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Abstract

The desire to understand the determinants of Under Five Child Mortality (U5CM)

poses a very important aspect of research. One of the main challenges affecting the

Low and Middle Income Countries (LMIC) is the aspect of child mortality. The

Sustainable Development Goals target of at most 25 deaths per 1000 live births

has not been met, despite the many interventions governments have put in place to

avert child mortality. There is huge need to understand the determinants of child

mortality, especially the U5CM. Most studies rely on household surveys such as the

Kenya Demographic and Health Survey (KDHS) data, with KDHS − 2014 be-

ing the most recent household survey in Kenya. Some of the statistical challenges

that come with DHS datasets are the presence of high imbalance in comparison

classes, high dimensional problem, statistical selection of variables, and distribu-

tional assumptions among other factors. Random Survival Forests (RSF ) have

recently become a popular method for survival data analysis. However, statistical

challenges such as imbalance between mortality and non mortality class and viola-

tion of Proportional Hazard (PH) assumption pose significant challenge(s) to RSF .

This is due to its stopping criterion based on daughter node constraint which demon-

strates bias towards predictors in a large population and use of log-lank splitting

rule whose optimality is achieved when PH assumptions are satisfied. The main aim

of this study was to develop a machine learning algorithm to handle the above men-

tioned statistical challenges that come with high dimensional survey data in identi-

fying the determinants of U5CM. The specific objectives were: To analyze Balanced

Random Survival Forests (BRSF ) using specified balancing techniques; to analyze

BRSF using specified splitting rules; to develop an Improved Balanced Random

Survival Forests (IBRSF ) model and finally to apply the BRSF to determine the

U5CM. The study methodology involved data balancing using four specified exter-

nal data balancing techniques: Random Under-sampling, Random Over-sampling,

Both-sampling, and Synthetic Minority Oversampling technique. The balanced data
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was integrated with RSF for variable selection and model selection done using con-

cordance index to identify the model with the best balancing technique. The BRSF

was then analyzed using three specified splitting rules: log-rank, log-rank score and

Bs.gradient splitting rules. Finally, an IBRSF algorithm was developed by integrat-

ing balanced data with RSF while using optimal splitting rule. The study found that

the model with random under-sampling balancing method produced the best fit with

a concordance index of 0.90. The model using Bs.gradient splitting rule recorded

a concordance of 0.87, and was the most optimal method when PH assumptions

were violated. The final model, the IBRSF model, integrated data balancing using

random under-sampling method and Bs.gradient rule in splitting the nodes. Based

on this model, B7 (age at death of the child) resulted as the highest determinant

of U5CM with the largest variable importance (V IMP ) value of 0.0472. In conclu-

sion, IBRSF produced a good fit to the data and enabled data analysis that solved

all the specified statistical challenges that come with KDHS type of data. The

study recommends the use of IBRSF model for prediction of highly imbalanced

right censored data in situations where PH assumption is violated.
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DEFINITION OF TERMS

• Algorithm - An Algorithm is a sequence of instructions or a set of rules to be

followed in solving a problem especially by a computer. In mathematics and

computer science, an algorithm usually means a small procedure that solves a

recurrent problem.

• Classifier- A classifier in machine learning is an algorithm that automatically

orders or categorizes data into one or more of a set of classes. One of the most

common examples is an email classifier that scans emails to filter them by class

label: Spam or Not Spam. A classifier is the algorithm itself the rules used

by machines to classify data.

• Data mining - Data mining is the process of finding anomalies, patterns and

correlations within large data sets to predict outcomes. It implies analyzing

data patterns in large batches of data using one or more software.

• Ensemble - is a data mining technique composed of a number of individual

classifiers to classify the data to generate new instances of data. The goal

of ensemble methods is to combine the predictions of several base estimators

built with a given learning algorithm in order to improve robustness over a

single estimator.

• Ensemble learning - is the process by which multiple models, such as classi-

fiers or experts, are strategically generated and combined to solve a particular

computational intelligence.

• Machine learning - Machine learning is a branch of artificial intelligence

based on the idea that systems can learn from data, identify patterns and

make decisions with minimal human intervention. It is a method of data anal-

ysis that automates analytical model building by identifying patterns in data.

It is especially useful for diverse, high-dimensional data. Machine Learning

algorithms learn from data. They find relationships, develop understanding,

make decisions, and evaluate their confidence from the training data they are

given. While it generally delivers faster, more accurate results in order to iden-
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tify profitable opportunities or dangerous risks, it may also require additional

time and resources to train it properly.
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Chapter 1

INTRODUCTION

1.1 Background

One of the main challenges affecting the Low and Middle Income Countries (LMIC)

is the aspect of child mortality. The Sustainable Development Goals target of at

most 25 deaths per 1000 live births has not been met, despite the many interventions

governments have put in place to avert child mortality. There is huge need to

understand the determinants of child mortality, especially the Under Five Child

Mortality (U5CM). The desire to understand the determinants of U5CM therefore

poses a very important aspect of research, as countries aim to achieve the Sustainable

Development Goals (MDG2015− 2030).

Demographic and Health Surveys (DHS) program has been very instrumental

for acquiring and distributing authentic, nationally representative data on fertility,

family planning, maternal and child health, among other health issues. They are

known to give very important source of information on the health of children and

women in low- and middle-income countries and are appropriate for studies of health.

The most recent DHS survey conducted in Kenya was Kenya Demographic and

Health Surveys (KDHS) 2014. Some of the statistical challenges that come with

1
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DHS datasets are the presence of high imbalance in comparison classes, missing data

problem, high dimensional problem, statistical selection of variables, distributional

assumptions among other factors.

This study aims to identify the determinants of U5CM in Kenya. Comparisons

shall be made between mortality and non-mortality groups from the 2014 KDHS

study. Mortality group which is of most interest in our study composes a very small

minority class (less than 7% of the entire population), while the non-mortalities

constitute the majority class. From the KDHS 2014 data, only 4.2% of children

experienced under five years mortality while the rest 95.8% survived until after the

fifth birthday.

Imbalanced classification is a common problem with most datasets including

mortality data, fraud detection among others. High imbalance has been observed

to suppress the effectiveness of machine learning algorithms such as Random forests

(RF). When dataset is imbalanced and one class dominates the other, such machine

learning algorithms have issues classifying correctly. The classifiers become inclined

towards the majority class leading to poor representation of the minority class.

The 2014 KDHS data is also associated with 1, 099 variables and 20, 964 rows of

data. Due to high dimensionality of the data, we need to identify effective variable

selection techniques in order to identify determinants of child mortality. Machine

learning techniques (that require no distributional assumptions on data) such as

Random Survival Forests and support vector machine, among others, have received

wide application in studies involving high dimensional datasets. These machine

learning techniques are useful when dealing with problems such as missing data

imputation, classification imbalance and variable selection.

Besides many variables in the DHS data, there are missing observations. In this

study however, we aimed at handling the challenge of imbalanced classification in

mortality data and the best way of dealing with dataset with variables that violate

PH assumptions. Our interest was to identify and use a model that takes into
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account these challenges during the process of data analysis.

1.1.1 Survival Analysis Regression

Survival analysis is a collection of statistical procedures for data analysis for which

the outcome variable of interest is time until an event occurs Kleinbaum and Klein

(2005). It involves modeling of time to event data. While carrying out survival anal-

ysis, we may not have exact event times for all observations. The observations which

experience an event yield complete observation while those that do not experience

an event within the follow up period give rise to incomplete observations resulting

to censored observations.

Censoring happens in situations where individuals under observation have not

experienced an event by the end of the study period but some information about

individual’s survival is known. The fact that the event under consideration did not

occur when the individual was under observation makes the survival time informa-

tion incomplete. Unlike ordinary regression methods, survival methods correctly

incorporate information from both uncensored and censored observations in esti-

mating important model parameters. The observations that had not yet failed has a

big impact in survival estimates. The important difference between survival analysis

and other statistical analysis (eg the ordinary regression models) is the presence of

censoring. This makes survival analysis important in writing down models.

There are generally three types of censoring. These are right censoring, left

censoring and interval censoring. In this study, we dealt with right censoring which

occurs when the study terminates before the event has occurred or when a subject

leaves the study before the occurrence of an event.

Survival models can be analyzed using parametric, non-parametric and semi-

parametric approaches. Parametric methods assume a survival distribution which

affects the shape of the model’s hazard function. On the other hand, non-parametric
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methods analyze survival data without parametric assumptions about the form of

distribution. In Semi-parametric methods, the functional form of covariates is para-

metric while the hazard function is estimated non-parametrically.

One of the popular semi-parametric model for survival data analysis is Cox pro-

portional hazard (Cox PH) model Cox (1972). The model estimates survival curves

when considering several explanatory variables simultaneously. Popularity of Cox

PH model rises from its semi-parametric nature which does not require any dis-

tributional assumption of the baseline hazard function to estimate the regression

coefficients. The fact that baseline hazard, is an unspecified function makes the Cox

model a semi-parametric model. With Cox PH model, even though the baseline

hazard is not specified, reasonably good estimates of regression coefficients, hazard

ratios of interest, and adjusted survival curves can be obtained for a wide variety

of data situations Kleinbaum and Klein (2005). However Cox model makes certain

restrictive assumptions many of which do not hold in real life scenarios. One such

assumption is a constant hazard ratio between any two observations at any time

instant t. In addition, Cox PH model does not take into account the missing predic-

tors, non-linearity of exponential factors and interdependence among observations.

It is also known to have an inherent bias and high generalization error Pan (1998).

Recent studies has seen the development of non-parametric survival analysis

techniques which deals with the challenges of the cox PH model. Non parametric

techniques do not require the data to meet certain assumptions of parameters.

1.1.2 Random Survival Forests

Random Survival Forests (RSF ) is an ensemble tree method for the analysis of right

censored survival data Ishwaran et al. (2008). It was proposed as an extension of

random forests (RF ) for non-parametric survival analysis.

To grow a forest using the RSF procedure, ntree bootstrap samples are randomly
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selected from the initial data with G samples. From each bootstrap sample, a mean

of 37% of the data is set aside. This is known as out-of-bag (OOB) data. A survival

tree is then grown from each of the bootstrap samples. At each node of the tree,

mtry predictors are randomly selected for node splitting. The node is split using

the candidate variable that maximizes survival difference between daughter nodes.

Then each tree is grown to full size under the constraint that the most extreme node

should have no less than nodesize unique deaths. A Cumulative hazard function

(CHF ) for each tree is calculated and then averaged to obtain the ensemble CHF .

Prediction error for the ensemble CHF is calculated using the OOB data.

In RSF each of the different trees in the forest gives a prediction. Further, the

mean of the predictions from each tree gives the final prediction for the forest. All

aspects of growing a forest in right censored survival data take into account the

outcome which is survival time and censoring status Breiman (2003). The aspects

of growing a tree includes the splitting criteria used in growing a tree, tree node

impurity measuring effectiveness of a split in separating data, resulting ensemble

predicted value from the forest and the measure of prediction accuracy.

Averaging over trees, and two way randomization while growing a tree, enables

RSF to approximate complex survival functions while maintaining low prediction

error Ishwaran et al. (2008). The two way randomization improves both bias and

variance.

RSF have recently become a popular method for survival data analysis due

to its ability to adaptively discovers nonlinear effects, automatically detect certain

types of interactions without specifying them beforehand and effectively imputing

missing data. However characteristic of survival data such as extreme imbalance

between mortality and non mortality classes pose significant challenges to RSF .

The presence of extreme imbalance between the censored and mortality class with

as low as 2− 10% data in the minority class is commonly occurring in survival data

Afrin et al. (2018). In addition, the stopping criterion in RSF is arbitrary and
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demonstrates bias towards predictors with a large population Miao et al. (2018).

This is because it is difficult for predictors with a smaller population to satisfy the

criterion especially when nodesize is large.

Recently, improvement of RSF have emerged to further improve prediction.

These includes the Improved Random Survival Forests (iRSF ) Miao et al. (2018)

which was proposed to improve RSF with a new split rule and stopping criterion

and Balanced Random Survival Forests (BRSF) Afrin et al. (2018) which integrates

synthetic minority oversampling technique with RSF.

In this research, we developed an Improved Balanced Random Survival Forest

(IBRSF ) algorithm for right censored data. This followed a unified three stage

procedure which involved data balancing in the first stage. The balanced data

was subjected to variable selection using RSF in the second stage and the selected

variables were used for determination of U5CM in the last stage.

1.2 Statement of the Problem

One of the main challenges affecting the Low and Middle Income Countries (LMIC)

is the aspect of child mortality. The Sustainable Development Goals targets of at

most 25 deaths per 1000 live births has not been met, despite the many interventions

governments have put in place to avert child mortality. There is huge need to under-

stand the determinants of child mortality, especially the Under Five Child Mortality

(U5CM). Most studies rely on household surveys such as the Kenya Demographic

and Health Survey (KDHS) data, with KDHS-2014 being the most recent household

survey in Kenya. Some of the statistical challenges that come with DHS datasets

include the presence of high imbalance in comparison classes, missing data problem,

high dimensional problem, statistical selection of variables, and distributional as-

sumptions among other factors. For instance, in the 2014 KDHS data, the mortality
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group which composes of minority class, constitutes the minority group (less than

7% of the entire population) while the non-mortalities constitute the majority class.

Furthermore, the 2014 KDHS data is associated with 1,099 variables and 20,964

rows of data. Some of these variables violated the proportional hazards assumption.

Random Survival Forests (RSF ) have recently become a popular method for survival

data analysis. However, characteristics of survival data such as imbalance between

the survival and mortality class sizes pose significant challenge(s) to RSF . This is

due to its stopping criterion based on daughter node constraint which demonstrates

bias towards predictors in a large population. In addition, RSF mainly uses log-lank

test as the split rule that maximizes the survival difference between daughter nodes.

Proportional hazard assumption is the key requirement for the optimality of log-rank

test. However, there are many situations where the proportional hazard assumption

is violated making the log-rank test insufficient. The main problem of this study

was to develop a machine learning algorithm (in this case IBRSF) to handle the

above mentioned statistical challenges that come with high dimensional survey data

in identifying the determinants of U5CM.

1.3 Objectives

1.3.1 General Objective

Develop an Improved Balanced Random Survival Forests (IBRSF) model for the

analysis of right censored data and use the model to identify the determinants of

U5CM.
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1.3.2 Specific Objectives

1. Analyse Balanced Random Survival Forests (BRSF ) model under different

balancing techniques to select the best balancing technique.

2. Analyse Balanced Random Survival Forests (BRSF ) model under different

splitting rules to select an optimum splitting rule.

3. Develop an Improved Balanced Random Survival Forests (IBRSF ) model for

right censored data.

4. Apply the Improved Balanced Random Survival Forests (IBRSF ) model to

identify the determinants of U5CM.

1.4 Justification of the Problem

The desire to have a model that can accurately identify predictors of mortality can-

not be underestimated. The main problem of this study was to develop a machine

learning algorithm to handle the statistical challenges that come with high dimen-

sional survey data which include high imbalance between mortality and non mor-

tality class, high dimensionality, and violation of PH assumption. Random Survival

Forests (RSF ) have recently become a popular method for survival data analysis.

However, characteristics of survival data such as imbalance between the survival and

mortality class sizes pose significant challenge(s) to RSF . This is due to its stop-

ping criterion based on daughter node constraint which demonstrates bias towards

predictors in a large population. In addition, RSF mainly uses log-lank test as the

split rule that maximizes the survival difference between daughter nodes. Propor-

tional hazard assumption is the key requirement for the optimality of log-rank test.

However, there are many situations where the proportional hazard assumption is

violated making the log-rank test insufficient.
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This research has led to development of a new model; Improved Balanced Ran-

dom Survival Forests (IBRSF ) model for analysis of right censored data. This is

an improvement to RSF model enhancing accuracy when the data is highly imbal-

anced and PH assumption is violated. This study is important in analysis of highly

imbalanced right censored survival data in which PH assumption is violated. The

model is able to address challenges with data imbalance, violation of PH assumption,

and high dimensionality of data in identifying the determinants of U5CM. This has

assisted in accurate identification of determinants of U5CM using the 2014 KDHS

dataset. The research further helps in guiding clinical decisions geared towards re-

duction of mortality. The study also acts as a base for more research on other

balancing techniques, splitting rules and censoring methods that can be integrated

in IBRSF.

1.5 Scope of the Study

This research aims to identify the determinants of U5CM. This was done using a uni-

fied model which involved data balancing, variable selection and variable prediction.

In data balancing stage, this study was limited to the external data balancing tech-

niques only. Other data balancing techniques were not analyzed in this research.

Variable selection was carried out using RSF technique. At this stage, different

splitting rules were analyzed. We limited ourselves to analysis of log-rank, log-rank

score and Bs.gradient splitting rule. In variable prediction stage, different methods

were used which include Cox PH model, Cox Aalen’s method and RSF variable im-

portance (VIMP). The Kenya Demographic Health Survey (KDHS) 2014 data was

used in this research to identify the determinants of U5CM. This dataset was found

to be classified in regions which represents the former provinces in Kenya. In this

research, we only analyzed the Nairobi region dataset. This dataset consisted of 532

observations and 757 variables after data cleaning.



Chapter 2

LITERATURE REVIEW

2.1 Introduction

This Chapter focuses on the review of most recent, relevant and significant studies

related to our research. It illustrates what other researchers have done with respect

to the gap in their area of study, the objectives achieved and the methodology

used. The different areas covered in this chapter include U5CM, data balancing,

improvements to RSF and splitting methods.

2.2 Under Five Child Mortality

A number of studies have explored determinants of child mortality using DHS data.

Ayiko et al. (2009) used Uganda 1996, 2000, 2006 DHS dataset to assess the trends

and levels of childhood mortality between 1990 and 2006 as well as the determinants

of under-five mortality. The authors used a Cox PH regression model to explore

region of residence, sex of the child, type of birth (multiple), birth interval (less

than 24 months after the preceding birth), and mother’s education in relation to an

10
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increased risk of children mortality before their fifth birthday.

Ettarh and Kimani (2012) used the 2008 KDHS data to determine the U5CM

in rural and urban areas . They used Cox PH regression to explore the effect of

maternal, demographic and geographical factors on mortality. According to the

findings of their study, the broad possibility of death in rural areas was significantly

higher than that of urban areas with household poverty and influence of breast

feeding being the highest risk factors for mortality.

Sreeramareddy et al. (2013) analyzed the data from complete birth histories of

four Nepal Demographic and Health Surveys (NDHS) done in the years 1996, 2001,

2006 and 2011. In their study, they explored the effect of mothers education, child’s

sex, rural/urban residence, household wealth index, regions ecological zones and

development.

Nasejje et al. (2015) used Uganda 2011 DHS. Using Cox-proportional hazard

model, factors related to mother characteristics and previous births such as sex of

the child, sex of the head of the household and the number of births in the past one

year was found to be significant.

