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ABSTRACT 

The technique of fitting a response surface is one widely used especially in the chemical 

industry to aid in the statistical analysis of experimental work in which the yield of a 

product depends in some unknown fashion on one or more controllable variables. The 

world is facing depletion of resources and search for alternative measures is inevitable 

in all human endeavor. Since the resources are scarce, we need to produce maximally 

by utilizing design of experiments like in this study. In the current study, optimal 

economical second order rotatable designs SORDs in four and five dimensions were 

constructed. The objectives of the study were; to construct economical SORDs in four, 

and five dimensions, evaluate the alphabetic optimality criteria for the designs, and 

determine the A- and E- efficiencies for the designs. The sets of points for a sequential 

rotatable arrangement in four and five dimensions formed rotatable arrangements if 

their excess functions were zero. All the variables determined were real and positive 

and this confirmed the existence of a rotatable arrangement. The designs were 

considered to be SORDs after satisfying both the moment and non-singularity 

conditions. The moments which formed the elements of the moment matrix were 

determined by taking the parameter system of interest to be that of a second order 

model. The moment matrices formed the basis for determination of the optimality 

criteria for every design considered. The determinant criterion (D-), Average variance 

criterion (A-), Eigen value criterion (E-) and the trace criterion (T-). Were considered. 

For each criterion the design with the least value will be optimal to the specific criteria 

under consideration. The study yielded; 32, 40, 48a, and 48b points SORDs in four 

dimensions and; 52, 74,100a, and 100b points SORDs in five dimensions respectively. 

From the Table 2 the design G2 (40 points SORD in four dimensions) is A-, D-, T- and 

E-optimal. The design G6 (74 points SORD in five dimensions) is A-, D- and-optimal 

and designs G7 was found to be E-optimal. The analysis of efficiencies facilitated the 

choice of the most desirable design from the other designs under consideration. In 

conclusion, the more homogenous the design is, the more optimal it became, and thus 

the designs obtained provides very essential tools for use in various fields such as in 

medicine, agriculture and industry. The study recommends evaluation of robustness of 

missing data for these designs and all other designs to enable researchers make 

informed decisions whenever missing information is anticipated. 
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DEFINITIONS 

D.O.E:  Is a systematic rigorous approach to problem solving that applies 

principles and techniques at the data collection stage so as to ensure 

the generation of valid, defensible and supportable conclusions. 

Optimum:  The amount or degree of something that is best or most effective and 

favorable. It is also the greatest degree attained or attainable under 

implied or specified conditions. 

R.S.M:  This is a collection of mathematical and statistical techniques useful 

for analyzing problems in which several independent variables 

influence a dependent variable and the goal is to optimize the 

dependent variable. 

Rotatable:  When an orthogonal matrix and a vector are multiplied, the resulting 

vector having the same magnitude with the vector multiplied with the 

orthogonal matrix but the two vectors facing different directions. 
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CHAPTER ONE 

INTRODUCTION 

1.0 Introduction 

This chapter covers the background of the study, the statement of the problem, the 

objectives of the study, and the justification of the study. 

1.1 Background of the Study 

The technique of fitting a response surface is one widely used especially in the chemical 

industry to aid in the statistical analysis of experimental work in which the yield of a 

product depends in some unknown fashion on one or more controllable variables.  

Before the details of such an analysis can be carried out, experiments must be performed 

at predetermined levels of the controllable factors i.e. an experimental design must be 

selected prior to experimentation. Box and Hunter (1957) suggested designs of a certain 

type which they called rotatable, as being suitable for such experimentation. Since that 

time, the work of Carter in 1957 has provided new second order rotatable designs in 

two factors. However, additional methods were needed which would provide both 

second and third order designs in three and more factors. Mutiso (1998) in his PhD 

thesis constructed second order rotatable designs in k-dimensions. The present work 

represents an alternative method of constructing more economical second order 

rotatable designs in k-dimensions using the concepts of Draper (1960a). Certain sets of 

points are used, all of which will be obtained from a basic point set, the basic point set 

occurs as a result of applying a specified transformation group to a general point in 

three dimensions. It will be shown that these generated point sets obey all the conditions 

and the non- singularity conditions for second order rotatable designs.  

There is then defined a function called the excess of a point set, which describes the 

extent to which the outstanding condition is not met, and it is shown that combinations 
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of point sets whose total excess is zero will provide second order rotatable designs or 

infinite classes of rotatable designs. 

1.1.1 Transformation Group in Three Dimensions and it’s Generated Points Sets 

 Let   W(x, y, z) = (y, z, x). Then W2(x, y, z) = (z, x, y) and W3(x, y, z) = (x, y, z). Thus, 

W, W2, W3 form a cyclical group of order three. Further, let R1(x, y, z) = (-x, y, z), R2(x, 

y, z) =(x, -y, z), R3(x, y, z) =(x, y, -z). 

The four transformations represented by W, R1, R2 and R3 generate a group of 

transformations of order 24 with elements. 

WJ, WJR1, WJR2, WJR3, WJR2R3, WJR3R1, WJR1R2, WJR1R2R3 (J=1, 2, 3) 

It is easily seen that all the 24 elements are distinct while R1 , R2, R3 commute, WJ and 

RI  do not (i=1,2,3 ;j=1,2,3). 

Given a general point (X, Y, Z) in three dimensions, we may apply to it all the 

transformations of the group (S). In this way we obtain a set of 24 points with co-

ordinates. 

( x, y, z), ( y, z, x), ( z, x, y). We shall denote this by s(x, y, z) 

Note that if (i, m, n) denotes any other point of the set, when operated on by s, will give 

rise to the same set. Certain special choices of (x, y, z) will coincide in pairs or in triplets 

or in quadruplets. For example, s (p, q, o) consists of twelve points.  

( p, q ,o ) , ( q, o, ±p ) , ( o, p, ±q) ,each occurring twice. We may denote the 

twelve point set by 
1

2
s (p, q, o).  This set has excess, EX [

1

2
s (p, q, o)] = 4(p4+q4-3p2q2). 

A quantity may be made positive or negative depending on the values of p and q 

according to Bose and Draper (1959). The sets of points yielding non- zero excesses 
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are suitably combined to give zero excesses where non-zero excess imply values of the 

excess functions are other than zero according to draper [1960b]. To form rotatable 

arrangement, we combine several generated points sets and use the excess functions. 

