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Introduction: Tuberculosis (TB) disease continues to be responsible for a high global

burden with an estimated 10 million people falling ill each year and an estimated

1.45 million deaths. Widely carried out analyses to utilize routine data coming from

this disease, and well-established in literature, have paid attention to time-to-event

with sputum smear results being considered only at baseline or even ignored. Also,

logistic regression models have been used to demonstrate importance of sputum smear

results in patient outcomes. A feature presented by this disease, however, is that

each individual patient is usually followed over a period of time with sputum smear

results being documented at different points of the treatment curve. This provides both

repeated measures and survival times, which may require a joint modeling approach.

This study aimed to investigate the association between sputum smear results and the

risk of experiencing unfavorable outcome among TB patients and dynamically predict

survival probabilities.

Method: A joint model for longitudinal and time-to-event data was used to analyze

longitudinally measured smear test results with time to experiencing unfavorable outcome

for TB patients. A generalized linear mixed-effectsmodel was specified for the longitudinal

submodel and cox proportional hazards model for the time-to-event submodel with

baseline hazard approximated using penalized B-splines. The two submodels were then

assumed to be related via the current value association structure. Bayesian approach

was used to approximate parameter estimates using Markov Chain Monte Carlo (MCMC)

algorithm. The obtained joint model was used to predict the subject’s future risk of survival

based on sputum smear results trajectories. Data were sourced from routinely collected

TB data stored at National TB Program database.

Results: The average baseline age was 35 (SD: 15). Female TB patients constituted

36.42%. Patients with previous history of TB treatment constituted 6.38% (event:

15.25%; no event: 5.29%). TB/HIV co-infection was at 31.23% (event: 47.87%; no

event: 29.20%). The association parameter 1.03 (CI[1.03,1.04]) was found to be

positive and significantly different from zero, interpreted as follows: The estimate of

the association parameter α = 1.033 denoted the log hazard ratio for a unit increase

in the log odds of having smear positive results. HIV status (negative) 0.47 (CI

[0.46,49]) and history of TB treatment (previously treated) (2.52 CI [2.41,2.63]), sex
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(female) (0.82 CI [0.78,0.84]), and body mass index (BMI) categories (severe malnutrition

being reference) were shown to be statistically significant.

Conclusion: Sputum smear result is important in estimating the risk to unfavorable

outcome among TB patients. Men, previously treated, TB/HIV co-infected and severely

malnourished TB patients are at higher risk of unfavorable outcomes.

Keywords: Markov Chain Monte Carlo method, B splines, joint model, current value, tuberculosis

1. INTRODUCTION

Tuberculosis (TB) continues to be responsible for a high global
disease burden. According to (1), an estimated 10 million people
fall ill each year while 1.45 million die. The fight against this
disease has evolved through various strategies, which include
directly observed treatment, short-course (DOTS), stop TB
strategies, and now in the stretch of end TB strategy. The set
targets are reduction in TB incidence rate by 90%, reduction in
number of TB deaths by 95%, and zero catastrophic costs borne
by TB-affected families (2). However, patients still experience
unfavorable treatment outcomes (death and lost to follow up)
partly as a result of long (6 months) treatment duration.
These call for granular analyses of available data to explain the
unfavorable treatment outcomes.

Since introduction of DOTS strategy in 1993, WHO
recommended a standard set of data variables, which
span demographics, clinical, bacteriological, and treatment
outcome to be routinely collected. Additionally, non-
routine data are collected through surveys. Submission
of the routinely collected data to national TB programs
(NTP) is usually in form of aggregate numbers or case based.
The latter provides a unique opportunity for researchers
seeking to guide policy formulation, which ensures better
patient outcome through monitoring patient treatment
curve (3).

The routine data, most of the time is collected during first
visit, more often referred to as baseline, during repeat visits and
also documentation of treatment outcomes of the administered
treatment. These provide longitudinal together with time-to-
event data.

Researches done in different countries, Kenya included,
utilizing these TB data have explored the survival arm of the
data using Cox model. Examples include (6–12), all which did
not include sputum smear results in their model. Studies by
(8, 13) considered only baseline sputum smear measures while
(14) derived a variable onwhether a patient had follow up sputum
or not. Others studies (15, 16) used mixed-effect models to
demonstrate importance of sputum results in patient outcomes.

