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Abstract. Tea (Camellia sinensis) is one of the most consumed drinks across the world. Based on processing
techniques, there are more than 15 000 categories of tea, but the main categories include yellow tea, Oolong tea,
Illex tea, black tea, matcha tea, green tea, and sencha tea, among others. Black tea is the most popular among
the categories worldwide. During black tea processing, the following stages occur: plucking, withering, cutting,
tearing, curling, fermentation, drying, and sorting. Although all these stages affect the quality of the processed
tea, fermentation is the most vital as it directly defines the quality. Fermentation is a time-bound process, and
its optimum is currently manually detected by tea tasters monitoring colour change, smelling the tea, and tasting
the tea as fermentation progresses. This paper explores the use of the internet of things (IoT), deep convolutional
neural networks, and image processing with majority voting techniques in detecting the optimum fermentation
of black tea. The prototype was made up of Raspberry Pi 3 models with a Pi camera to take real-time images
of tea as fermentation progresses. We deployed the prototype in the Sisibo Tea Factory for training, validation,
and evaluation. When the deep learner was evaluated on offline images, it had a perfect precision and accuracy
of 1.0 each. The deep learner recorded the highest precision and accuracy of 0.9589 and 0.8646, respectively,
when evaluated on real-time images. Additionally, the deep learner recorded an average precision and accuracy
of 0.9737 and 0.8953, respectively, when a majority voting technique was applied in decision-making. From the
results, it is evident that the prototype can be used to monitor the fermentation of various categories of tea that
undergo fermentation, including Oolong and black tea, among others. Additionally, the prototype can also be
scaled up by retraining it for use in monitoring the fermentation of other crops, including coffee and cocoa.

Tea (Camellia sinensis) is currently among the most preva-
lent and extensively consumed drinks across the world, with
a daily consumption of more than 2 million cups. The high
consumption is credited to its medicinal values, i.e. reduc-
ing heart diseases, aiding in weight management, preventing
strokes, lowering blood pressure, preventing bone loss, and
boosting the immune system, among others. Historical evi-
dence indicates that the tea plant was indigenous to China
and Burma, among other countries (Akuli et al., 2016). Ta-

ble 1 presents the current leading tea-producing countries.
Tea is a source of many types of tea, which includes Oolong
tea, black tea, white tea, matcha tea, sencha tea, green tea,
and yellow tea, among others. The processing techniques de-
termine the category of tea produced. Globally, Kenya is the
leading producer of black tea. Black tea is the most popular
among the categories of tea, and it accounts for an estimate
of 79 % (Mitei, 2011) of the entire global tea consumption.
As shown in Fig. 1, the processing steps of black tea are
plucking, withering, cutting, tearing and curling, fermenta-
tion, drying, and sorting. The fermentation step is the most
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Table 1. The countries leading in tea production globally.

Rank  Country Estimates tonnes

produced yearly

1 China 2400000

2 India 1320000

3 Sri Lanka 439000

4 Kenya 349600

5 Vietnam 260 000
1. Plucking

-- e

6. Sorting
5. Drying 3. Cut, tear,and Curl

\ 4. Fermentation /

Figure 1. The basic processing steps of black tea.

crucial in deciding the final quality of the black tea (Saikia
et al., 2015). During the process, catechin compounds react
with oxygen during oxidation to produce two compounds,
namely theaflavins (TF) and thearubigins (TR). These com-
pounds determine the aroma and taste of the tea (Lazaro
et al., 2018). Also, fermentation changes the tea colour to
coppery brown and causes a fruity smell. Hence, the fermen-
tation process must stop at the optimum point as fermenta-
tion beyond the optimum point destroys the quality of the tea
(Borah and Bhuyan, 2005).

Presently, tea tasters estimate the level of fermentation of
tea by monitoring change in colour, smelling the tea, and tast-
ing an infusion of tea (Kimutai et al., 2020). These methods
are biased, intrusive, consume a lot of time, and are inac-
curate, which compromises the quality of the produced tea
(Zhong et al., 2019).

