cytogenetic and molecular abnormalities of
acute myeloid leukemia patients seen at the hemato-oncology unit of Kenyatta National
Hospital. A cross-sectional descriptive study was carried out over a 3-month period on ten
patients with a diagnosis of AML. Social demographics and clinical data were collected
through a study proforma. A peripheral blood sample was collected for conventional
metaphase G-banding technique and next generation sequencing. Particularly, targeted
DNA sequencing (Illumina myeloid panel) and whole exome sequencing (WES) were
performed. Cytogenetic analysis failed in 10/10 cases. Targeted sequencing was
successfully obtained in 8 cases, whereas WES in 7. Cytogenetic studies yielded no
results. There were 20 mutations detected across 10 commonly mutated genes. All
patients had at least one clinically relevant mutation. Based on ELN criteria, NGS identified
three patients with high-risk mutations, affecting TP53 (n = 2) and RUNX1 (n = 1). One
patient was classified as favorable (PML-RARA) while 4 were standard risk. However,WT1
mutations associated with unfavorable prognosis were recorded in additional 2 cases.
WES showed concordant results with targeted sequencing while unveiling more mutations
that warrant further attention. In conclusion,we provide the first molecular profiling study of
AML patients in Kenya including application of advanced next generation sequencing
technologies, highlighting current limitations of AML diagnostics and treatment while
confirming the relevance of NGS in AML characterization.

Keywords: acute myeloid leukemia, next generation sequencing, illumina, myeloid panel, ELN, cytogenetics,
targeted therapy
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INTRODUCTION

Acute Myeloid Leukemia (AML) is an infrequent disease (De
Kouchkovsky and Abdul-Hay, 2016). Although treatment
outcomes continue to improve over time, AML is still a
significant cause of mortality (Fiegl, 2016). Despite an
improvement in the treatment associated mortality, chemo-
resistance and post-transplant disease relapse, account for one
of the most challenging aspects of AML management (Döhner
et al., 2015). It is a heterogeneous clonal disorder that arises from
a malignant myeloid stem cell that has acquired genetic and
epigenetic mutations that have accumulated in a stepwise fashion.
These acquired genetic alterations cause proliferative and survival
advantage with reduced apoptosis leading to a buildup of
abnormal, poorly differentiated neoplastic cells in the blood
and bone marrow with resultant suppression of the normal
hematopoietic process (Meyer and Levine, 2014; Döhner et al.,
2015).

In Sub-Saharan Africa, acute leukemia causes high mortality.
In a 2012 population-based study, the age-standardized rates in
East Africa were 3.8 and 3.4 per 100,000 in men and women
respectively (Miranda-Filho et al., 2018). Latest Globocan data
estimates that in Kenya, the incidence rates of leukemia are 4.8
and 4.5/100,000 in men and women respectively and is listed
among the top ten causes of cancer mortality (World Health
Organization, 2020). Despite an increasing disease burden in Sub-
Saharan Africa, there is limited infrastructure and finances that
deters the use of recommended genetic testing (Gopal et al., 2012;
Wanjiku et al., 2018). Cytogenetic and molecular techniques,
which are core elements of diagnosis in the developed world, are
nonexistent in most Sub-Saharan countries (Gopal et al., 2012).
Significant financial challenges do exist in emerging economies,
where majority of healthcare costs are personal expenditures with
many falling below the poverty line. This occurs even in those
emerging countries with highly skilled specialists and state of the
art facilities that mirror those in developed countries (Philip et al.,
2015).

