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Theoretical Prediction of Shear Strength Evolution in Steel Fibre Reinforced
Concrete Beams without Stirrups

By

Timothy NYOMBOI*, Hiroshi MATSUDA?, Ryu HIRAYAMA?, and Hiroshi NISHIDA*,

Recent research has shown that steel fibres significantly increase the shear capacity and ductility
in reinforced concrete (RC) beams. Utilization of this structural capacity in RC beams has however,
been limited by lack of design guidelines. Conventional methods applied in normal design are not

applicable in this case.

Furthermore there exists no unified expression for the complete

characterization of shear strength and ductility in beams. Fundamentally, steel fibres contribution
should be considered based on stress transfer mechanism, augmented by concrete and dowel action of
the main reinforcements in a unified manner. This paper proposes a unified analytical model in which
the complete behavior of steel fibre reinforced concrete beams is characterized. Verification of the
model was found to be in agreement with the experimental results tested by the authors. Non linear
behavior as well as increase in strength observed in the fibrous beams was predicted well.

Key words: Steel fibres concrete, Theoretical model, Shear Strength, Electronic speckle

interferiometry (ESPI)

1. Introduction

Current application of steel fibres in concrete
structures is found in areas where improved crack
control, fatigue resistance, earthquakes resistance,
impact loads and slope stabilizations (using fibre
short-Crete) is necessary. Many researchers [1-5, 7]
have also established that use of steel fibres in
concrete, lead to increased shear capacity and
ductility in reinforced concrete. The knowledge of
the behavior and ability to predict the same is
therefore paramount to the development of guidelines
for design applications and utilization of the
aforementioned benefit in structural systems such as
beams. Researchers have acknowledged that shear
phenomenon is a complex and difficult property to
predict [3, 4, and 6]. A lot has been done on the
computation of the ultimate shear capacity mainly
with the use of simplified models and experimental
data [2, 3, 5, and 7]. However, there is no much
information on a rational method for the prediction of
the actual contribution by the steel fibres concrete
composite and the dowel action of the main
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reinforcements. In this paper a simplified strain ratio
based analytical model for the prediction of complete
evolution of shear strength in steel fibre reinforced
concrete (s.f.r.c) beams failing in shear is proposed.
The shear resistance due to steel fibre reinforced
concrete and the dowel action of the main
reinforcements have all been considered based on
equilibrium of forces and the transfer
mechanisms.

stress

2. Shear Strength analytical model derivations

In the derivation of the analytical model, the
expressions for the various forces acting to resist the
shear stress were first determined as outlined in the
subsequent sections. Finally equilibrium conditions
between the internal forces and the applied external
load were evaluated to arrive at a unified predictive
relation. The following assumptions were considered.
(i) Plane sections remain plane
(i) Failure is predominantly by shear
(iii) Shear crack occurs at an angle of 45 degrees
(iv) Concrete is brittle while steel fibres are elastic,
(v) Fibre ultimately pull out from one side
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(vi) Re bars dowel action contribute to shear strength
The geometry and loading conditions used in the
derivation are as indicated in Fig.1
Due to symmetry, only half of the geometry in Fig.1
(portion JKLM) has been considered and its sheared
profile analyzed. Based on Gere and Timonshenko's
shear deformations in a beam [8], the cracked sheared
profile of portion JKLM has been assumed to
correspond to the profile shown in Fig.2.0(a) while
the stress, strain and crack opening diagrams along
the crack path have been considered to be as shown

in Fig.3.(a), (b), (c)(d).