In this study, we have also tapped into the richness of KDHS (2014) dataset,

to establish the determinants of U5CM. All the variables after data cleaning were

viewed as potential determinants of U5CM.

2.3 Imbalanced Classification

Imbalanced classification is a common problem with most datasets including mor-

tality data, fraud data, fraud detection, claim prediction, default prediction, spam

detection among others. Handling imbalanced classification has received prominence

in many studies including (Lessmann (2004); Tang et al. (2008); Lpez et al. (2012);

Yan et al. (2019); Lin et al. (2020) ). This is due to some of the challenges affecting

survival analysis when data is highly imbalanced.
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Krawczyk (2016) explores open challenges and future directions in learning from

imbalanced datasets. The motivation for this study stems from the challenges facing

imbalanced learning with the advent of big data in addition to the expansion of

machine learning and data mining. The work discusses various forms of learning in

which there was an issue with data imbalance. Further open challenges as well as

those evolving from learning imbalanced datasets in real world applications are also

highlighted.

Fernndez et al. (2018) Addressed the issues of learning from imbalanced datasets

with the aim of offering general and comprehensible overview in the area of imbal-

ance. In their work, they stressed on the challenges with standard classification

tasks, introduced the main evaluation metrics to be considered in learning with im-

balanced datasets, covered different approaches that have been traditionally applied

to address imbalance as well as ensemble learning solutions.

2.4 Dealing with Imbalanced Data in Random

Forests

When dealing with imbalanced data in Random Forests (RF ), there is a high chance

for a bootstrap sample to have few or no minority cases. This leads to a tree with

poor prediction performance of the minority class. RF was intended to minimize the

overall error rate. This makes it focus more on prediction accuracy of the majority

class leading to poor accuracy of the minority class.

Chen et al. (2004) proposed two different ways of dealing with imbalanced data

in RF . These are Balanced Random Forests (BRF ) based on sampling technique

and Weighted Random Forests (WRF ) based on cost sensitive learning. In BRF ,

a bootstrap sample is drawn from the minority class and the same number of cases

drawn with replacement from the majority class. A tree is then grown from the
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resulting balanced dataset. In WRF , weights are assigned to each class with a

higher weight given to the minority class since classification algorithms tend to be

biased towards the majority class. The weights are incorporated during the tree

growing procedure to weight the splitting criterion used and also in the terminal

node. According to Chen et al. (2004) none of the two strategies can be regarded

as being dominant over the other BRF is computationally more efficient with large

imbalanced data and more noise tolerant while WRF has more effect on classifiers

produced by decision tree learning method.

By combining BRF and WRF , Yaya et al. (2009) came up with Improved Bal-

anced Random Forests (IBRF ) and demonstrated its application to prediction of

customers tendency in a given period to stop doing business with a given company.

They were responding to the challenges brought about by learning from imbalanced

datasets. Combination of the two methods was done by use of interval variables.

Given the random variables d, the length of the interval, m, the midpoint of the

interval together with the training data set D = (X1Y1), ..., (XnYn) a distribution

variable α is randomly generated within the interval between m − d
2

and m + d
2
.

nα samples are drawn with replacement from the majority class (negative training

dataset D− and n(1 − α) samples from minority class (positive training data set

D+). Weight w1 is assigned to the negative class and w2 to the positive class. Here,

w1 = (1 − α) and w2 = α. A classification tree is then grown to its full size. By

introducing ”interval variable”, these two approaches alter the class distribution and

put heavier penalties on misclassification of the minority class.
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2.5 Random Survival Forests and Improvements

to Random Survival Forests

Machine learning techniques (that require no distributional assumptions on data)

such as Random Survival Forests (RSF ), support vector machine, among others,

have received wide application in studies involving high dimensional datasets (Nase-

jje et al. (2017), Sreeramareddy et al. (2013); Cassy et al. (2019), Liu (2019)). These

machine learning techniques are useful when dealing with problems such as classifi-

cation imbalance and variable selection.

The applications of Random Forests (RF ) focused primarily on classification and

regression problems and not survival analysis. In 2008, Ishwaran et al. (2008) ex-

tended RF to RSF . They introduced random survival forests, an ensemble tree

method for analysis of right censored survival data. This was an extension of

Breiman (2001a) RF method which focused on classification and regression prob-

lems. Their research was intended to give a solution to the challenges which faced

analysis of survival data. These includes; analyzing survival data using methods

that rely on restrictive assumptions like the PH assumption, methods that could

not deal with non linear effects of the variables and methods that could not identify

interactions. These challenges were handled automatically using forests. In their

work, they gave a detailed description of RSF, illustrated several of its important

features and investigated the use of variable importance for variable selection. In

addition, they introduced new survival splitting rules for splitting survival trees, new

missing data algorithm for imputing missing data and a measure of mortality that

is simple and interpretable.

Various researchers have compared the performance of Cox model and RSF.

Nasejje et al. (2017) in their research compared RSF model with Conditional In-

ference Forests (CIF ). In their research, CIF were found to perform comparably

similar to RSF model in data consisting of covariates with fewer split-points.
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Recent works using RSF for survival data have shown improved results as com-

pared to the cox PH models and are getting popular as a survival analysis tool.

Nonetheless, the characteristics of the survival data pose significant challenges to

RSF . Miao et al. (2015) found that RSF was weak at identifying predictors in

relatively small populations. This is due to its stopping criterion based on daughter

node size constraint that the terminal node should have no fewer than nodesize

unique deaths. This demonstrates bias toward predictors with a larger population

since it is difficult for predictors with a smaller population to satisfy the criterion,

especially when nodesize is large.

Miao et al. (2018) developed a risk model for prediction of heart mortality using

improved random survival forest (iRSF ) with a new split rule and stopping criterion.

According to their findings, the model was able to identify more accurate predictors

which could separate survivors from non survivors in small populations improving

discrimination ability. Weighted log-rank test was used to split the node where the

adaptive weights were obtained using the model of Yang and Prentice (2005). They

used split function decreasing as the stopping criterion in this model.

In 2018, Afrin et al. (2018) researched on BRSF for right censored data in ex-

tremely imbalanced situations. Their concern was on the limited accuracy of sur-

vival models due to sparcity of samples and extreme imbalance. In as much as RSF

model has various strengths including overcoming proportion hazard assumption,

imbalance in the dataset leads to underestimation of mortality class. In their re-

search, a BRSF model was developed by integrating data balancing using SMOTE

with RSF to address this gap. In addition, they gave theoretical results on the ef-

fects of balancing on prediction accuracy and conducted studies on different levels of

imbalance. According to their findings, BRSF provided an improved discriminatory

strength between survival and mortality classes. In comparison, BRSF was found

to outperform RSF and optimized cox with and without balancing.

Fiorentini and Losa (2020) noted a significant trend in neglecting the aspect of
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imbalance while using machine learning algorithms in predicting crush severity in

acutely imbalanced datasets. They researched on handling imbalanced accidents

datasets in order to provide a better prediction of the minority class while using

machine learning algorithms. They balanced the data using the random under sam-

pling majority class (RUMC) balancing scheme. A comparison of four different

crash severity predictive models which included the random tree, k-nearest neigh-

bor, logistic regression and random forest was done. After the assessment using

accuracy, precision, confusion matrix , RUMC based model was found to be reliable

and significantly more effective in recognizing the minority class. They stressed on

the importance of using RUMC and machine learning algorithms in prediction of

severity of a crash occurrence.

In their research on prediction of survival in patients with non small cell lung

cancer, He et al. (2020) used the relative importance approach in survival prediction.

They compared the Variable importance (VIMP) RSF model with Cox model where

VIMP was found to be more robust. In their work, they suggested the use of RSF

VIMP alongside with Cox model in order to advance the understanding of the roles

of prognostic factors and improve on their precision and care efficiency.

Ishwaran and Lu (2019) proposed a sub-sampling approach to be used for es-

timation of variance of VIMP and construction of confidence intervals. This was

motivated by the limitation that no systematic method existed for estimating the

variance of VIMP. Using simulations, they demonstrated the effectiveness of the

delete-d jackknife variance estimator under low sub sampling rates. They also de-

scribed a general procedure for estimating the variance of VIMP and showed how

to construct confidence intervals for VIMP using the estimated variance.

Morvan et al. (2020) proposed a model for prediction of progression-free survival

(PFS). The model consisted of two stages both of which involved RSF and VIMP. In

the first stage, feature selection was carried out to identify relevant variables while

prognosis prediction using the selected features was done in the second stage. A
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comparison between the model and conventional methods such as Lasso Cox and

gradient-boosting Cox was done where evaluation using C-index showed a better

performance for VIMP+RSF model. Vimp was found to select more stable variables

and better results in identification of clinically relevant biomarkers in comparison

with minimal depth and variable hunting.

This research addressed the problem of imbalance using the 2014 KDHS dataset

in determination of U5CM in situations where PH assumption is violated. This was

motivated by the desire to search for a model that leads to improved accuracy in

predicting the determinants of mortality which will help in guiding clinical decisions

geared towards reduction of mortality. Three challenges were addressed in this

study. One problem involved trying to balance the dataset classes before making

comparisons between mortality and non mortality cases. The other challenge was

due to variable selection. One needs to conduct a proper variable selection exercise

in order to identify the correct set of variables to use for the regression analysis. The

third challenge is the use of a splitting rule that takes into account variables that

violate PH assumption. To address these challenges we came up with an Improved

Balanced Random Survival Forest (IBRSF) model for analysis of highly imbalanced

right censored data sets in situations where PH assumption is violated. The model

involves a 3 stage framework which integrates data balancing technique with RSF

for both variable selection and prediction and use of BS.gradient splitting rule in

situations where variables violate PH assumption. The model leads to improved

accuracy in prediction of mortality.



Chapter 3

MATERIALS AND METHODS

3.1 Introduction

This chapter describes the data used in our research as well as the methods used

to achieve the various objectives of the study. In the first section of this chapter,

we describe and explore the overall 2014 KDHS data from which a subset used in

this research was extracted. The exploration was done to give a general view of the

data with our main focus being on data imbalance and satisfaction of proportional

hazard assumption. Thereafter,the methods through which the various objectives

were achieved are described. These includes description of the different balancing

methods which were later integrated with RSF model with different splitting rules.

The methods of achieving the various objectives are given in sections 3.2, 3.3, and

3.4. Methods used to compare prediction accuracy of the different models are also

given.

18
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3.1.1 Data Description

The data used in this research was drawn from the 2014 Kenya Demographic and

Health Survey (KDHS) data KNBS et al. (2014). This is the sixth Demographic and

Health Survey (DHS) conducted in Kenya since 1989. KDHS is a national research

undertaking conducted every five years with the intention to collect a wide range of

data with a strong focus on indicators of fertility, reproductive health, maternal and

child health, mortality, nutrition and self-reported health behaviors among adults

Corsi et al. (2012). It is a national representative household sample survey where

households are selected at random from the Kenya National Bureau of Statistics

(KNBS) sampling frame.

The survey procedures, instruments and sampling methods used in the KDHS

2014 acquired ethical recommendation from the Institutional Review Board of Opin-

ion Research Corporation (ORC) Macro International Incorporated, a health, de-

mographic, market research and consulting company situated in New Jersey, USA.

We sought official registration on the DHS website and got permission to use the

2014 KDHS data. The data was downloaded in SPSS format and constituted 1,099

variables and 20,964 observations. Using package foreign, the data was imported to

R software version 3.6 for analysis.

Variables with 100% missing observations as wells as those that were similar but

had different names were deleted. For instance variable V102 (Region of residence)

and variable V024 (Region of residence). In such a case, one of the variables was

deleted from the data reducing the number of variables to 786. Survival time and

status variables which are important considerations when analyzing survival data

were calculated and included in the dataset giving rise to 788 variables. The date

variables in the data are given in century month codes (CMC) which implies the

number of months since the start of the century. Time variable is given by the

number of months from birth to final status (censored or dead). Calculation of
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time variable was done by subtracting variable B3 (date of birth in CMC) from

variable V 008 (date of interview in CMC), if the child was living at the time of

interview (B5 = 1). On the other hand, if the child was not alive at the time of

interview (B5 = 0), survival time was given by age at death of the child in completed

months (B7). If the age at death is less than a month, it is given a value of 0 months.

Variable B5 indicates whether the child was alive or dead at the time of the interview

with B5 = 0 if the child was dead and B5 = 1 if the child was alive. To get the

status variable, the values of B5 were interchanged such that status = 1 when an

event (death) was experienced and status = 0 indicating censored observation. Time

from birth to date of interview was considered as follow-up time. Calculation and

inclusion of time and status variable was successfully done using R codes and stata

do file commands.

3.1.2 Exploratory Data Analysis for the 2014 KDHS Dataset.

Imbalance in the 2014 KDHS Dataset.

The data in use was explored and analyzed using R software. This involved summa-

rizing and visualizing characteristics of the variables within the dataset. The dataset

was found to be highly imbalanced with the mortality class having 871 observations,

constituting 4.2% of the overall data while the majority class had 20,093 observa-

tions constituting 95.8%. This imbalance between survivors and non survivors in

the overall data is demonstrated in table 3.1

Table 3.1: Imbalance in KDHS 2014 data.

Status Total Percentage
Survivors(Censored cases) 20093 95.8%
Mortality (No. of observed Events) 871 4.2%
Sum total 20964 100%

Exploration of imbalance within some of the covariates in the dataset was also

carried out. Different covariates from the dataset which include region, residence, sex
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of the child, level of education, wealth index were also found to have high imbalance

between survivors and non survivors with the minority class size ranging between 3%

and 6.4%. This imbalance is clearly shown in tables 3.2, 3.3,and 3.4. The categories

with highest percentage of mortality are Nairobi region, urban residence, and male

children as shown in the tables.

Table 3.2: Imbalance in KDHS 2014 data by Region.

Status/Region Central Coast Eastern Nairobi N.Eastern Nyanza Rift Valley Western Total
Censored cases 1356 2531 2906 498 1538 2757 6618 1889 20093
Observed Events 64 119 109 34 56 169 232 88 871
Total 1420 2650 3015 532 1594 2926 6850 1977 20964
Percentage of events 4.5% 4.5% 3.6% 6.4% 3.5% 5.8% 3.4% 4.5% 4.2%

Table 3.3: Imbalance in KDHS 2014 data by Residence.

Status/Residence Rural Urban Total
Censored cases 13561 6532 20093
Observed Events 575 296 871
Total 14136 6828 20964
Percentage of mortality class 4.1% 4.3% 4.2%

Table 3.4: Imbalance in KDHS 2014 data by Sex.

Status/Child sex Female Male Total
Censored cases 9936 10157 20093
Observed Events 395 476 871
Total 10331 10633 20964
Percentage of Events 3.0% 4.5% 4.2%

Exploration of Proportional Hazard Assumption in the 2014 KDHS Dataset.

Proportional hazard assumption in different covariates of the dataset was explored

using the Kaplan Meir curves. The curves are shown in figures 3.1, 3.2, 3.3 and 3.4

From the Kaplan Meir curves, there is evidence of violation of the proportional

hazards assumption which is shown by crossing of curves in different categories of

the given variables.

From the exploration of the 2014 KDHS data, it is evident that the data is

highly imbalanced and some of the variables violate PH assumption. We therefore

proceed to the methods of achieving the various objectives of the study.
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Figure 3.1: Survival Curves by Residence for 2014 KDHS Data.

The graphs shows curves that are crossing and not parallel during the first few
months of follow up period which later became parallel towards the end of the

follow up period. This is an indication of violation of PH assumption.
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Figure 3.2: Survival curves by region for 2014 KDHS data.

The graphs shows crossing curves indicating violation of proportional hazards
assumption.
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Figure 3.3: Survival curves by child sex for 2014 KDHS data.

The graphs shows curves that are not crossing and parallel after the beginning of
follow up period indicating satisfaction of PH assumption.
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Figure 3.4: Survival curves by education level for 2014 KDHS data.

The graphs shows curves that are crossing during the first few months of the follow
up period indicating violation of PH assumption.
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3.2 Analysis of Balanced Random Survival For-

est (BRSF ) Model under Different Balancing

Schemes.

3.2.1 Exploration of Imbalance in Nairobi Region Dataset.

The aim of this research was to find an effective way of applying the variable selec-

tion technique called Random Survival Forest (RSF), to analyze data with imbalance

and relatively smaller in size. 2014 KDHS data is a national sample data which is

classified into 8 regions, constituting former provinces in Kenya as shown in table

3.2. For this work, we analyzed data for Nairobi region, being a unique urban sys-

tem in Kenya. Nairobi is a metropolitan region with improved health facilities and

access, while also having high levels of socio-economic disparity among populations.

In the 2014 KDHS data, Nairobi region alone was associated with 532 observations

and 788 covariates. Some variables in this region were found to have 100% missing

information and were deleted. Other variables describing the region like V000 (coun-

try code), V024 (De facto region of residence), among others were also deleted from

Nairobi region dataset. After the process of data cleaning, 757 variables remained.

The data was found to have high level of missing information. This is often one of

the main data analysis tasks before running the desired models. In this case, we did

multiple imputation using RF algorithms, missForest for missing data imputation

Stekhoven and Bhlmann (2012). missForest is a nonparametric machine learning

based algorithm for data imputation which apply the Random Forest algorithm.

The method starts by imputing all the missing values using the mean imputation

method. The missing values are then labeled as predict while the others are labeled

as the training data. The data is then fed to Random Forest to predict the missing

values and the generated prediction filled to give a new dataset. The process is

repeated several times with each iteration giving rise to improved data. This con-
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tinues until a stopping criterion is reached after a number of iterations. The method

is capable of handling data with different types of variables at the same time, com-

plex interactions, non linear relationships between variables and high dimensionality

where the number of variables greatly outnumbers the observations giving good im-

putation results Stekhoven and Bhlmann (2012). In this study however, we dealt

more on handling the challenge of imbalanced classification in mortality data.

Nairobi region dataset was found to be equally highly imbalanced with 6.4%

minority class (mortality class) representation. Similarly, the variables in the data

(covariates) showed high imbalance in the mortality class. Table 3.5 shows the im-

balance between mortality and survivor groups as observed during the 2014 KDHS

survey within Nairobi region. The imbalance is also demonstrated in some of the

covariates as shown in tables 3.6, 3.7 and 3.8.

Table 3.5: Imbalance in KDHS 2014 Nairobi region data.

Status Total Status Percentage
Survivors(Censored cases) 498 93.6%
Mortality (No. of observed Events) 34 6.4%
Sum Total 532 100%

Table 3.6: Imbalance in Nairobi region data by sex.

Status/Child sex Female Male Total
Survivors(Censored cases) 254 244 498
Mortality (No. of observed Events) 17 17 34
Total 271 261 532
Proportion of Events 6.3% 6.5% 6.4%

Table 3.7: Imbalance in Nairobi region data by Education level.