AML cells harbor a unique configuration of cytogenetic and
molecular mutations that involve critical genes that regulate the
normal hematopoietic process (Löwenberg and Rowe, 2016). This
accounts for the phenotypic heterogeneity of the disease
(Lagunas-Rangel et al., 2017). Understanding the pathobiology
of AML has provided a framework for risk stratification,
development of novel treatment approaches with
individualization of therapy as well as detection of post
treatment minimal residual disease (Döhner and Gaidzik,
2011; Stein, 2015; Dombret and Gardin, 2016; Stein and
Tallman, 2016). The urgent need for therapeutic advancement
has come at the backdrop of a dismal 5-year overall survival of
50% and 20% for those below and above 60 years old, respectively,
with traditional cytotoxic therapies (Stein and Tallman, 2016). A
landmark novel anti-leukemic agent should successfully eradicate
the malignant founding clone and its sub-clones, eradicating a
potential niche for recurrence (Löwenberg and Rowe, 2016).
WHO classification of AML incorporates clinical features,
morphological assessment of bone marrow specimens,
cytochemical studies, immune-phenotyping, cytogenetic and

molecular testing to distinguish distinct biological subgroups
with clinical importance (Arber et al., 2016). The major
categories included in the 2016 WHO classification include;
AML with recurrent genetic abnormalities, AML with
myelodysplasia-related changes, Therapy-related myeloid
neoplasms, AML Not otherwise specified, Myeloid Sarcoma
and Myeloid proliferations related to Down syndrome (Arber
et al., 2016).

Cytogenetic abnormalities are analyzed using conventional
metaphase G-banding techniques and fluorescence in situ
hybridization (FISH) whereas molecular mutations are
detected using next generation sequencing molecular methods
(He et al., 2015;Muhammad Ilyas et al., 2015). These technologies
are able to comprehensively identify genetic lesions that are
critical in the process of leukamogenesis. These genetic
abnormalities are the single most powerful prognostic factors
and risk stratifies the patient into Favorable, Intermediate and
Adverse risk groups (Döhner et al., 2017). Prognostic
classification is critical in the management of AML patients,
particularly in respect to establishing those with poor prognostic
features who are likely to relapse or have chemo-resistant disease.
It’s also important for category-specific treatment (Kumar, 2011).
However, the prognostic impact of these genetic groups may
change with targeted therapy (Gill et al., 2016).

Data from an ongoing prospective study by Prof N. A.
Othieno-Abinya (2013 onwards) shows that about 30 patients
are diagnosed with AML annually. The median age at diagnosis is
30 years with a male: female ratio of 1.2:1. AML diagnosis at the
hemato-oncology unit of KNH is mainly through morphological
assessment of bone marrow specimens with few or none of the
patients undergoing karyotyping or molecular assessment.

In this study, we therefore aimed to identify the cytogenetic
and molecular abnormalities found in patients’ diagnosed with
AML at the adult hemato-oncology unit of KNH and
prognosticate them according to the EuropeanLeukemiaNet
risk stratification model.

METHODS

Case Selection
The study included patients diagnosed and treated at the adult
hemato-oncology unit of Kenyatta National Hospital, the biggest
public referral hospital in Nairobi, Kenya. The molecular analyses
were carried on at the Department of Experimental, Diagnostic,
and Specialty Medicine, Bologna University Italy.

Institutional consent was obtained from the Department of
Clinical Medicine and Therapeutics, University of Nairobi
(UON) and Ethics and Research Committee of KNH. Request
for shipment of the samples for cytogenetic and molecular tests,
was obtained from the Ministry of Health subject to the
fulfillment of the requirements of KNH-ERC. Material
Transfer Agreement between the two institutions was
obtained. All patients were informed of the study and a
consent/assent obtained in either English/Kiswahili, the
national languages of Kenya. For patients aged below 18 years,
a legal representative (parent/guardian) gave the consent.
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Cytogenetic Analysis
Cell culture: The cells were cultured using a protocol for
harvesting chromosomes from whole blood. In brief, 0.25mls
of fresh whole blood was collected in 10 mls of RPMI media
containing L-glutamine (20% fetal bovine serum, 1% Penicillin/
streptomycin, 1% fungizone, and 1% PHA) and incubated for
48 h at 37°C with 5% CO2. Cell counting prior to harvesting of
cells revealed that the final seeding densities for each of the
samples were less than 1 × 106/ul below the optimum of 1-3 ×
106/ul for adequate metaphases. Harvesting was done according
to standard protocol and all 10 samples had no evaluable
metaphases (Hastings et al., 2013; Howe et al., 2014).

