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Abstract A part is described using features. A neuro fuzzy system then determines the machining sequence for 

each feature. Previous process plans were utilized to build, test, and validate the Neuro Fuzzy Network (NFN). 

Parts having similar manufacturing sequences are grouped into families, also using an NFN. A standard 

manufacturing sequence is obtained for each family comprising all the operations applicable to the features of the 

parts in the family. An expert system then adapts this standard sequence for the particular part being planned. The 

optimal operation sequence is inherited by the new part. The procedure is demonstrated by an example industrial 

part. 
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Introduction 
Operation sequencing is an important subtask of 

process planning; its goal is to specify the sequence in 

which features are to be machined. This task is 

usually performed after the operation selection for 

each feature has been done. To remain competitive in 

today s manufacturing arena has become a difficult 

task. Customers continue to demand higher quality, 

lower prices, and more individual options. 

Therefore, the process plan must be right the first 

time. Manual process planning is highly t ime 

consuming and involves too many subjective decisions 

by a process planner. T h e lack of standardization and 

lack of skilled process planners have led researchers 

and industry to develop Computer Aided Process 

Planning (CAPP) systems. CAPP increases the 

accuracy and productivity of the total manufacturing 

planning effort. Improved operation selection and 

sequencing increases quality and reduces scrap. 

Artificial Intelligence (AI) and more specifically 

expert systems have been applied to design generative 

process planning systems. Some of the process 

planning knowledge, however, relies on much 

heuristic knowledge from the process planner which 
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may only be applicable in a particular manufacturing 

environment and cannot be expressed in explicit rule 

form as required by the expert system. Fuzzy logic 

enables approximate human reasoning in the face of 

uncertainty, ambiguity and vagueness to be captured. 

Most real life situations include manufacturing process 

planning fall into this category of decision making. 

Fuzzy systems are considered to be a natural link 

between symbolic and sub"symbolic approaches in AI. 

On the one hand they can handle uncertainties as 

neural networks, on the other hand they can manage 

both symbolic and numerical information. However, 

fuzzy systems usually do not incorporate automatic 

learning abilities and adaptive features. It seems that 

a very high performance can prospectively be obtained 

by combining neural network and fuzzy logic 

approaches and integrating their benefits. T h e 

resulting neuro-fuzzy system is a hybrid system, 

where the architecture remains fuzzy, but using 

neural techniques it can be trained automatically. 

Thus the nem^fuzzy system exhibits uncertainty 

handling and learning ability, and moreover expert 

knowledge can be easily incorporated into the system 

and transparency of the rule based expert system is 

preserved. Hence, fuzzy logic reasoning and hybrid 

approaches combining expert systems, neural 

network and fuzzy logic appear to be the preferred AI 
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approaches in process planning . 

Variant process planning relies on the existence 

of previously used plans. The use of existing plans 

can be very cost effective. However, the pattern 

matching necessary to find appropriate plans to 

retrieve can get complicated. Also, plan modifications 

in response to changes in materials or manufacturing 

capabilities are not easily incorporated. T h e biggest 

disadvantage of this approach is that an experienced 

process planner is needed to consistently edit the 

process plans. 

T h e best way to reduce manufacturing costs is to 

use standard parts. Years of process planning will 

teach the engineer that certain processing seep en ces 

or patterns tend to show up time and t ime again. 

This means that other preparatory processes often 

precede most known production processes. Once the 

process of manufacturing a standard part is 

optimized, all parts using it will reap the cost 

benefits. It has been estimated that eight percent of 

all parts are exact duplicates of existing designs. T h e 

duplicate effort could be better invested elsewhere. 

T h e generative approach involves the generation 

of process plans automatically without referring to 

existing plans. Developing a generative system, 

however, results in heavy investment of 

manufacturing and software expertise in order to 

prepare the rule base used to select and sequence the 

operations. As a result there is a shift of emphasis 

from pure generative planning toward a combined use 

of variant and generative methods in a full-fledged 

CAPP system. Here, process plans can be assigned to 

both part families and characteristic features. By 

using such a means for representing manufacturing 

knowledge, the overall performance of the planning 

system is increased, and what is more important is 

the methods used by engineers to do process planning 

can be explored within the CAPP framework itself. 

Such semi-generative approach is generally more 

effective and allows quicker usability and payback 

without compromising long-term benefits. 

1 Feature Based Modeling 
A feature is a geometric shape defined by a 

parameter set, which has special meaning to a design 

or manufacturing engineer. A feature carries the 

notion of both the resultant part geometry and also a 

variety of non -geometric or geometrically related 

information. Feature based modeling is a process in 

which mechanical parts are specified in terms of their 

constituent parameterized features. This technique 

allows the product shape to be defined through form 

features and provides for communication of critical 

information to all applications through a shared 

database. Manufacturing operations can then be 

assigned to the feature types and the information 

contained in the features used to assist in process plan 

generation. 