(4), however, explains that research questions with such
follow-up and time-to-event outcomes could require separate
analysis, most of the time interest being on joint analysis. To
understand this, there is need for clear distinction between
endogenous and exogenous covariates.

In TB setting, sputum smear results of the same patient are
stochastically generated through the treatment course and these
are most likely related to the event. That is, the existence of

sputum result and/or its future path is informative about the
occurrence (or non-occurrence) of an event (27). This means
that inclusion of the whole longitudinal history might be key
in providing an understanding on evolution of the disease over
time. Separate analysis of such data therefore maybe potentially
insufficient as they do not put into consideration endogeneity
(4, 5).

Joint modeling, which in statistical literature refers tomethods
for simultaneously analyzing longitudinal and time-to-event
models has witnessed an explosion in the recent years (4, 17–
19). The benefits of postulating such models being explicit
acknowledgment of endogeinity and measurement errors in
repeated measures and also obtaining accurate estimate of the
association between longitudinal and event processes (27). These
have been applied in the field of epidemiology to model complex
data with features such as multiple longitudinal outcomes (20),
recurrent events (21) and longitudinal and time to event data
(22). The settings for application are discussed by (19, 20, 22, 23).
These include; when interest is on time-to-event outcome and
we wish to include longitudinally measured variable, when the
focus is on the longitudinal outcome and we wish to correct
for nonrandom informative dropout, when interest is in the
association between longitudinal and survival processes and
lastly, when focus is on using longitudinal history to dynamically
predict survival probabilities.

Examples of research that have adopted joint modeling
methods and extensively published include (4, 24–26). Important
ingredients are the different association structures (the current
value parameterization, random effect parameterization, and
lagged parameterization among others) discussed in (4). Under
the current value parameterization (which was utilized in this
study), the risk for an event at a particular time point t
depends on the true level of the longitudinal marker at the same
time point. Also discussed are parameter estimation techniques
that include frequentist approach and Bayesian approach. This
research therefore proposed fitting joint modeling in a specific
application in TB to demonstrate how the sputum smear results
of the TB patient recorded at fixed time points within the
observation period together with baseline covariates recorded
at the start of treatment can be effectively used to answer our
important epidemiological questions. JMbayes package in R was
chosen for these analyses because of its flexibility to model the
association structure and its capability to fit joint model for
categorical repeated measures (27, 28).

The objectives of the study were to investigate the association
between sputum smear and the risk of unfavorable outcome and
to predict individual’s survival probability.
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To the best of our knowledge, this is the first study to:

• Jointly model the association between sputum smear result,
which is a repeated measure and the risk of unfavorable
outcome using mixed effects logistic regression model and cox
model with specified hazard embedded;

• Establish the possibility of predicting individual’s survival
probability during treatment, hence providing better
understanding of TB patients’ risk of unfavorable outcome.

This paper is structured as follows. In section 2, we provide
the study design, source of data, and joint model formulation.
Section 3 describes the data and the joint model output and
dynamic predictions. We give the discussions and conclusion
in section 4.

2. MATERIALS AND METHODS

2.1. Study Design, Area, and Population
This was a retrospective cohort study. The target population was
all people who had been notified as having tuberculosis disease
in the 3 years (2014, 2015, and 2016) of our study to the NTP
of Kenya.

2.2. Tuberculosis Data
Data on TB cases reported in the years 2014, 2015, and 2016 were
used in this study. These were sourced from TIBU (Tuberculosis
Information Basic Unit), the national electronic web based
system at the NTP. Details on TIBU are given elsewhere (29,
30) but in brief, TIBU, a case-based electronic data collection
system is a digital solution dedicated to digitalizing sustainable
lung health reporting and routine surveillance in Kenya (29). It
is an android-based application running on hand-held devices
and stores data online, which is accessible via the internet.
Currently, TIBU is being used by over 350 county and sub-county
coordinators country. The system has inbuilt validation checks
and provide real-time TB data at all levels of the health system.