Next Generation Sequencing
Total DNA was extracted from 8 samples (MG2, MG4i, MG5,
MG5i, MG6, MG6i, MG7, MG8) with QIAamp DNA mini kit
Qiagen according to the manufacturer’s procedure (Qiagen,
Italy). Qubit was used for DNA quality control assessment
(ThermoFisher, Italy).

Thereafter, based on Illumina’s TruSeq DNA Sample
Preparation, DNA libraries were pre-enriched, according to
manufacturer’s instructions (Illumina, United States). Quant-it
PicoGreen dsDNA Assay Kit was eventually used for libraries
quantification, according to the manufacturer’s protocol
(Invitrogen, Life Technologies, United States).

Using Illumina iSeq2500 (Illumina, San Diego, United States),
we sequenced the paired-end libraries (2 × 150 base pair),
following the manufacturer’s instructions. On average, about

82.9 million 151 bp PF reads were generated, and the
theoretical coverage was c143.2, calculated based on hg19
RefSeq non redundant exome length; the median target
coverage at 50× was 87.2% (range, 60.7–87.5%). Details on
sequencing statistics are described in Supplementary Table S1.

FastQC V0.10.0 tool (http://www.bioinformatics.babraham.
ac.uk/projects/fastqc/) was used for quality control, The reads
were mapped to Homo sapiens (UCSC hg19) as reference
genome, using Burrows-Wheeler Aligner version 2.12.0, while
the targeted regions defined by 11062019_ALLEXONV7-NEW-
TXT (Li and Durbin, 2009).

To remove potential PCR duplicates, we used SAMtools
command rmdup to detect and collapse multiple mapped
reads pairs with identical external coordinates (Li and Durbin,
2009). Mapping quality score recalibration and local realignment
around insertions and deletions (InDels) was performed using
Genome Analysis Toolkit (GATK—v1.6-23-gf0210b3)
(McKenna et al., 2010). Single-nucleotide variants (SNVs) and
small insertions and deletions (InDels) were called separately
using GATK Unified-Genotyper.

All the mutations detected were filtered using thresholds based
on quality, coverage, and strand of the mapped reads and
according to variants already present in public databases
(Hapmap, dbSNP and 1000genome project [The 1000
Genomes Project 2010].

Targeted DNA sequencing utilized the AmpliSeq for illumina
myeloid panel. It’s a targeted panel that investigates 62 genes
associated with myeloid cancers (Table 1). Library preparation
and sequencing were performed as previously described,
according to the manufacturer instructions (AmpliSeq for
Illumina Myeloid Panel, 2021). Lacking high quality RNA, the
gene expression part of the assay was omitted.

Raw NGS data are available on request (Prof. Piccaluga).
Clinically relevant lesions were defined according to ESMO,

NCCN, FDA, and EMA guidelines, as relevant for prognostic and
diagnostic significance, or therapy (Li et al., 2017; Heuser et al.,
2020; Pollyea et al., 2021).

RESULTS

Patients Characteristics
Fifteen AML patients were treated at Kenyatta National Hospital
during the study period. Ten consecutives gave the consent and
were enrolled. DNA was successfully collected and analyzed in 8/
10 cases. The main clinical characteristics of those 8 patients are
summarized in Table 2. Briefly, their mean age was 35 years (13-
60); 5/8 were males; mean WBC count was 14.3 × 109/L
(0.77–20.92); average Hb level was 6.65 g/dl (3.1–10.8); average
PLT count was 26.65 × 109/L (6-53). Only one secondary case was
reported, previously affected and treated for aplastic anemia.

NGS Revealed Clinically Relevant Genetic
Lesions in All Patients
Cytogenetic analysis technically failed in all instances, probably
due to the latency between sample collection and analysis (which

TABLE 1 | Panel of genes tested.