Status/Education Level Higher No Education Primary Secondary Total

Survivors(Censored cases) 102 7 203 186 498
Mortality (No. of observed Events) 8 0 13 13 34
Total 110 7 2165 199 532
Proportion of Events 7.3% 0% 6.0% 6.5% 6.4%

Table 3.8: Imbalance in Nairobi region data by wealth index.

Status/wealth index 1 (Poorest) 2 (Poorer) 3 (Middle) Total
Survivors (Censored cases) 5 36 457 498
Mortality (No. of observed Events) 1 1 32 34
Total 6 37 489 532
Proportion of Events 16.7% 2.7% 6.5% 6.4%
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Such imbalance may lead to lack of information and under-representation in the

mortality class which is of great interest in our study.

3.2.2 Data Imbalance

A dataset is said to be technically imbalanced if its class distributions are not equal.

However, when there is a significant, or in some cases extreme, disproportion among

the number of examples of each class of the problem, then the dataset is said to

be imbalanced Fernndez et al. (2018) . For instance, in a cohort of 1000 children,

its often the case that mortality group over the study period composes of less than

50 children (representing less than 5%) or less, hence leaving an entire 95% plus

as the non-mortality group. Imbalanced data classes are common in many real-

life situations including mortality data where the survivors greatly outnumber the

mortality, rare disease diagnosis data records where large number of patients do not

have the disease, fraud detection, among others. The presence of extreme imbalance

between the censored and mortality class with as low as 2−10% data in the minority

class is commonly occurring in survival data Afrin et al. (2018).

Classification of imbalanced datasets has been identified as a top problem in

machine learning Yang (2006). This makes the class imbalance problem to be of

crucial importance since it is encountered by a large number of domains in the

real-world. Some of the applications that are known to suffer from this problem

includes, fault diagnosis Yang et al. (2009), Zhu and Song (2010), medical diagnosis

Mazurowski et al. (2008), disease prediction Khalilia et al. (2011) among others.

A dataset with only two classes is known as binary class, whereas the one with

more than two classes is known as multi-class. Both the binary and multi-class

datasets suffer from imbalanced data problems Haseeb et al. (2019). This research

deals with imbalance in two-class problems. In two-class problems the minority

(under-represented) class is usually referred to as the positive class, whereas the ma-
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jority class is considered to be the negative one. These terms are used interchange-

ably in the literature Fernndez et al. (2018). Binary classification are common in

various real life aplications like medicine (sick or healthy) among others. In such

cases, one of the group becomes the minority while the other is the majority group.

Effects of Imbalance on Datasets

In most of the imbalanced data situations, it is the underrepresented class which is

of most interest, since despite its being rare, the minority class may carry important

and useful knowledge required in prediction. Such imbalance has been observed

to seriously hinder the classification performance of learning algorithms, including

Random Forests and other ensemble methods because their decisions are based on

classification error Galar et al. (2012).

When a dataset is imbalanced and one class dominates the other, machine learn-

ing algorithms such as random forests among others have issues classifying correctly.

The algorithms are sensitive to proportions of different classes. They often show bi-

ased behavior supporting the majority class and present the minority class lightly

Garca et al. (2012), Zhao and Cen (2013), Haseeb et al. (2019). This leads to higher

rate of misclassification in the minority class samples Datta and Das (2015), Ertekin

et al. (2007) which in turn results in weak predictive accuracy of the minority class

and misleading high predictive accuracies in the majority class, as a result of correct

classification Cateni et al. (2014), He and Garcia (2009), Japkowicz and Stephen

(2002). Thus, the performance of such algorithms decreases significantly when it

comes to predicting the minority class.

Many machine learning algorithms are designed to maximize overall accuracy.

This can be misleading in imbalanced datasets because the minority class holds a

small effect of this measure. However, when data is balanced, accuracy rates tend

to decline Olson (2005). This is attributed to the fact that balanced data reduces

the training set size leading to degeneracy of the model through omission of cases
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encountered to the test set.

Machine learning algorithms aim at minimizing the overall error rate instead of

paying attention to the minority class. Therefore, they do not make accurate pre-

diction for the minority class if they do not get the necessary amount of information.

In his research demonstrating problems encountered when unbalance data is used

in data mining algorithms, Olson (2005) found that algorithms tend to degenerate

by assigning all cases to the majority class when data is highly imbalanced and

still achieve high accuracy scores. Hence, evaluating algorithm performance using

predictive accuracy alone is inappropriate when data is imbalanced.

The main concern in imbalanced problems is that usually, the underrepresented

class is the class of interest of the problem from the application point of view Quin-

lan (1991). With imbalanced data sets, an algorithm does not get the necessary

information about the minority class to make an accurate prediction. Due to poor

representation and lack of information the minority class is low esteemed. We there-

fore need to somehow construct classifiers that are biased towards the minority class,

without being harmful to the accuracy over the majority class. In order to overcome

these issues it is important, when working with such machine learning algorithms to

work with balanced classification. However, this is in most cases overlooked. We are

therefore interested in construction of classifiers that are skewed toward the minority

class, while still maintaining the precision of the majority class.

Data Balancing Techniques

Various techniques have been suggested to solve problems associated with class im-

balance. The techniques can be grouped into four categories, subject to how they

deal with imbalance. The categories includes:

1. Data level (or external) techniques/ Resampling techniques.

These techniques involves balancing classes in the dataset before the classi-
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fication process using machine learning algorithm. This preprocessing stage

reduces the effect caused by imbalance. The balancing is done with an aim of

either increasing the minority class or decreasing the majority class to make

the two classes approximately equal. The techniques are simple and easy to

process and can be used in collaboration with any learning algorithm Fernndez

et al. (2018). The key strength of these techniques is that they are indepen-

dent of the underlying classifier. Many studies in the specialized literature

have shown that, for various types of classifiers, re-balancing the dataset re-

markably improves the overall performance of the classification in comparison

with a non-preprocessed dataset Fernndez et al. (2018).

2. Algorithm level(or internal) techniques.

These approaches do not cause any change in data distributions. They focus

on modifying the classifier learning procedure in order to relieve their bias

towards majority class Krawczyk (2016). This necessitates a comprehensive

understanding of the selected learning approach in order to identify the specific

mechanism responsible for creating bias towards the majority class. In this ap-

proach, minority class is taken into consideration and the learner is not allowed

to bias for the majority class to overcome the overall cost of misclassification

Joshi et al. (2001).

3. Cost-sensitive learning

Cost-sensitive learning refers to a specific set of algorithms that are sensitive

to different costs associated with certain characteristics of considered prob-

lems. These costs can originate from various aspects related to a given real-life

problem and be provided by a domain expert, or learned during the classifier

training phase. A misclassification cost is introduced so as to minimize the

conditional risk. By penalizing strongly misclassification cost of the minority

class, the classifier tends to bias towards minority class leading to improved

generalization on the class. For example, in medical diagnosis, if we declare
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a sick person as positive class (minority) and a healthy person as negative

class (majority), misclassifying the patient is called false negative meaning the

patient was positive but classified as negative. This is a very sensitive and

expensive case as compared to false positive because a delay in correct medical

diagnosis and treatment can lead to loss of life. By assuming higher costs for

the misclassification of minority class samples with respect to majority class

samples, cost- sensitive learning can be incorporated both at the data level

and at the algorithmic level Lopez et al. (2013)

4. Ensemble-based methods

In Data Science, Ensemble based classifiers, that is, the combination of several

classifiers into a single one, are known to improve the accuracy of a single

classifier by training several classifiers and combining them to output a new

classifier that outperforms every one of them. However, ensemble learning

techniques cannot be able to solve class imbalance problem by themselves

since they are designed to optimize accuracy. To deal with class imbalance,

ensemble learning techniques are combined with any of the methods mentioned

above to improve the final performance. For instance, use of costs in the

ensemble learning process or preprocessing the data using a data level approach

before learning each classifier. The most famous ensemble learning algorithms

include Bagging Breiman (1996), Boosting and Adaboost. For classification

of imbalanced data, a novel ensemble technique is also used, that convert an

imbalanced dataset into many balanced subsets of original data and number

of classifiers with specific classification algorithm are then applied on these

multiple subsets.

There is no open directive that indicates the best strategy to use. However,

many studies have shown that, external techniques greatly improve the ultimate

performance of the classification in comparison with non-preprocessed data set for
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various types of classifiers Fernndez et al. (2018). In addition, re-sampling techniques

are independent of the classifier, can be easily implemented for any problem and do

not need adaptation of any algorithm to the dataset Ofek et al. (2017) . They are also

able to effectively balance the dataset resulting in training sets that are suitable for

satisfactory calibration of machine learning algorithms Fiorentini and Losa (2020).

Chawla et al. (2008), Estabrooks et al. (2004) and Garca et al. (2012) have proved

the effectiveness of balancing class distributions using data level techniques.

In this research we apply the Data level/preprocessing (or external) techniques.

The methods re-balance the sample space aiming to lessen the effect of imbalanced

class distribution in the learning process. The Data level techniques are further clas-

sified into three groups Batista et al. (2004) which are: under-sampling methods,

over-sampling methods and hybrid methods which combine both sampling tech-

niques. The Data level techniques used in this research are:

• Random under-sampling:

This aims at balancing dataset by randomly eliminating examples of the ma-

jority class up to when the dataset is balanced. The major drawback of this

method is that there is a high possibility of discarding potentially useful data

pertaining to majority class leading to a possibility of information loss.

• Random over-sampling:

While the under-sampling method involves removal of samples from the ma-

jority group, over-sampling method generates new samples for the minority

class. To balance the data using this method, the observations from the mi-

nority class are reduplicated. New instances are created from the existing ones;

hence over-sampling does not increase information but raises the weight of the

minority class by replication. One advantage of over-sampling methods is that

there is no information loss. However, since over-sampling simply makes ex-

act copies of the minority class observations, it increases the chances of over
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fitting due to replication. Therefore, even if there will be improvement in the

training accuracy of the data the overall accuracy of the data may be worse.

In addition, while dealing with large imbalanced data sets, over-sampling may

increases computational work and execution time Yen and Lee (2009).

• Both-sampling:

This method combines both under-sampling and over-sampling methods by

performing over-sampling with replacement on the minority class while the

majority class undergoes under-sampling without replacement.

• Synthetic minority over-sampling technique (SMOTE)

This is a hybrid method in re-sampling techniques where both under-sampling

and over-sampling approaches are combined with an aim to overcome their

drawbacks. SMOTE has become one of the most outstanding approaches in

data balancing field Fernndez et al. (2018). The key idea in SMOTE proposed

by Chawla et al. (2002) is to produce new samples of the minority class ar-

tificially. This helps to avoid over fitting brought about by reduplication of

minority class instances. Additionally, the majority class examples are under-

sampled, giving rise to a more balanced dataset. Generation of Synthetic

samples takes the following steps:

• Randomly select a minority and its k nearest minority class neighbors. The

value of k is determined by the amount of oversampling needed.

• Calculate the difference between the vector of selected minority and that of

one of its nearest neighbors.

• The difference got is then multiplied by a random number between 0 and 1.

The result is added to the selected minority vector. By so doing a new random

point is added along the line joining the two vectors under consideration.
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SMOTE is thus implemented as follows: Let xi be the feature vector for the

selected minority and xj be the feature vector of a randomly chosen neighbor. A new

synthetic minority xs is generated in the feature space as: xs = xi+λ(xi−xj) where

λ ∼ Uniform(0; 1), is a uniform random variable. A random point is selected along

the line segment between two specific features. Thus, the synthetically generated

data can be interpreted as a randomly sampled point along the line segment between

the two minority samples in the feature space.

In the R environment, Package DMwR Torgo (2010) and ROSE package Lunar-

don et al. (2013) are used to enhance data balancing. ROSE package Lunardon et al.

(2013) is used to enhance data balancing using under-sampling, over- sampling and

both-sampling methods. On the other hand, package DMwR Torgo (2010), provides

a specific function (smote) to aid the estimation of a classifier in the presence of

class imbalance. In SMOTE the parameters perc.over and perc.under respectively

control the amount of over-sampling and under-sampling to be done. If a completely

balanced dataset is required, the minority cases are doubled while the majority class

is halved. In this study, we used under-sampling, over-sampling, both-sampling and

SMOTE methods to balance the Nairobi region dataset. The balanced data was

then analyzed using RSF algorithm.

3.2.3 Random Survival Forest Algorithm

The 2014 KDHS dataset had a total of 1099 variables that are possible candidates

for predicting child mortality. After some data management exercise, the number

of candidate covariates reduced to 757 possible covariates. Before fitting a regres-

sion type model in order to embark on the exercise of determining child mortality

predictors, we needed to do a variable selection exercise in order to further reduce

the variables of importance. This was done using the RSF algorithm. RSF uses

decision trees to predict and rank variables that are linked with time to event by
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their importance.

RSF Algorithm

Ishwaran et al. (2008) describes the basic Random Survival Forest algorithm as

follows:

1. The procedure starts by randomly drawing ntree bootstrap samples from the

initial data Each bootstrap sample sets aside a mean of 37% of the data called

out of bag (OOB) data with respect to the bootstrap sample. Each sample

has R predictors (covariates).

2. For each of the drawn samples, a survival tree is grown. Construction of sur-

vival tree begins with randomly selecting mtry out of R possible predictors

in x for splitting on. The value of mtry depends on the number of available

predictors and is data specific. An increase in mtry may tend to result in

correlated trees Breiman (2003). All the ntree bootstrap samples are desig-

nated to the top most (root) node of the tree. The root node is then split

into two daughter nodes each of which is recursively split progressively max-

imizing survival differences between daughter nodes/ increasing within-node

homogeneity.

3. Trees are grown to full size until no new daughter nodes can be formed due to

the stopping criterion that the end node (most extreme node in a saturated

tree) should have larger than or equal to nodesize unique events.

4. For each grown tree, compute the cumulative hazard function (CHF ). Cal-

culate the mean over all CHF ′s for the ntree trees to attain the ensemble

CHF .

5. By using OOB data only, calculate the ensemble OOB error using the first b

trees, where b = 1, ..., ntree.
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By averaging over all trees, a reliable measure of importance of a variable regarding

time to event can be obtained Ishwaran and Kogalur (2015). In right censored data,

all details of developing a forest take into consideration the outcome. For right

censored data, the outcome is survival time and censoring status Breiman (2003).

Node Splitting Process

From the RSF algorithm, a forest originates from randomly drawn ntree bootstrap

samples. Each bootstrap sample becomes the root of each tree in the forest. There

are R predictors in each bootstrap sample. From the R predictors, we randomly

select mtry predictors for splitting on. The following notations were used in the

node splitting precess.

Notations

• h: The hth node of a tree.

• n: The number of individuals within node h.

• Tl: The survival time for the lth individual where l ∈ 1, ..., n.

• δl: The censoring information for the lth individual.

• censoring status:

δl =


0, if individual l is censored

1, if individual l experienced an event (death)

• x: A candidate predictor for node splitting.

• c: A split value for predictor x.
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• x∗: The predictor which maximizes survival differences between daughter

nodes for predictor x.

• c∗: The split value which maximizes survival differences between daughter

nodes for predictor x.

• xl: Value of x for individual l, l ∈ 1, ..., n.

• j: Daughter node, j ∈ 1, 2

• tN : The distinct event times in node h, t1 < t2 < ..., < tN .

• di,j: Number of deaths at time ti in the daughter node j = 1, 2.

• di = di,1 + di,2

• Yi,j: Number of individuals at risk (who are alive) at time ti in the daughter

node j = 1, 2.

• Yi,1 = number of (Tl ≥ ti, xl ≤ C)

• Yi,2 = number of (Tl ≥ ti, xl > C)

• Yi = Yi,1 + Yi,2

• nj: Total number of observations in daughter j such that n = n1 + n2 where

n1 =number of (l : xl ≤ C) and n2 = number of (l : xl > C)

Suppose we take h to be the hth node to be split into two daughter nodes. Within

node h, let there be n observations each with survival time denoted by Tl, and

censoring status given by

δl =


0, if individual l is censored

1, if individual l experienced an event (death)
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At node h of a tree, the information at time ti can be summarized in the following

table:

Time ti Event Survivor Risk Set

Node 1 di,1 Yi,1 − di,1 Yi,1

Node 2 di,2 Yi,2 − di,2 Yi,2

Total di Yi − di Yi

Conditional on the four marginal totals, a single element (say di,1) defines the table.

di,1 has the hypergeometric distribution with mean

Ei =
Yi,1
Yi
di

and variance

Vi =
Yi,1
Yi

(1− Yi,1
Yi

)(
Yi − di
Yi − 1

)di.

From the randomly selected mtry predictors in node h, take any predictor x

(for example age). Using predictor x, find a splitting value c (for example from

predictor age, the splitting value could be 2 years). The splitting value c is chosen

in such a way that the survival difference for predictor x between x ≤ c (criterion

for an individual to be placed in daughter node 1) and x > c ( the criterion for an

individual to be placed in daughter node 2), are maximized. x ≤ c separates to the

left node while x > c goes to the right node. The survival difference between the

two nodes is calculated using a predetermined splitting method. This procedure is

repeated with another splitting value c until we get a value which results in maximum

survival difference in predictor x. The same procedure is repeated for the remaining

mtry− 1 predictors in node h. This is done until we get predictor x∗ and split value

c∗ which results in maximum survival difference between the two daughter nodes

Weathers and Cutler (2017). The process is repeated at every node. When survival

difference is maximum, unlike cases with respect to survival are pushed apart by the

tree. Increase in the number of nodes causes dissimilar cases to separate more. This
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results in homogeneous nodes in the tree consisting of cases with similar survival.

Splitting criteria is one of the aspects of growing a tree. In this section, log rank

splitting rule which is commonly used in RSF was used in splitting the node.

Log-rank Splitting Rule

Logrank test is a large-sample chi-square test which makes use of observed versus

expected cell counts over categories of outcome. It is the most frequently used sta-

tistical test to compare two or more samples non-parametrically with data that are

subject to censoring. It’s popularity is due to the fact that no modeling assump-

tions are needed regarding the form of survival distributions. In addition, under

proportional hazards, the log rank statistic is optimal among the class of linear rank

statistics. The log-rank splitting rule separates the nodes by selecting the split that

yields the largest log rank test. PH assumption is the key requirement for the op-

timality of log rank test. For a split using covariate x and its splitting value c, the

goodness of fit is measured using log rank statistics which is represented as;

L(x, c) =

∑N
i=1

(
di,1 − di

Yi
Yi,1

)
√∑N

i=1
Yi,1
Yi

(
1− Yi,1

Yi

)(
Yi−di
Yi−1

)
di

(3.1)

This equation measures the magnitude of separation between two daughter nodes.