At the facility level, once a patient is diagnosed and initiated
on treatment, his/her details that include age, sex, type of
TB, treatment outcome, date of start of treatment, HIV status,
sputum smear results, treatment outcome, and date of treatment
outcome among other variables are documented in the facility
register. Sub-County TB and Leprosy Coordinators (SCTLCs)
then transcribe these patient details from the TB facility register
to tablet computers that run on android operating system. The
case-based data are then transmitted directly to the national
database (TIBU) via the mobile network.

These data were exported from the TIBU system into
analyzable format in an excel sheet. This was then imported into
R software for data cleaning and analyses. The analyses were
based on all TB cases meeting the inclusion criteria after data
cleaning process.

The variables of interest were unfavorable outcome (derived
from the treatment outcome variable by combining patients who
were lost to follow up or had died) and sputum smear results (a
repeated measure).

Patients who were diagnosed and had initial sputum smear
results of either “positive” or “negative” were included in the

study. Patients who were diagnosed as extra pulmonary (EPTB)
or had their initial smear as not done were excluded from
the study. Also patients who did not have their HIV status
documented or body mass index not documented were excluded.

2.2.1. Operational Definitions
TB treatment outcome is defined as the final outcome a TB
patient is assigned at the course of treatment or at the end
of treatment. Definitions of various treatment outcomes that
include cured, treatment complete, failure, loss to follow up,
and died are explained in (31). In this study, they were
categorized as favorable and unfavorable treatment outcomes.
Favorable outcomes included cured and treatment complete
cases. Unfavorable outcomes included people who had been
assigned outcomes of loss to follow up and died.

Sputum smear results are the test results for the sample of
sputum collected from persons presumed to have TB. This is
done at the point of diagnosis usually denoted as month 0, at
month 2, at month 5, and at month 6 of TB treatment. The
results are usually classified as “positive” or “negative.” Patients
not able to expectorate can be initiated on treatment based on
clinical symptoms and have their sputum results documented as
“not done.” Two outcome variables are of interest: The event time
which is the time until an event is experienced, i.e., time until
a TB patient initiated on TB treatment experiences unfavorable
outcome. Second is the smear results emanating from sputum
smear sample collected repeatedly from TB patient at diagnosis
and during treatment follow up.

Smear conversion refers to change of smear results from
positive inmonth 0 to negative in the secondmonth of treatment.

2.3. Non-informative Assumption
A key assumption described by (4) is that censoring mechanism
and the visiting process are independent of the true event times
and future longitudinal measurements. The visiting process has
been defined in literature as mechanism that provides time points
where repeated measures are taken (4) usually classified as fixed
or random, whereas the study’s process is fixed at 0, 2, 5, and
6 months, little variability in the visiting times existed. Under
the non-informative assumption, the visiting process was ignored
without influencing the asymptotic properties of parameter
estimations. This implied missing at random (MAR) assumption.

2.4. Joint Modeling
Joint modeling for longitudinal and time-to-event data is the
joint estimation of a longitudinal mixed effect model, which
analyzes patterns of change in an outcome variable that has
been measured repeatedly over time, and a survival model,
which analyzes the time until an event of interest occurs. Joint
estimation is achieved by assuming the submodels are correlated
through individual-level random effects, i.e., the longitudinal
and the survival submodels share the same random effects (4).
Both classical and Bayesian approaches to joint modeling have
been considered with latter being especially useful because of its
flexibility in fitting a wide range of joint models including joint
models for categorical repeated measures (27) hence the choice
of approach in this research.
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2.4.1. Model Formulation

2.4.2. Generalized Linear Mixed Modeling
Let yij correspond to the observed value of the biomarker for
individual i(i = 1, . . . ,N) and each individual has j = 1, . . . , ni
repeated observations. The outcome variable yij = 1 for a positive
response and yij = 0 for a negative response.

Modeling of binary outcome variable assumes that yij follows
a distribution in the exponential family. The presence of repeated
measures introduces random effects in the model. The random
effects are incorporated within patient correlation and between
patient variation, resulting in generalized linear mixed model
(GLMM) (32) we therefore considered a GLMM.