Hot Spot genes Full genes Fusion driver genes

ABL1 ASXL ABL
BRAF BCOR BCL2
CBL CALR BRAF
CSF3R CEPBA ALK
DNMT3A ETV6 CCND1
FLT3 EZH2 CREBBP
GATA2 IKZF1 EGFR
HRAS NF1 ETV6
GATA2 PHF6 FGFR2
IDH1 PRPF8 FGFR1
IDH2 RB1 FUS
JAK2 RUNX1 HMGA2
KIT SH2B3 JAK2
K-RAS STAG2 KMT2A
MPL TET2 MECOM
MYD88 TP53 MET
NPM1 ZRSR2 MLLTI0
N-RAS MYBL1
PTPN11 MYH11
SETBP1 NTRK3
SRSF2 NUP214
U2AF1 PDGFRA
WT1 PDGFRB

RARA
RBM15
RUNX1
TCF3
TFE3
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requires alive cells). DNA quality was, by contrast assessed and
confirmed by Qubit (median green RFU 27190.09; range
9697.21–13,262.96).

As far as NGS analysis was concerned, Among the 62
analyzed genes, 20 clinically relevant (as reported by previous
publications and common databases) mutations across 10 genes
were detected. Of these, 8 were missense mutations, 9 were
frame-shift insertions, 1 was a nonsense mutation, and 1 was a
fusion gene. The remaining one, affecting FLT3, was a
synonymous change. However, it was included among
clinically relevant as accepted for accessing clinical trials with
FLT3 inhibitors. All patients had at least one clinically relevant
mutation with 1/8 cases showing 2 mutations, 4/8 showing 3
mutations each, 2/8 showing 1 mutation each and 1/8 showing 4
(Figure 1).

The most mutated gene was WT1 (4 mutations in 3 cases),
followed by NRAS and STAG2 (3 lesions in 3 cases and 3 lesions
in 2 cases, respectively), TP53, IDH2, and CEBPA (2 lesions in 2
cases), and DNMT3A, FLT3, RUNX1 (1 lesion). One patient
presented with PML/RARA rearrangement.

Pairwise mutations to assess for co-mutations could not be
undertaken due to the small sample size.

Despite cytogenetics unavailability, NGS results allowed to
identify one patient with favorable genetics (PML/RARA+), 3
likely to be high risk (RUNX1 and TP53), and 4 standard-risk.

Among these, detection of mutations in IDH2 (N = 2 patients)
and FLT3 (N = 1) allowed to candidate those patients to specific
targeted treatments.

NGS Revealed Clinically Relevant Genetic
Lesions of Unknown Significance
In addition to clinically relevant lesions, a series of additional
genetic lesions, the significance of which is still undefined, have
been identified (Supplementary Table S1).

Briefly, 7/8 patients showed at least one single nucleotide
variant (SNV) affecting SH2B3, 6/8 ASXL1 and TET2 genes, 3/
8 TP53, 2/8 ETV6, FLT3, NF1, PTPN11, while 1/8 CEBPA,
GATA2, IKZF1, KIT, PRPF8, RB1, and SF3B1. Despite not
being reported as clinically relevant, those disrupting
mutations occurred in genes well-known to be associated with
myeloid malignancies; therefore, it is conceivable that they might
have some pathogenic activity.

Whole Exome Sequencing Unveiled SNVs
Never Reported in AML
Following targeted sequencing of myeloid malignancies
associated genes (see above), we sought to perform whole
exome sequencing (WES) to further describe the genetic

TABLE 2 | Patient characteristics.

