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ABSTRACT 
 

Environmental isolates, genetically manipulated organisms, plants, animals and their products and 
economical methods are being expertly explored to biosynthesize poly-3-hydroxybutyrate plastics 
of comparable properties to petroplastics. This study assessed a hypothesized feasibility of utilizing 
water hyacinth (Eichhornia crassipes (Mart.) Solms-Laubach) from Lake Victoria (Uganda) as a 
potential carbon source for poly-3-hydroxybutyrate biosynthesis. The poly-3-hydroxybutyrate 
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biosynthesizing bacteria (Bacillus megaterium) was isolated from municipal sewage sludge and 
harnessed for batch fermentation of acid-catalysed water hyacinth biomass. Poly-3-
hydroxybutyrate formed in the cytoplasm of the bacterial cells was extracted by chloroform 
extraction method, and thereof confirmed and quantified by UV spectroscopy. Batch fermentation 
was carried out in 100 ml of the culture media for different times (48, 96, 144 and 192 h) to 
determine the best incubation time for maximum yield. A maximum yield of 61.3% was realized 
after 96 h of fermentation beyond which the bioplastic yield started decreasing. Utilization of this 
ecological plague for poly-3-hydroxybutyrate biosynthesis is a promising strategy for regulating the 
weed population along the length of River Nile and the Victorian basin.    
 

 
Keywords: Batch fermentation; Lake Victoria; poly-3-hydroxybutyrate; sewage sludge. 
 

1. INTRODUCTION 
 
Water hyacinth is an invasive greenery with 
credited floral beauty on Lake Victoria. It is a 
perennial aquatic herb of the pickerelweed family 
(Pontederiaceae) that is native to tropical 
America [1]. It is reported to have been 
introduced into East Africa as an ornamental 
plant and it spread into Lake Victoria through the 
Kagera river [1]. The weed has flourished due to 
the suitable growth conditions, total absence of 
omnivorous predators and heavy metal pollution 
of Lake Victoria.  
 
In 1995, the weed choked 90% of the Victorian 
shoreline with giant mats reported in hectarages 
of Murchison, Wazimenya and Gobero bays. Port 
Bell (Luzira) and Kasensero (Rakai) of Uganda 
are among the frequently hit landing sites by the 
weed resurgence [2]. In Uganda, resurgence was 
still observed on Kagera river, MacDonald, 
Fielding, Bunjako, Murchison, Lwera, Napoleon 
Gulf, Berkeley and some Ssesse Island bays in 
2012 [3]. The weed has since threatened the 
harvest of tilapia (Oreochromis niloticus), Nile 
perch (Lates niloticus) and silver fish 
(Rastreneobola argentea) [4]. Water hyacinth is a 
menace, impedes boat access, block communal 
water points along Victorian shorelines [2] and in 
prolific cases increase the spread of diseases 
such as bilharzia, malaria [5], skin rush, cough, 
encephalitis and digestive disorders. It also 
hamper water treatment, hydroelectricity 
generation and irrigation operations [6]. Floating 
mats of the weed curtail light penetration into 
Lake Victoria, limiting growth of photosynthetic 
phytoplankton [1].    
 
Although it is a deleterious aquatic weed, water 
hyacinth is a good source of biogas [7] and has 
been utilized in phytoremediation of iron, zinc, 
sodium, potassium, magnesium, calcium, lead, 
mercury and strontium-90 in matrices [8-12]. 
Water hyacinth is a substrate for the production 

of various furniture, handbags, ropes, potash, 
livestock feed [13], biofertilizers [14,15], papers 
[16], superabsorbent polymers and poly-3-
hydroxybutyrate plastics [17-19]. 
 
Poly-3-hydroxybutyrate (PHB) is a fully 
decomposable member of the biopolyester family 
with optical activity, piezoelectricity and excellent 
barrier properties. It is a partly crystalline 
thermoplastic with properties comparable to 
those of isotactic polypropylene and other 
elastomer petroleum-based plastics. In addition, 
PHB has low permeability for water, molecular 
oxygen and carbon dioxide [20]. PHBs are 
produced by a range of microbes cultured under 
different nutrient and environmental conditions 
[21]. The biopolyesters are harnessed as energy 
storage materials by microbes in transient 
abundance of carbon with nutritional components 
such as phosphorous, magnesium, oxygen, 
nitrogen or sulfur being a limiting factor [22]. 
They accumulate intercellularly as liquid, mobile 
or amorphous granules and may be deposited in 
an amount equivalent to 90% of cellular dry 
weight [23]. Poly-3-hydroxybutyrates are 
biodegraded within 5-6 weeks releasing carbon 
dioxide and water [24]. Their biocompatibility 
coupled with low oxygen permeability makes 
them suitable for medical applications as 
biodegradable carriers, surgical needles, surgical 
suture materials, bone tissue substitutes, 
osteosynthetic materials, bone plates, rivets and 
tacks [25]. 
 