That is,

yij = g(µij)

g[E(Yij|Xij, bi)]) = XT
ij β + ZT

ij bi,

where
g(.) is a known link function
µij is the mean of the exponential family,
yi is n× 1 vector of observed response values,
β is the p× 1 vector of fixed-effects parameters and have subject
specific interpretations,
Xi is the ni×p observed design matrix corresponding to the fixed
effects,
bi is the q× 1 vector of random-effects parameters,
Zi is the ni × q observed design matrix corresponding to the
random effects.

2.4.3. Assumptions
1.

bi ∼ Normal (0,D) ,

where D is the covariance matrix for bi.
The expression for E(Yij|Xij), does not, in general, have a

closed-form expression. This basically means that in principle
maximum likelihood is applied when making inferences, the
application here is difficult due to intractable integrals. This led to
the use of the penalized quasi-likelihood method (33) to estimate
the parameters and predict the random effects.

2.4.4. Event Submodel
Survival analysis is a method for analyzing data where outcome
variable of interest is time to experiencing an event. In practice,
the key guide for consideration of survival analysis is that the
survival times have skewed distribution and that some subjects
may never experience the event, referred to as censoring. Survival
analysis allows for modeling of the effect of baseline covariate
on the hazard of an event occurring. Specifically, the cox model
is used to explain the risk that an individual will experience an
event at a given time. It relies on proportionality assumption of
the hazards. The present work assumes that censoring is non-
informative. Also, the type of censoring is right censoring as
some patients had not experienced the event of interest by end
of treatment.

Henceforth, Ti = min
(

T∗
i ,Ci

)

denotes observed event time
where T∗

i is the “true” event time for individual i and Ci denotes
the censoring time.

di = I(T∗
i ≤ Ci) denotes the event indicator

The Cox proportional hazard model as proposed by (34)
expresses the hazard of an event at time t as:

hi(t) = h0(t)exp(ω
Tγ ),

where ω is the matrix of baseline covariates, which are assumed
to be associated with the hazard of each subject. These included
age, sex, HIV status, body mass index (BMI) category, and
treatment history;
γ is the vector of fixed effect parameters;
h0(t) is the baseline hazard or baseline risk function where the
effects of covariates are zero.

From our model, the baseline risk function as per the cox
model is unspecified that might lead to an underestimation
of the standard errors of the parameter estimates (4, 35).
Several options that correspond risk function to a known
parametric distribution have been defined in literature. These
included weibull, log-normal, gamma, piecewise-constant, and
regression splines (4). B-splines, which are piecewise polynomials
whose pieces fit together smoothly along disease progression,
was preferred because it provides a simpler, numerically
more stable approach to approximating large amounts
of data.

2.4.5. The Joint Modeling Structure
Joint model describe the evolution of the biomarker in time
for each patient. The estimated evolutions are then used
in a survival model. The main aim of this study was to
relate longitudinally measured smear test results with time to
experiencing unfavorable outcome for TB-infected patient so as
to understand the association between the two processes. The
current value parameterization was used to capture the strength
of the association between the current value of the longitudinally
measured sputum smear results and the risk (4).

Let mi(t) be the true and unobserved value of the marker at
time t. Then, a standard relative risk model as shown by (4) is
as follows:

hi(t|Mi(t),ωi) = h0(t;ω)exp
(

γ Tωi + αmi(t),
)

,

where hi(t) is the hazard of the event for individual i at time t;
mi(s), 0 < s < t is the history of the true unobserved longitudinal
process up to t;
h0(t;ω) is a vector of baseline covariates with corresponding
regression coefficients γ . Here, unlike the cox model, the baseline
risk function was approximated using penalized splines;
α is the strength of association between the biomarkers and the
risk of an event (hazard).

2.4.6. Conditional Independence Assumptions of

Joint Model
Let θ denote the combined vector of all population-level
parameters in the models
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1.

yi(t) ⊥ yi(t
′) | bi, θ

repeated measurements of the biomarker taken on the ith
individual at two different times t and t′ are independent of
one another.

2.

yi(t) ⊥ T∗
i | bi, θ

Any biomarker measurement for individual i is independent
of that individual’s true event time T∗

i
3.

Ci ⊥ T∗
i | θ

that the censoring process for the event outcome is
independent of the true event time.

4. Given the random effects, both the longitudinal and event
time process are assumed independent, and the longitudinal
responses of each subject are assumed independent.