1.1.2 Optimality Criteria  

An optimality criterion is a single number that summarizes how good a design is, and 

it is maximized or minimized by an optimal design. Two general types of criteria are 

available: information-based criteria and distance-based criteria. The information-

based criteria that are directly available are D- and A- optimality; they are both related 

to the information matrix X/X for the design. This matrix is important because it is 

proportional to the inverse of the variance –covariance matrix for the least-squares 

estimates of the linear parameters of the model. Roughly, a good design should 

minimize the variance of  (X/X)/ which is the same as maximizing the information of  

X/X . The D-, and A- efficiencies are different ways of saying how large X/X and (X/X)/  

are. 

1.1.3 Design Efficiency  

For experimental designs, efficiency relates to the ability of a design to achieve the 

objective of the study with minimal expenditure of resources such as time and money. 

In simple cases, the relative efficiency of designs can be expressed as the ratio of the 

sample sizes required to achieve a given objective.  
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1.2 Statement of the Problem 

The world is facing depletion of resources and search for optimal utilization measures 

are inevitable in all fields of human endeavor.  Since resources are scarce, we need to 

produce maximally in all spheres by utilizing economical optimum designs in 

experimentation. The existing second order rotatable designs in four and five 

dimensions have relatively a higher number of design points, i.e. 44, 48, 52, 56, 64, 68 

in four dimensions and 92, 100, 108, 116, 132 & 140 points in five dimensions 

respectively. The high number of points translates to more resource and time 

expenditure. This study introduces relatively economical designs in four and five 

dimensions which will enable experimenters to use minimum resources in their 

experimental endeavors, thus improving their livelihoods and attaining their countries 

development goals.  

1.3 Objectives 

The aim of the study was to construct economical optimum second order rotatable 

designs in four and five dimensions. 

The specific objectives were to; 

i. Construct some specific and sequential second order rotatable designs in, four 

and five dimensions. 

ii. Evaluate the optimality criteria for the second order rotatable designs in four 

and five dimensions 

iii. Obtain the design’s relative efficiencies  
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1.4 Justification 

Extensive research in many fields in industry, food processing and agriculture utilizes 

response surface methodology. As a result of this, economical optimal sequential 

designs like in this study are developed. These designs enable experimenters to use 

minimum resources to obtain optimum yield. 
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CHAPTER TWO 

LITERATURE REVIEW 

2.0 Introduction  

This section seeks to trace, chronologically, the various streams of thought which have 

contributed to what we now call Response surface methodology. 

2.1 Developments in Response Surface Designs 

Response surface methodology is defined as a collection of mathematical and statistical 

techniques useful for analyzing problems in which several independent variables 

influence a dependent variable, Montgomery (1984). In their review of the literature on 

Response surface methodology, Hill and Hunter (1966) assert that Response surface 

methodology was initially developed and described by Box and Wilson (1951). This 

seems to Mead and Pike (1975) to imply too narrow a view of the subject. Certainly 

Box and Wilson’s paper and the large number of papers by Box and his associates 

which followed it in the next decade constitutes the single most powerful source of 

ideas in the investigation of response surfaces but many of the fundamental ideas had 

been used and discussed much earlier. However, in this early development the design 

of experiments specifically to investigate response surfaces was not discussed to any 

extent. 

Fechner (1860) transformed proportions to the corresponding normal deviates for data 

from psychological experiments and fitted a curve to the relationship between the 

concentrations of a stimulus and the proportions of individuals responding. The word 

Probit was introduced by Bliss (1935) when he added 5 to (x-u)/δ called the normal 

equivalent deviate denoted (N.E.D), where x=log10λ is the dosage or dose Meta meter 

and λ is the dose in a bioassay. Winsor (1932) used the Gompertz curve for a situation 

where the relative growth rate was believed to decrease exponentially with time and 
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Wishart (1938, 1939) illustrated orthogonal polynomials for studying growth rates in 

nutrition studies of pigs. The area where response curves were used and in which for 

the first time , response surfaces were considered was the agronomic study of the 

response of crop yield to crop spacing or fertilizer levels where Mitsherlich (1930) 

found biologically reasonable and asymptotic relationship between plant yield and the 

supply of an essential growth factor in particular, space, and Yates and Crowther (1941) 

applied the Mitscherlich response equations in the study of the response of arable crops 

to several different fertilizers.  

In the Box evolution, Box and Wilson (1951) discussed experimental designs whose 

purpose is to find using the smallest possible number of observations, the point on a 

response surface at which the optimum is achieved. They introduced the concept of 

composite designs to generalize the well-known factorial principle of experimental 

design making it applicable in the response surface methodology. They discussed 

steepest ascent or descent in the search for the near stationary region around the 

optimum representing the models using Taylor series expansion and devised the coded 

level convention. Box (1952) wrote the paper on multifactor designs of First order and 

Box (1954) explored response surfaces considering general examples. Box and Youle 

(1955) illustrated the link between the fitted surface and the basic mechanism of the 

system. Gardiner et al. (1956) wrote his doctor of philosophy thesis on some third order 

rotatable designs. Box and Hunter (1957) suggested designs of a certain type which 

they called rotatable as being suitable for second order response surfaces 

experimentation. Gardner et al. (1959) gave the moment and the non-singularity 

conditions for third order response surface designs. 

 Bose and Draper (1959) introduced a transformation group in three dimensions and its 

generated point sets and formed second order rotatable designs by combination of 
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several generated points sets. Draper (1960a, 1960b, 1960c) constructed second order 

rotatable designs in four or more dimensions, third order rotatable designs in three 

dimensions, and third order rotatable designs in four dimensions respectively. Draper 

(1961) illustrated construction of specific third order designs in three dimensions. Arap 

Koske (1984) wrote his doctor of philosophy thesis on fourth order rotatable designs 

followed in quick succession by Njui (1985) who wrote his doctor philosophy thesis on 

fifth order rotatable designs with both publishing their works in subsequent years jointly 

with their supervisor, namely Patel and Arap Koske (1985, 1986, 1987) and Patel and 

Njui (1988). Arap Koske (1987) gave a fourth order rotatable design in four dimensions.   

2.2 Optimality Criteria for Response Surface Designs  

The literature on optimal design can be traced to Atkinson and Donev (1992) who wrote 

a book on optimum experimental designs. This was closely followed by Pukelsheim, F. 