The best split is given by the greatest difference between the two daughter nodes

which is given by the largest value of |L(x, c)|. The larger the value, the greater is

the difference between the two daughter nodes and the better is the split. Hence the

best split at node h is determined by finding the predictor x∗ and its value at the

cut point c∗ such that |L(x∗, c∗)| ≥ |L(x, c)| for all x and c. This process is repeated

at every node.
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Survival Tree Estimators

At the initial stage of the tree growing process ntree bootstrap samples are randomly

selected from the original data. Each bootsrap sample sets aside on average 37% of

the data called OOB data while the remaining 63% is called in-bag data. The in-bag

data is used to grow the tree and gives estimators which are used for prediction. On

the other hand, the OOB data is not involved in the growth of the tree but used

for cross-validation purposes. RSF estimates cumulative hazard function (CHF )

and survival function based on the terminal nodes using the in-bag and out-of-bag

estimators

In-Bag Estimators.

Let d(t) be the number of deaths and Y (t) the individuals at risk at a given time t.

The hazard function estimate H(t) at time t with the Nelson Aalen estimator can

be expressed as

H(t) =
d(t)

Y (t)
(3.2)

The estimate of the CHF for each of the trees grown is accomplished by grouping

cumulative hazard estimates by terminal nodes. Suppose:

h denote the terminal node of a tree,

t1,h < t2,h <, ..., tm(h),h denote the distinct event times within node h,

dj,h denote the number of deaths at time tj,h and

Yj,h denote the number of individuals at risk at time tj,h.

The CHF for node h is estimated using the bootstrapped NelsonAalen estimator;

Hh(t) = Σtj,h≤t
dj,h
Yj,h

(3.3)

This implies that for a given tree, the hazard estimate for node h is the ratio of events

to individuals at risk summed across all unique event times. Each terminal node
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of a tree provides a sequence of such estimates and each individual in node h has

the same CHF . The survival function for node h is estimated using bootstrapped

Kaplan Meier estimator;

Sh(t) =
∏
tj,h≤t

(1− dj,h
Yj,h

) (3.4)

This gives the estimates for the individuals in node h at a given time t. To estimate

the CHF for a given predictor X, H(t \ X) and the survival function of a given

predictor X, S(t\X), X is dropped down the tree and ends up in a unique terminal

node due to the binary nature of the tree. This implies that the CHF for x is the

same as that of the terminal node it belongs to. That is

H(t \X) = Hh(t) (3.5)

and

S(t \X) = Sh(t), ifX ∈ h (3.6)

This defines the CHF and survival function for all individuals in the data and

the estimates for the tree. Due to bootstrapping (sampling with replacement) an

observation can be found in various bootstrap samples and hence in various trees.

The in-bag ensemble estimators for the bth survival tree are computed by averaging

the trees estimators. Hence the in-bag ensemble CHF and survival estimators are

respectively given as

H̄e(t \X) =
1

ntree
Σntree
b=1 Hb(t \ x) (3.7)

and

S̄e(t \X) =
1

ntree
Σntree
b=1 Sb(t \ x) (3.8)
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Out-Of-Bag (OOB) Estimators

Let Ii be an indicator pointing to whether case i is in-bag or out of bag such that

Ii,b =


1, if i is an OOB point

0, Otherwise

The OOB estimators are determined by whether the case is present in the ter-

minal node. To determine the CHF and survival estimators for an OOB case i, the

case is dropped down the tree to a terminal node h. The OOB CHF and survival

estimators for i respectively becomes

H∗(t \X) = Hh(t), ifXi ∈ h, Ii = 1 (3.9)

and

S∗(t \X) = Sh(t), ifXi ∈ h, Ii = 1 (3.10)

The OOB ensemble estimators are calculated by averaging the OOB tree estimators.

Hence the OOB ensemble estimators are given as

H̄∗e (t \ xi) =
Σntree
b=1 Ii,bHb(t \ xi)

Σntree
b=1 Ii,b

(3.11)

and

S̄∗e (t \ xi) =
Σntree
b=1 Ii,bSb(t \ xi)

Σntree
b=1 Ii,b

(3.12)

3.2.4 Determining Predictors of Child Mortality

RSF gives a measure of variable importance (V IMP ) which is totally nonparametric.

VIMP has been found to be effective in many applied settings for filtering variables

Breiman (2001b), Lunetta et al. (2004), Bureau et al. (2005), Diaz-Uriarte and
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Alvarez de Andres (2006), Ishwaran et al. (2009). In this study, using the RSF model,

the highly predictive risk factors from the four balanced datasets were extracted. The

extracted important predictors were then fitted in the Cox PH model in order to

estimate the effect of statistically significant predictors.

The Cox PH model Cox (1972) is frequently used for modeling censored survival

data. The model is able to determine collectively the effect of various risk factors

on survival duration. It does not presume any shape or distribution of the survival

function. In the Cox PH model the instantaneous hazard rate is modeled as a

function of time and risk factors as in the equation 3.13.

h(t,X) = h0(t) exp [Σp
i=1(βiXi)] (3.13)

This equation displays the risk at time t for an individual specified by a set of

covariates X. In this case, X is a group of variables that are used in the model

for prediction of the risk of the given observations. From the formula, the risk at

time t is a product of h0(t) , the baseline hazard function and exp [Σp
i=1(βiXi)],

the exponential to the sum of the p predictor variables in X. The baseline hazard

function is a function of time which indicates what the risk would be when there are

no covariates (all covariate values are zero). The coefficient βi gives the magnitude

of the influence of the covariates. One of the assumptions of the Cox model is that

the variables should satisfy the proportional hazard assumption.

Proportional Hazard (PH) Assumption in Cox Model

In survival analysis, hazard is the likelihood of an event happening at any given

time point given that the event had not occurred. If we are concerned with only one

predictor, the hazard is given by

h(t, x) = h0(t) exp [βx] (3.14)
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In most cases, we compare subjects or groups with respect to their hazards by using

the hazard ratio. If we are concerned with two subjects with covariates x1 and x2,

the respective hazards are given by

h(t, x1) = h0(t) exp [βx1] (3.15)

and

h(t, x2) = h0(t) exp [βx2] (3.16)

The hazards for the two subjects can give a hazard ratio as;

HR =
h(t, x2)

h(t, x1)
=
h0(t) exp [βx2]

h0(t) exp [βx1]
= exp [β(x2 − x1)] (3.17)

If we take x2 = x1 + 1 to represent one unit increase on the risk of event in covariate

x1, the hazard ratio becomes

HR = exp [β(x1 + 1− x1)] = exp β (3.18)

Hence the hazard ratio is constant or proportional while the hazard rate varies

over time which is the assumption of proportional hazards. We therefore say that

a variable has a time-varying effect when the HR is not constant over time. For

example, the effect of a treatment may be strong at the beginning of the treatment

but this may change with time. This is different from time-varying covariate which

means that the value of a variable is not fixed over time. For example age, weight,

smoking status, among others. It is however possible to have a time-varying covariate

whose effect changes with time.

The coefficient β is the log of the hazard ratio. Hence, a value of β > 0 implies

that HR > 1 which is an indication that the risk of event for subjects with covariate

x2 is higher in comparison with subjects with covariate x1. On the other hand, a

value of β < 0 implies that HR < 1 which is an indication that the risk of event for
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subjects with covariate x2 is lower in comparison with subjects with covariate x1.

The HR in the cox model is estimated by taking into consideration each event

time instead of follow up time. For the overall follow-up period, the HR is estimated

by giving the same weights to the HR at the beginning of the follow up period which

affects almost all the observations and also to the HR at the end of the follow up

period which affects only a few observations who are still at risk. The HR is then

averaged over the event times. If the HR changes over time (the hazard rates are

not proportional), equal weighting may not give the actual representation of the HR

which may lead to biased results O’Quigley and Pessione (1991).

Checking the Cox-PH Assumptions

For appropriate use of the Cox proportional hazards regression model, there are

several important assumptions that need to be checked. These include:

• PH assumptions. These were checked graphically using Kaplan Meir curves

and schoenfeld residuals. The graphs of Schoenfeld residuals are shown in the

appendix in figures E.17 and E.29. However, these methods do not provide

formal diagnostic tests Bellera et al. (2010).It is therefore important to test

the PH assumption using statistical tests where proportionality of the hazard

is equivalent to testing if the variable is not significantly different from zero.

• Functional relationship between the log hazard and the covariates. Martin-

gale residuals were used to assess this assumption. The graphs of Martingale

residuals are shown in the appendix in figures E.20 and E.24

• Possible presence of outliers or influential observations. Deviance residual

was used to examine possible presence influential observations. The graphs of

Deviance residuals are shown in the appendix in figures E.19, E.31, E.28, E.23,

E.18, E.22, E.26 and E.30
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3.2.5 Model Selection Criterion

Comparison of prediction accuracy of the different models was done based on con-

cordance index. In survival analysis, a pair of observations is said to be concordant

if, for the individual that got the event first, the model predicts a higher risk of

event. The concordance probability is the frequency of concordant pairs among all

pairs of subjects. Harrells concordance index (C-index) Harrell et al. (1982) is used

to estimate prediction error. It estimates the likelihood that in a pair of cases se-

lected at random, the case that came to have an event first had a worse predicted

result. Suppose we have two observations whose outcome is predicted. If the ob-

servation predicted to have the worst outcome experiences an event first, then the

two observations are said to be concordant (i.e. they have the appropriate practice).

Computation of concordance error rate is as given below.

1. The procedure begins by forming all potential pairs of observations from the

entire data.

2. A pair is omitted if:

• The observation with shorter duration of survival is censored.

• Duration of survival is equal for the pair but one or both observation is

censored.

3. After the omissions are done, we remain with all the other pairs which are

referred to as permissible pairs. A score of value 1 is given to a permissible

pair if:

• For all pairs having unequal survival durations resulting in prediction

being worse for the observation with shorter survival duration.

• For all pairs having uniform survival durations resulting in similar pre-

diction results
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• For all pairs having equal survival duration given that not both observa-

tions are events, the observation with event results in a worse prediction

outcome.

A score of value 0.5 is given to a permissible pair if:

• For all pairs having unequal survival duration, the prediction outcome is

equal.

• For all pairs having equal survival duration, prediction outcomes are not

equal.

• For all pairs having equal survival duration given that not both obser-

vations are events, prediction outcome is worse for the observation with

censored results.

If we denote the sum of all the permissible pairs as Concordance, then the concor-

dance index, C is defined as:

C =
concordance

permissible

The error rate, E is given by E = 1− C where 0 ≤ E ≤ 1. E = 0 indicates perfect

accuracy while E = 0.5 is equivalent to random guessing.

3.3 Analysis of BRSF Model under Different Split-

ting Rules.

3.3.1 Data Description

In this section, we used the data balanced using under-sampling method, the method

that performed best after different balancing methods were compared. The data
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originated from the 2014 KDHS data from which the Nairobi region subset was

extracted. The balancing process is as described in section 3.2.2. This dataset had

a total of 68 observations with the mortality and censored classes each having 34

observations which represent 50% of the sample. The number of variables in the

dataset was 757.

3.3.2 Exploration of the Data

Exploration of the Survival Trends in the Balanced Data

In order to get the general view of the survival trends in the data set, the table of

survival estimates was generated. This is shown in table 3.9 and the survival curve

in figure 3.5. Computation of the estimated survival function in the presence of right

censoring, was done using the Kaplan Meier estimator as shown in table 3.9. The

table shows the survival estimates at the event times for children under five years

of age from the time they were born to the time of interview (end of the follow up

period). The table also gives the number at risk of death, survival probabilities with

their associated standard errors as well as the upper and lower confidence intervals

for the respective survival probabilities.

The survival curves shown in figure 3.5 gives the probability of survival with

the bands giving approximate confidence intervals. The horizontal axis indicates

time in months starting from 0 to 60 months while the y axis indicates the survival

probabilities or the proportion of individuals surviving (at risk). From table 3.9 and

figure 3.5, the highest number of the deaths (18) occurred before the first month

was over. The survival probability at time 0 months is estimated as 0.735 due to

the deaths experienced before the end of the first month. The curve then drops

gradually with each step downwards indicating death of one or more individuals

with the last death occuring during the 24th month.
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Table 3.9: Survival Estimates for Under-sampled Nairobi Dataset.

Time in months n.risk n.event Survival std.err lower95%C.I Upper 95%C.I
0 68 18 0.735 0.0535 0.638 0.848
1 50 1 0.721 0.0544 0.621 0.836
2 49 1 0.706 0.0553 0.605 0.823
3 48 3 0.662 0.0574 0.558 0.784
5 44 1 0.647 0.0580 0.542 0.771
6 43 1 0.632 0.0586 0.527 0.758
7 42 1 0.617 0.0591 0.511 0.744
9 39 2 0.585 0.0601 0.478 0.716
11 37 1 0.569 0.0606 0.462 0.701
12 36 2 0.538 0.0612 0.430 0.672
17 32 1 0.521 0.0615 0.413 0.656
19 30 1 0.503 0.0619 0.396 0.641
24 28 1 0.485 0.0622 0.378 0.624

Sample size No. of events Median lower95%C.I Upper 95%C.I
68 34 24 9 NA

3.3.3 Exploration of the Proportional Hazards (PH) As-

sumption in the Balanced Data

The PH assumption implies that for any two categories of a variable of interest, the

ratio of the hazard is unchanging or constant over time. It is essential to verify that

the predictor variables in the model satisfy the PH assumptions. More about PH

assumption is given in section 3.2.4. We used Kaplan Meier curves to explore the PH

situation. The curves plots the estimated proportion at risk (survival probability)

against time giving the estimated survival functions Clark et al. (2003). The curves

are in form of step functions with each vertical drop pointing out one or more deaths

happening Bewick et al. (2004). If the variables satisfy PH assumption, the survival

curves should be parallel. If for two or more categories of a variable of interest do

not result to parallel curves or the curves cross, then it is an indication that the PH

assumption is violated. The figures 3.6, 3.7 and 3.8 shows the Kaplan Meir curves

for some of the categorical variables in the data.

The curves show the probability of survival for children under five years. The

horizontal axis indicates time in months starting from 0 to 60 months while the y
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Figure 3.5: Kaplan Meir plot for the Undersampled Nairobi data.

axis indicates the survival probabilities or the proportion of individuals surviving

(at risk). From figure 3.6, the highest level of education attained is classified into

four categories (Higher, secondary, primary and no education). The curve for obser-

vations in the ”no education” category is a horizontal line with survival probability

of 1. This is as a result of the presence of observations with no education but none

of their children encountered an event during the follow up period. This is also

indicated in table 3.7. The curve for ”primary education” category remained consis-

tently higher than that of ”Higher” and ”secondary education”. There is evidence of

crossing curves between ”secondary” and ”higher education” categories indicating

violation of the PH assumption. We can read from the curves that children from

parents with no education have better survival prognosis than those who acquired

the other levels of education. Similarly, children whose parents acquired primary

education level have better survival prognosis than those with secondary and higher

education levels.

From figure 3.7, the curves of survival by sex seems to be proportional over time

with the KM curve for the female children being consistently higher than that of the
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Figure 3.6: Survival curves by education for under-sampled Nrb data.

The presence of crossing curves in the figure indicates violation of PH assumption.

male children. This implies that the female children have better survival prognosis

than male children. In a similar way, survival curves by wealth index show violation

of PH assumption due to the presence of crossing curves between the poorer category

and the middle level category. From the KDHS data, Wealth index was categorized

into 5 groups; poorest, poorer, middle, richer and richest. However, in the under-

sampled Nairobi region data, we only had the 3 categories (poorest, poorer and

middle) as shown in figure 3.8. The vertical red line represents individuals in the

poorest wealth index category who did not survive (got an event) hence the survival

probability is zero. The blue line indicates individuals in the poorer wealth category.

Some did not survive having zero probability of survival while those who survived

had a constant probability of survival. In the middle level wealth index category, we

have some events with zero probability. The curve for the poorer level crosses with
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Figure 3.7: Survival curves by sex for the Under-sampled Nairobi data.

that for the middle level showing violation of PH assumption.

The PH assumptions were also checked using graphical diagnostics based on the

scaled schoenfeld residuals. The Schoenfeld Residuals Test is analogous to testing

whether the slope of scaled residuals on time is zero or not. If the slope is not zero

then the proportional hazard assumption has been violated. Graphs of the scaled

schoenfeld residuals are shown in figure E.17 in the appendices section.

3.3.4 Random Survival Forests using Different Splitting Rules

After exploration of the PH assumptions, the data was analyzed using the RSF

algorithm given in section 3.2.3. The generation of the tree was also done as indicated

in section 3.2.3.
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Figure 3.8: Survival by wealth for under-sampled Nairobi data.

The curves are crossing and not parallel indicating violation of PH assumption.

3.3.5 Splitting Rules

The choice of splitting rule is very important to the performance of a growing tree.

Below we give the different splitting rules that can be used in splitting the node in

addition to the log rank splitting rule given in section 3.2.3.

Weighted Log-rank Test

When the proportional hazards assumption is violated, logrank test has been shown

to lose its power making it inefficient and a weighted version more suitable. Weighted

log-rank tests with various fixed and adaptive weight functions have been proposed

in the literature to increase the power of a test when non-proportional hazards are

expected. The weighted Log-rank test is used when we want to compare groups but
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wish to give more importance (”weight”) to certain events. This makes it a very

useful test when hazards are not proportional. For a split using covariate x and its

splitting value c, the measure of node separation using weighted log rank statistics

is represented as

L(x, c) =

∑N
i=1w(t)

(
di,1 − di

Yi
Yi,1

)
√∑N

i=1w
2
(t)

Yi,1
Yi

(
1− Yi,1

Yi

)(
Yi−di
Yi−1

)
di

If w(t)is constant over j we get the standard log-rank test statistic.

The Log-rank Approximation Splitting Rule

This is an approximation to the log rank split rule and is therefore named as ap-

proximate logrank splitting. It splits the nodes by using an approximation of the

log-rank test to reduce computations. Approximating the numerator of L(x, c), a

revision is done using the Nelson-Aalen cumulative hazard estimator for the parent

node. The Nelson-Aalen Estimator is given as

Ĥt = Σti≤t
di
Yi

The numerator of L(x, c) can be rewritten as

N∑
i=1

(
di,1 −

di
Yi
Yi,1

)
=

N∑
i=1

di,1 −
N∑
i=1

di
Yi
Yi,1 = Dj −

N∑
i=1

I[x ≤ c]Ĥ(Tl)

where

Dj =
N∑
i=1

di, j, j ∈ 1, 2

As suggested by Leblanc and Crowley (1993), the denominator can be simplified

by approximating the variance of L(x, c)′s numerator by letting D =
∑N

i=1 di. This
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leads to the approximation of the logrank test given by

L(x, c) =
D

1
2

(
Dj −

∑n
l=1 I{xl ≤ c}Ĥ(Tl)

)
√(∑n

l=1 I{x ≤ c}Ĥ(tl)
)(

D −
∑n

l=1 I{x ≤ c}Ĥ(Tl)
)

The Log-rank Score Splitting Rule

Log-rank score splitting rule Hothorn and Lausen (2003) was developed from log-

rank split rule. The method splits the nodes using a standardized log-rank statistic.