2.5. Estimation of Joint Model Parameters
Inference of the parameters were based on posterior distribution.
These were obtained under Bayesian theorem using Markov
chain Monte Carlo (MCMC) algorithm.

Formally as described by (27)

f (yi,Ti, δi|(bi, θ) = p(yi|bi, θ)p(Ti|bi, θ)

f (yi|(bi, θ) =
∏

l

p(yil|bi, θ)

The posterior can be specified as

p(θ , b) ∝

[(

n
∏

i=1

ni
∏

l=1

p(yij| | bi, θ)

)

p(Ti, di| | bi, θ)p(bi | θ)p(θ)

]

which is equivalent to

log p(θ , bi | yi,Ti, di) ∝

(

N
∑

i=1

ni
∑

j=1

log p(yij(t) | bi, θ)

)

+ log p(Ti, di | bi, θ)+ log p(bi | θ)+ log p(θ),

where,

ni
∑

j=1

log p(yij | bi, θ)

is the log likelihood for the mth biomarker in the
longitudinal submodel

log p(Ti, di | bi, θ) = di ∗ log hi(Ti)−

∫ Ti

0
hi(s)ds

is the log likelihood for the event submodel,
where,

∫ Ti

0
hi(s)ds

is the cumulative hazard for individual i,

log p(bi | θ)

is the log likelihood for the distribution of the individual-specific
parameters (random effect), and log p(θ) is the log likelihood for
the joint prior distribution of the unknown parameters.

We fitted the longitudinal submodel with the glmmPQL()
function from the MASS package where the covariates (age, sex,
HIV status, BMI category, and treatment history) were included.
The random components were the individual patients who
were followed through the treatment. We then, separately, fitted
survival submodel with similar covariates. Finally, we combined
both submodels considering the current value association
structure between the two submodels.

As the integrals do not have a closed form solution, these were
approximated numerically using MCMC algorithm provided
in the R package called JMbayes (27). The plot function
was used to examine convergence using JointModelBayes()
MCMC estimation.

2.6. Predicted Survival in Joint Models
The obtained joint model was then used to derive survival
predictions based on a set of longitudinal measurements Yi(t) =
yi(s); 0 ≤ s ≤ t for four patients sampled from study data and
excluded before fitting the joint model (4, 19).

The focus on the conditional survival probabilities was
therefore on time u > t given survival up to time t, i.e.,

πi(u|t) = P
(

T∗
i > u|T∗

i > t, xi (t) ,wi,Dn; θ
)

where θ∗ denotes the true parameter values, Dn is the fitted
joint model, and ωi is a vector of baseline covariates. Here,
πi(u|t) is dynamic as and when new information about patient
was obtained at time t′ > t (4). These were computed using the
function survfitJM() available in JMbayes package in R. All the
analyses were conducted using R programming language (36).

3. RESULTS

A total of 131,809 cases were included in the study, of
which 14,365 (10.90%) had experienced the event. Descriptive
analyses used include mean, standard deviation, and proportion
depending on the nature of baseline variable. As shown in
Table 1, the mean age was 35 (SD: 15). Out of all the cases
enrolled, female constituted 36.42% (event: 32.43%; no event:
36.91%). Patients with previous history of treatment constituted
6.38% (event: 15.25%; no event: 5.29%). TB/HIV co-infection
rate was at 31.23% (event: 47.87%; no event: 29.20%). Under
BMI classification, severely malnourished (SM) constituted
16.73%, moderately malnourished (MM) were 33.18%, 40.62%
had normal BMI, 4.31% were overweight while obese patients
constituted 5.15%.

3.1. Joint Model
We begun by assessing the estimation quality of the fitted joint
model. The trace plot, autocorrelation plot, and density plot for
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TABLE 1 | Descriptive statistics.

Characteristic Category Overall Event No event

(n = 131,809) (n = 14,365) (n = 117,444)

mean(SD) mean(SD) mean(SD)

Age 35 (15) 38 (15) 35 (14)

% % %

Sex Male 63.58 67.57 63.09

Female 36.42 32.43 36.91

HIV status Pos 31.23 47.87 29.20

Neg 68.77 52.13 70.80

Treatment history New 93.62 84.75 94.71

Previously treated 6.38 15.25 5.29

BMI category Severely mal 16.73 25.13 15.71

Moderately mal 33.18 34.92 32.97

Normal 40.62 34.72 41.34

Overweight 4.31 3.01 4.47

Obese 5.15 2.23 5.51

TABLE 2 | Model estimates.