QKN Steel fibres and their orientation
I, __along and-across the crack path
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s (b) Crack geometry at J (w = crack width)
(a) Sheared profile of portion JKLM (yis the shear angle)

Fig.2 Cracked sheared profile of portion JKLM
and details at joint J

Notations

Fe Compressive force, Fec: Component of F¢

Fu: Shear force in compressed region Fev: Component of F,
Fei: Concrete tensile force, Fa,. Crack slip shear force
(a) Fi@,2: Fibre forces in (elastic and pull out stages respectively)

Fs, Fa, Rebar tension and dowel force respectively, w:Crack width
Fig. 3 simplified stress/force (a,b), strain (c) and
crack rotation (d) diagrams

2.1 Forces acting to resist the shear

(1) Compressive force F.. and Tensile force F;
From the geometry in Fig.1 and the stress profile

(Fig.3a), the expression for the concrete compressive

and tensile forces along the idealised crack path can

be determined. The compressive force component is

obtained from the following relation:

F.=_F :Gb[c_wj (1)
sin & ¢ w

Where b and w are the beam and crack widths

respectively, while y is the angle of crack rotation.

As idealized in Fig.3a, it is assumed that the concrete
possess some minimal tensile strength. The resistive
tensile force from the concrete is expressed as;

Fo = Uctb(wj 2)
%

Where o = the tensile strength of plain concrete

(2) Shear forces in compressed and cracked region

Determination of the concrete and crack-slip
shearing forces (F, and F,) in the compressed region
and cracked region respectively, are considered in a
unified manner under equilibrium analysis of all the
forces (see section 2.2).
(3) Fibre tensile forces F(;yand F

In order to determine the expression for the steel
fibre tensile forces Fyand F; ) as shown in Fig 3(a),
expressions for the average normal fiber force and
strain is first established.
Average normal fibre force and pull out strain

The derivations are made by considering an
infinitesimal force dF as shown in Fig 3(a) and

orientation of the fibres across a shear crack, Fig.4

In the derivation, two regimes are considered as
illustrated by the stress diagram in Fig.3 (a). These
are;

-Elastic range (fibers elastically strain) 0 < x < X,

-Pull out range  (fibers pulling out ) Cx< W
L <x<

Elastic Range

The force per fibre crossing the crack at right angles

in the elastic range is determined as ;

Ff=E,Af|ﬂ=EfAf):—‘” (3)
f f

Where, a ,g and . are the area, elastic modulus,

strain and fibre length, respectively.

From Fig.3 (d), the crack width w at any distance

X is obtained W=Xtany = Xy where ¥ is

small. Thus eq. 3 becomes

Fo=E( A ﬂ:EfAf v
If If

The fibres are randomly distributed (Fig.4). The

average normal fibre force is determined as;

(Wherel, =the)  (4)

Fi =~[F, sinddo (5)
T
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Substituting for the force per fibre from eq.4 and
integrating;

Fo—2g A XY (6)
T I

Pull out range
The average normal fibre force in the pull out range
is determined as

2
F. :;EfA,g,p (7)

Where &,=X¥ s the fibre strain, equivalent to
I

the effective pullout strain value after cracking.
Fibre pull-out strain &,

The fibre pull out strain is a function of the bond

stress 7, and the fibre aspect ratio A, . To derive an

expression for the pull out strain, an arbitrarily fibre
pull out mechanism as shown in Fig.5 is considered.
The equilibrium of force between the concrete matrix
and a fibre under tension will be;

Aiog=Aoy — Aoy ©)
Where A; and A; are the fibre and concrete areas

respectively while o, and o are the fibre and

concrete stresses respectively. Assuming that the
effect of the fibre compression force is negligible;
Ajoy =A0y 9)
Equilibrium of forces at the fibre-concrete interface
is expressed as

Aoy =1, (10)
For fibre pull out to occur, the force in the fibre
should exceed the interfacial shear force. This can be
expressed by combining eq.s 9 and 10 as;
Aoy 2Ao, 27,2l

© o AEigp 2oyl (11)
gfp:Z'bAﬂdEflf (12)
f f

Experimental investigations have shown that the net
fibre pull out length is equal to 1/4[7], thus eq. 12 can
be re-written as

— TbAf or gfp = O (13)
E

fo T
f f

Where o - X = fibre aspect ratio
' d

f

: Hooked end steel
i fibres Diameter d,
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Fig. 5 Fibre pull-out equilibrium mechanism