The ranks for each survival time Tl are computed given an ordered predictor x such

that x1 ≤ x2 ≤, ...,≤ xn. The rank for each survival time Tl is calculated as

al = δl −
Γl∑
k=1

δk
n− Γl + 1

Where Γl =the number of (t : Tt ≤ Tk). Let ā and S2
a be the sample mean and

sample variance of al for l ∈ 1, ..., n. The formula for the log-rank score test is given

by:

S(x, c) =

∑
xl≤c al − n1ā√
n1

[
1− n1

n

]
S2
a

This split rule defines the measure of node separation by |S(x, c)| where the best

split is given by the maximum value over x and c.

The Conservation-of-events Splitting Rule

The conservation-of-events splitting rule splits the nodes by finding daughter nodes

closest to the conservation-of-events principle. This principle states that the sum

of the estimated cumulative hazard function over the observed time points (deaths

and censored values) must equal the total number of events. This is done by using

an altered version of the Nelson- Aalen estimator which is now computed for each

daughter node rather than the parent node. The Nelson-Aalen cumulative hazard
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estimator for daughter j is given by

Ĥjt = Σti,j≤t
di,j
Yi,j

Where ti,j is the ordered event times for daughter j. The total number of events for

each daughter j can be retained by using

nj∑
l=1

Ĥj(Tl,j) =

nj∑
l=1

δl,j

The total number of deaths is conserved in each daughter node. Order the time

points within each daughter node such that T(1),j ≤ ...,≤ T(nj),j Let δl,j be the

censoring indicator function for the ordered value T(l),j. In order to get a measure

of the accuracy of the conservation of events, we define

µk,j =

nj∑
l=1

Ĥj(Tl,j)−
nj∑
l=1

δ(l),j

The measure of conservation of events for the split on x at the value c is

conserve(x, c) =
1

Y1,1 + Y1,2

nj−1∑
k=1

Y1,j

nj−1∑
k=1

|µk,j|

In other words, for each daughter j, the magnitude of µk,j are summed and weighted

by the number of individuals at risk within each daughter node. This value is small if

two groups are well separated since the level of separation between the two daughter

nodes increases as the test statistics decreases. In order for us to obtain the ”best”

split, we have to minimize this value or maximize the transformed value, 1
conserve(x,c)

.

Since we want to maximize survival difference due to a split, we use the transformed

value 1
conserve(x,c)

as our measure of node separation. This statistic can be very

time-consuming to compute because it sums over all the survival times within each

daughter node. Fortunately, the computation time can be severely decreased by
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using only the event times which can be expressed by the following formula:

conserve(x, c) =
1

Y1,1 + Y1,2

2∑
j=1

Y1,j

N−1∑
k=1

[Nk,jTk+1,j

k∑
l=1

dl,j
Yl,j

]

Where Ni,j = Yi,j − Yi+1,j is the amount of observations within daughter j with

observed time falling within the interval [ti, ti+1) for i = 1, ..., N where tN+1 = ∞.

The two formulas for conserve(x, c) can be shown to be equivalent.

Brier Score Gradient (Bs. gradient) Splitting Rule

Brier Score (BS) is the most frequently used scalar summary of correctness for

probability predictions for binary events. Let yi, i = 1, 2, , n be the ith likelihood

prediction in a series of n such predictions. The paired observation xi = 1 if the

event of interest occurs on the ith occasion, and xi = 0 otherwise. The BS is then

simply the meansquared error over the n forecast observation pairs,

BS =
1

n

n∑
i=1

(yi − xi)2

Suppose we have a pair of predictor-response, say (Xi, Yi) for i = 1, 2, ..., n. The

usual regression techniques attach the conditional mean of the response variable Y

to a given set of predictors X. Meinshausen (2006) introduced Quartile Regression

Function (QRF ) which connects between an empirical cumulative distribution func-

tion and the outputs of a tree. Let D0 be a group of randomly selected variables

to be split into two daughter nodes D1 and D2. Suppose the homogeneity of each

group is defined by

v(Dj) =
∑
Y ∈Dj

[Y − Ȳ (Dj)]
2

where Ȳ (Dj) is the sample mean in Dj. For an optimal splitting selection,

comparison is done between the homogeneities of v(D1) and v(D2) with that of
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v(D0). The splitting value s is the one that maximizes

H(D1, D1) = max
s∈ε∗

[v(D0)− v(D1)− v(D2)]

Where ε∗ is a randomly selected sample of predictors from the predictor space ε.

The resulting nodes are recursively split until the stopping criterion is reached. The

terminal node gives the predicted value. Athey et al. (2016) suggested that instead

of maximizing variance heterogeneity of the daughter nodes, one maximizes the

criterion

∆(D1, D2) =
2∑
j=1

−1

i : Yi ∈ Dj

(
∑

i:Yi∈Dj

ρi)
2

where

ρi = 1(Yi > θ̂q, D0)

is an indicator function which is equal to one when Yi is greater than the qth quantile

θq, D0 of the observations of node D0. The choice of ρi is linked with a gradient based

approximation of the quantile function

ψθ̂q ,D0
= q1(Yi > q) + (1− q)1(Yi ≤ q)

hence the term gradient forest. The order for each split is chosen among given orders

(0.1, 0.5, 0.9)

Weighted Log-rank Test with Adaptive Weights.

Yang and Prentice (2010) showed that log rank test can be improved by using

weighted log rank statistics with adaptive weights. Adaptive weights are obtained by

fitting the data to the model of Yang and Prentice (2005) which contains proportional

hazard models and proportional odds model. The model accommodates a variety of

non proportional hazard situations.
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Model of Yang and Prentice (2005)

Assuming that the event times are absolutely continuous, Yang and Prentice (2005)

proposed a model in which

HR(t) =
θ1θ2

θ1 + (θ2 − θ1)YL(t)
HL(t), t < τ0

where

HR(t) is the hazard function of the right branch.

HL(t) is the hazard function of the left branch.

YR(t) is the survival function of the right branch.

YL(t) is the survival function of the left branch.

τ0 = supt : YL(t) > 0 The hazard ratio between the two branches under this

model are not constant. At time t, the hazard ratio is given by

HR(t)

HL(t)
=

θ1θ2

θ1 + (θ2 − θ1)YL(t)

which depends on θ1, θ2andYL(t)

θ1, θ2 are constants.

If θ2 > θ1, the ratio is monotonically increasing.

If θ1 > θ2, the ratio is monotonically decreasing.

θ1 = lim
t↓0

HR(t)

HL(t)

which can be interpreted as short term hazard ratio.

θ2 = lim
t↑τ0

HR(t)

HL(t)

which can be interpreted as long term hazard ratio. The model contains proportional

hazard model corresponding to θ1 = θ2 and proportional odds model corresponding
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to θ2 = 1 as two submodels.

When θ1 = θ2, HR(t) = θ1HL(t)

When θ2 = 1, HR(t) = θ1
θ1+(θ2−θ1)YL(t)

HL(t). Various combinations of θ1 and θ2,

give different non proportional hazard patterns such as

θ1 = 1 for no initial effect.

θ1 < 1 and θ2 > 1 or θ1 > 1 and θ2 < 1 for crossing survival functions. A χ2 test

using the two estimating functions of the right and left branches is used to test the

hypothesis of significant difference Yang and Prentice (2010).

In the process of analysing BRSF using different splitting rules, we only worked

with three different splitting rules which are logrank, logrank score and Bs.gradient

splitting rules. The survival tree estimators are as in section 3.2.3

Following variable selection with RSF using 3 different splitting rules, the re-

spective selected variables were subjected to variable predicton.

3.3.6 Prediction of Child Mortality

In the previous section, variables selected using RSF were fitted in Cox PH model

for prediction. Some of the variables that did not satisfy the assumption were

removed from the model. This could lead to removal of highly predictive variables

in the model. In this section, we worked with the Cox-Aalen’s model which is an

appropriate alternative to the Cox PH model when PH assumptions are violated.

COX-Aalen’s Model

In the Cox PH model, the effect of covariates is assumed to act multiplicatively on

the baseline hazard rate and the ratio of the hazards is constant over time. When

the PH assumption is not satisfied, the Cox model can lead to biased results. In

some datasets, some of the covariate effects may be constant while others may not
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be constant. In such situations, the Cox Aalen model which combines the two types

of covariates in the same model is a better alternative.

The Cox-Aalen regression model proposed by Scheike and Zhang (2002) is a

combination of additive and multiplicative model. In this model, the covariates are

partitioned into two parts in which some act additively on the intensity while others

work multiplicatively. The model is defined by,

h(t\x) = Y (t)[X(t)Tα(t)]exp(Z(t)T )β (3.19)

where

Y (t) is the indicator of the risk,

X(t) is the additive non parametric time varying covariate,

Z(t) are the covariates with constant multiplicative effects,

α(t) is a (p× 1) vector of time varying regression coefficients, and

β is a (q × 1) vector of relative risk regression coefficients.

X((t)andZ(t)) are (p+ q)× 1 vectors of covariates.

Fitting the selected variables in the Cox Aalen’s model resulted to 3 different

sets of determinants of U5CM. Model selection using concordance index was done

as in section 3.2.5 to evaluate the models.
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3.4 Developing an Improved Balanced Random

Survival Forest (IBRSF ) Algorithm for Right

Censored Data in Situations where PH As-

sumptions are Violated.

In this section we develop an IBRSF model for highly imbalanced right censored

data in situations where PH assumption is violated. We came up with a unified

model for data balancing, variable selection and survival analysis. The model follows

a three stage progression to establish the determinants of U5CM.

3.4.1 Data Balancing Stage

The first stage involves data balancing using under sampling method which was

found to do well among the data level balancing techniques. Data balancing is

covered in section 3.2.2.

3.4.2 Variable Selection and Prediction Stages

The dataset in use is associated with 757 variables after data cleaning which are can-

didate determinants of U5CM. There is therefore need for proper variable selection

exercise in order to identify the correct set of variables to use for survival analysis.

All the 757 available variables were used in the selection process. The balanced data

is integrated with the RSF algorithm in the variable selection stage. This serves as

a good starting point for identification of potential predictors from a dataset with a

large number of variables. In the RSF algorithm, BS.gradient splitting rule is used

for splitting the nodes. Using RSF VIMP, the most predictive variables were se-

lected. These are the variables with importance level greater than of equal to 0.002.
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The variables selected during the variable selection stage are then subjected to RSF

VIMP a second time for identification of determinants of U5CM. In application of

the RSF algorithm the node splitting process and survival tree estimators was done

as in sections 3.2.3 and 3.2.3 respectively. We also constructed confidence intervals

using sub-sampling approach proposed by Ishwaran and Lu (2019) for the important

variables selected in the final stage.

3.4.3 Calculation of Variable Importance (VIMP)

The most commonly used measure of importance is known as permutation impor-

tance. This measure assumes a prediction based perspective by using prediction

error on account of the variable. It estimates error by making use of OOB cases. To

calculate VIMP, all values of the jth variable are randomly permuted in the OOB

cases for a tree. The new covariate value is put down the tree and a new internal

error rate computed. The importance for the jth variable in the tree is given by

the difference between the new error and the original OOB. VIMP is then got by

averaging over the forest. Given the learning data

L = (X1, Y1), ..., (Xn, Yn) (3.20)

where Y is the response and X a set of p-dimensional predictor variables. We need

to estimate the function h(x) of the response given X = x

Tree VIMP

Let L∗(θm) be the mth bootstrap sample and L∗∗(θm) be the correspondin OOB data.

We can write X = (X(1), ..., X(j)..., X(p)) where X(j) is the jth variable coordinate.

Denote the permuted value of the jth coordinate of X by X̂(j) Substituting this

into the jth cordinate of X gives X̂(j) = (X(1), ..., X(j−1), X̂(j), X(j+1)..., X(p)) The
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difference between the prediction error under the original X and the permuted X̂(j)

results in the tree Vimp. Suppose we denote the Vimp for X(j) for the mth tree by

I(X(j), θm, L), Then,

I(X(j), θm, L) =

∑
i∈L∗∗(θm) l(Yi, h(X̂j

i , θm, L)∑
i∈L∗∗(θm) I

−
∑

i∈L∗∗(θm) l(Yi, h(Xi, θm, L)∑
i∈L∗∗(θm) I

(3.21)

This can be written as

I(X(j), θm, L) =
1

N(θm)

∑
i∈L∗∗(θm)

[l(Yi, h(X̂j
i , θm, L))− l(Yi, h(Xi), θm, L)] (3.22)

Forest VIMP

Averaging the tree VIMP over the forest results in VIMP which is given as

I(X(j), θ1, ..., θm, L) =
1

M

M∑
m=1

I(X(j), θm, L) (3.23)

A 100(1− α) confidence region for the true VIMP can be defined as

θ̂(j)
n ±

α

2

√
ˆ
v

(j)
n (3.24)

where Zα
2

is the 1− α
2

quantile from a standard normal,Pr[N(0, 1) ≤ Zα
2
] = 1− α

2

3.4.4 IBRSF Algorithm

1. The procedure starts with data balancing using under sampling method to

make the mortality and non mortality classes approximately equal. The bal-

anced data is then subjected to the tree growing process.

2. ntree bootstrap samples are randomly drawn from the balanced dataset. From

each bootstrap sample a mean of 37% of the data called out of bag (OOB)
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data is set aside with respect to the bootstrap sample. Each bootstrap sample

has R covariates.

3. For each of the drawn samples, a survival tree is grown. Construction of

survival tree begins with randomly selecting mtry out of R possible predictors

in x for splitting on. The value of mtry depends on the number of available

predictors and is data specific. All the ntree bootstrap samples are designated

to the root (top most) node of the tree. The root node is then split into

two daughter nodes each of which is recursively split progressively maximizing

survival differences between daughter nodes. Bs.gradient splitting rule is used

to split the node.

4. Trees are grown to full size until no new daughter nodes can be formed due to

the stopping criterion that the end node should have larger than or equal to

nodesize unique events.

5. For each grown tree, compute the cumulative hazard function (CHF ). Cal-

culate the mean over all CHFs for the ntree trees to attain the ensemble

CHF .

6. By using out-of-bag (OOB) data only, calculate the ensemble out of bag error

using the first b trees, where b = 1, ..., ntree.



Chapter 4

RESULTS

4.1 Introduction

This chapter presents the findings of our research which include; the outcome of

balancing, the resulting important variables after variable selection and the resulting

predictors of U5CM.

4.2 Results for Analysis of BRSF using Different

Balancing Methods.

4.2.1 Data Balancing using Different Balancing Schemes

The Nairobi region dataset consisted 757 variables and 532 observations. This data

set was found to be highly imbalanced with 498 majority instances and 34 minority

instances as demonstrated in table 3.5. The dataset was successfully balanced using

four different balancing methods. The result of balancing the mortality and non

mortality classes using different balancing methods in the region are shown in table

65
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4.1.

Table 4.1: Balanced Nairobi Region data with Different Balancing Methods

Balancing method Status Total Percentage
Under-samplig Censored 34 50%

Uncensored 34 50%
Total 68 100%

Over-samplig Censored 498 50%
Uncensored 498 50%

Total 996 100%
Both-samplig Censored 520 52%

Uncensored 480 48%
Total 1000 100%

SMOTE Censored 68 50%
Uncensored 68 50%

Total 136 100%

From table 4.1 the datasets are balanced with the mortality and non mortal-

ity classes having equal or approximately equal representation. Different balancing

methods resulted in different sample sizes. In oversampling technique, the minority

class was oversampled until the number of minority instances became equal to the

number of majority instances which is 498. This resulted to a total of 996 observa-

tions in the sample. Similarly, in under-sampling method, instances were randomly

removed from the majority class until the total number of observations in the major-

ity class became 34 instances. This led to a sample with 68 observations in total. In

both-sampling method, both over-sampling and under-sampling on the imbalanced

data took place. In this case, over-sampling with replacement was conducted on

the minority class while under-sampling without replacement was performed on the

majority class. From this combination, we expect cases of repeated observations

due to over-sampling and removal of some information from the original data due to

under-sampling. SMOTE balancing involved doubling of the minority cases while

the majority class were halved. This was done by use of some parameters which led

to complete balance of the data set.

Balancing of the overall dataset resulted to balance in the covariates. The results

of data balance in some of the covariates is shown in table 4.2 and 4.3. These

covariates includes education level and child sex. The graphs showing balance within
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the covariates are shown in the appendices in section D.

Table 4.2: Balanced Nairobi Region data grouped by Education Level

Balancing method Status Higher No education Primary Secondary Sum
Under-samplig Censored 6 1 17 10 34

Uncensored 8 0 13 13 34
Sum 14 1 30 23 68

Over-samplig Censored 102 7 203 186 498
Uncensored 131 0 172 195 498

Sum 233 7 375 381 996
Both-samplig Censored 74 11 232 203 520

Uncensored 117 0 195 168 480
Sum 191 11 427 371 1000

SMOTE Censored 14 0 30 24 68
Uncensored 11 0 29 28 68

Sum 25 0 59 52 136

Table 4.3: Balanced Nairobi Region data grouped by child sex.

Balancing method Status Female Male Sum
Under-sampling Censored 17 17 34

Uncensored 17 17 34
Sum 34 34 68

Over-sampling Censored 254 244 498
Uncensored 242 256 498

Sum 496 500 996
Both-sampling Censored 275 245 520

Uncensored 248 232 480
Sum 523 477 1000

SMOTE Censored 28 40 68
Uncensored 33 35 68

Sum 61 75 136

From these tables and graphs, class balance is evident in the overall data as well

as in the covariates. This gives almost an equal representation of the data classes.

More importantly, the mortality class does not suffer lack of information and bias.

4.2.2 Results of Variable Selection using RSF after Balanc-

ing with Different Balancing Methods

The balanced datasets were then analyzed using RSF algorithm for variable selec-

tion. The results of application of the RSF algorithm using balanced data are given

in the table 4.4.The graphs of the OOB error rates are also given in figures 4.1, 4.2,

4.3 and 4.4
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Table 4.4: Application of RSF in Balanced datasets.