(1993) who wrote a book on optimal design of experiments. Studies on robustness of 

optimal designs against model variation were done in Huda (1991) using A-efficiency, 

central composite designs against model variation was examined by Huda and Khan 

(1993). 

The minor technical difficulty that the moment matrix Mk is rank deficient is of no 

relevance in an age of generalized inverses. For example, Keifers optimality criteria are 

simply taken to be the mean of order P of the positive Eigen values of Mk, Pukelsheim, 

F. (1993), it is precisely because of these technical differences that the Eigen values 

decomposition of Kronecker representation moment matrix Mk takes an almost explicit 

form for third order rotatable designs, Pukelsheim and Draper,(1994). The family of 

matrix means, ф (p), with -∞ ≤ p ≤ 1 was introduced by Kiefer (1974) and discussed 

in detail by Pukelsheim, F. (1993). The detailed discussion by Pukelsheim, F. is purely 

theoretical and involves much of mathematical jargon. There are essentially two ways 
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for the construction of design criteria which incorporate different purposes of the 

experiment. One approach is the construction of new optimality criteria by averaging 

several competitive design criteria. Alternatively, one could try to maximize one 

primary optimality criteria subject to constraints for specific minimum efficiencies of 

other criteria, Dette and Franke, (2000). Mutiso (1998) constructed optimum designs of 

order two in three dimensions but the optimality criteria for the construction were not 

identified. Kosgei (2002) gave the optimality criteria for the specific second order 

rotatable designs in three dimensions by considering A-, E-, D-, and T- criteria. Goos 

(2006) discussed in lengthy on IV- optimality. Nyakundi (2016) constructed some third 

order rotatable designs in three four and five dimensions. 

A study of first order rotatable designs assuming the model has correlated errors was 

initiated by Panda and Das (1994).  Das (1997), studied second order rotatable designs 

assuming that the model has correlated errors. Starting with usual second order rotatable 

designs, a method of construction of second order rotatable designs, and a method of 

construction of second order rotatable designs with correlated errors was introduced by 

Das (1999).  The present work gives a method of constructing some second order 

rotatable designs in in four and five dimensions.  
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CHAPTER THREE 

METHODOLOGY 

3.0 Introduction  

 This chapter gives a summary on how the specific objectives are achieved. It includes 

the method of construction of economical second order rotatable designs in four and 

five dimensions, the methods of obtaining the optimality criteria and efficiencies of the 

designs. 

3.1 Construction of Second Order Rotatable Designs in K-Dimensions 

The starting point is to investigate the construction of second order specific and 

sequential rotatable designs in k- dimensions from the existing second order rotatable 

designs denoted by; 

s1= S (a, a, a) +S (c1, 0,0) +S (c2, 0, 0)                                                                     [3.1] 

s2= S (a1,a1,a1) + S (a2,a2,a2) +S (c, 0,0)                                                                [3.2] 

s3=S (0,f, f) +2S (c, 0,0)                                                                                            [3.3] 

s4=S (0, p, p) + S (c1,0,0) +S (c1,0,0)                                                                      [3.4] 

The above sets of points gives 20, 22, 24a and 24b points second order rotatable designs 

in three dimensions respectively. The designs above exist in Mutiso (1998) PhD thesis. 

The sequential second order rotatable designs in four dimensions are obtained by 

adding a factor to each of the set of points in three dimensions to give; 

G1= S (a, a, a, a) +S (c1, 0,0,0) +S (c2, 0, 0, 0)                               [3.5] 

G2= S (a1,a1,a1, a1) + S (a2,a2,a2, a2) +S (c, 0,0,0)                               [3.6] 

G3=S (0,f, f, f) +2S (c, 0,0,0)                                                        [3.7] 

G4=S (0, p, p, p) + S (c1,0,0,0) +S (c1,0,0,0                [3.8] 
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The above sets of points give; 32, 40, 48a and 48b points second order rotatable designs 

in four dimensions respectively. 

The sequential second order rotatable designs in five dimensions are obtained by adding 

a factor to each of the set of points in four dimensions as below; 

G5= S (a, a, a, a, a) +S (c1, 0,0,0,0) +S (c2, 0, 0, 0, 0)                             [3.9] 

G6= S (a1,a1,a1, a1, a1) + S (a2,a2,a2, a2, a2) +S (c, 0,0,0,0)                      [3.10] 

G7=S (0,f, f, f, f) +2S (c, 0,0,0,0)                                               [3.11] 

G8=S (0, p, p, p, p) + S (c1,0,0,0,0) +S (c1,0,0,0,0)                              [3.12] 

The above sets of points give; 56, 74, 100a and 100b points second order rotatable 

designs in five dimensions respectively. 

For each set of combinations, we show that the points form a sequential rotatable 

arrangement in 4 and 5 dimensions respectively, if all the excess functions are zero. We 

then estimate one variable such that the other variable obtained after substitution is real 

and non -negative. 

If the moment conditions for second order are achieved, then the sets of points are said 

to make a rotatable arrangement and subsequently if the non-singularity conditions for 

second order rotatability are achieved, then the set of points forms a second order 

rotatable design in 4 and 5 dimensions respectively. 

The following are both the moment conditions and non- singularity conditions for 

second order rotatability 

∑ xiu
2n

u=1 =nλ2, 

∑ xiu
4n

u=1 =3∑ xiu
2n

u=1 xju
2 , i≠j, 

∑ xiu
4n

u=1 xju
2 =∑ xiu

2n
u=1 xju

4 , i≠j,                                                                               [3.13] 
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And the non-singularity conditions given as; 

λ4

λ2
2>

k

k+2
  ,              For k=3, 4, 5                                                                                [3.14] 

3.2 Optimality Criteria         

A design can do very well in a particular criteria and at the same time do very poorly 

in another criterion, Kosgei (2002). This is because these criteria play particular roles 

in improving the parameter estimates whose ultimate goal is to optimize the response 

(yield). An experimenter who is interested in using a D-optimum second order rotatable 

design in five dimensions shall do so by using the analysis of D-optimality of all the 

designs in five dimensions and the least among them is considered as the best for that 

design. The same case applies to all other criteria. 

3.2.1 D-Criterion 

According to Pukeisheim, F (1993). The determinant criterion is obtained by; 

 ∅0(C) = (det C)
1

S                                                                         [3.15] 

Where C is the information matrix. 

D- Optimum design minimizes the content of the ellipsoidal confidence region for the 

parameters of the linear model.  