Case Age (years) Gender % of
Marrow
Blasts

WBC
(×109/L)

Hb (g/dl) Platelets
(×109/L)

Prior
Cytotoxic
therapy

Or Radiotherapy

Antecedent
Hematological

Disorder

MG2 19 M 30 20.92 6.8 17 NONE NONE
MG5i 13 F 62 0.77 7.3 46 NONE NONE
MG4i 50 F 82 44.8 8.2 20 NONE NONE
MG5 36 M 40 2.86 5.8 11 NONE APLASTIC ANEMIA
MG6 34 F 44 2.63 4.3 6 NONE NONE
MG6i 60 M 75 2.60 3.1 44 NONE NONE
MG7 53 M 70 36 10.8 53 NONE NONE
MG8 13 M 60 3.49 6.9 16 NONE NONE

FIGURE 1 | Mutational analysis by NGS—Clinically relevant mutations/Translocations. * not detected at WES.
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landscape of Kenyan AML patients. The procedure was successful
in 7/8 cases.

First, WES confirmed the presence of the clinically relevant
lesions observed at targeted sequencing, with the only exceptions
of STAG2 mutations that were not detected in both patients
supposed to carry them.

In addition, several SNVs and SNPs were identified. Most of
them were not likely associated with cancer and were filtered out.
By contrast, a couple of patients showed additional lesions that
warrants attention. Patient MG_2 showed an overall quite
complex scenario, characterized by several SNVs affecting
other 12 genes whose association with cancer (or anti-cancer
drug response) is well known. Particularly, AURKA, which is
associated to colon cancer and was recently found to be over
expressed also in hematological malignancies, as well as the drug
resistant associated genes ABCB1, XRCC1 and CBR3 turned out
to be affected. Furthermore, we observed mutations affecting
FGFR4, KLC1 and XRCC3, associated to colon cancer and
melanoma (Supplementary Table S2). Interestingly, NAT2
might be involved in epigenetic deregulation. Finally, TP53
turned out to be largely altered, though the identified SNVs
are not formally associated with leukemias.

In patient MG_5, known for the previous history of aplastic
anemia (AA), we found a TERCmutation, known to be associated
with AA pathogenesis. By contrast, TERT, the other gene
associated with AA, presented a synonymous mutation only.

Clinical Correlates
The limited sample size didn’t allow a proper clinic-pathological
correlation. Furthermore, it should be noted that 3/8 patients died
before any treatment, including the young acute promyelocytic
leukemia patient. Among the remaining 5 patients, 3 died from
infection during induction (day 10, day 15 and day 30,
respectively), 1 was resistant to induction and died during
supportive treatment shortly after, and 1 is alive with disease
after treatment with azacytidine (9 courses) (Table 3).

Overall, this scenario is representative of the major current
limitation in Kenyan hospitals, meaning the delay in diagnosis
and treatment initiation when AML patients are often septic and
in very poor clinical conditions.

DISCUSSION

This study looked at the cytogenetic and molecular abnormalities
among AML patients presenting to the hemato-oncology unit of
Kenyatta National Hospital. There was no reportable data on the

karyotype status of the patients as no cells were cultured from
peripheral blood. Increased transit time to the laboratory was the
most likely cause for this failure, confirming the lack of feasibility
for metaphase cytogenetics in this setting. Of note, despite
cytogenetics being obviously relevant for AML
prognostication, NGS analysis allowed us to identify lesions
that could assign patients to the high risk ELN group
independently from karyotyping. We sought to combine WES
and targeted DNA sequencing to ensure the highest sensitivity
and specificity for detecting mutations associated to myeloid
malignancies but still retaining the capability of identify a
broader spectrum of mutations by WES.