Several studies have reported on PHB 
biosynthesis using various carbon sources. In a 
study, the accumulation of PHB granules in the 
cells of B. megaterium ATCC 6748 was reported 
to entirely rely on the ratio of carbon and nitrogen 
sources [26]. The investigation utilized 
sugarcane molasses (MOL) and corn steep 
liquor (CSL) as renewable sources of carbon and 
nitrogen respectively. The highest PHB yield 
(43% w/w, dry matter) was observed after 45 
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hours of microbial growth when equal quantities 
(4%) of MOL and CSL were experimented 
whereas the highest biomass (7.2 gL

-1
) was 

recorded at 4% MOL and 6% CSL. The team 
concluded that bacterial growth increased as 
CSL concentration increased and PHB 
accumulation contrarily decreased. The chemical 
structure and thermal properties of PHB 
produced were comparable to that of the 
commercial PHB except for the significantly 
higher molecular mass and lower degree of 
crystallinity.  
 
The effect of various carbonaceous and 
nitrogenous sources on PHB production was 
investigated by Gouda, et al. [27]. The highest 
yields of 40.8% and 39.9% per mg cell dry matter 
were achieved with cane molasses and glucose 
respectively. Optimum growth was achieved with 
3% molasses with maximum yield of 46.2% per 
mg cell dry matter of PHB. Corn steep liquor was 
the most sustainable synthetic nitrogen source 
with a yield of 32.7% per mg cell dry matter. 
Optimal growth was achieved with chloride, 
sulphate, oxalate or phosphate of ammonium ion 
used as the chief nitrogen source. 
 
A novel B. megaterium strain was isolated and 
characterized by López et al. [28]. Its ability to 
biosynthesize PHB was assessed using various 
fermentation configurations on formulated media. 
The novel strain gave 59% and 60% PHB yield of 
its dry cell weight in bioreactor assessments 
utilizing glucose and glycerol as the chief carbon 
sources. Basing on 

13
C NMR and FTIR analyses, 

they concluded that despite the fact that the 
novel strain sporulates, its intracellular PHB 
biosynthesis potential was higher than those 
previously reported in literature. Another study 
conducted by Rodrıguez-Contreras, et al. [29] 
with a novel B. megaterium strain (uyuni S29) for 
PHB biosynthesizing capacity reported a future 
of considering the strain for industrial PHB 
production. The strain gave 70% yield in a 
fermentation reactor against 60% of 
biosynthesized polymer that is necessary for 
recommending a strain as economical for large 
scale biosynthesis of PHB [30,31]. More so, the 
industrial conditions utilize conventional medium 
and moderate salt content, an environment that 
was already replicated in their previous study 
[29] and carried on in the aforeacknowledged 
study. 
 

Unfortunately, PHB production is not economical 
due to its prohibitive production cost. The current 
efforts of researchers aim at reducing the cost of 

production through identification of efficient 
bacterial strains [20,32] and cheap substrates. 
This study reported the feasibility of using water 
hyacinth for batch biosynthesis of PHB using B. 
megaterium isolated from municipal sewage 
sludge. 
 

2. MATERIALS AND METHODS 
 

2.1 Sampling of Water Hyacinth and 
Sewage Sludge  

 
Water hyacinth (5 kg) was collected from Port 
Bell, Luzira, Kampala, Uganda where one of the 
recent resurgences was reported [2]. It was 
washed several times with distilled water, oven 
dried at 70ºC for 48 h and ground into fine 
powder. Sewage sludge (5 kg) was collected 
from Lubigi Sewage and Faecal Sludge 
Treatment Plant, Kampala, Uganda [33] in sterile 
paper bags and microbiologically analyzed within 
2 hours of collection.  

 
2.2 Isolation of PHB Biosynthesizing 

Bacteria and Preparation of Carbon 
Source 

 
Poly-3-hydroxybutyrate biosynthesizing bacteria 
were isolated from sewage sludge, purified and 
identified as B. megaterium following standard 
methods [34]. The purified isolates were cross 
streaked on nutrient broth (2.5 g/L peptone, 2.5 
g/L NaCl, 1.0 g/L yeast extract and 0.5 g/L beef 
extract). Measured 100 ml of the culture in a 250 
ml Erlenmeyer flask was inoculated with a 2% v/v 
inoculum and incubated at 37ºC for 12 h with 
orbital shaking at 230 rpm.  