The determinant criterion  ∅(C) differs from the determinant det (C) by taking the  sth 

root where both functions induce the same pre-ordering among information matrices. 

For comparing different criteria and applying the theory of information functions, the 

version ∅0(C) = (det C)
1

S is appropriate. Minimizing the determinant of the information 

matrices is the same as maximizing the determinant of the dispersion matrices because 

of the formula 
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(Det C)−1 = (Det C−1)                                                  [3.16] 

According to Rambaei (2014), the determinant criterion is given by; 

Det =[k[2 
k ] λ2

k λ4[k+2] λ4 − kλ2
2] 1/k+3                                        [3.17] 

Where k is the number of dimensions of the design. 

3.2.2 Average Variance Criterion, A-Criterion 

According to Pukeilsheim, F. (1993), 

The average variance, A-,∅0(C) =(
1

s
 traceC−1)−1 (if C is positive definite). 

A- Criterion minimizes the sum or average of the variances of the estimates. It is the 

average of the standardized variances of the optimal estimators for the scalar parameter 

systemsC1β, C2β . . .  Cnβ, formed from the columns of n. The average variance criterion  

∅−1(C) Is given by ∅0(C) =(
1

s
 traceC−1)−1 if C is positive definite.  

According to Rambaei (2014), the general formula for obtaining the A- criterion is 

given by; 

A −Criterion= [
1

k+3
[

[k+2]λ4

[k+2]λ4−kλ2
2 

+
1

k[[k+2]λ4−kλ2
2]

 
k

λ2
 

1

(𝑘
2

)λ4

]]

−1

           [3.18] 

3.2.3 The Smallest Eigenvalue Criteria, E- Criterion 

According to Pukeilsheim, F. (1993), 

∅−∞(C) = λmin(C−1) and,                                                      [3.19] 

E- Criterion given in (3.19) reduces the variance of each individual parameter estimate. 

It is the same as minimizing the largest Eigen value of the information matrix. 
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E- Criterion = [(1 − γ)[(k + 2)kλ4 − γ] − (kλ2)2] (λ2 − γ)k [(
k
2

) λ4 − γ] = 0  [3.20] 

3.2.4    The Trace Criterion, T-Criterion 

The trace criterion, T-,∅0(C) = 
1

s
 trace C                 [3.21] 

The trace criterion is generally used for model discrimination, but in terms of parameter 

estimation, it has not yet found much use because of the linearity aspect of the T-

criterion which makes it susceptible to interpolation. The other matrix means are 

concave without being linear.  The evaluation of the trace criterion is given by 

∅−∞(C) = 
1

s
 trace C.                            [3.22] 

Where s is the number of parameters and C is the information matrix.   

The generalized Trace or T – criterion as given by Rambaei (2014) is; 

T- Criterion =
1

K+3
[1 + (k + 2)kλ4 + kλ2 + (

k
2

) λ4]                                          [3.23] 

3.3 Relative Efficiencies for SORD in four and five dimensions 

In this section, relative efficiencies of the designs discussed earlier for the second order 

rotatable designs in four and five dimensions respectively are evaluated. The efficiency 

of particular criteria is arrived at by taking the minimum value of particular optimality 

criteria of the designs. The design with the minimum value is taken as the most efficient 

and the other design efficiencies are evaluated relative to the most efficient design. 

The relative efficiencies of an arbitrary design 𝜀 with moment matrix M (𝜀) with respect 

to an optimal design 𝜀∗ with the moment matrix M (𝜀∗) are defined as. 

3.3.1 Relative D-Efficiency  

D-Efficiency = 
M (𝜀)

𝑀(𝜀𝐷
∗ )

   × 100                                         (3.24) 
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3.3.2 Relative A-Efficiency  

A-efficiency = 
tr(𝑀−1(𝜀𝐴

∗ ))

𝑡𝑟(𝑀−1(𝜀))
   × 100                                                                        (3.25)                                                                                    

3.3.3 Relative E-Efficiency  

E-Efficiency = 
M (𝜀)

𝑀(𝜀𝐸
∗ )

    × 100                                                                               (3.26)                                                                    

3.3.4 Relative T-Efficiency  

T-Efficiency = 
M (𝜀)

𝑀(𝜀𝑇
∗ )

   × 100                                                                               (3.27)        

 

 

 

 

 

                                                     

 

  



16 
 

CHAPTER FOUR 

RESULTS AND DISCUSSION 

4.0 Introduction  

In this chapter, the SORDs in four and five dimensions are constructed. Specifically, 

32,40, 48a, and 48b SORDs in four dimensions and 52, 74,100a, and 100b in five 

dimensions are constructed respectively. To assess the designs, their alphabetical 

optimality criteria are obtained. Finally, the optimality criteria are used to find the 

relative efficiencies of the designs. 

4.1 Construction of Economical SORD in Four and Five Dimensions 

4.1.1 Construction of 32 Points SORD in Four Dimensions 

The set of points which form a SORD of 32 points in four dimensions denoted by G1 

is given in [3.5].  Substituting G1 to the moment conditions given in [3.13] gives; 

∑ xiu
2 = 16a2 + 2c1

2 + 2c2
2 = 32λ2 ,                             [4.1] 

∑ xiu
4 = 16a4 + 2c1

4 + 2c2
4 = 96λ4 ,                                               [4.2] 

∑ xiu
2 xju

2 = 16a4                                                            [4.3] 

The excess function obtained from the moment conditions is given by; 

∑ xiu
2 − 3 ∑ xiu

2 xju
2 = 2c1

4 + 2c2
4 − 32a4 = 0,                                           [4.4] 

Let c1
2 = x a2 , and  c2

2 = y a2  .                                                               [4.5] 

This implies that, 

x2 + y2 = 16 .                                                                                              [4.6] 
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Solving equation [4.6] gives; 

Let  x = 2  and  y = 3.464101615      [4.7] 

The value of  𝑥 that is real and positive is chosen in such a way that the corresponding 

value of y is real  and positive. 

Since the values of x and y  are real and positive, the set of points form a rotatable 

arrangement. 

Substituting [4.7] to [4.5] gives, c1
2 = 2 a2 , and  c2

2 = 3.464      [4.8] 

Substituting [4.8] to [4.1] and [4.2] gives; 

λ2 = 0.84375 a2, and λ4 = 0.505208a4                             [4.9]                                                                                                                                                                                                                                 

Substituting [4.9] to the non-singularity conditions given in [3.14] for k=4, gives,  

λ4

λ2
2  >

k

k+2
  

0.709> 0.67                   [4.10] 

From [4.10], [3.14] is satisfied, hence G1 forms a SORD in four dimensions. 