The study demonstrated, in fact, that patients with AML in
KNH do have deleterious mutations that are well-known to be
associated with AML pathogenesis. In this regard, although the
limited sample size didn’t allow a proper statistical evaluation and
cannot be extended to all African cases, the mutational spectrum
seemed not significantly different from what has been reported in
Western Countries series. Nonetheless, consistent with the overall
poor clinical outcome, genetic lesions associated with unfavorable
outcome seemed quite common. Three out of eight patients were
classified as high risk according to the ELN score for the presence
of RUNX1 (N = 1 patient) and TP53 (N = 2) mutations. Four were
recorded as standard risk, and 1 as favorable (PML/RARA+)
(Döhner et al., 2017). If also considering WT1 as adverse risk
factor (Virappane et al., 2008; Renneville et al., 2009; Hou et al.,
2010), 2 additional patients could be regarded as high risk.
Finally, we observed a significantly high occurrence of SNVs
affecting TP53 (overall 5/8 patients) and ASXL1 (5/8 patients).
Even if the specific SNVs were not yet associated with clinical
relevance, they cannot be excluded as having potential deleterious
role. Similarly, genetic lesions potentially affecting epigenetic
regulation (one of the main mechanisms of myeloid
malignancies transformation) were common, even if the
specific SNVs are not currently associated with a clinical
phenotype. Seven out of eight patients presented with TET2
SNVs, while DNMT3A was affected in one out of eight patients.

Overall, the study population seemed to reflect a slightly
different scenario from what is commonly observed in AML
series. Patients were younger (median age around 30 years vs 68)
and the overall treatment response quite poor. Despite younger
mean age (43 excluding children), however, only two patients
aged below 18 were studied and therefore the series have to be
regarded as referring to adults. Pediatric cases definitely need
further investigation. This is in line, however, with what was
observed in a large series of patients treated at Kenyatta National

TABLE 3 | Clinical outcome.

\Patients ID MG2 MG5i MG4i MG5 MG6 MG6i MG7 MG8

Induction treatment 3 + 7 Dead before treatment Dead before treatment 3−+7 Dead before treatment Azax9 3−+7 3−+7
Outcome DDI (d10) — — DDI (d30) — Stable disease RES DDI (d15)
OS days 40 30 30 60 30 Alive with disease 90 45

DDI, death during induction.
RES, Resistance.
3 + 7, daunorubicin plus cytarabine conventional chemotherapy regimen.
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Hospital and Nairobi Hospital (N. O. Abinya, manuscript in
preparation).

This is the first study exploring in depth, the molecular
features of Kenyan AML patients, while very few are available
on African AML in general. Kappala et al. in South Africa using a
microarray-based assessment of molecular variables on AML
patients noted that 5.7% had inv (6)/t (16; 16) (p13; q22),
11.3% had t (8; 21) (q22; q22), 3.8% had t (15; 17) (q24; q21),
1.9% had double mutant CEBPA, 9.4% had NPM1-ABD
mutations and 18.9% had a high expression of EVI1. NPM1
mutations were reported at a lower frequency whereas EVI1 over
expression occurred at a higher frequency compared to world
data, which would indicate age and racial differences (Kappala
et al., 2017). Lower prevalence of NPM1 and FLT3-ITD
mutations compared to world data were documented by
Marshall et al. looking at a South African cohort with de novo
AML (Marshall et al., 2014). Awad et al. investigated the
prevalence of FLT3-ITD mutations of 346 patients with AML
in Egypt. 9.2% had t (8; 21), 2.3% had inv (16) and <1% had both t
(9; 11) and inv (3) (102). FLT3-ITD mutations were present in
18.5% of the total population mirroring the lower frequency of
FLT3 mutation in African studies (Adnan-Awad et al., 2017).
Shamaa et al. in Egypt noted a frequency of 34.6 and 28.8% in
FLT3-ITD and NPM1mutations respectively in a cohort of AML
patients with a normal karyotype, like western studies. DNMT3A
and IDH1-R132 are frequently mutated in AML patients in Egypt
whereas TET2 overexpression is not a frequent finding (Hamed
et al., 2015; Salem et al., 2017; El Gammal et al., 2019). The
cytogenetic and molecular patterns of acute myeloid leukemia
patients in Africa are difficult to elucidate and compare due to
lack of large-scale studies and differing study designs. In India, a
country with similar demographics, a large scale analysis of the
cytogenetic profile of patients with de novo acute myeloid
leukemia showed that 15% had t (8; 21), 9% had t (15; 17),
8% had 8+, 6% had −7/del 7q, 5% had KMT2A rearrangements,
4.4% had inv (16)/t (16/16), 3% had −5/del 5q, 2% has −17/
abn17p and 1.5% had inv (3) in order of decreasing frequency
(Amare et al., 2016). Other studies from India show that FLT3-
ITD, CEBPA and NPM1 mutations occur in 22.3, 8.3 and 8% of
patients respectively, a frequency that’s lower than that reported
in western data (Ahmad et al., 2012; Khera et al., 2017).