Covariate Mean Standard

deviation

95% credible

interval

Age 1.013 0.0006 1.012–1.014*

Sex Female 0.818 0.018 0.780–0.839*

HIV status Negative 0.472 0.017 0.456–0.488*

Treatment history Previously treated 2.520 0.022 2.412–2.630*

BMI category MM 0.708 0.022 0.679–0.738*

Normal 0.579 0.022 0.556–0.605*

Overweight 0.511 0.050 0.462–0.562*

Obese 0.432 0.004 0.382–0.482*

Association

parameter

1.033 0.004 1.026–1.044*

*Statistically significant at 0.05.

the association parameter are shown in Figure 1. The trace plot
showed random plot around the mean value suggesting that the
chains mixed well, which meant that parameter estimates across
various iterations were within range. The autocorrelation plot
was observed to become small and moving closer to zero (i.e.,
with small lags), meaning that the solutions of the simulated
samples became quickly independent. Lastly, the density plot
was observed to be unimodal and contain small tail. This
provided confidence in the results of the estimated model
parameters obtained.

3.2. Model Estimates
The results for the joint model are presented in Table 2. We
report the posterior means of the estimated parameters, with
their 95% credible intervals. We observed that the association
between the longitudinal process and the survival outcome, α

is 1.033 (CI: [1.026 - 1.044]) which is positive and significantly
different from zero an indication that sputum smear result

pattern is important in explaining the risk of unfavorable
outcome. Specifically, this was interpreted as follows: The
estimate of the association parameter α = 1.033 denoted the
log hazard ratio for a unit increase in the log odds of having
smear positive results. Sex, age, HIV status, BMI category, and
TB treatment history were all found to be statistically significant
in explaining the risk to unfavorable outcome among TB patients.
Female patients reduced the risk to unfavorable outcomes by
0.81 (CI: [0.78–0.84]) compared to male. A unit increase in age
increased the risk to unfavorable outcomes by 1.012 (CI: [1.011–
1.014]). Compared to all other categories of BMI classification,
patients with severe malnutrition were shown to have higher risk
of unfavorable outcomes. Being HIV negative reduced the risk
to unfavorable outcome by 0.47 (CI: [0.46–0.49]) compared to
HIV-positive patients. Patients who have had previous episode of
TB were 2.52 (CI: [2.41–2.63]) times more likely to experience
unfavorable outcome.

3.3. Dynamic Predictions
The obtained joint model was then used to predict subject-
specific survival probabilities for 4 patients who had been
randomly sampled from the study data and excluded in model
building. Patient number 27879 was male, newly diagnosed,
HIV status was negative, severely malnourished, and 19 years
old. Patient number 38946 was female newly diagnosed, co-
infected with HIV, severely malnourished, and 30 years old.
Patient number 13241 was female newly diagnosed, HIV status
was positive, severely malnourished, and 21 years old. The fourth
patient was female newly diagnosed, HIV status negative, normal
BMI, and 22 years old. Figure 2 displays the predicted survival
probabilities based on different amounts of data. We observe
that patients 27879 and 38946 both with month 0 and month 2
smear result as positive showed very low survival probabilities.
Patient 21269 with consistent sputum smear negative results
showed good survival probabilities. Patient 13241 had smear
conversion after 2 months of treatment was shown to have good
survival probabilities. Figure 3 displays the dynamic predictions
as and when additional information is provided. The red line
gives the predicted survival probabilities while the green line give
the true observed survival probability. When only the baseline
information is used for prediction, we observe that all the four
patients have almost similar survival probabilities (near 50%). In
addition, the predicted subject-specific probabilities are biased
with wide uncertainty bands. By providing additional follow up
sputum, we observe the following: The prediction for patient
27879 shifts down and closer to the true observed outcome.
Similarly, the predictions for patient 38946 shifts down and
closer to the true observed outcome. This indicates a higher
risk of unfavorable outcomes for patients who do not smear
convert by end of second month of treatment. For patient 13241,
with baseline characteristics, we observe that our model under-
predicted the survival probabilities. With additional second-
month sputum smear results, the predictions slightly improve
closer to the true observed outcome. The predicted values
for patient 21269 were inline with the observed true value
demonstrating very good survival probabilities.
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FIGURE 1 | Trace, density, and autocorrelation diagnostic plots for the association parameter.