4.1.2 Construction of 40 Points SORD in Four Dimensions 

The set of points which form a SORD of 40 points in four dimensions denoted by G2 

is given in [3.6]. Substituting G2 to the moment conditions given in [3.13] gives; 

∑ xiu
2 = 2c2 + 16a1

2 + 16a2
2 = 40λ2 ,                         [4.11] 

∑ xiu
2 = 2c4 + 16a1

4 + 16a2
4 = 120λ4                           [4.12] 

∑ xiu
2 xju

2 =16a1
4 + 16a2

4                                                                                    [4.13] 
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The excess function obtained from the moment conditions is given by; 

∑ xiu
2 − 3 ∑ xiu

2 xju
2 = c4 − 16a1

4 − 16a2
4 = 0,             [4.14] 

Let a1
2 = x c2 , and a2

2 = y c2 .                                                                    [4.15] 

This implies that, 

x2 + y2 =  
1

16
 .                 [4.16] 

Solving equation [4.16] gives; 

x = 0.05, and y = 0.245                             [4.17] 

Substituting [4.17] to [4.15], gives  

a1
2 = 0.05c2,a2

2 = 0.245c2                            [4.18] 

Substituting [4.18] to [4.11] and [4.12] gives, 

λ2 = 0.168c2, λ4 = 0.025c4                              [4.19] 

Substituting [4.19] to the non-singularity conditions given in [3.14] for k=4, gives 

Thus;  
λ4

λ2
2  >

k

k+2
 

0.885889077 > 0.6667                       [4.20] 

From [4.20], [3.14] is satisfied, hence G2 forms a SORD in four dimensions. 

4.1.3 Construction of 48𝐚 Points SORD in Four Dimensions 

The set of points which form a SORD of 48 points in four dimensions denoted by G3 

is given in [3.7]. Substituting G3 to the moment conditions given in [3.13] gives; 

∑ xiu
2 = 24f 2 + 2c1

2 + 2c2
2 = 48λ2 ,           [4.21] 
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∑ xiu
2 = 24f 4 + 2c1

4 + 2c2
4 = 144λ4                [4.22] 

∑ xiu
2 xju

2 =16f 4          [4.23] 

The excess function obtained from the moment conditions is given by; 

∑ xiu
2 − 3 ∑ xiu

2 xju
2 = 2c1

4 + 2c2
4 − 32f 4 = 0,       [4.18] 

Let c1
2 = x f 2 , and c2

2 = y f 2 .         [4.19] 

This implies that, 

x2 + y2 =  
1

16
 .                        [4.20] 

Solving equation [4.20] gives; 

x = 0.05, and y = 0.245        [4.21] 

Substituting [4.21], gives  

a1
2 = 0.05c2,a2

2 = 0.245c2          [4.22] 

Substituting [4.22] to [4.15] and [4.16] gives, 

λ2 = 0.168c2, λ4 = 0.025c4                              [4.23] 

Substituting [4.23] to the non-singularity conditions given in [3.14] for k=4, gives 

Thus;  
λ4

λ2
2  >

k

k+2
 

0.885889077 > 0.6667                    [4.24] 

From [4.24], [3.14] is satisfied, hence G3 forms a SORD in four dimensions. 
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4.1.4 Construction of 48𝐛 points SORD in Four Dimensions 

The set of points which form a SORD of 48 points in four dimensions denoted by G4 

is given in [3.8]. Substituting G4 to the moment conditions given in [3.13] gives; 

∑ xiu
2 = 4c2 + 24p2 = 48λ2        [4.25] 

∑ xiu
4 = 4c4 + 24p4 = 144 λ4       [4.26] 

∑ xiu
2 xju

2 = 16p4                  [4.27] 

The excess function is given by; 

∑ xiu
4 − 3 ∑ xiu

2 xju
2 = 4c4 − 24p4= 0       [4.28] 

Solving [4.28] gives, 

 c4 = 6p4 , c2 = 2.449489743p2        [4.29] 

Substituting [4.29] to [4.25] and [4.26] gives,  

λ2 = 0.70416666p2and λ4 = 0.33333p4                             [4.30]     

Substituting [4.30] to the non-singularity conditions given in [3.14] gives,                                                                                                                                                                                                                

Thus;  
λ4

λ2
2  >

k

k+2
 

0.672238647 > 0.6667                            [4.31] 

From [4.31], [3.14] is satisfied, hence G4 forms a SORD in four dimensions. 

4.1.5 Construction of 52 Points SORD in five Dimensions 

The set of points which form a SORD of 52 points in four dimensions denoted by G5 

is given in [3.9]. Substituting G5 to the moment conditions given in [3.13] gives;  
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∑ xiu
2 = 32a2 + 2c1

2 + 2c2
2 = 52λ2              [4.32] 

∑ xiu
4 = 32a4 + 2c1

4 + 2c2
4 = 156λ4                   [4.33] 

∑ xiu
2 xju

2 = 32a4                      [4.34] 

The excess function is given by, 

∑ xiu
4 − 3 ∑ xiu

2 xju
2 = 2c1

4 + 2c2
4 − 64a4 = 0        [4.35] 

Solving [4.35] gives, 

 c1
2 = 4 a2  and  c2

2 = 4 a2                                                                            [4.36] 

Since the values of x and y  are real and positive, the set of points form a rotatable 

arrangement. 

Substituting [4.36] to [4.32] and [4.33] gives  

λ2 = 0.923076923 a2, and  λ4 = 0.615384615a4                        [4.37] 

Substituting [4.37] to the non-singularity conditions given in [3.14] gives,  

λ4

λ2
2  >

k

k+2
  

0.722222 > 0.714285714           [4.38] 

Hence the non-singularity conditions are satisfied. 

From [4.38], [3.14] is satisfied, hence G5 forms a SORD in five dimensions. 