Description Under-sampling Over-sampling Both-sampling SMOTE

Sample size 68 996 1000 136
No. of deaths 34 498 480 68
Number of trees 1000 1000 1000 1000
Forest terminal node size 15 15 15 15
Average no. of terminal nodes 2.49 20.294 20.117 5.232
No. of variables tried at each split 28 28 28 28
Total no. of variables 757 757 757 757
Resample size used to grow trees 43 629 632 86
No. of random split points 10 10 10 10
Error rate 13.27% 7.33% 7.69% 9.12%
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Figure 4.1: Under-sampling BRSF Nairobi error rate

For each of the four balanced dataset, a forest of 1000 trees was grown. This

was done by drawing 1000 bootstrap samples from the respective initial data with

the sample sizes given in table 4.4. The size of each bootstrap sample drawn is

given as re-sample size used to grow trees in table 4.4. The bootstrap samples are

of different sizes depending on the sample size of the initial data and the balancing

method used. Each of the 1000 bootstrap samples is designated to the root of the

tree. To develop each tree, 28 out of the 757 possible predictors were selected at

random for splitting. The root node is then split into two daughter nodes each

of which is recursively split progressively maximizing survival difference between

daughter nodes. Node splitting continues until each tree if fully grown. This is



69

0 200 400 600 800 1000

0
.1

0
0

.1
2

0
.1

4
0

.1
6

0
.1

8

Number of Trees

E
rr

o
r 

ra
te

 

V527V127V167V122H40MS433AV322V414FV717V406V015V044V136V166V237V3A00CV3A00WV3A08EV3A08PV410V414PV463FV474BV481CV532V741B4M3IM42DM55AM55XM57PH11H12SH15AH21AH32JH32ZH37KH44CML13DML13ZML19BS307AS937AHS937BES945CAS1003EFS1008ES1208FS408AS433BS937BWH9V213V3A07V012M18V128S613CV446V469EM11H3DV530H7S715ABV702V316IDX94V437V445V190H9YHW3M4V376

0.000 0.010 0.020 0.030

Variable Importance 

Figure 4.2: SMOTE BRSF Nairobi error rate
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Figure 4.3: Both-sampling BRSF Nairobi error rate

achieved when the most extreme node has no fewer than 15 unique events. This

implies that the samples with bigger number of events will form bigger trees. Hence,

the more the number of events, the bigger the average number of terminal nodes

and the smaller is the error rate. Over-sampling method with the biggest number



70

0 200 400 600 800 1000

0
.0

6
7

0
.0

6
8

0
.0

6
9

0
.0

7
0

0
.0

7
1

0
.0

7
2

0
.0

7
3

Number of Trees

E
rr

o
r 

ra
te

 

V415V024V225V3A04V3A08LV409V464V474XV744EM27M55AM55XH10H12SH15DH32CH32WH37MML13DML16AML19XS937AES945BS1003EGS1208CS104S433DV3A00TV739V481BV503S433AV474BV732V158V367M2BV633BV139S1003AV743DH32YV404V481DV155V632M57MV474AS715AAV226S937ADH31EH3V477V616V030V010M61V012V242V002V241H8V312V444B11H3MH9MM6V220H9DH2MH5YM5V219M1EV214

0.000 0.005 0.010 0.015 0.020 0.025 0.030

Variable Importance 

Figure 4.4: Oversampling BRSF Nairobi error rate

of events had the biggest average number of terminal nodes and smallest error rate

while under-sampling method with the smallest number of events had the smallest

average number of terminal nodes and highest error rate. Even though the sample

sizes are different, the number of variables in the four samples is the same. This

explains why the number of variables tried at each split and the numbers of random

split points are equal in the four samples.

The selected variables based on balanced random survival forest (BRSF ) us-

ing the different balancing methods are presented in table 4.5. From the Random

Survival Forests, function vimp() extracts variable importance (VIMP) information

Ishwaran (2007). Using VIMP, we were able to identify the importance of the various

variables in the different datasets as shown in table 4.5.

The KDHS dataset has a total of 1099 variables that are possible candidates

for predicting child mortality. After some data management exercise, the number of

candidate covariates reduced to 757 possible covariates. Before fitting a regression

type model in order to embark on the exercise of determining child mortality pre-

dictors, we needed to do a variable selection exercise in order to further reduce the
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Table 4.5: Important Variables using Different Balancing Methods.

Balancing method
Undersampling Over sampling Both sampling SMOTE
Var Importance Var Importance Var Importance Var Importance

1 B7 0.0263 B7 0.0255 B7 0.0201 B7 0.0294
2 B12 0.0141 HW70 0.0147 HW70 0.0112 HW73 0.0104
3 HW70 0.0075 HW71 0.0129 HW72 0.0107 HW72 0.0089
4 HW72 0.0062 HW72 0.0113 HW71 0.0102 HW71 0.0088
5 HW73 0.0055 HW73 0.0108 HW73 0.0096 HW70 0.0053
6 B8 0.0053 V206 0.0082 B12 0.0083 V206 0.0043
7 B16 0.0047 B12 0.0081 V206 0.0061 B12 0.0040
8 V219 0.0045 V214 0.0063 V214 0.0050 V376 0.0039
9 HW71 0.0044 B8 0.0051 V231 0.0040 V214 0.0034
10 V206 0.0041 B16 0.0048 V207 0.0039 M19A 0.0021
11 V220 0.0033 M19A 0.0045 B16 0.0039 HW7 0.0014
12 M1E 0.0031 V376 0.0042 B8 0.0039
13 H3Y 0.0027 B6 0.0040 M19A 0.0032
14 H9Y 0.0025 HW12 0.0038 M1E 0.0031
15 V207 0.0020 HW7 0.0033 B6 0.0030
16 HW3 0.0031 HW11 0.0029
17 M1E 0.0031 V218 0.0028
18 HW11 0.0030 V417 0.0025
19 V218 0.0030 V219 0.0024
20 H4M 0.0028 HW6 0.0024
21 HW5 0.0026 B1 0.0024
22 V207 0.0026 V506 0.0023
23 HW10 0.0026 V3A07 0.0023
24 V418 0.0026 V220 0.0022
25 V219 0.0025 HW10 0.0022
26 HW9 0.0025 HW1 0.0022
27 HW6 0.0025 H4M 0.0022
28 V419 0.0025 HW5 0.0021
29 V506 0.0024 HW9 0.0021
30 V231 0.0024 V478 0.0021
31 HW18 0.0024 M4 0.0021
32 V230 0.0023 V469F 0.0020
33 V3A07 0.0023 V208 0.0020
34 M5 0.0023 V376 0.0020
35 V417 0.0022 HW18 0.0020
36 M4 0.0022
37 HW4 0.0022
38 HW1 0.0021
39 HW8 0.0020

variables of importance. A combination of data cleaning and Random Survival For-

est technique resulted into a reduced set of utmost 39 covariates for the regression

steps that shall follow.

The extracted variables are shown in table 4.5.They are arranged in ascending

order of importance in the respective datasets. The bigger the importance value,
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the higher the predictive ability of the variable. Variables with V IMP exceeding

0.002 were considered predictive. From table 4.5, over-sampling and both-sampling

methods which had the highest number of events (498 and 480 events respectively),

extracted the highest number of important predictors (39 and 35 predictors respec-

tively). On the other hand, under-sampling and SMOTE models with fewer number

of events (34 and 68 events respectively) extracted the fewer number of predictors

(15 and 11 predictors respectively).

4.2.3 Determination of Variable Effects

The effect of the selected variables on child mortality was measured by fitting the

variables in Cox PH model which assess simultaneously the effect of several risk fac-

tors on survival time. One of the requirements of the cox model is that the covariate

effect is proportional over time. Therefore, before the predictors are fitted in the

Cox model, PH assumptions were tested. To validate PH assumption, Kaplan Meir

curves and schoenfeld residuals were used and the results are shown in figures E.29

and E.17. Since schoenfeld residuals are independent of time, violation of the PH as-

sumption is suspected when the Schoenfeld residual plot presents a relationship with

time. However a Schoenfeld residual may fail to guarantee sufficient evidence due to

lack of statistical hypothesis testing process Junyong and Dong (2019). Statistical

tests were therefore conducted to validate the assumptions.

Testing Cox Proportional Hazards (PH) Assumptions.

Table 4.6 displays the results of testing proportional hazards assumption for the

different important variables from the four different balancing methods. The global

test gives a general picture of proportional hazards violations among the variables

in the model. A p.value < 0.05 in the global test suggests one or more violations.

From table 4.6, the global p.value from all the models had a p.value < 0.05 showing
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statistical significance. This is an implication that all models had one or more

variables violating the PH assumption. Similarly, a good number of variables from

each model had a p value less than 0.05. In under-sampling model for example,

3 variables violated the assumption while in both-sampling method, almost all the

variables (17) violated the assumption as shown in the table 4.6.

Table 4.6: Statistical tests.

Under-sampling SMOTE
Variable rho chisquare P-value Variable rho chisquare P-value

V206 0.1953 1.0421 0.307 B7 0.6167 80.1502 3.47e− 19
V207 -0.1144 0.2972 0.586 B12 -0.3528 12.6505 0.0004
V219 -0.1862 1.0546 0.304 HW70 0.1312 2.8738 0.0900
B8 -0.1492 0.2627 0.608 HW71 -0.2377 8.1717 0.00426
B12 -0.3266 6.3360 0.0118 HW72 0.2241 8.1670 0.00427

HW70 -0.0795 0.4568 0.499 HW73 -0.0886 1.3810 0.240
HW71 -0.1491 1.2483 0.264 V206 -0.0157 0.0247 0.875
HW72 0.2499 3.4646 0.0627 V214 -0.3799 19.0250 1.29e− 05
HW73 0.0462 0.1168 0.733 Global NA 96.4291 2.29e− 17
M1E 0.2448 3.8905 0.0486
H9Y 0.0106 0.0019 0.965
H3Y 0.0791 0.1105 0.740
B7 0.5807 25.0266 5.65e−07

Global NA 43.9004 3.19e−05

Over-sampling Both-sampling
Variable rho chisquare P-value Variable rho chisquare P-value

B7 0.6785 507 2.69e−112 B1 -0.1924 20.176 7.06e−06

B8 -0.2200 7.31 0.00686 B7 0.6318 561.967 3.14e−124

B12 -0.3444 85.8 1.98e−20 B8 -0.3470 25.269 4.99e−07

V206 -0.0745 1.57 0.210 B12 -0.3457 75.486 3.68e−18

V207 -0.2781 24.6 7.04e−07 HW70 0.1326 19.143 1.21e−05

V214 -0.3022 5.44 1.60e−13 HW71 -0.2198 49.115 2.41e−12

V218 0.0106 0.0689 0.7931 HW72 0.1954 33.532 7.01e−09

V219 -0.0654 2.56 0.110 HW73 -0.1342 14.081 1.75e−04

V230 0.0470 0.992 0.319 V206 -0.1316 8.118 0.00438
V417 0.0004 8.48e−05 0.993 V207 -0.2350 18.797 1.45e−05

HW70 0.0702 4.95 0.0262 V208 0.0979 6.295 0.0121
HW71 -0.2362 54.0 1.96e−13 V214 -0.2392 31.429 2.07e−08

HW72 0.2059 38.6 5.22e−10 V218 -0.1359 16.527 4.80e−05

HW73 -0.0128 0.138 0.710 V219 0.0932 7.072 7.83e−03

HW1 0.1556 3.97 0.0463 V478 -0.0517 1.453 0.228
HW18 -0.2073 3.77 0.0521 V506 -0.2090 19.400 1.06e−05

H4M -0.0435 0.116 0.733 HW1 0.2593 15.270 9.32e−05

M1E 0.2487 43.7 3.86e−11 HW18 -0.0572 0.447 0.504
Global NA 698 1.55e−136 M1E 0.2671 42.597 6.72e−11

Global NA 731.214 8.67e−143

For variables that did not satisfy the PH assumption, interaction with time,

functions of time or time varying covariate was included. Variables that finally did



74

not satisfy the assumption were deleted from the model. After the exercise, the

variables that remained for use in Cox PH model for prediction are shown in table

4.7.

Table 4.7: Statistical tests after removal and interaction of violating variables.

Undersampling SMOTE
Variable rho chisquare P-value Variable rho chisquare P-value

V206 0.1376 0.6315 0.427 B12 -0.2063 4.2168 0.0400
V207 0.1554 0.4991 0.480 HW70 0.1173 2.3004 0.1293
V219 -0.2325 1.8569 0.173 HW71 0.1272 2.2532 0.1333
B8 -0.1602 1.2131 0.271 HW72 0.0207 0.0560 0.8129

log(B12 + 1) -0.1841 1.9335 0.164 HW73 -0.0172 0.0508 0.8217
HW70 -0.0044 0.0015 0.969 V206 0.0378 0.1455 0.7029
HW71 -0.1139 0.7760 0.378 V214 -0.1854 3.4545 0.0631
HW72 0.0476 0.1319 0.716 Global NA 14.7385 0.0395
HW73 0.0799 0.4599 0.498
H9Y -0.0864 0.1506 0.698
H3Y 0.0896 0.1105 0.678

B8:M1E 0.1582 1.1827 .0277
Global NA 12.5046 0.406

Oversampling Both sampling
Variable rho chisquare P-value Variable rho chisquare P-value
HW72 -0.1667 0.9343 0.334 V206 0.1428 7.085 0.0078
H4M -0.0355 0.0474 0.828 V207 0.2041 9.834 0.0017

B1:V206 -0.0248 0.2277 0.633 V208 -0.0747 2.648 0.1037
Global NA 1.0825 0.781 B1:HW70 0.0939 0.938 0.3328

Global NA 13.268 0.0099

Parameter Estimates

From the previous section, we note that the different balancing methods yielded

different sample sizes and different predictors from the RSF classification. After

diagnostic tests on Cox PH models, the respective predictors were fitted to the

parsimonious Cox PH model in order to check concurrently the effect of different

risk factors on survival time. The results of fitting variables in Cox PH model are

given in table 4.8

From table 4.8, the regression coefficient column marked ”Coef ” gives estimates

of the logarithm of the hazard ratio between the two groups. From the estimates, a

positive coefficient is said to increase the risk of death (hazard) and thus decrease
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Table 4.8: BRSF Cox ph model predictors.

Undersampling SMOTE
Var coef E(coef) Se(coef) P-value Var coef E(coef) Se(coef) P-value

V206 2.1030 8.187 0.4348 1.3e−6 B12 -0.1178 0.8889 0.0234 4.6e−7

V207 1.4770 4.378 0.4120 0.0003 HW70 0.0017 1.0017 0.0011 0.1019
V219 -0.2018 0.8173 0.2246 0.3688 HW71 -0.0002 0.9998 0.0010 0.8179
B8 -16.34 8.0e−8 14.70 0.2663 HW72 0.0026 1.0026 0.0008 0.0007

log(B12) -1.198 0.3017 0.6671 0.0725 HW73 -0.0039 0.9960 0.0010 9.8e−5

HW70 -1.3e−5 1.000 0.0014 0.9926 V206 0.08385 2.3129 0.2877 0.0036
HW71 -0.0003 0.9997 0.0012 0.7917 V214 -1.3991 0.2466 0.2696 2.1e−7

HW72 0.0022 1.002 0.0011 0.0383
HW73 -0.0016 0.9984 0.0011 0.1521
H9Y -0.209 0.8109 0.8245 0.7992
H3Y -0.359 0.6983 0.7951 0.6515

B8:M1E 0.0114 1.011 0.0109 0.2971
Oversampling Both sampling

Var coef E(coef) Se(coef) P-value Var coef E(coef) Se(coef) P-value
HW72 0.0001 1.000 2.2e−5 4.4e−9 V206 1.675 5.338 0.0834 < 2e−16

H4M 0.0244 1.025 0.0212 0.25 V207 1.439 4.251 0.0725 < 2e−16

B1:V206 0.1864 1.205 0.0116 < 2e−16 V208 0.4126 1.5111 0.0799 2.4e−16

B1:HW71 1.5e−5 1.000 4.9e−6 0.0017

the expected (average) survival time. On the other hand, a negative coefficient re-

duces the risk of death and thus raises the expected survival span. In explaining

the determinants of child mortality, one therefore is interested in the variables with

positive coefficient, which are positively related with the event (mortality) proba-

bility, and consequently negatively related with the length of survival. From table

4.8, under-sampling method resulted in 4 predictors, which are likely to increase the

risk of death. Similarly, SMOTE returned 3 predictors that are likely to increase

the risk of death. Over-sampling and both-sampling method had 3 and 4 predictors

respectively all of which had positive coefficients.

Its often useful for interpretation to look at the ”E(coef) ” column, which in-

dicates the actual hazard ratio (HR) associated with the covariates. A value of

regression coefficient greater than zero is equivalent to a hazard ratio greater than

one, which shows that as the value of the ith predictor increases (for continuous type

covariates), the event hazard increases and thus the length of survival decreases.

From table 4.8 for example, variable V206, in under-sampling method resulted

in (coefficient) = exp(2.1030) = 8.187. The HR value which is clearly greater

than 1 implies that variable V206 increases the hazard by a factor 8.187. This is

deduced from the fact that a predictor is related with increased risk when the value
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of HR > 1, and decreased risk when HR < 1. When the HR value is close to 1,

the predictor has no impact on survival. From our results, there are 3 predictors

in under-sampling method associated with increased risk. These are V206, V207

and HW72. In a similar way,3,4 and 3 predictors in over-sampling, both sampling

and SMOTE respectively are associated with increased risk. (refer to Table 4.8).

The column marked p − value gives the value of the Wald statistic. Wald statistic

evaluates whether the explanatory variables in a model are significant. A variable

is said to be statistically significant when its p.value is less than 0.05.

From the predictors got from the Cox model, we are interested in the relationship

between death which is the event of interest and the resulting predictors x1, x2, ..., xn.

The resulting specific Cox model for the respective groups are;

Hx(t) = h0(t)exp(2.1030 ∗ V 206 + 1.4770 ∗ V 207− 0.2018 ∗ V 219− 16.34 ∗B8

−1.198 ∗ log(B12)...+ 0.0114 ∗B8 : M1E

for under-sampling model and the same case applies to the other models. It is

important to note that quite a number of variables did not go through the prediction

stage since they did not satisfy the PH assumptions.

4.2.4 Concordance Measure of Model Fit

The concordance statistic was used to analyze the performance of the models on

prediction of mortality.

High values of concordance indicate that for higher observed survival duration,

the model predicts higher probabilities of survival. Concordance values ranges from

0 to 1. A perfect Concordance results in a value of 1 while 0.5 is as good as random

guessing. All our models gave high concordance values above 0.7 with standard

errors less than 0.02. Hence all the models represent a good fit according to the
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Table 4.9: Model fit statistics: Concordance measure.

Description Under-sampling Over-sampling Both-sampling SMOTE
Sample size 68 996 1000 136
Concordance 0.9048 0.781 0.8768 0.8596
Standard error 0.0269 0.0121 0.0086 0.0222
Discordant 1378 248084 277577 5492
Concordant 145 69549 38998 897
Tied.x 0 0 0 0
Tied.y 158 33849 30686 329
Tied.xy 0 3621 3438 1

concordance Index. Under-sampling method gives the largest concordance value of

0.90 indicating the best model fit while over-sampling had the smallest concordance

value of 0.78. SMOTE and both-sampling methods have concordance values of 0.86

and 0.87 respectively. According to these results, under-sampling model gave the

best fit.

4.3 Results for Analysis of BRSF using Different

Splitting Methods.

In this section, we present the results of analysing data balanced using under-

sampling method while growing trees using different splitting methods. The dataset

was explored and found to have variables that violated the PH assumption.

4.3.1 Results for Application of BRSF in Different Splitting

Rules.