The internet of things (IoT) has established itself as one of
the greatest smart ideas of the modern day (Shinde and Shah,
2018), and its effects have been seen in each feature of hu-
man ventures, with huge possibilities for smarter living (Mi-
azi et al., 2016). IoT has shown huge potential in many fields,
including agriculture, medicine, manufacturing, sports, and
governance, among others (Khanna and Kaur, 2019). Deep
learning is currently shaping how machine learning is ap-
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plied to various areas. Some of the prominent areas where
deep learning has shown a lot of promise include machine vi-
sion, speech recognition, audio processing, health diagnosis,
and fraud detection, among others (Too et al., 2019). With
the complication of challenges in the 21st century, majority
voting is being applied to machine learning to improve per-
formance as it provides an extra layer of decision-making to
the model. In (Kimutai et al., 2020), a deep learner dubbed
“TeaNet” was developed based on image processing and
machine learning techniques. The deep learner was trained,
evaluated, and validated based on the dataset in (Kimutai
etal., 2021). In this paper, the TeaNet model was deployed to
classify real-time tea fermentation images in Sisibo Tea Fac-
tory. Additionally, a majority voting technique was applied to
aid in decision-making by the prototype. The subsequent sec-
tions of this paper are presented as follows: Sect. 2 provides
the related work, Sect. 3 provides the materials and methods,
while Sect. 4 presents the evaluation results, and Sect. 5 gives
the conclusion of the paper.

2 Related work

As mentioned in Sect. 1, the fermentation process is the
most important step in determining the quality of the pro-
duced tea. Consequently, researchers have been proposing
various methods of improving the monitoring of the fermen-
tation process of tea. There are proposals to apply image pro-
cessing, [oT, electronic nose, electronic tongue, and machine
learning, among others. With the maturity of image process-
ing, many researchers are presently proposing it for applica-
tion in the detection of optimum tea fermentation. Saranka
et al. (2016) have proposed the application of image pro-
cessing and a support vector machine algorithm in the detec-
tion of the optimum fermentation of tea. Image processing
has been proposed to classify black tea fermentation images
(Borah and Bhuyan, 2003b; Chen et al., 2010). Additionally,
Borah and Bhuyan (2003b) propose colour matching of tea
during fermentation with neural networks and image pro-
cessing techniques. Convolutional neural networks (CNNs)
have shown great promise in image classification tasks across
fields. Additionally, Krizhevsky et al. (2017) and Razavian
et al. (2014) show the great capabilities of CNNs in image
classification tasks. They have shown that the data-hungry
nature of deep learning has been solved by the aspect of
transfer learning. Consequently, CNNs are now being ap-
plied in monitoring tea processing, including the detection
of optimum fermentation of tea (Kimutai et al., 2020; Kam-
rul et al., 2020). Furthermore, a neural-network-based model
for estimating the basic components of tea theaflavins (TF)
and thearubigins (TR) is proposed (Akuli et al., 2016). Chen
et al. (2010) fused near-infrared spectroscopy with computer
vision to detect optimum fermentation in tea. Borah and
Bhuyan (2003a) proposed quality indexing of black tea as
fermentation progresses. All these proposals are in the form
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Figure 2. System architecture for the IoT-based optimum tea fermentation monitoring system.
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Figure 3. The categories of tea images captured in the Sisibo Tea Factory, Kenya, during black tea fermentation.

of simulation models. They have reported promising results,
but they are yet to be deployed in real tea-processing envi-
ronments. Additionally, CNNs have been adopted to detect
diseases and pest-infected leaves (Zhou et al., 2021; Chen
et al., 2019; Hu et al., 2019; Karmokar et al., 2015).