In our study, we could associate targeted DNA sequencing and
WES. The concordance between the two was remarkably high, as
expected based on the relative specificity and the use of similar
chemistry. Only one gene, STAG2, turned out to be mutated at
targeted sequencing but not at WES in 2 cases. Not being possible to
apply a third independent method, we could only speculate that,
considering the high specificity of Illumina myeloid panel and the
possible lack of sensitivity of WES, it’s indeed more likely that exon
capturing didn’t cover the regions of STAG2 affected by mutations.

On the other hand, WES allowed to detect many SNVs associated
with associated comorbidities (e.g., hypercholesterolemia, data not
presented). In one case, WES added significant information
concerning the molecular pathogenesis of leukemic cells; SNVs
potentially associated with cellular transformation as well as drug
resistance were, in fact, detected (MG_2). The affected genes included
AURKA, ABCB1 and CBR3 (the two latter associated with drug

resistance), XRCC3, FGFR4, KLC1, and NAT2. Aurora Kinase A
(AURKA) has been documented to have some oncogenic activity in
the microenvironment milieu of leukemic cells, necessitating search
for small molecule inhibitors with anti-leukemic activity (Wang et al.,
2020; Du et al., 2021). While MG_2 died during induction he had
mutations detected in the ABCB1 and CBR3 gene. Evidence have
shown that higher expression of ABCB1 gene (a member of the ATP
binding cassette transporters family) results in an increased efflux of
chemotherapeutic agents, resulting in drug resistance (Thorn et al.,
2011; Shaffer et al., 2012), whereas genetic polymorphisms of CBR3
(anthracycline metabolizing enzyme) results in differing
pharmacokinetics that influence treatment efficacy (Bains et al.,
2010). In addition to the aforementioned, mutations in FGFR4
which is a tyrosine kinase receptor, XRCC3, KLC1 and NAT2
were detected in the same patient. Dysregulated activation of
this TKR has been reported to be a significant oncogenic
pathway in various solid tumors (Helsten et al., 2016; Liu
et al., 2020). Genotypic variants of the DNA repair gene,
X-ray cross complementary group 3 (XRCC3) have been
associated with a significantly higher cancer risk including
AML (Bănescu et al., 2013), whereas polymorphisms of
NAT2 an acetylator with epigenetic influences have been
described as a modifier of tumorigenesis in various solid
tumors (; Zhu et al., 2021). In addition, WES allowed
identification of a pathogenic TERC mutation in a patient
previously affected by AA (Young, 2018; Brzeźniakiewicz-
Janus et al., 2020). In this contest, the evolution to AML
was accompanied by the acquisition of RUNX1 mutations.

The present study carries some limitations. First, in this
exploratory study, the patients’ population was small and limited
to one center, and proper statistical evaluations couldn’t be
performed. Second, the paucity of available material didn’t allow
to match NGS studies with other techniques exploring both gene
mutations (as validation) or protein expression. Indeed, the two
applied system validated each other somehow, but further studies are
warranted. Finally, despite filtering the analyses for African ethnicity,
we cannot exclude that some population-specific genetic lesions
could not be captured; in fact, Africans are still underrepresented in
genetic databases.

In conclusion, we provided the first study on NGS molecular
profiling on Kenyan AML patients, highlighting current
limitations of AML diagnostics and treatment in this setting
and confirming the relevance of this approach in AML
characterization.
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