 
Substrate hydrolysate preparation was 
performed following a modified analytical 
procedure advanced by Pumiput, et al. [35]. 
Aliquots (8.0±0.1 g) of powdered water hyacinth 
leaves were steam exploded in an autoclave at 
121ºC for 20 min. Distilled water was added to 
the wet pretreated powder in a 250 ml volumetric 
flask to top up the volume to the mark. The 
resultant mixture was subsequently boiled at 
80°C for 30 min and the hydrolysate recovered 
by filtration. Acid post-hydrolysis of the 
hydrolysate was performed to split the 
oligosaccharides in the hydrolysate to 
monomeric sugars by autoclaving at 121ºC with 
1% hydrochloric acid (v/v) for 30 min. The pH of 
the resultant hydrolysate was adjusted with 
sodium hydroxide to 7.0 and the precipitate 
recovered by filtration [18,35]. 
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2.3 PHB Production, Extraction, 
Purification and Quantification 

 
Preliminary screening for the detection of 
bacterial isolates capable of biosynthesizing and 
accumulating PHB was performed following the 
analytical procedure used by Zhang, et al. [36]. 
Batch fermentation was done in a 250 ml 
Erlenmeyer flask containing 100 ml of nitrogen-
deficient culture media. The flask was inoculated 
and maintained at 30ºC with orbital shaking at 
130 rpm for 48, 96, 144 and 192 h. 
 
For analysis, the samples were centrifuged for 45 
min at 6,000 rpm. Obtained pellets were 
incubated at 60ºC for 1 h with sodium 
hypochlorite to break the cell walls of bacteria. 
Supernatants obtained were transferred to a 
Soxhlet system. Cell lipids and other molecules 
(except PHB) were extracted by addition of 5 mL 
of 96% ethanol and acetone (1:1 v/v). PHB was 
extracted using chloroform, dried at 40ºC 
followed by addition of 10 mL of concentrated 
sulfuric acid. The resultant solution was heated in 
a water bath at 100ºC for 20 min.  
 
After cooling, quantification of biosynthesized 
PHB was performed employing an analytical 
procedure used in previous studies [18,37,38]. 
The biopolymer was quantified using a double 
beam optimal geometry Genesys 10S UV visible 
spectrophotometer (Thermo Scientific, USA) in 
comparison with a standard curve plotted 
between concentrations of crotonic acid and the 
corresponding absorbances were read at 235 
nm. For dry cell weight (DCW) analysis, 10 mL of 
culture sample was centrifuged at 11,200 × g for 
20 min. The cell pellet was washed twice with 1 
mL of distilled water and transferred to a dry petri 
dish. The pellet was dried to constant weight at 
60ºC to estimate the DCW in g/mL. Three 
independent replications were performed and the 
percentage of PHB accumulated was estimated 
using Equation 1. 
 

PHB accretion = 
	���	������	��		���	

���	����	������	
 × 100%          (1) 

2.4 Characterization and Confirmation of 
the Extracted Polymer 

 
Characterization and confirmation of PHB 
recovered was done using crotonic acid assay. 
The powder was dissolved in sulphuric acid (1 
mg/mL) and heated at 100ºC for 10 min to 
convert it into crotonic acid. The solution was 
cooled, and its spectroscopic absorbance read at 

260 nm against concentrated sulphuric acid as 
blank. 
 

2.5 Analytical Quality Control and Quality 
Assurance  

 
 All reagents used were of analytical grade. The 
volumetric ware used were soaked overnight in 
10% (v/v) nitric acid solution, rinsed with 
deionized water and oven dried prior to analysis. 
A calibrated Mettler PM200 digital analytical 
balance (Marshall Scientific, Hampton, USA) was 
used for all weighings. Hanna 211 digital 
microprocessor-based bench top pH/mV/ ℃ 
meter (Hanna instruments, Italy) calibrated using 
pH 4.01, 7.01, 10 buffers was used for all pH 
measurements.  
 

2.6 Statistical Analysis of Results  
 
Results from triplicate analyses were subjected 
to statistical evaluation. One-way ANOVA was 
done followed by Turkey pairwise test to 
separate the means. All statistical analyses were 
performed at a 95% confidence interval in the 
general linear model using Sigma Plot statistical 
software (v14.0, Systat Software Inc., San Jose, 
CA, USA) [39]. 
 

3. RESULTS AND DISCUSSION 
 

3.1 Bacterial Staining and Hydrolysis of 
Water Hyacinth 

 
The use of the lipophilic stain (Sudan black) to 
stain intracellular polyhydroxybutyrate (PHA) 
granules accumulated by the isolated B. 
megaterium was a confirmatory test that the 
isolated bacteria was a PHA biosynthesizing 
species [40]. The bacterial colonies were bluish 
black and the PHB granules were confirmed by 
their affinity for Sudan black dye [41]. The acid 
hydrolysis method of Pumiput, et al. [35] which 
was used while investigating lactic acid 
production from fruit waste registered success in 
hydrolyzing water hyacinth biomass in this study. 
This agreed well with the study of Preethi et al. 
[18]. 