Random survival forest was used to analyse this data set. Using the randomForest-

SRC package, the following results were obtained. Table 4.10 shows the results of

applying the RSF algorithm in the dataset while figures 4.5, 4.6 and 4.7 show the

OOB error rates.
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Figure 4.5: Under-sampling BRSF Nairobi log-rank error rate
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Figure 4.6: Under-sampling BRSF Nairobi log-rank score error rate

From the RSF output, a forest of 1000 trees was generated. This was done by

randomly selecting 1000 bootstrap samples from the initial dataset. These bootstrap

samples are designated to the root of the trees in the respective models. The dataset

consisted of 757 variables and 68 observations. Out of the 68 observations, 34 were

censored and 34 had acquired an event. According to the results in table 4.10, most

of the output in various descriptions is the same since we used the same balanced
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Figure 4.7: Under-sampling BRSF Nairobi Bs.gradient error rate

Table 4.10: Application of RSF in different splitting rules.

Description Logrank Logrank score Bs.gradient
Sample size 68 68 68
No. of deaths 34 34 34
Number of trees 1000 1000 1000
Forest terminal node size 15 15 15
Average no. of terminal nodes 2.49 3.367 2.488
No. of variables tried at each split 28 28 28
Total no. of variables 757 757 757
Resample size used to grow trees 43 43 43
No. of random split points 10 10 10
Error rate 13.27% 26.47% 14.46%

dataset with equal number of covariates. The only difference observed is in the

error rate and average number of terminal nodes. This difference is most likely

brought about by the different splitting rules used. Log-rank splitting rule splits

the nodes with greater accuracy returning an OOB error rate of 13.27% followed

by Bs.gradient rule while Log-rank score yielded the highest error rate of 26.47%.

Each tree is considered fully grown when each terminal node has no fewer than 15

unique events. From the average number of terminal nodes which were generated,

Bs.gradient produced the least followed by log-rank test while log-rank score had the

most number of terminal nodes. The selected variables based on BRSF are presented
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in table 4.11.

Important Variables using Different Splitting Rule.

Table 4.11: Important Variables using Different Splitting Rule.

Split rule
Log-rank Log-rank score BS.gradient

Variable Importance Variable Importance Variable Importance
1 B7 0.0263 HW71 0.0038 B7 0.0180
2 B12 0.0141 B16 0.0033 HW73 0.0072
3 HW70 0.0075 H5Y 0.0031 HW72 0.0069
4 HW72 0.0062 HW70 0.0030 B12 0.0061
5 HW73 0.0055 B12 0.0026 HW70 0.0060
6 B8 0.0053 H6Y 0.0025 B8 0.0055
7 B16 0.0047 H2Y 0.0024 HW71 0.0050
8 V219 0.0045 M6 0.0023 V219 0.0047
9 HW71 0.0044 H4Y 0.0023 B16 0.0046
10 V206 0.0041 H3Y 0.0023 V506 0.0039
11 V220 0.0033 H8Y 0.0020 H9Y 0.0032
12 M1E 0.0031 ML1 0.0020 H7Y 0.0029
13 H3Y 0.0027 V626 0.0020 V321 0.0026
14 H9Y 0.0025 V218 0.0020 H5Y 0.0025
15 V207 0.0020 V220 0.0024
16 V3A07 0.0023
17 V214 0.0023
18 V207 0.0022

Table 4.11 shows the result of variable selection using the same dataset with

different splitting rules. Variables with importance value above 0.002 are considered

predictive according to Ishwaran et al. (2008). The different splitting rules led to

extraction of different number of predictive variables. 18 variables were selected

as predictive for U5CM based on Bs.gradient methods, 14 based on log-rank score

while log-rank splitting rule resulted to 15 predictive variables. It is also seen that

most of the extracted predictors using log-rank and Bs.gradient methods are similar.

However, the importance measure of these variables are slightly different in the

models.
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4.3.2 Parameter Estimates

The extracted important variables were initially fitted to a Cox regression model

and results presented in table 4.12.

Table 4.12: BRSF Cox ph model predictors for different splitting rules .

Logrank Logrank score
Var coef E(coef) Se(coef) P-value Var coef E(coef) Se(coef) P-value
B7 -0.1561 0.8554 0.0589 0.0081 B12 -0.1016 0.9033 0.0276 0.0002
B8 -1.1113 0.3291 0.5771 0.0541 HW70 -0.0012 0.9988 0.0011 0.2835
B12 -0.0161 0.9840 0.0348 0.6450 HW71 0.0012 1.0012 0.0011 0.3034

HW70 -0.0010 0.9989 0.0013 0.4641 V218 -0.6343 0.5303 0.2218 0.0042
HW71 0.0008 1.0008 0.0012 0.4869 H2Y 2.2652 9.6328 1.1337 0.0457
HW72 0.0019 1.0019 0.0010 00517 H3Y -0.2564 0.7738 1.8227 0.8881
HW73 -0.0015 0.9985 0.0009 0.1284 H4Y -1.2277 0.2929 1.6461 0.4558
V206 2.0731 7.9490 0.4044 2.95e−7 H5Y 1.7696 5.8682 1.6285 0.2772
V207 1.6683 5.3034 0.4317 0.0001 H6Y -3.3369 0.0355 1.9417 0.0857
V219 -0.2936 0.7456 0.2184 0.1789 H8Y 1.5015 4.4884 1.0579 0.1558
M1E 0.0164 1.0165 0.0280 0.5584 ML1 0.5677 1.7642 0.2723 0.0371
H3Y -0.2797 0.7560 0.7231 0.6989
H9Y -0.2311 0.7937 0.7495 0.7579

Bs.gradient
Var coef E(coef) Se(coef) P-value
B7 -0.1124 0.8937 0.0514 0.0287
B8 -0.7243 0.4846 0.5041 0.1508
B12 -0.0281 0.9723 0.0332 0.3968

HW70 -0.0014 0.9985 0.0012 0.2353
HW71 0.0013 1.0013 0.0013 0.3291
HW72 0.0011 1.0011 0.0011 0.3410
HW73 -0.0008 0.9992 0.0009 0.4121
V207 0.6904 1.9945 0.3385 0.0414
V214 -0.4302 0.6504 0.2736 0.1158
V219 -0.4122 0.6622 0.2647 0.1194
V321 -0.0567 0.9449 0.0362 0.1171
H5Y 1.4966 4.4664 1.6199 0.3555
H7Y -1.8359 0.1595 1.6952 0.2788
H9Y 0.0634 1.0655 0.5892 0.9143

However, proportionality of covariate effect is not satisfied for some of the vari-

ables according to statistical tests as shown in table 4.13. The global test gives a

general picture of proportional hazards violations among the variables in the model.

A p-value < 0.05 suggests one or more violations. According to table 4.13, the

global test in log-rank and Bs.gradient models indicates violation of PH assumption

(p-value= 3.19e−5 and 0.0001). The variables that violated the PH assumption in

these models includes B7, B12 in both logrank and Bs.gradient models and M1E in

logrank model.

Since the assumption that the relative risks are constant over time did not hold

for all the variables, analyses that take into account time-varying effects is required.
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Table 4.13: Statistical tests.

Logrank Logrank score
Variable rho chisquare P-value Variable rho chisquare P-value

B7 0.5807 25.03 5.65e− 07 B12 -0.2683 2.72 0.0991
B8 -0.1492 0.2627 0.608 HW70 0.0587 0.297 0.5856
B12 -0.3266 6.3360 0.0118 HW71 -0.0643 0.352 0.5529

HW70 -0.0795 0.4568 0.499 V218 -0.2177 3.19 0.0743
HW71 -0.1491 1.2483 0.264 H2Y 0.1192 0.292 0.589
HW72 0.2499 3.4646 0.0627 H3Y 0.0841 0.329 0.5660
HW73 0.0462 0.1168 0.733 H4Y -0.0339 0.043 0.8358
V206 0.1953 1.0421 0.307 H5Y 0.1198 0.518 0.4717
V207 -0.1144 0.2972 0.586 H6Yl -0.2206 1.76 0.1841
V219 -0.1862 1.0546 0.304 H8Y 0.1929 0.581 0.4460
M1E 0.2448 3.8905 0.0486 ML1 -0.0004 2.96e−6 0.9986
H3Y 0.0791 0.1105 0.740 Global NA 11.4 0.4130
H9Y 0.0106 0.0019 0.965

Global NA 43.9004 3.19e−05

Bs.gradient
Variable rho chisquare P-value

B7 0.6730 28.78 8.12e−8

B8 0.0378 0.0182 0.893
B12 -0.3653 7.0356 0.00799

HW70 -0.0074 0.0037 0.952
HW71 -0.0531 0.2170 0.641
HW72 0.0512 0.1794 0.672
HW73 0.0108 0.0064 0.936
V207 0.0959 0.3536 0.552
V214 -0.0982 0.3273 0.567
V219 -0.1198 0.5868 0.444
V321 -0.059 0.1487 0.700
H5Y 0.0198 0.0136 0.907
H7Y 0.0530 0.0989 0.753
H9Y -0.2158 0.7076 0.400

Global NA 42.52 0.0001

In the previous section, variables that violated the PH assumption were interacted

with time varying covariates while others were removed from the model before fitting

in the cox PH model. To avoid removal of variables which could be predictors of

mortality, we worked with Cox-Aalen’s model in this section.

Cox-Aalen’s model proposed by Scheike and Zhang (2002) is one of the tools

for handling the problem of non-proportional effects in the Cox model. The model

provides a simple way of including time-varying covariate effects. The extracted im-

portant variables were therefore fitted to a Cox-Aalen’s model and results presented

in table 4.14.
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Table 4.14: Cox Aalen Model.

Logrank BS.gradient
Variable coef SE P-value Variable coef SE P-value

V206 1.8400 0.2990 3.47e− 10 V207 0.6750 0.2820 0.0129
V207 1.6000 0.3020 3.81e− 07 V214 -0.2250 0.1680 0.2840
V219 -0.3400 0.1890 0.0578 V219 -0.5000 0.2360 0.0208
B7 -0.1490 0.0884 0.0482 B7 -0.1170 0.0973 0.1410
B8 -0.7300 0.2320 0.0022 B8 -0.4480 0.1340 0.0170
B12 -0.0567 0.0393 0.0725 B12 -0.0519 0.0404 0.1150
M1E 0.0145 0.0313 0.503 HW70 0.0001 0.0015 0.954

HW70 -0.0004 0.0016 0.771 HW71 0.0019 0.0015 0.129
HW71 0.0019 0.0017 0.180 HW72 -0.0011 0.0025 0.589
HW72 -0.0003 0.0028 0.902 HW73 -0.0008 0.0014 0.535
HW73 -0.0012 0.0015 0.350

Logrank score
Variable coef SE P-value

V218 -0.7100 0.2890 0.0040
B12 -0.0874 0.0252 2.37e− 05
ML1 0.5330 0.1640 0.00821

HW70 -0.0013 0.0014 0.231
HW71 0.0013 0.0014 0.200

From this table, variables that turned to be statistically significant with p value

≤ 0.05 include V206 (Total number of sons who have died), V207 (Total number of

daughters who have died), B7 (Age at death of the child at completed months), and

B8 (Current age of the child in single years for all living children) in the logrank

mode, V207 (Total number of daughters who have died), V219 (Total number of

living children including current pregnancy),and B8 (Current age of the child in

single years for all living children) in Bs.gradient model and V218 (Total number of

living children), B12 (Succeeding birth interval) and ML1 (Times the mother took

SP/Fansidar during pregnancy) in the logrank score model.

4.3.3 Model Selection using Concordance Measure of Model

Fit.

To compare the different models, concordance index was used in order to determine

the effect of the various splitting methods and results shown in table 4.15.

According to the results in table 4.15, the three models resulted in good fit with
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Table 4.15: Concordance measure in different splitting rules.

Description Logrank Logrank score Bs.gradient
Sample size 68 68 68
Concordance 0.916 0.8536 0.8674
Standard error 0.0196 0.03306 0.02936
Discordant 1395 1300 1321
Concordant 128 223 202
Tied.x 0 0 0
Tied.y 158 158 158
Tied.xy 0 0 0

reference to the concordance index whereby all resulted in concordance above 0.79.

The log-rank test resulted to the best model fit with concordance of 0.92 followed by

Bs.gradient with a concordance of 0.86. Log-rank score had the lowest concordance

among the three models. As indicated earlier, the optimality of log-rank is achieved

when the model variables satisfy the PH assumptions. Hence in instances when the

PH assumption is violated, Bs.gradient is the better option.

4.4 Results for Development of an IBRSF when

PH Assumption is Violated.

In this section, we used the data balanced using under-sampling method. To arrive

at determinants of U5CM, two stages after data balancing were followed which

are variable selection and prediction stage. The results of variable selection and

prediction using IBRSF method are given in this section.

4.4.1 Application of IBRSF

The results for application of IBRSF are given in the table 4.16. From the table, a

sample of 68 observations was used from which half of them experienced the event

while the other half survived. There were 757 variables in the dataset. From this

dataset, a random forest of 1000 trees was grown as follows. 1000 bootstrap samples
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were randomly selected from the dataset and assigned to the root of each tree to be

grown. Each bootstrap sample had a total of 43 observations. From each bootstrap

sample, 28 variables were randomly selected for splitting. Bs.gradient splitting rule

was used to split the nodes. Using recursive partitioning of nodes, the trees were

grown to full size where the most extreme node had no less than 15 observations.

The average number of terminal nodes was 2.49 and the OOB error rate was 14.46%.

Table 4.16: Application of IBRSF in variable selection stage.

Description
Splitting rule Bs.gradient
Sample size 68
No. of deaths 34
Number of trees 1000
Forest terminal node size 15
Average no. of terminal nodes 2.49
No. of variables tried at each split 28
Total no. of variables 757
Resample size used to grow trees 43
No. of random split points 10
Error rate 14.46%

The graph for the OOB error rate is shown in figure 4.8
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Figure 4.8: Under-sampling Vimp for IBRSF BS.gradient error rate
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4.4.2 Variable Selection using VIMP

Table 4.17 gives the results for variables selected together with their importance

measure. After performing variable selection using RSF VIMP, 18 variables out of

a total of 757 variables were selected as shown in table 4.17. Only variables with

Table 4.17: IBRSF variable selection.

Variable Description Importance
B7 Age at death of child -completed months 0.0157
B8 Current age of child in single years 0.0077
HW70 Weight for age standard deviation 0.0066
HW72 Weight for height standard deviation 0.0054
HW73 BMI standard deviation 0.0046
B12 Succeeding birth interval 0.0042
H5Y Oral Polio 2 year 0.0041
HW71 Age in months of the child 0.0036
H9Y Measles 1 year 0.0036
V506 The rank of the respondent among the partner’s wives 0.0031
H0Y Oral Polio at birth year 0.0026
H2Y BCG vaccination date - year 0.0025
V219 Total no.of living children plus current pregnancy 0.0023
V605 Desire for more children 0.0021
V218 Total number of living children 0.0020
V231 Century month code of the last pregnancy termination 0.0020
H3Y DPT-HEP.B-HIB (PENTAVALENT 0.0020
B16 Child’s line number in household 0.0020

importance measure greater ≥ 0.002 were selected for the final prediction stage.

4.4.3 Determinants of U5CM using IBRSF

The 18 selected variables were subjected to RSF VIMP a second time for identifi-

cation of determinants of U5CM. Table 4.18 shows the application of RSF in the

dataset.

From this table, the dataset used consisted of 68 observatitons and 18 variables.

The dataset was balanced in that the number of events was equal to the number of

survivors. A forest of 1000 trees was grown by randomly selecting 1000 bootstrap

samples from the initial data. Each sample selected had 43 observations. From 18

variables, 5 variables were randomly selected for splitting on. Recursive partitioning
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Table 4.18: Application of IBRSF in variable prediction stage.

Description
Splitting rule Bs.gradient
Sample size 68
No. of deaths 34
Number of trees 1000
Forest terminal node size 15
Average no. of terminal nodes 2.269
No. of variables tried at each split 5
Total no. of variables 18
Resample size used to grow trees 43
No. of random split points 10
Error rate 12.37%

of the nodes was done until the trees were fully grown. Each terminal node had

no less than 15 observations. The average number of terminal nodes was 2.27 and

the OOB error rate was 12.37%. Figure 4.9 shows the graph of error rate for the

prediction model together with the predictor variables with their importance level.
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Figure 4.9: IBRSF prediction error rate

The result of variable prediction using VIMP is shown in table 4.19. Figure

4.10 shows the 95% confidence intervals for the predictive variables. For convenient

interpretation as percentage, VIMP values have been multiplied by 100. The larger

the positive VIMP value the higher the predictive ability of the variable. On the
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100 x vimp (time)
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Figure 4.10: IBRSF variable prediction VIMP

other hand, negative values and zero indicate noise variables. We used subsumpling

technique to approximate standard errors and confidence intervals for VIMP. Figure

4.10 shows the delete-d jacknife 95% asymptotic normal confidence intervals for the

18 selected variables.

The variable B7 (Age at death of the child in completed months) has the largest

VIMP with confidence intervals well bounded away from zero. This gives us the

highest predictor of U5CM. This is in line with the survival data where most of

the children died before the end of the first month hence these results are not sur-

prising. There are other variables with moderate VIMP size with their confidence

intervals bounded away from zero. These are the interelations between age, height,

weight and BMI of the children which are HW71(weight for age standard deviation),

HW70(Height for weight standard deviation), HW73(BMI standard deviation) and

HW72 (weight for height standard deviation). B12(succeeding birth interval) and

B8(current age of child) also need to be considered as determinants of U5CM.
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Table 4.19: IBRSF variable prediction.

Variable Description Importance
B7 Age at death of child -completed months 0.0472
B8 Current age of child in single years 0.0353
HW71 Age in months of the child 0.0182
HW70 Weight for age standard deviation 0.0146
HW73 BMI standard deviation 0.0134
HW72 Weight for height standard deviation 0.0118
B16 Child’s line number in household 0.0085
H9Y Measles 1 year 0.0069
H3Y DPT-HEP.B-HIB (PENTAVALENT 0.0042
V506 The rank of the respondent among the partner’s wives 0.0041
H2Y BCG vaccination date - year 0.0037
B12 Succeeding birth interval 0.0035
H5Y Oral Polio 2 year 0.0025
V231 Century month code of the last pregnancy termination 0.0024
V219 Total no.of living children plus current pregnancy 0.0024
H0Y Oral Polio at birth year 0.0020



Chapter 5

DISCUSSION, CONCLUSION

AND RECOMENDATIONS

5.1 Discussion

This study attempts to understand the determinants of under five mortality using

survey data from DHS. In this case, Kenya DHS survey 2014 dataset was used for the

analysis. The dataset (after variable cleaning) is composed of 757 variables that are

candidate determinants of Under five Child mortality (U5CM). This poses a problem

of variable selection from such high dimensional datasets preceding a proper analysis

in which the intention is to explain variable effects. Besides, there is too much class

imbalance in the datasets particularly where interest is to compare mortality and

non mortality groups. For instance, 6.4% of children experience mortality while

93.6% survived up to the age of 5 years as shown in the 2014 KDHS data. This

imbalance is too huge that a direct comparison (before balancing) between two such

groups is likely to yield biased results. In addition, the commonly used methods

in survival analysis are optimal when PH assumption is not violated which is not

90
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always the case with many variables.