IoT is being applied in many fields, including agriculture.
The tea sector is attracting attention from researchers, and
the authors have proposed the application of IoT to moni-
tor temperature and humidity during the fermentation of tea.
Saikia et al. (2014) proposed a sensor network to monitor the
relative humidity and temperature of tea during fermentation.
Also, Uehara and Ohtake (2019) developed an IoT-based sys-
tem for monitoring the temperature and humidity of tea dur-
ing processing, while Kumar (2017) proposed an IoT-based
system to monitor the temperature and humidity of tea dur-
ing fermentation. The proposed works have been deployed
in a tea factory to monitor temperature and humidity during
tea processing. The models are, thus, a step in the right direc-
tion, but their scope was only on monitoring those physical
parameters during tea processing.

From the literature, it is evident that the tea fermentation
process is receiving most of the attention from researchers
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due to its importance in the determination of the quality of
tea, with many of the proposals being an ensemble of ma-
chine learning and image processing techniques. The IoT is
presently gaining momentum in its application to monitoring
temperature and humidity during tea processing. However,
most of the proposals are in the form of simulation models
and have not been deployed in real tea fermentation envi-
ronments. Additionally, deep learning is gaining more ac-
ceptance compared to standard machine learning classifiers
in monitoring tea processing due to its intelligence and the
ability to use transfer learning to solve challenges across var-
ious domains.

3 Materials and methods

This section presents the following: the system architecture,
resources, deployment of the prototype, image database, ma-
jority voting-based model, and the evaluation metrics.

J. Sens. Sens. Syst., 10, 153—-162, 2021
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Figure 4. The TeaNet architecture proposed in Kimutai et al. (2020) for optimum detection of tea fermentation.
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Figure 5. The accuracy of TeaNet during training and validation.
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Figure 6. The loss of the developed model during training and val-
idation processes.

3.1 System architecture

The architecture of the proposed model to monitor the fer-
mentation of tea in real time is presented in Fig. 2. The sys-
tem had a node containing a Pi camera attached to a Rasp-
berry model. The system is connected through Wi-Fi tech-
nology to the edge and the cloud environments.

3.2 Resources

The following resources were applied in the implementation:
Raspberry Pi 3 Model B+, a Pi camera, an operating system,
a server, and programming languages. We discuss each of
these in the next paragraphs.
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1. Raspberry Pi 3. This study adopted Raspberry Pi 3

Model B+ with the following specifications: quad-
core 1.2GHz, a 64 bit central processing unit (CPU),
2 GB random-access memory (RAM), a 40-pin ex-
tended general-purpose input/output (GPIO), camera
serial interface port, and micro secure digital (SD) card.
The model was powered by 2A power supply (Marot
and Bourennane, 2017; Sharma and Partha, 2018).

. Pi camera. In this research, a Raspberry Pi camera of

8 MP was used. The board was chosen since it is tiny
and weighs around 3 g, making it perfect for deploy-
ment with the Raspberry Pi.

. Operating System. The Raspbian operating system

(Marot and Bourennane, 2017) was used. It was cho-
sen because it has a rich library, and it is easy to work
with.

. Server. The Apache server (Zhao and Trivedi, 2011)

was adopted to obtain data and send the data to the edge
environment for the local users and a cloud-based en-
vironment for remote users. For the cloud environment,
Amazon Web Services (AWS) (Narula et al., 2015) was
chosen as it provides a good environment for the de-
ployment of IoT systems.

. Programming languages. The Python programming

language (Kumar and Panda, 2019) was used for writ-
ing programmes to capture the images using the Pi
camera. It has various libraries (Dubosson et al., 2016)
and is open source (Samal et al., 2017). Some of the
libraries adopted included the following: TensorFlow
(Tohid et al., 2019), Keras (Stancin and Jovic, 2019),
Seaborn (Fahad and Yahya, 2018), Matplotlib (Hung
et al., 2020), pandas (Li et al., 2020), and NumPy
(Momm et al., 2020). Additionally, the Laravel PHP
framework was adopted in writing application program-
ming interfaces (APIs). HTMLS5 (the hypertext markup
language) and CSS (cascading style sheets) were used
in designing the web interfaces of the prototype.
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Figure 7. The workflow of the region-based majority voting for TeaNet.