(2) Force F; 3

Referring to the stress diagram in Fig.3a, the tensile
force carried by the fibres during the elastic stage is
determined as follows;

Fu = 0X1d|: Where dF =N, xF, (14)

N ; = Number of fibres cross the crack

The number of fibres can be derived based on the
fraction of fibres V;crossing the crack as follows;
NA, N A

A bdx

sc

Where Ags is cross sectional area of a single fibre

Vi =

o o N :VfbdX (15)
A
f

Substituting for Fg, from eq. 6 and N, from eq.

15 above, the relation for F,;,in eq. 14 is obtained
as;

) :235)4-‘% xdx = EfOV owxd (16)
Assuming that at pull out stage, the strain in the fibre
is equal to the pull out strain;
£ =& From Fig 3a,

7zl

« — x. ~ W and from Fig.4, . =ﬂ§ﬂ
L= L [
4 f f
el
W:Alf :gflf ,thus X, = Zff a7
v

Where Al, = fibre pull-out displacement change
corresponding to the increase in the crack width.
Substituting for X, in eqg. 16 from eq. 17, the
force F,y, is expressed as:

Efobé‘?ph (18)

Fioy = -
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; E.V ¢
With K, =— ”f fo (19)
eg. 18 can be re —written as
Fra) = Kibe Iy (20)
174

(3) Force Fy(y

Similarly from Fig.3, eq. 7 and 15, the expression for
the pull out tensile force carried by the steel fibres is
obtained as;

Fioy=FaN, = iEfgfpv,b(ﬂ— xlj (21)
2 4

Noting that k- EVi€% from eq. 20 and
T

€ gply . .
X, = ———Fromeq. 17 Eq. 21 is re-written as
/4

|

Fio) = 2K1b[w—gmfj (22)

v ooy

(4) Dowel Force Fq
The expression for the dowel force F4 has been

derived based on dowel bearing mechanism in
concrete road pavements [9]. It is assumed that the
relative shear displacement between the crack faces
is in tandem with that of the reinforcement bar as
shown in Fig 6. The dowel load is transferred to the
supporting concrete across the crack through bearing
and the interface bond between concrete and the
anchored part of the re-bar. Equations applied on
dowel bars on concrete road pavements [9, 10] are
applied in this study. Where ;
o, =Ky, (23)
Where o, = bearing stress

Y4 = deflection of the dowel bar (mm)

kK = modulus of dowel support (N/mm?),
The value of modulus of dowel support is estimated
from that suggested by Frigberg [10].
k =6895 0r0.25 ,/E (24)
Referring to Fig.6 and applying eg.23 in the
derivation of dowel force Fy,
F, = o,d, =ky,d, (25)
Re-writing eq.25 in terms of the area of the

reinforcement bar and substituting for ydzgzv»coxx
2 2

from ig.6, Fig.2b, then
i: WCOS« (26)
2 2

Yo =

Fy = kw cos a,lAS (27)
T

However, from the geometry of Fig.2a the shear
displacement in relation to the shear angle y (equal
to shear strain) is determined as;

5,=wcosa =atany =ay (y issmall) (28)
a=CCoSa (FromFig1l) (29)
Combination of eq. 28 and 29 yields the expression
for the general crack width as;

W ==Cy (30)
Where, C = the general length of the crack path

The crack width is expressed from eq.30 in terms of

fibre pull out strain and initial yield shear

strain y, as;

W:C}/ nyL:gfplfl (31)
y 7y

Where Cy, = & ¢l is the initial yield crack
width 32
The actual net fibre pull out length is given as 0.25I;
[7], however this length is reduced during gradual
pull out of the fibre. Thus the remaining effective
length expressed in terms of the yield shear strain
ratio after substitution of (cy) from 33 becomes

I =1, -w = 0.25, 1—4gfpl (33)
7y

Re-writing the term (w) in eq 27 in terms of eq. 33

the expression for the dowel force will be;