Part drawings from industry were studied in 

order to gather external and internal form features 

commonly occurring in the rotationally symmetric 

components. The generic features are incorporated 

into a library that ideally can be customized by the 

user. Combining different pre-defined generic form 

features from the feature library and specifying their 

parameter values, all the external and internal 

characteristics of the part are specified. T h e part as 

depicted in Fig. 1 is synthesized to consist of various 

external and internal features. The external features 

are divided into primary external features such as 

cylinder and thread, and secondary features such as 

spline, groove, and chamfer. Some features such as 

groove have subtypes rectangular groove and 

functional groove; chamfer has left chamfer and right 

chamfer. Center hole is an example of an internal 

feature. 
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Fig. 1 Part model 

An object-oriented framework has been adopted, 

hence features can easily be added or deleted from the 

system. A feature is an instance of a class. Examples 

of non geometrical information are various types of 

tolerances (of size, form, position, e tc . ) and surface 

roughness. T h e user interacts wi th the system 

through a "Window" based graphical interface 

comprising menu selections, tool bars, and dialog 

boxes. Graphical displays provide a constant " feel" to 

the user in various phases of part modeling. 

2 Machining Operation Selection 
As the investigations of manufacturing 

documents for a company shows, it is possible to 

assign to each feature alternative operations and 

sometimes operation sequences too. A study of 24 

process plans for rotational components comprising 
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shafts, gear wheels, and disks from Guangzhou 

Machine Tool Factory was made to determine the 

sequences of machining operations for the features. 

This is shown in Table 1. 

Table 1 Used process plan study 

Feature 
Number 

studied 
Operation sequences 

spline 

cylinder 

chamfer 

cent er hole 

g roove 

thread 

10 

57 

36 

22 

27 

5 

An NFN system was used for the operation 

selection. T h e system consists of the inputs, 

fuzzification, rule base, and outputs. A separate 

network is used for each feature. This reduces the 

size of the respective networks making it easier to 

train. It also gives knowledge base modularity. T h e 

inputs are the feature types and their attributes such 

as surface finish and tolerances. T he operation 

sequences are the outputs. For the features which had 

several outputs, a further study was made on the 

feature specifications to determine the factors leading 

to these choices. T h e surface finish and whether it is 

a datum, were indentified for the cylinder feature. 

These are the inputs, which are then fuzzified into 

linguistic terms such as small, medium and large. 

Figure 2 shows the membership functions for surface 

finish. 

1. 6 \ka, a finish turning operation was sufficient. 

Figure 3 illustrates the resulting network of the 

cylinder feature for shaft parts. 

T h e network has five layers. The first layer is 

the input layer. Layer 2 is the fuzzif icat ion layer. 

T h e outputs of this layer are the fuzzy functions of 

the inputs. Each neuron of the third layer represents 

a fuzzy rule. Layer 3 links define the preconditions of 

the rule nodes, while layer 4 links incorporate the 

ru les consequences. Layer 5 is the output layer. 

T h e nodes in layer 1 just transmit input values to 

the next layer with unity link weights, w ι - 1, 

where the superscript and subscript indicate the layer 

and node, respectively. A layer 2 node performs a 

membership function. T h e sigmoid function is used to 

perform this fuzzif icat ion. Let the node inputs be 

denoted as u, node outputs as a, net input to a node 

/ , and the threshold value Θ, then 
r 2 2 A2 

/ = WijUi- Vj, 

J 2 

aj = 1 + - / · 

T h e weights 

Îng. Th 
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d thresholds are 
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tuned during 

used for this 

input antecedent 
variables fuzzy labels 

layer 1 layer 2 

rules consequents output 
node 

layer 3 layer 4 layer 5 

<XöD 

Surface Finish 

1.5 

1 je 4) 

S ? 
a ö» 0.5 
S 0 

2 4 

small 

6 8 10 

medium 

Fig. 2 Membership function of surface finish 

Previous plans are used to generate the fuzzy 

rules by examining the plans to determine the 

manufacturing methods for the features and the 

factors that determine them. For cylinder features in 

parts with length to diameter ratio greater than 2 

(shafts) and requiring finishes higher than 3. 2Um, a 

grinding operation was needed. For parts with lower 

length to diameter ratio and a surface roughness of 

Fig. 3 Cylinder machining method selection for shafts 
10, Surface finish; Oo: ( i) Rough turn, ( ii) Semr finish turn, 

( iii) Finish grind; 

11, Datum; Oi: ( i ) Rough turn, (ii) Semi-finish turn, (iii) 

Finish turn; 

O2: ( i ) Rough turn, (ii) Semi-finish turn, (iii) Rough grind 

( iv) Finish grind. 