Three challenges were addressed in this study. One problem involved trying

to balance the dataset classes before making comparisons between mortality and

non mortality cases. The other challenge was due to variable selection. One needs

to conduct a proper variable selection exercise in order to identify the correct set

of variables to use for the regression analysis. And finally the use of an optimal

splitting rule and prediction method in cases where not all variables satisfy the PH

assumption.

Most studies explore determinants of child mortality using DHS survey data.

Ayiko et al. (2009) used Uganda 1996, 2000, 2006 DHS dataset, Nasejje et al. (2015)

used Uganda 2011 DHS, Sreeramareddy et al. (2013) analyzed the data from com-

plete birth histories of four Nepal Demographic and Health Surveys (NDHS) done

in the years 1996, 2001, 2006 and 2011. In this study, we have also tapped into

the richness of KDHS (2014) dataset, to establish the determinants of U5CM. The

key improvement over many studies that have used DHS data to answer the same

question lies in our choice to ensure the following remedies are done:

1. Class imbalance is eliminated before comparisons are done.

2. Imputation for missing data is done using a machine learning approach (the

missForest package in R software was used).

3. Variable selection is accomplished using a machine learning algorithm (RSF).

4. Splitting rule is done with a method that does not requires satisfaction of PH

assumption.

5. Prediction using RSF VIMP which is a non-parametric ensemble method that

does not require PH assumption to be satisfied.

In most studies, researchers often use self intuition or previous studies to determine

which covariates to add to their regression models. In this research, we did variable
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selection using RSF to select important variables from all the avalilable covariates

in the dataset. All these remedies were done before moving to prediction stage to

reduce chances of reporting biased findings.

Many studies commonly employed regression techniques to explore the determi-

nants of U5CM. Cox PH regression was used by Ayiko et al. (2009), Nasejje et al.

(2015), Sreeramareddy et al. (2013). Although we also used the Cox PH model, we

preceded it with diagnostics including multiple imputation, classification balancing,

variable selection, and Cox PH assumptions tests, to ensure that the results from

the Cox PH are more reliable.

While using Cox PH model in prediction stage, it was realized that it is possible

to have a variable that violates PH assumption and fail to include it in the model yet

it is a determinant of U5CM. For instance, Variable B7 (Age at death of the child

at completed months) was found to violate PH assumption yet it is a determinant

of U5CM as seen using the other methods. Hence the importance of using other

methods like Cox Aalen’s method and RSF VIMP for prediction in the sections that

followed.

In this research, we have worked with all the variables that are candidate deter-

minants of U5CM. We then performed variable selection and predict using methods

that do not require PH assumption.

Our findings show that child mortality is associated with variables related to:

child characteristics (such as age at death of the child ), reproduction factors of

the mother (such as the number of siblings born before), feeding characteristics and

anthropometric measurements. This is in line with other findings such as Ayiko

et al. (2009) who used Cox PH regression and established that region of residence,

sex of the child, type of birth (multiple), birth interval (less than 24 months after

the preceding birth), and mother’s education were related with an increased risk of

children mortality before their fifth birthday. Nasejje et al. (2015) also established

that factors related to mother characteristics and previous births such as sex of the
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child, sex of the head of the household and the number of births in the past one

year was found to be significant. Sreeramareddy et al. (2013) explored the effect

of mothers education, child’s sex, rural/urban residence, household wealth index,

regions ecological zones and development. Its worth to note that even though most

of the studies that rely on DHS datasets Ayiko et al. (2009), Nasejje et al. (2015),

Sreeramareddy et al. (2013) are challenged with high dimensional data and a variable

selection dilemma, there is no mention of any statistical form of variable selection.

DHS datasets typically are composed of over 700 variables that are candidate

determinants of child mortality and one need to carefully select which variables to

include in the resultant regression type models. Majority of the studies explore the

effect of a predetermined, select group set of covariates, based on self intuition or

variables explored from previous studies. We attempted to do a variable selection us-

ing a machine learning algorithm, before subjecting the selected variables to variable

prediction using Cox PH regression, Cox Aalens model and RSF VIMP at different

levels of this research.

Other than finding the determinants of under five mortality, different data bal-

ancing methods were used and model selection done using concordance index. In

their research Afrin et al. (2018) used SMOTE to balance data before integrating

it with RSF. In this research, we first compared the use of external data balanc-

ing techniques which include over-sampling, under-sampling, both sampling and

SMOTE methods. Under-sampling resulted in a better model with a concordance

index of 0.91 as compared to other balancing methods used. SMOTE which is a hy-

brid method generates synthetic samples along the line segment joining two minority

samples. By so doing there is a tendency of generating a decimal value in factor or

numeric variables which are not meant to be in decimal form hence distorting cat-

egorical variables in the data. In as much as under-sampling method may discard

potentially useful data in majority class there is no loss of data in the minority class

which is our main class of interest.
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The other challenge addressed in this study was the selection of the best splitting

method when the PH assumptions do not hold. A number of studies have explored

the different splitting rules in RSF. Miao et al. (2018) proposed an improved RSF by

using weighted log-rank test in splitting the node while using the model of Yang and

Prentice (2005), Hong et al. (2018) used R-squared splitting rule in survival forests,

Wanyonyi et al. (2019) compared RSF using different splitting rules. In this study,

we considered a balanced dataset for maximum growth of the tree. The BRSF

was then analyzed using logrank, logrank score and Bs. gradient splitting rules

when the PH assumptions are violated. Log-rank test has been used for survival

splitting as a means for maximizing survival difference between nodes Ciampi et al.

(1988) ,Segal (1988) Segal (1988) [10], Segal (1995), LeBlanc and Crowley (1992)

and LeBlanc and Crowley (1993). Since the use of log-rank splitting rule is optimal

when PH assumption is met, we preffered the use of Bs.gradient splitting rule when

PH assumptions are violated.

5.2 Conclusion

In this research, we have developed an IBRSF model for analysis of right censored

data in situations where: data is highly imbalanced, high dimensional and variables

do not satisfy the PH assumption. Based on the developed model, we have identified

the determinants of U5CM in Nairobi region of Kenya using the 2014 KDHS data.

This was achieved through a unified process which involved three stages: data

balancing, variable selection and variable prediction. The first stage attempted

to balance the data using four different external data balancing techniques which

are random under-sampling, random over-sampling, both-sampling and SMOTE

methods. Based on concondance index, random under-sampling method emerged

the best with the highest concordance of 0.9048.

In the second stage, the balanced data was integrated with RSF for variable
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selection process. Using variable importance in RSF, the important variables were

extracted from the dataset with 757 varables. This stage enabled us to identify

the variables to use for prediction stage. During this stage, comparison of different

splitting rules in the process of growing trees was carried out. The splitting rules used

are log-rank, log-rank score and Bs.gradient splitting rules. Based on concordance

index, log-rank scored the highest concordance of 0.916 followed by Bs.gradient

splitting rule with a concondance of 0.8674. Since optimality of log-rank splitting

rule is achieved when PH assumption is satisfied, Bs.gradient splitting rule was taken

as the most optimal.

Variable prediction stage followed after variable selection. This stage involved

the use of the selected variables in identification of determinants of U5CM. Variable

prediction was carried out using three different methods at different satages. This

was done as follows. In the first objective, Cox PH model was used . This was

done after having performed model diagnostics to verify the adequacy of fitting the

model. These showed that some of the variables which include B7, B12, V214,

V207, V417 violated PH assumption. The involved variables were interacted with

time variying covariates after which some of them did not satisfy the assumption

leading to removal of the variables. This led to the challenge of falilure to integrate all

potential determinants of mortality some of which could be highly predictive. In the

second objective, we opted to work with Cox Aalen’s model which is an appropriate

alterantive for Cox model when PH assumptions are not satisfied inorder to avoid

complete removal of predictor variables. In the third objective, we worked with RSF

VIMP, a non parametric tree based method. The method is more superior since it

overcomes the challenges with Cox and Cox Aalen’s models.

The developed IBRSF model involved the use of the most optimal method from

each stage. Hence, the IBRSF model involves working with balanced data where

balancing is done using random under-sampling method and both variable selection

and predictions are carried out using RSF VIMP. During the tree growing process,
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Bs.gradient method was used to split the rule. The method is able to deal with

challenges of extreme imbalance in datasets, high dimensionality of dataset and

working with variables that violate PH assumption.

Using IBRSF model, we were able to identify the highest determinants of U5CM

as age, interelations between age, height, weight and BMI and succeeding birth

intervals.

5.3 Areas for Further Research

Identification of determinants of mortality is a very important area of reasearch for

guiding clinical decesions. In this study, we have developed an IBRSF model for

anlysis of right censored data in situations where PH assumption is violated. Our

research mainly looked into the aspects of improving RSF model by using data bal-

ancing and node splitting rules for variable selection and prediction in the precense

of censored data. Like in many other studies, our findings enables future efforts for

studying determinants of mortality. There is still more that can be done to improve

this study and direct future studies.

To begin with, our research concentrated on externl data balancing techniques.

There is need to look into other data balancing techniques such as the algorithm level

and cost sensitive learning and ensemble-based balancing methods for integration

with RSF method.

Secondly, our study was limited to analysis of data that is right censored. There

is need to look into other types of censoring such as left cesoring, interval censoring

,double censoring among others.
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APPENDICES

A Description of Important variables

Tables A.1 and A.2 gives the description of the variables found to be predictive in
this research.

Table A.1: Description of Important variables.

Category Variable Description

Child Characteristics
at Birth

B1 Month of birth of the child.
B7 Age at death of the child at completed months.
B 8 Current age of the child in single years for all living children.
B 12 Succeeding birth interval.

Reproduction (siblings
information)

B 16 Child’s line number in household
V 203 Total number of daughters living at home.
V 206 Total number of sons who have died.
V 207 Total number of daughters who have died.
V 208 Total number of births in the last five years
V 214 Imputed duration of the current pregnancy
V 218 Total number of living children

V 219, 220 Total number of living children including current pregnancy
V 230 Year og the last pregnancy termination
V 231 Century month code of the last pregnancy termination
V 238 Total number of births in the last three years

Height and Weight
and Hemoglobin

HW70 Height for age standard deviation (according to WHO).
HW 71 Weight for age standard deviation (according to WHO).
HW 72 Weight for height standard deviation (according to WHO).
HW 73 BMI standard deviation (according to WHO).
HW 1 Age in months of the child.

Maternity M 1E Last tetanus injection before last pregnancy.

Vaccination History
H2Y BCG vaccination date-year.
H3Y DPT-HEP.B-HIB (PENTAVALENT) 1 year.
H4Y Oral Polio 1 year.
H5Y DPT-HEP.B-HIB (PENTAVALENT) 2 year.
H6Y Oral Polio 2 year.
H7Y DPT-HEP.B-HIB (PENTAVALENT) 3 year.
H8Y Oral Polio 3 month.
H9Y Measles 1 year.
H10Y Oral Polio at birth year.
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Table A.2: Description of Important variables.

Category Variable Description

Contraceptive Use

V321 Marital duration at sterilization in 5-year groups with single women
and those sterilized before marriage coded 0.

V478 Reason the respondent does not intend to use a method of contracep-
tion in the future.

Maternity M1E Injections administered by a health worker.

Maternity and Feeding
V417 Number of entries in the pregnancy and postnatal care history.
V 418 Number of entries in the immunization history.
V 419 Number of entries in the height and weight table.

Marriage V506 The rank of the respondent among the partner’s wives.
Fertility Preferences V605 Desire for more children.
Family Planning V3A07 First source for current method.
Injections last 12
months

V478 Injections administered by a health worker.

Delivery care

M4 The duration of breastfeeding of the child in months.
M5 The calculated months of breastfeeding.
M6 The duration of postpartum amonorrhea after the birth of the child

in months.
Malaria ML1 The no. of times they took SP/Fansidar during pregnancy.

Height and Weight
and Hemoglobin

HW1Y Age in months of the child.
HW3 Height in centimeters.
HW4 Height for Age percentile.
HW5 Height for Age standard deviations from the reference median.
HW6 Height for Age percent of reference median.
HW7 Weight for Age percentile.
HW9 Weight for Age percent of reference median.
HW10 Weight for Height percentile.
HW11 Weight for Height standard deviations from the reference median.
HW18 Month of measurement.
HW19 Whether the weight at birth (variable M19) was recorded from a

health card (code 1) or from the mothers recall (code 2). Children
who were not weighed at birth are coded 0.
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C Graphs Showing Balance in the 2014 KDHS

The graphs in this section shows the nature of balance in some of covariates after

the overall 2014 KDHS data was balanced.
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Figure C.1: Balance percentage survival by region in 2014 KDHS Data
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D Graphs showing Balance in Nairobi Region with

Different Balancing Methods

The graphs in D shows the nature of balace after the Nairobi region dataset was

balanced using the different balancing techniques as indicated.
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Figure D.4: Undersampling Balanced percent-
age survival by Education level
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age survival by Education level
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Figure D.10: Bothsampling Balanced percentage
survival by Education level
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Figure D.13: ROSE sampling Balanced per-
centage survival by Education level

Female Male

0

1

Percentage survival by child_sex

child_sex

P
e
rc

e
n
ta

g
e
s

0
1
0

2
0

3
0

4
0

5
0

Figure D.14: ROSE sampling Balanced per-
centage survival by sex
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Figure D.15: SMOTE sampling Balanced per-
centage survival by Education level
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E Residuals for Predictors with Different Balanc-

ing Techniques

In this section, residuals for different predictors from different models are given as

indicated.
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Figure E.17: Schoenfeld Residuals for BRSF with Undersampling
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Figure E.18: dfbeta residuals for BRSF with Undersampling
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Figure E.19: Deviance Residuals for BRSF with Undersampling
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Figure E.20: Martingale residuals for BRSF with Undersampling
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Figure E.21: Deviance Residuals for BRSF with Undersampling
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Figure E.22: dfbeta residuals for BRSF with Oversampling
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Figure E.23: Deviance Residuals for BRSF with Oversampling
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Figure E.24: Martingale residuals for BRSF with Oversampling
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Figure E.25: Deviance Residuals for BRSF with Oversampling
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Figure E.26: dfbeta residuals for BRSF with Bothsampling
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Figure E.27: Deviance Residuals for BRSF with Bothsampling
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Figure E.28: Deviance Residuals for BRSF with Bothsampling
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Figure E.29: Schoenfeld Residuals for BRSF with SMOTE sampling
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Figure E.30: dfbeta residuals for BRSF with SMOTE sampling
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Figure E.31: Deviance Residuals for BRSF with SMOTE sampling
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Figure E.32: Deviance Residuals for BRSF with SMOTE sampling
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F Selected variables using different balancing tech-

niques

The table in this section shows all the selected variables before the removal of vari-

ables that violated PH assumption for prediction using Cox PH model.

Table F.3: BRSF Cox ph model predictors with violation of PH assumptions.

Undersampling SMOTE
Var coef E(coef) Se(coef) P-value Var coef E(coef) Se(coef) P-value

V206 2.0731 7.9490 0.4044 2.95e−07 B7 -0.0897 0.9142 0.0490 0.0674
V207 1.6683 5.3034 0.4317 0.0001 B12 -0.1096 0.8962 0.0231 2.21e−06

V219 -0.2936 0.7456 0.2184 0.1789 HW70 0.0015 1.0015 0.0011 0.1760
B8 -0.1113 0.3291 0.5771 0.0541 HW71 0.0005 1.0005 0.0011 0.6676
B12 -0.8249 0.9841 0.0349 0.6450 HW72 0.0021 1.0021 0.0008 0.0110

HW70 -0.0010 0.9989 0.0014 0.4641 HW73 -0.0039 0.9961 0.0010 0.0002
HW71 0.0008 1.0008 0.0012 0.4869 V206 0.8879 2.4301 0.2867 0.0019
HW72 0.0019 1.0019 0.0010 0.0517 V214 -1.2569 0.2845 0.2771 5.73e−06

HW73 -0.0015 0.9985 0.0009 0.1284
M1E 0.0164 1.0165 0.0280 0.5584
H9Y -0.2311 0.7937 0.7495 0.7579
H3Y -0.2797 0.7560 0.7231 0.6989
B7 -0.1561 0.8554 0.0589 0.0081

Oversampling Both sampling
Var coef E(coef) Se(coef) P-value Var coef E(coef) Se(coef) P-value
B7 -0.1038 0.9014 0.0138 6.60e−14 B1 -0.0652 0.9369 0.0174 0.0002
B8 -0.1247 0.8827 0.1704 0.4641 B7 -0.1069 0.8987 0.0162 4.02e−11

B12 -0.0341 0.9665 0.0088 0.0001 B8 -0.4422 0.6426 0.1947 0.0231
V206 1.7171 5.5682 0.1087 < 2e−16 B12 -0.0694 0.9329 0.0093 9.46e−14

V207 1.3351 3.8005 0.1022 < 2e−16 HW70 -0.0006 0.9993 0.0004 0.1167
V214 -0.1055 0.8999 0.0951 0.2673 HW71 0.0001 1.0001 0.0004 0.8623
V218 -1.1085 0.3300 0.1965 1.07e−08 HW72 0.0019 1.0019 0.0003 5.24e−11

V219 0.6849 1.9835 0.1822 0.0001 HW73 -0.0012 0.9988 0.0003 3.04e−05

V230 -0.1491 0.8614 0.0866 0.0852 V206 1.5152 4.5505 0.1215 < 2e−16

V417 0.3228 1.3809 0.1199 0.0071 V207 1.7935 6.0102 0.1193 < 2e−16

HW70 0.0008 1.0008 0.0003 0.0207 V208 0.4238 1.5278 0.1452 0.0035
HW71 0.0002 1.0002 0.0003 0.5649 V214 -0.0964 0.9081 0.1039 0.3535
HW72 0.0019 1.0019 0.0003 2.15e−11 V218 -0.7598 0.4678 0.2528 0.0027
HW73 -0.0027 0.9973 0.0003 < 2e−16 V219 0.4049 1.4991 0.2295 0.0776
HW1 -0.0009 0.9992 0.0152 0.9534 V478 -0.1709 0.8429 0.0279 1.03e−09

HW18 -0.0699 0.9324 0.0653 0.2837 V506 1.9114 6.7625 0.2877 3.05e−11

H4M 0.0351 1.036 0.0333 0.2920 HW1 0.0441 1.0451 0.0175 0.0119
M1E 0.0077 1.0077 0.0066 0.2414 HW18 -0.1390 0.8701 0.0756 0.0657

M1E 0.0122 1.0123 0.0065 0.0613
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