Fy =keg |} LCOSa,/i (34)
v VA

y

Notes
1is Point of inflection of the bar - - ----- | Dowelled Reinforcement bar |

Jd, = WCos
5, =wsin a
’ d’L
75 ........... LR —FV =2y,
o

Oy
Cross section scheme of the
dowel movement of the R. bar

Fig. 6 Relative deflections of Reinforcement bar
and the crack faces

(5) Bar Tensile Force Fq
The tensile force acting on the re bar can be

assessed in a similar manner as that of the fibre. An
effective pull out length from the shortest anchored
side from the crack face is assumed. The tensile force
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acting on the re bar is determined as; w Q +co, -F -F, (42)
_ v e |
F, = Ao 2k, — K, L +o0, +0y
- AE.z, (35) v

Where A, E, o, are the area, elastic modulus
and stress of the re bar.

Substituting for strain from eq.12, with replacement
of fibre parameters with those of the bar
reinforcement, then

=2z \/K (36)
7T

Where 7, = Bond shear strength and

Ief:| —w = 7/
a a Ia_gfplfi
y

2.2 Shear Strength Predictive Eq.
The overall shear strength predictive relation is
derived based on the equilibrium of external and

internal forces previously derived in section 2.1.
(1)Horizontal Equilibrium

(R +F —F. +F,)sina+F, =(F,, +F,)cosa
sina F,
ch + Fa = (Ft(l) + Ft(z) - Fc + Fct )Cosa + 7(;03& (37)
(2) Vertical Equilibrium
3 ~{Fuy +Fio ~F. +F. ooz (F, +F)sina-F, =0 (38)

From eq.37, (F,+F,)is substituted in eqg. 38 to
obtain;

(Fttl) + Ft(z) (39)

-F+ Fm)+ F,sina+F, co&z:%cosa

(3) Moment equilibrium about point O (Fig 3, 2)
Moment equilibrium about the point of shear crack
rotation O (Fig.3);

w 1 w 1fw
%;cosa —3 Fc[c —;)— F,(z){x1 +7(7 - le} _

2 %~ F—cosa F—smaffF w =0
3 v v 2 Ty

Force relation given in eq.s 1, 2 20, 22, 34 and 36
respectively, are substituted in the above.

2 2, \2
|
gﬂcos(l_g c2_2cﬂ+ ﬂ +}k1 @ XV —
by 2 v \v 3w )y
2 2
k{ﬂj W eosa - %—sm G“(XVJ =0

y) by v 2\y
Reducing further to

2 2
|
w ——G°+£K1 il —Kl—aIC +
» 2 3 w 2

2
R i h (40)
74 2
F
q:%cosz’ Fl:i‘cosa‘ F, :%sina (41)
The expression for W_ is obtained from eq. 38 as:

%

[kgfplef Y cosa+ 27 tanaj (46)

Substituting eq.38 and determining the approximate
solution, eq.41 becomes;

2
Qzlc&{g_[%'f) {kl[z_ffp'f}%}}
3 w o, w o,
LY eyl (43)
{{30“ +3+[€fp f] 35w fﬂ+c%+ﬁ+ﬁ
2K, w w 2

Substitute for Q, Fi, F, from eq.41 and with C=
a/cosa (Fig.1). From the shear span to depth ratio
relation, a =dg. Thus eq.43 becomes;

9=% Y D o la (e
]

+ dbfoy + F, +FTana (44)
2cos’ a

To account for the influence of the shear span to
depth ratio in shear, eq.44 is re written as follows

= dbs’K, Jf K Jf &l Jf
2= g b talmafd] ]

+ df'o, + F,*FTana
2pcoé o
Dividing by #, the relation for a factored shear load

in which the shear span to depth ratio influence is
accounted is obtained as

2 e ] e ol nofd

+ dbO'
23cos’ a /)’

Substitution forw, F,and F, from egs.31, 34 and

(F +F.Tane) (45)