Performing precondition matching of the fuzzy 

rules, layer 3 nodes fulfil the AND operation. 
3 

Multiplication is used for this operation with w ί = 1. 

T h e nodes in layer 4 integrate the fired rules having 

the same consequence by the OR operator, 

Summation is used for this operation with w i — 1. 

Layer 5 performs the weighting of the outputs. 

Hence, the weights w ι also need to be trained. Using 

the sigmoid function in the output layer constrains the 
output between 0 and 1 reflecting the confidence level 

for the method. T h e output of the system is the 
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machining method and the degree of confidence 

associated with it. 

T o train the network, the desired method is 

obtained from the used process plans. Since the 

boundaries for the input s fuzzy sets are known, the 

initial weights and threshold values for the 

membership functions can be determined. T h e 

membership functions were then tuned to reflect the 

desired outputs by adjusting the weights and 

thresholds in layer 2 . A weighting value of unity was 

maintained in layer 5 for each rule. The desired 

output is the one with the highest activation. Outputs 

wi th activation values greater than 0. 5 were taken to 

be alternative manufacturing methods. T h e level of 

activation reflects the confidence associated with a 

particular method. T h e work is coded in an 

object-oriented framework in C + + . T h e N F N is 

represented as a class. T h e network for each feature 

is an instance of the class. Sparse matrix techniques 

are utilized and only the existing node connections 

need to be recorded and processed. T h e supervised 

learning tests and validates the initial network 

structure. T h e networks were trained wi th actual 

numerical input representing the parameters of the 

features and the optimum manufacturing operations as 

represented in the process plans. At least one 

input output pair was used for each rule. T h e 

network correctly trained for all the cases. Since the 

network structure is already determined, the training 

is fast. T h e initial membership functions were found 

to be accurate and no further tuning was indeed 

necessary. As the system has correctly learned the 

manufacturing practices, it is ready for use to 

determine the operation sequences for the features. 

T h e obtained sequences for the example part are 

shown in Table 2. 

Table 2 Feature operation sequences 

Feature 

cylinders 

thread 

chamfer 

groove 

spline 

Operation sequence 

( i) Rough turn; ( ii) Semr finish turn 

( iii) Finish grind 

( i) Rough turn; ( ii) Finish turn 

( iii) Turn thread 

Chamfer 

Groov e 

( i) Rough spline; ( ii) Finish grind 

( iii) Shave and chamfer 

centerhole ( i) Drill; ( ii) De- burr 

3 Operations Sequencing 
Implementation of Group Technology (GT) in 

an enterprise makes the production more adaptive, 

flexible, and competitive. GT philosophy is used to 

group together those components having similar 

features and requiring similar sequences of machining 

operations. This allows manufacturing engineers to 

plan efficiently the layout of machines in the factory 

in order to reduce the handling and transfer of 

components as much as possible. It also assists the 

designer standardize components and avoid specifying 

machined features that the company is not equipped 

to handle. 

By applying the part family concept, inferencing 

and expert knowledge can more easily and effectively 

be extracted and organized. Grouping parts into 

families introduces system modularity and makes it 

work faster by limiting the search space. Effective 

part family formation, is therefore the key to 

implementation of the GT concept. Parts should be 

grouped such that the resulting families have simple 

conceptual interpretations. This allows engineers and 

managers to make decisions that depend on part 

families efficiently and intelligently. Background 

knowledge about part attributes should be utilized. 

T h e application for which families are formed 

should affect the choice of attributes by which the 

parts are classified. Traditional techniques by use of 

numerical codes cannot describe parts in enough detail 

to be useful for automatic generation of process plans. 

Any characteristics of a part corresponding to a 

certain family are fuzzy, and there does not exist 

absolute hard partition. Hence, a fuzzy approach 

should be utilized to classify the parts. 

To deal with part families, a hybrid architecture 

combining generative and variant process plan 

generation is utilized. After having selected the best 

manufacturing operations for the features, the 

operations sequence are determined on the basis of the 

standard sequence for each family reflecting the 

proposal of the process planner and company specific 

structure. This structure consists of a comprehensive 

network of all operations. A standard processing 

sequence for a family comprises appropriate s e t u p s 

and operations. For a particular part, adapting the 

relevant family sequence according to the features and 

operations of the part creates the detailed processing 

sequence. 
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3. 1 Part family formation 

An NFN system is utilized to group the parts 

into families . The structure of the system consists 

of the inputs, fuzzification, rule base, and outputs. 