4.1.6 Construction 74 Points SORD in Five Dimensions 

The set of points which form a SORD of 74 points in four dimensions denoted by G6 is 

given in [3.10]. Substituting G6 to the moment conditions given in [3.13] gives;   

∑ xiu
2 = 2c2 + 32a1

2 + 32a2
2 = 74λ2                  [4.39] 
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∑ xiu
2 = 2c4 + 32a1

4 + 32a2
4 = 222λ4                  [4.40] 

∑ xiu
2 xju

2 = 32a1
4 + 32a2

4            [4.41] 

The excess function for this is given by; 

∑ xiu
2 − 3 ∑ xiu

2 xju
2 = 2c4 − 64a1

4 − 64a2
4 = 0         [4.42] 

Solving [4.42] gives, 

a1
2 = 0.05 c2 and a2

2 = 0.169558249 c2         [4.43]                                                                               

Substituting [4.43] to [4.39] and [4.40] gives, 

λ2 = 0.121729729 c2 and λ4 = 0.013513513c4                          [4.44] 

Substituting [4.44] to the non-singularity conditions given in [3.14] gives,  

λ4

λ2
2  >

k

k+2
  

0.911958276 > 0.714285714                           [4.45] 

Hence the non-singularity conditions are satisfied. 

From [4.45], [3.14] is satisfied, hence G6 forms a SORD in five dimensions. 

4.1.7 Construction of 100𝐚 points SORD in Five Dimensions 

The set of points which form a SORD of Hundred points in four dimensions denoted 

by G7 is given in [3.11]. Substituting G7 to the moment conditions given in [3.13] gives;   

∑ xiu
2 = 4c2 + 64f 2 = 100λ2                                    [4.46] 

∑ xiu
4 = 4c4 + 64f 4 = 300 λ4                               [4.47] 

∑ xiu
2 xju

2 = 48 f 4                               [4.48] 
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The excess function is given by; 

∑ xiu
4 − 3 ∑ xiu

2 xju
2 = 4c4 − 80f 4 =0                     [4.49] 

Solving [4.49] gives 

 c4 = 20f 4 ,c2 = 4.472135955f 2                             [4.50] 

Substituting [4.50] to [4.46] and [4.47] gives  

λ2 = 0.818885438f 2, λ4 = 0.48f 4                                [4.51] 

Substituting [4.51] to the non-singularity conditions given in [3.14] gives,                                 

λ4

λ2
2  >

k

k+2
 

0.715805351 > 0.714285714                               [4.52] 

From [4.52], [3.14] is satisfied, hence G7 forms a SORD in five dimensions. 

4.1.8 Construction of 100𝐛 Points SORD in Five Dimensions 

The set of points which form a SORD of Hundred points in four dimensions denoted 

by G8 is given in [3.12]. Substituting G8 to the moment conditions given in [3.13] gives;   

∑ xiu
2 = 2c1

2 + 2c2
2 + 64p2 = 100λ2                          [4.53] 

∑ xiu
4 = 2c1

4 + 2 c2
4 + 64p4 = 300 λ4          [4.54] 

∑ xiu
2 xju

2 = 48f 4           [4.55] 

The excess function is given by, 

∑ xiu
4 − 3 ∑ xiu

2 xju
2 = 2c1

4 + 2 c2
4 − 80f 4 =0            [4.56] 
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Solving [4.56] gives  

c1
2 = 5f 2,c2

2 = 3.872983546f 2              [4.57] 

Substituting [4.57] to [4.53] and [4.54] gives, 

λ2 = 0.81745967f 2,λ4 = 0.48000001f 4       [4.58] 

Substituting [4.58] to [3.14] gives,  

Thus;
λ4

λ2
2  >

k

k+2
 

0.718304465 > 0.714285714                       [4.59] 

From [4.59], [3.14] is satisfied, hence G8 forms a SORD in five dimensions. 

4.2 Optimality Criteria for the Second Order Rotatable Designs in Four 

Dimensions  

4.2.1 D-Optimality criteria 

4.2.1.1 D-criterion for 32 Points SORD in Four Dimensions 

Substituting the moments given in [4.9] to the generalized D- criterion given in [3.17] 

gives, 

D1= 1.017382475                              [4.60] 

4.2.1.2 D-criterion for 40 Points SORD in Four Dimensions 

Substituting the moments given in [4.19] to the generalized D- criterion given in 

[3.17] gives, 

D2= 0.299064511                                             [4.61] 
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4.2.1.3 D-criterion for 48𝒂 Points SORD in Four Dimensions 

Substituting the moments given in [4.23] to the generalized D- criterion given in 

[3.17] gives, 

D3= 0.957935406                          [4.62] 

4.2.1.4 D-criterion for 48𝒃 Points SORD in Four Dimensions 

Substituting the moments given in [4.30] to the generalized D- criterion given in 

[3.17] gives, 

D4= 0.613217973                  [4.63] 

4.2.1.5 D-Criterion for 52 Points SORD in Five Dimensions 

Substituting the moments given in [4.37] to the generalized D- criterion given in 

[3.17] gives, 

D5= 1.687429322         [4.64] 

4.2.1.6 D-criterion for 74 Points SORD in Five Dimensions 

Substituting the moments given in [4.44] to the generalized D- criterion given in 

[3.17] gives, 

D6= 0.14796891                    [4.65] 

4.2.1.7 D-criterion for 100𝒂 Points SORD in Five Dimensions 

Substituting the moments given in [4.51] to the generalized D- criterion given in 

[3.17] gives, 

D7= 1.003415668                      [4.66] 
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4.2.1.8 D-criterion for 100𝒃 Points SORD in Five Dimensions 

Substituting the moments given in [4.51] to the generalized D- criterion given in 

[3.17] gives, 

D8= 1.009044                        [4.67] 

4.2.2 T- Criterion  

4.2.2.1 T- Criterion for 32 Points SORD in Four Dimensions  

Substituting the moments given in [4.9] to the generalized T- criterion given in [3.23] 

gives, 

T1= 2.790177143                   [4.68]      

4.2.2.2 T- Criterion for 40 Points SORD in Four Dimensions  

Substituting the moments given in [4.19] to the generalized T- criterion given in [3.23] 

gives, 

T2= 0.792                                                                                 [4.69]                                                                                                               

4.2.2.3 T- Criterion for 48𝒂 Points SORD in Four Dimensions  

Substituting the moments given in [4.23] to the generalized T- criterion given in 

[3.23] gives, 

T3= 2.226115577                                      [4.70]                                                                                                          

4.2.2.4 T- Criterion for 48𝒃 Points SORD in Four Dimensions  

Substituting the moments given in [4.30] to the generalized T- criterion given in [3.23] 

gives, 

T4= 2.225335575                [4.71] 
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4.2.2.5 T- Criterion for 52 Points SORD in five Dimensions  