36 respectively, with simplification of the dowel
contribution part (last term), the shear strength

equation (in Newton) is then given as;

N

dbK |
3pcos?a

ROREE

db o
30, nY n|[f——a—F1 [Ar
{{2&*3*(;] 3;}} 2pcos’a g\ x

y

It can be seen that eq.46 follows the tréﬁitionally

applied principle of superposition and can simply be
written as
V=V, +V +V, (47)
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In order to make evolution predictions, the shear
strain ratio in eq.46 must be applied incrementally (ie
7y =0,1, 2, 3 etc) in the prediction analysis.
7

The yield shear strain is determined theoretically
based on the relation given by Gere and Timoshenko
[8], however since this is not the maximum value, the
factor applied in the given equation has been
assumed to be equal to 1.2.

, 1.2Q, (48)
2GA |
Where the yield shear load is at shear ratio of 1
G= , is the shear modulus (N/mm?) (49)

2L+v)
A. = Cross sectional area of the concrete beam
v = Poisson ratio

2.3 Determination of deflections
Deflections at mid span of the beam are obtained

by combination of moment-curvature relations [8]
and moment-deflection relations [12]. The curvature
ratio relationship in beams before and after cracking
is given as follows [8]:

(50)

Where K‘:E is the curvature in elastic bending and
2,

K, is curvature at yielding beyond which inelastic

bending occurs, M is the general moment between
the yield and plastic moment, respectively. That is
M,<M <M,

Estimation of the mid span deflection due to elastic
bending is obtained based on the relations given in
[12]. Based the relations, elastic deflection in beam
under bending is given as:

5.-a7t 1)
P

Where p?-8p+1

4
= 48 ¢

For small deflections, moment curvature relationship

in elastic bending can be determined as

and p=all,

1M noting that here g<m <M , (52)
p El

It is assumed in this study that at onset of yield, the
elastic curvature limit is equal to yield curvature,
therefore

PPy
Combination of eq.51 to 54 yields the relation for the
determination of deflections (eq.54) from elastic to
inelastic bending (after cracking). By inspection of
eq.60, the curvature ratio range is found to be within
a ratio not exceeding 1.73.

11, (53)

y

(54)
2£4,M

K 2
El [3 - [—y] ]

K
The deflections due to bending from eq. 54 are then
added to shear deflections estimated from the relation
between the shear strains and the shear displacement

from eq. 28. Where the shear displacements are
obtained as follows:

oy =

o, = ay
=ay, (1)
Vy
= a —12.éAQ y (}/_y) (55)
4
The total deflections are then estimated as follows
0,= 0.+ 0, (56)

3. Verification of shear strength formula eq. (46)
3.1 Basis of verification

Validity of the derived eq.46 was checked against
experimental results obtained from a total of 12 test
beams. Geometry and reinforcement details similar to
those used in the experiments (Fig7) were used in the
theoretical predictions. The tensile and compressive
strengths applied were obtained from concrete
cylinder tests; however the bond strength was
estimated based on the value (4.15Mpa) proposed by
Narayanan R, et al [2]. Other properties are as shown
in Tablel. Twelve simply supported beams under
bending- shear (Fig.7) were tested in the experiments.
Tests on the specimens were done using a 300kN
capacity universal testing machine.

Controlled loading was applied on the specimens
while the full field deformations (displacements)
were monitored and recorded using a set of optical
measurements equipment system (ESPI) comprising
a Desk top computer (PC) and CCD camera (ESPI
sensor) equipped with laser beam sensors as shown in
Fig.8.
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Table 1 Parameters applied in analysis

I, mm 30
¢, mm 0.62
% A, 60
£ f. (N/mm?) 340
(&)
S | f, (N/mm’) 1000
= 2
s [ e, (Nmm) 210000
. (N/mm?) o
Fibre content % 0,0.5,1,1.5
o, (N/mm’) 38
£ | on (NImm?) 3.67
S g (N/mmd) 31108
S [o 0.195
kK (N/mm?) 6895
Load P
a (variable) a (variable )Il
d (82mm)
2 2No. 6mm Re bar | e o
A = A