T h e inputs are the attributes that determine the 

classification while the outputs are the families. 

Different comparison parameters or attributes 

can be selected for different comparison objectives. It 

is expected that engineers frequently change their 

criteria according to real manufacturing requirements 

or personal preferences. A study was made on process 

plans for 12 shafts, 3 gear wheels, and 9 disks from 

Guangzhou Machine Tool Factory to determine the 

factors leading to similar processing sequence in each 

of the three families. T h e length to maximum 

diameter ratio ( LD) , presence of gears ( G R ) , all the 

features found in shaft family ( F S ) , in gearwheel 

family ( F G ) , and in disk family ( F D ) , were 

identified as the input comparison factors. Figure 4 

shows the resulting network. 

Fig 4 Neuro fuzzy network for part family selection 

If the features for the part to be classified are 

contained in the family, then the input value is 1, 

otherwise it is - 1. If a gear feature is present, the 

input is 1, otherwise it is - 1. T h e length to 

maximum diameter ratio for gearwheels and disks 

were found to range 0. 1 - 3. 4 while for shafts, the 

range was 2. 7 - 11 .2 . Using these boundary values, 

the weights and thresholds in the fuzzification 

functions are determined. Thus t h e variable was 

fuzzified into small and large with an overlap near a 

ratio of 3. T h e fuzzification functions are shown in 

Fig. 5. 
T h e NFN trained and tested correctly for all 24 

cases. No training was indeed needed as the initial 

fuzzification functions were found to be accurate. T h e 

cases test and validate the network, which can then 

be used to group new parts. T h e example part was 

found to belong to the shaft family. T h e standard 

process sequence for this family is then used to 

optimize the operations sequence for the part. 

Length to Diameter Ratio 

Î 
2 1.5 r 

s 0 l * — — ^ ■ ■ 
S 0 2 4 6 8 10 

small large 

Fig. 5 Membership function of length to diameter ratio 

3. 2 Optimizing the sequence 

An expert system is utilized to adapt the 

operation sequence for the chosen family to suit the 

part whose operation sequence is being determined . 

An expert system comprises the knowledge base, the 

inference engine, and the user interface. T h e 

knowledge base is the standard operation sequence for 

the family consisting of all t h e operations appropriate 

for t he features in the family. T h e inference 

mechanism allows the manipulation of this knowledge 

by retrieval and adaptation. T h e optimized sequence 

is inherited by the new part. This kind of learning, 

experience accumulated in t h e past, is reused in an 

indirect and more efficient way. T h e adaptation is as 

follow s: 

I. GO to head of standard sequence list. 

I I . Get next standard feature and operation from 

standard sequence. 

I I I . GO to head of part feature list. 

IV. Get next feature of part. 

V. C a n pare standard feature with feature of part 

If same 

Get next operation for part feature 

Compare operations for part and standard 

features 

If same 

Output feature name and Operation 

Delete operation from part 

VI. Last feature of part ? 

No, G o t o IV 

Yes, Go to VII 

VII. Last standard feature? 

No, G o t o II 

Yes, Go to VIII 

VIII . Output complete operation sequence list for 

part. 

IX. Stop. 
T h e standard sequence indicates operations 
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which have to be done in the same setup such as 

semi" finish turning, grooving and chamfering 

operations. These are also output as one s e t u p for the 

particular part. 

4 Results and Discussion 
T h e example shaft part is shown being modeled 

in Fig. 6. 

Feature parameters are entered through dialog 

boxes as shown in Fig. 7 for cylinder feature. 
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Fig 6 Feature based part modeling 
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Fig. 7 Cylinder feature parameters input dialog box 

T h e operations sequence output for the example 

part is in agreement with the operations sequence 

from the experienced process planner. The facing and 

center hole drilling has been put together with 

cylinder turning in step 2 of the optimized standard 

sequence. As given by the process planner in the 

process plans, these were done in two steps ( 2 and 5) 

requiring a change of sides twice. T he combination of 

operations leads to more cost savings. 

After selection of the machines to be used, some 

operations may also need to be put together if they are 

done on the same machine. An example is the thread 

turning and semi" finish turning of the cylinder 

features, if both operations are done on t h e same 

lathe machine. 

5 Conclusions 
Using optimized manufacturing sequences for 

part families utilizes the GT concept leading to cost 

savings, improved productivity and competitiveness. 

T h e neinxr fuzzy approach effectively represents 

process planning knowledge as used by the 

experienced process planner. T h e modularized nature 

of the whole system enables easy expansion to model 

different industrial applications. 
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