FIGURE 2 | Predicted survival probabilities for patients 27879, 38946, 21269, and 13241. Solid red line is the mean of 2,000 MCMC samples. Dashed lines are the

2.5 and 97.5% percentiles range of the 2,000 MCMC samples. The dotted vertical line represents the time of prediction t.

4. DISCUSSIONS

The aim of the study was to apply joint modeling approach

to the repeated measures and survival outcomes from TB data.

The advantage of this approach is on the inclusion of sputum

smear results into the survival model. We have demonstrated
the usefulness of sputum smear results in obtaining the risk of

experiencing unfavorable outcome and in dynamically predicting
individual survival through the treatment duration. The study
considered sex, age, HIV status, BMI, and treatment history as
baseline covariates and became part of a first survival analysis.

In another part, a longitudinal analysis, where the sputum
smear markers observed within 6 months of treatment for each
subject characterized smear pattern until event occurrence. Both
models were considered jointly, thus establishing an association
parameter between the longitudinal and the survival processes.
The use of joint modeling techniques was key in establishing
whether sputum smear results also implied a simultaneous
increased risk to unfavorable outcome for the subject. While
being female was seen to be protective of unfavorable outcome,
this is most likely explained by the poor health seeking
behaviors among male populations (37, 38). In addition, possible
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FIGURE 3 | Dynamic predictions for patients 27879, 38946, 21269, and 13241. Solid red line is the mean of 2,000 MCMC samples. The green line is the true

observed survival probabilities. Dashed lines are the 2.5 and 97.5% percentiles range of the 2,000 MCMC samples.
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explanations could be delayed treatment initiation among the
males (8) and possibly non-adherence to treatment. The study
did find HIV status to be important predictor to experiencing
unfavorable outcome among TB patients. The findings were
consistent with findings from (6, 39). Also, there was a significant
association between treatment history and treatment outcome,
an inconsistent finding with (40). In clinical practice, patients
and clinicians will always be interested to know the survival
probabilities during TB treatment. Dynamic prediction showed
that different patients depending on their baseline characteristics
and smear pattern across the treatment curve would have
different survival probabilities. These predictions tend to bemore
accurate when additional sputum smear results are provided.
Such predictions are very important to guide clinicians in
tracking the health conditions of their patients and making
individually informed decisions. Patient 13241 who had sputum
smear conversion after 2 months have been shown to have
very good survival probabilities beyond treatment duration,
while patients 27879 and 38946 who do not convert are almost
likely to experience unfavorable outcomes that include death
or lost to follow up. Clinicians may therefore consider setting
up control measures that will avert patients from these adverse
outcomes. Although the results showed important relationship
between the repeated measures of sputum smear trajectories
and survival probabilities among TB patients, these findings
are based on secondary data from routine surveillance hence
possible inaccuracies. The study included only patients who had
an initial smear result of either positive or negative. Lastly,
additional repeated measures such as weight (collected at facility
level but not relayed to national level) could improve the
model predictions.

We believe that these findings will be of much interest to
health care workers managing TB patients as well as National TB
Program to guide in policy decisions.

5. CONCLUSION

The study concluded that, we conclude that sputum smear results
is important in explaining the risk of unfavorable outcome and
hence the need, going forward to analyze the time to event
and endogenous processes simultaneously. Also TB patients who

are male, co-infected with HIV, severely malnourished and have
had previous history of TB are at higher risk of unfavorable
outcomes. Different sputum smear pattern through the treatment
curve demonstrated dynamic survival probabilities. Therefore,
for patients with high predicted risks, clinicians may consider
differentiated approaches such as closely monitoring adherence
and provision of nutritional support to TB patients so as to avert
unfavorable outcomes.
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