Fig.7 Test set up and measurement points

ESPI CCD with sensor

a) ESPI camera and specimen b) Processor
Fig. 8 Full filed optical equipment and set up

3.2 Verification results and Discussions

(1) Analytical predictions

Fig.9 shows the theoretical predictions from eq. (47)
for fibrous beams. As depicted in these figures, the
strength evolution behavior is approximately linear in
the initial stages beyond which a non linear behavior
is observed. Complete deformation behavior in which
increase in the shear strength commensurate with the
fibre content is predicted well. The reduction in shear
strength with increase in the shear span to depth ratio,
a phenomenon commonly observed in practice is also
predicted well.

60

40

——FB1.5% Proposed Model

Shear load (KN)

20 - ¢ - FB1.0% Proposed Model
—o— FB0.5% Proposed model
0 = I I I I
0 1 2 3 4 5
Mid-span displacement (mm)
(a) a/d =1
60 —<«— FB1.5% Proposed Model
g = ¢ = FB1.0% Proposed Model
; 40 —e— FB0.5% Proposed model
= 20
&
0
0 1 2 3 4 5
Mid span displacement (mm)
(b) a/d =1.5
60 —— FB1.5% Proposed Model
g - ¢ - FB1.0% Proposed Model
;é’ 40 —o— FB0.5% Proposed model
é 20 L A A = -o-n-o- EIa= =Ny
0

0] 1 2 3 4 5

Mid span displacement (mm)
(c) a/d =1.83
Fig. 9 Theoretical prediction eq. (46)
(2) Experimental and theoretical comparisons
Fig 10 shows comparisons between experimental
and theoretical results. There is generally a very good
correlation between the theoretical predictions and
the experimental results. Both results also indicate an
increase in strength in the fibrous beams over non
fibrous beams. A decrease in the strength with
increase in shear span depth ratio is also observed in
both theoretical and experimental results. In Fig 10a,
ductility representation after yield is observed to be
limited in the ESPI results as compared with the
theoretical predictions. This is because the failure
was predominantly shear in which deformation after
failure at mid span could not be detected well by the
ESPI method due to presence of rigid displacement.
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(o2}
o
1

e __ .

g -
4’62_;_ -1
&

N
o

’éoo 1 —X=—FB1.5% ESPI
$° x o— FB1.0% ESPI
%o o— FB0.5% ESPI
—— CB0% ESPI
— FB1.5% Proposed Model
[eX = = - FB1.0% Proposed Model
— FB0.5% Proposed model

0 i L L
0 1 2 3 4 5
Mid-span displacement (mm)

(a) a/d=1

Shear load (kN)
N
o

60 —x— FB1.5% ESPI
<> FB1.0% ESPI
o— FBO0.5% ESPI
—— CB0% ESPI
— FB1.5% Proposed Model
40 - - ~FB1.0% Proposed Model
—— FB0.5% Proposed model

Shear load (kN)

20

0 1 2 3 4 5
Mid span displacement (mm)

(b) a/d =1.5

60 —x*— FB1.5% ESPI
<—FB1.0% ESPI
o— FB0.5% ESPI

—=— CB0% ESPI

— FB1.5% Proposed Model
- = FB1.0% Proposed Model

—— FB0.5% Proposed model

N
o
T

Shear load (kN)

N
o

0 1 2 3 4 5
Mid span displacement (mm)

(c)a/d =1.83
Fig.10 Experimental and theoretical comparison

4. Conclusions and Recommendations

The key assumptions made and validity of the
derived theoretical model has been confirmed
through  comparison  with  experiments. The
comparison showed that the model is consistently in
agreement and conservative in all the cases
considered. However, there is need for more
experimental data to evaluate the model in detail
particularly in prototype beams specimens.
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