 
3.2 Recovered Poly-3-hydroxybutyrate 

and its Accretion 
 
Use of organic solvents such as chloroform for 
PHB extraction is one of the most employed 
analytical procedures for recovering PHA and 
thus PHB. It is published that chloroform alters 
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cell membrane permeability of the PHA 
biosynthesizing bacterial cells and subsequently 
solubilize the PHA component, releasing it in 
solution [42]. The average yields of PHB  from 
the cells are presented in Table 1.  
 

Table 1. Poly-3-hydroxybutyrate yield of the 
water hyacinth hydrolysate 

 

Incubation 
time 
(hours) 

Recovered PHB  
(g/L)* 

PHB  
accretion 
(%) 

48 1.2 ± 0.06 15.0 
96 4.9 ± 0.12 61.3 
144 4.2 ± 0.06 51.3 
192 3.8 ± 0.12 47.5 
*Presented as mean ± standard error of triplicates 

 

There was gradual increase in PHB biosynthesis 
by B. megaterium in the water hyacinth medium. 
A high yield of PHB (4.9±0.12 g/L, 61.3%) was 
realized on the fourth day of fermentation (96 
hours) in water hyacinth medium. The result of 
this investigation is corroborant with that 
observed with Cupriavidus necator [43] and 
Pseudomonas aeruginosa [18] where PHA yield 
was 4.3 g/L. Yüksekdağ, et al. [35] reported that 
B. megaterium 12 produced 0.142 g/L of PHB 
with a yield of 14.79% after 45 hours with a 
significant reduction in PHB yield after 48 hours. 
Increase in the fermentation time in this study 
resulted in a significant decline (P = .05) in PHB 
biosynthesis. This could be correlated with the 
utilization of intracellular PHA granules as 
reserve food molecules during nutrient starvation 
[44]. Thus, it can be thought that until sporulation 
time, the bacteria produced PHB and 
subsequently used it. The decrease in polymer 
yield after the 96th hour is indicative that the 
biosynthesizing bacteria utilized the polymer as a 
source of carbon and nitrogen, triggering 
unfavorable growth conditions due to depletion of 
carbon and nitrogen sources in the hydrolysate 
medium. It is reported that bacterial spores are 
produced during the stationary phase as PHB is 
being biosynthesized and utilized [45,46]. The 
results of this study is comparable to that of 
Klüttermann, et al. [47] who reported that 
Agrobacterium radiobacter gave a maximum 
accretion of 60% PHB of cell dry weight in the 
stationary growth phase after 96 hours with a 
significant drop in yields reported after this time. 
Reddy, et al. [48] also reported that B. 
megaterium strain OU303A from sewage sludge 
successfully biosynthesized PHB and 
polyhydroxybutyrate-co-hydroxyvalerate (PHB-
co-HV) copolymer. The strain had an all-out yield 
of 62.43% DCW polymer in a medium containing 

glycerol as the sole carbon source, 
comparatively higher than 58.63% DCW polymer 
in glucose as the sole carbon source. 
Additionally, the strain reportedly produced 2.5% 
hydroxyvalerate copolymer from glucose with 
increase in hydroxyvalerate monomer yield 
following the inclusion of its copolymer precursor 
in the fermentation medium.  
 
Polyhydroxyalkanoates can be chemically 
converted to crotonic acid by heating in 
concentrated sulphuric acid. The UV 
spectroscopic absorption maximum of crotonic 
acid is normally shifted to 260 nm when 
concentrated sulphuric acid is used as the 
solvent [40]. Carboxyl compounds absorbs light 
below the UV range and hence are difficult to 
detect by spectroscopy. Crotonic acid assay 
relies on the chemical fact that UV absorption 
maxima of alpha and beta unsaturated acids 
undergoes a strong bathochromic shift (shifts to 
lower frequency) in sulphuric acid and can be 
recorded in the UV range; the corresponding 
absorption maximum is thus shifted to 260 nm 
[40]. This study confirmed that PHA, a PHB 
precursor was formed from fermented water 
hyacinth which is corroborant with preceding 
studies [18,49-51]. 
 

4. CONCLUSION AND RECOMMENDA-
TION 

 
From this study, it was evidential that water 
hyacinth is a potential candidate for batch 
production of PHB and the yield of PHB 
increased with increase in fermentation times. A 
maximum yield of 61.3% per dry cell mass was 
obtained after 96 hours of fermentation. Increase 
in fermentation time beyond 96 hours did not 
register any increment in PHB yield. The use of 
water hyacinth as a starting substrate for PHB 
biosynthesis using B. megaterium isolated from 
sewage could be a feasible strategy for 
managing the population of the noxious weed in 
the Victorian basin and the entire River Nile 
length. Further research should identify the strain 
of B. megaterium harnessed from the sewage 
sludge as well as determine the nutritive 
parameters of the water hyacinth leaves.    
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