Substituting the moments given in [4.37] to the generalized T- criterion given in 

[3.23] gives, 

T5= 3.307692306                     [4.72] 

4.2.2.6 T- Criterion for 74 Points SORD in five Dimensions  

Substituting the moments given in [4.44] to the generalized T- criterion given in 

[3.23] gives, 

T6 = 0.270332043                   [4.73]                                                                

4.2.2.7 T- Criterion for 100𝒂 Points SORD in five Dimensions  

Substituting the moments given in [4.51] to the generalized T- criterion given in 

[3.23] gives, 

T7 = 2.2667934536            [4.74]                                                                

4.2.2.8 T- Criterion for 100𝒃Points SORD in five Dimensions  

Substituting the moments given in [4.58] to the generalized T- criterion given in 

[3.23] gives, 

T8 = 2.667119811                                    [4.75]                                                                

4.2.3 A-Criterion 

4.2.3.1 A-Criterion for 32 Points in Four Dimensions  

Substituting the moments given in [4.9] to the generalized A- criterion given in [3.18] 

gives, 

A1 = 0.267994363             [4.76]                                                                
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4.2.3.2 A-Criterion for 40 Points SORD in Four Dimensions  

 

Substituting the moments given in [4.19] to the generalized A- criterion given in 

[3.18] gives, 

A2 = 0.031294322                 [4.77]  

4.2.3.2 A-Criterion for 48𝒂 Points SORD in Four Dimensions  

Substituting the moments given in [4.23] to the generalized A- criterion given in 

[3.18] gives, 

A3 = 0. 322796038                            [4.78]  

4.2.3.3 A-Criterion for 48𝒃 Points SORD in Four Dimensions  

Substituting the moments given in [4.30] to the generalized A- criterion given in 

[3.18] gives, 

A4 = 0.046755676              [4.79]  

4.2.3.4 A-Criterion for 52 Points in Five Dimensions  

Substituting the moments given in [4.37] to the generalized A- criterion given in 

[3.18] gives, 

A5 = 0.087841699               [4.76]                                                                

4.2.3.5 A-Criterion for 74 Points SORD in Five Dimensions 

Substituting the moments given in [4.44] to the generalized A- criterion given in [3.18] 

gives, 

A6 = 0.00269422                                                                                                               [4.77]  
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4.2.3.6 A-Criterion for 100𝒂 Points SORD in Five Dimensions 

Substituting the moments given in [4.51] to the generalized A- criterion given in 

[3.18] gives, 

A7 = 0. 017336505               [4.78]  

4.2.3.7 A-Criterion for 100𝒃 Points SORD in Five Dimensions  

Substituting the moments given in [4.58] to the generalized A- criterion given in 

[3.18] gives, 

A8 = 0.041602646                [4.79]  

4.2.4 E-Criterion  

4.2.4.1 E-Criterion for 32 points SORD in Four Dimensions  

Substituting the moments given in [4.9] to the generalized E- criterion given in [3.20] 

gives,                                                                                           

 γ = 3.031248 or 0.84375 or 12.37532819or 0.749663815            [4.80] 

Taking the smallest value gives; 

E1= 0.749663815             [4.81] 

4.2.4.2 Criterion for 40 Points SORD in Four Dimensions  

Substituting the moments given in [4.19] to the generalized E- criterion given in 

[3.20] gives, 

 γ = 3.395268711 or 0.0047312895 or 0.6or 0.386 

Taking the smallest value gives; 

E2= 0.0047312895                 [4.82] 
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4.2.4.3 E-Criterion for 48𝒂 Points SORD in Four Dimensions  

Substituting the moments given in [4.30] to the generalized E- criterion given in 

[3.20] gives, 

 γ = 10.24839247 or 0.06360753 or 2.328or 0.73570226 

Taking the smallest value gives; 

E3 = 0.06360753                             [4.83] 

4.2.4.4 E-Criterion for 48𝒃 Points SORD in Four Dimensions  

Substituting the moments given in [4.37] to the generalized E- criterion given in 

[3.20] gives, 

 γ = 3.360594344 or − 2.36 or 1.99 or 0.704 

Taking the smallest value gives; 

E4= 0.704                        [4.84] 

4.2.4.5 E-Criterion for 52 Points SORD in Five Dimensions  

Substituting the moments given in [4.37] to the generalized E- criterion given in 

[3.20] gives, 

 γ = 22.5274351 or 0.010564895 or  0.9231 or  6.154 

Taking the smallest value gives; 

E5= 0.010564895              [4.85] 

4.2.4.6 E-Criterion for 74 Points SORD in Five Dimensions  

 

Substituting the moments given in [4.44] to the generalized E- criterion given in 

[3.20] gives 
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 γ = 1.372604545 or 0.005773875 or  0.121729729 or  0.13513515 

Taking the smallest value gives; 

E6= 0.005773875               [4.86] 

4.2.4.7 E-Criterion for 100𝒂 Points SORD in Five Dimensions  

 

Substituting the moments given in [4.51] to the generalized E- criterion given in 

[3.20] gives  

γ = 17.79662857 or 0.003371425 or  0.8182 or  4.8  

Taking the smallest value gives; 

E7= 0.003371425                                                 [4.87] 

4.2.4.8 E-Criterion for 100𝒃 points SORD in Five Dimensions  

 

Substituting the moments given in [4.58] to the generalized E- criterion given in 

[3.20] gives 

 γ = 17.79471753 or 0.005282465 or  0.8182 or  4.8 

Taking the smallest value gives; 

E8= 0.005282465                                                                         [4.88] 
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4.2.5 Discussion  

Table 1: Moments and Non-singularity conditions for SORDs in Four and Five 

dimensions 

 

Design  Number 

of points  

Number 

of factors  

𝛌𝟐 𝛌𝟒 𝛌𝟒

𝛌𝟐
𝟐 

𝐤

𝐤 + 𝟐
 

G1 32 4 0.84375 0.505208 0.70900000 0.6666667 

G2 40 4 0.16800 0.025000 0.88588907 0.6666667 

G3 48a 4 0.16800 0.025000 0.88586907 0.6666667 

G4 48b 4 0.70417 0.333333 0.67223865 0.6666667 

G5 52 5 0.92308 0.615385 0.72222222 0.7142857 

G6 74 5 0.12173 0.013514 0.91195828 0.7142857 

G7 100a 5 0.81889 0.480000 0.71580535 0.7142857 

G8 100b 5 0.81746 0.480001 0.71830447 0.7142857 

Table 1. Above gives a summary on the construction of the SORDs in four and five 

dimensions.  For all the designs under consideration, the sets of points satisfied both 

the moment conditions and the non-singularity conditions for second order rotatability. 