Figure 8. Application of Raspberry Pi 3 Model B+ with the Pi camera for taking pictures during the fermentation of black tea in the Sisibo

Tea Factory, Kenya.

3.3 Image database

As discussed in Sect. 1, TeaNet was trained, validated, and
evaluated using data set from Kimutai et al. (2021). The data
set contains 6000 images of three classes of tea, i.e. underfer-
mented, fermented, and overfermented. Fermentation experts
provided the ground truths of all the images, which enabled
the classification of all the images into the three classes.
From the experts’ judgement, fermentation degrees of tea
with time depends on the following factors: time (Obanda
et al., 2001), temperature and humidity level at which fer-
mentation takes place (Owuor and Obanda, 2001), the clones
of the tea, nutrition levels of the tea, age of tea, stage of
growth of tea, plucking standards, and post-harvesting han-
dling. Presently, more than 20 clones of tea are grown in
Kenya (Kamunya et al., 2012). Figure 3 shows sample im-
ages of three classes of tea, i.e. unfermented, fermented and
overfermented.

A Pi camera attached to a Raspberry Pi was adopted for
capturing the images. The images were collected in the Sis-
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ibo Tea Factory in Kenya. Underfermented tea is tea for
which the fermentation is below optimum, making it of low
quality, while fermented tea is optimally fermented and is
considered to be the ideal tea. For overfermented tea, the fer-
mentation cycle has exceeded the optimum, making the tea
harsh and poor in quality.

3.4 Majority voting for TeaNet

We developed a deep learning model that is dubbed TeaNet
(Kimutai et al., 2020) and is based on CNNs. AlexNet (Sun
et al., 2016), the widely used network architecture in CNNs,
inspired the development process. We designed the model
for simplicity and to reduce the computational needs. TeaNet
was chosen over the traditional methods since it outper-
formed the traditional methods in the simulation experi-
ments reported in Kimutai et al. (2020). Additionally, TeaNet
as a deep-learning-based model is trained rather than pro-
grammed; thus, it does not require much fine-tuning. TeaNet
is flexible as it be can be retrained using other data sets for

J. Sens. Sens. Syst., 10, 153-162, 2021
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other domain applications, unlike OpenCV algorithms that
are domain-specific (O’Mahony et al., 2020). With transfer
learning (Sutskever et al., 2013), TeaNet can be applied to
solve challenges in other fields. Figure 4 shows the architec-
ture of the developed TeaNet model.

Gaussian distribution was adopted in initializing the
weights of the network. A stochastic gradient descent
(Sutskever et al., 2013) technique, with a batch size of 16
and a momentum value of 0.9, was chosen. The rate of learn-
ing was 0.1, with a threshold minimum of 0.0001. The net-
work learning iterations were set at 50, with a weight decay
of 0.0005. The model registered a steady increase in accuracy
with increasing epoch numbers, registering a perfect preci-
sion of 1.0 at epoch 10. The accuracy of the model increased
with each iteration as the weights of the neurons were turned
after every iteration. The validation accuracy of the model
was 1.0 at epoch 10 (Fig. 5).

Figure 6 presents the loss of the model during training and
validation. The loss steadily reduces, with epoch increases up
to epoch 10 where there is no loss. These values are promis-
ing, as they depict a stable loss rate.

In this paper, we have proposed a region-based majority
(RBM) voting for TeaNet (RBM-TeaNet) composed of three
steps. The steps were image segmentation, the training of the
TeaNet model, and majority voting (Fig. 7). After the im-
age collection, as discussed in Sect. 3.3, the images were
prepared for input into the CNN network by resizing them
to 150 x 150 pixels. The semantic segmentation annotation
method was followed to annotate the images according to
Tylecek and Fisher (2018). Some of the common types of
noise in the images include photon noise, readout noise, and
dark noise (Khan and Yairi, 2018). To perform denoising, the
linear filtering method was adopted.