These designs have   relatively lower number of points compared to those constructed 

by Mutiso (1998).  

Table 2: Optimality criteria for SORD in four and five dimensions  

Design  Number 

of points 

Number 

of 

factors 

D- 

Criterion 

A-

Criterion 

E-

Criterion 

T-Criterion 

G1 32 4 1.0173824 0.26799436 0.74966382 2.70177143 

G2 40 4 0.2990645 0.03129432 0.00473128 0.7920000 

G3 48a 4 0.9579351 0.32279604 0.06360753 2.2261155 

G4 48b 4 0.613218 0.04675568 0.704 2.2253355 

G5 52 5 1.6874293 0.08784169 0.01056489 3.3076923 

G6 74 5 0.1479689 0.00269422 0.00757738 0.270332043 

G7 100a 5 1.0034157 0.01733650 0.00337143 2.266793454 

G8 100b 5 1.009044 0.04160265 0.00528247 2.266711981 

 

From the Table 2 the design G2 (40 points SORD in four dimensions) is A-, D-, T- and 

E-optimal. The design G6 (74 points SORD in five dimensions) is A-, D- and T-optimal 
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and designs G7 was found to be E-optimal. There were two pairs of designs with equal 

number of points, i.e. the 48a, 48b and the 100a & 100b design points. Interestingly, 

one pair; (100a) points was identified with E-optimality criteria. For an experimenter 

to choose a better design from this pair, the least optimality value would be used, hence 

the 100a points design was optimum. 

Table 3: Efficiencies for SORD in four and five dimensions  

Design  Number 

of points 

Number 

of 

factors 

D- 

Criterion 

A-

Criterion 

E-

Criterion 

T-

Criterion 

G1 32 4 29.4% 11.67% 0.63% 29.33% 

G2 40 4 100 % 100% 100% 100% 

G3 48a 4 31.22% 6.39% 7.44% 35.58% 

G4 48b 4 48.76% 66.93% 0.67% 35.59% 

G5 52 5 8.77% 3.07% 31.91% 8.16% 

G6 74 5 100% 100% 44.49% 100% 

G7 100a 5 14.75% 15.54% 100% 11.93% 

G8 100b 5 14.66% 6.48% 63.82% 11.92% 

 

From Table 3, designs 𝐺1, 𝐺2, 𝐺3&𝐺4 were SORDs in four dimensions while designs 

𝐺5, 𝐺6, 𝐺7&𝐺8  were SORDs in five dimensions. The forty points design, denoted by 𝐺2 

was found to be the most efficient in all criteria for the designs in four dimensions. For 

the five dimensions design, the 74 points design denoted by 𝐆𝟔 was the most efficient 

for all criteria except E-criterion which gave 100 points design denoted by 𝐆𝟕 as the 

most efficient design. 

This technique is important for establishing the most suitable design when faced with 

the problem of choosing from several competing designs. Designs with higher 

efficiencies are considered to be more desirable compared with those of relatively low 

efficiencies.  
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CHAPTER FIVE 

CONCLUSIONS AND RECOMMENDATIONS 

5.0 Introduction  

This chapter covers the conclusions and recommendations drawn from the study. 

5.1 Construction of Economical SORDs in Four and Five Dimensions  

In research, experiments must be performed at predetermined levels of controllable 

factors. Meaning that an experimental design must be selected before the experiment 

takes place, once an experimenter has chosen a polynomial model of suitable order, the 

problem arises on how best to choose the settings for the independent variables over 

which he has control. A particular selection of settings or factor levels at which 

observations are to be taken is called a design. A design may become inappropriate 

under special circumstances requiring an increase in factors or levels to make it more 

desirable. In agriculture for instance, continuous cultivation of crops may exhaust the 

previously available mineral elements necessitating a sequential appendage of the 

mineral elements which become deficient in the soil over time. The study will help in 

the appendage of such elements when the experimenters are faced with scarcity of 

resources.  

The four SORDs in three dimensions initiated by Draper (1960) and developed by 

Mutiso (1998) were considered. The designs were extended to four dimensions by 

appending a factor to each that gave; 32, 40, 48a, and 48b points respectively. The 

designs in four dimensions were further extended to five dimensions to give; 52, 

74,100a, and 100b points SORDs respectively. Interestingly, the designs under 

consideration have relatively a lower number of points as compared to the SORDs in 

four and five dimensions considered by Mutiso (1998). This gives an economical option 

for experimenters with scarce resources. 
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5.1.1 Recommendations  

There exists a lot of information on design construction. It will be ideal if the evaluated 

on their robustness for missing data. 

5.2 Evaluation for the Optimality Criteria  

Each of the (A-, D-, E-, and T-) optimality criteria demands a specific statistical 

property of the best linear unbiased estimator and it amounts to the minimization of a 

particular Eigen values of C-matrix. The results for evaluation of optimality criteria for 

the designs under investigation are summarized in the table 2. Evaluation of the 

particular criteria for the 4 designs in four dimensions were E- optimal except the G1 

which was found to be A- optimal.  The rest of the SORDs in five dimensions were all 

E-optimal, except G6  which was found to be A-optimal. Taking the smallest value 

among the matrix means, identifies the optimality criteria. There is a clear indication 

that the more homogeneous the design is, the larger the information matrix as evidenced 

by the values of the information functions. The A-Optimality criteria minimizes the 

sum or average of the variance of parameter estimates (Atkinson & Donev, 1992). 

Similarly, the E- Optimum designs reduces the variance of each individual parameter 

estimates. The Eigen values of the inverse of the information matrix are proportional to 

the squires of lengths of the axes of the confidence ellipsoid. 

5.2.1 Applications of the Optimality Criteria  

Optimum designs are essential in various fields such as medicine, agriculture and 

industry, for example, in the manufacture of a certain type of drug, numerous kinds of 

factors are combined together in different amounts in order to obtain the most effective 

drug. 
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5.2.2 Recommendations on the optimality Criteria. 

This study recommends that the other optimality criteria such as the G-, IV-, U-, DT-, 

CD- and CDT-   Criteria be established for the economical SORDs in this study. 
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