For the region-based majority voting for TeaNet (RBM-
TeaNet), each region was labelled by voter data generated
by the region majority voting system. Each of the patches
had three voters. One of the voters was in the centre of the
patch, with the others being generated randomly within the
patch. Finally, the classification results were arrived at from
the candidate label that had the highest vote numbers.

3.5 Deployment of the prototype

We deployed the developed tea fermentation monitoring sys-
tem in a tea fermentation bed in the Sisibo Tea Factory,
Kenya (Fig. 8). The Pi camera was attached to a Raspberry Pi
model and used to take images of the tea in the fermentation
bed at an interval of 1 min. The learned model developed in
Kimutai et al. (2020) was trained and deployed in the Sis-
ibo Tea Factory for validation between 1 and 30 July 2020
and thereafter evaluated between 10 and 16 August 2020. In
the tea fermentation bed, a Pi camera was deployed to take
tea fermentation images in real time. The server side con-
tained the Raspberry Pi, a Wi-Fi router, and internet wall.
Every collected image was sent to the Raspberry Pi through
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the jumper wires. In Raspberry, the TeaNet model predicted
the classes of images based on the knowledge gained dur-
ing training. The image was sent to the cloud servers by the
Raspberry Pi with the use of Wi-Fi technology for use by
remote users. The internet wall was used to secure the con-
nection to cloud servers. A copy of each image was then sent
to the edge servers locally for use by local users. Each real-
time image was displayed on the web page, which is acces-
sible through both mobile phones and computers. Addition-
ally, the web page displayed images alongside their predicted
classes.

3.6 Evaluation metrics

The following metrics were used in the evaluation of the per-
formance of the developed model when deployed in the tea
factory: precision, accuracy, and confusion matrix.

3.6.1 Precision

Precision is the degree of refinement with which a classifica-
tion task is undertaken (Flach, 2019). It can be represented
by Eq. (1).

TP

Precision = ——, (D
TP+ FP

where TP is the correct classification of a positive class, and
FP is the incorrect classification of a positive class.

3.6.2 Accuracy

Accuracy is the measure of how a classifier accurately pre-

dicted the total number of input samples (Flach, 2019). Equa-

tion (2) shows its representation.
TP +TN

TP +TN+FP+FN’

Accuracy = 2)
where TP is when a positive class is classified accurately,
and FP is where a positive class is incorrectly classified. TN
is when a negative class is accurately classified, and FN is
when a negative class is incorrectly classified.

3.6.3 Confusion matrix

A confusion matrix is adopted in classification tasks to eval-
uate a classification model based on the true values (Flach,
2019). Sensitivity highlights the number of true positives that
are accurately classified. Equation (3) shows the representa-
tion of sensitivity.

TP
TP+FN’
where TP is when a positive class is accurately predicted by
a classifier, and FP is when a negative class is incorrectly

predicted by a classifier as a positive class. FN denotes the
incorrect classification of a negative class.

Sensitivity =

3)
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Figure 9. Average precision of the TeaNet system in monitoring optimum tea fermentation.
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Figure 10. The average accuracy of the TeaNet system in monitoring optimum tea fermentation.

4 Evaluation results

The model developed in this research was evaluated based
on precision, accuracy, and confusion matrix, as discussed in
Sect. 3.6. Figure 9 shows the evaluation results of the model
based on average precision. The evaluation results showed
that TeaNet produced a perfect precision of 1.0, with an av-
erage of between 0.8485 and 0.9589 in real deployment. The
model produced an average precision of between 0.9260 and
0.9737 when TeaNet and majority voting were combined.
From the results, TeaNet performed better in terms of pre-
cision when evaluated offline compared to when it was eval-
uated in real deployment.

https://doi.org/10.5194/jsss-10-153-2021

Figure 10 shows the evaluation results of the TeaNet model
based on accuracy. Also, TeaNet showed high effectiveness
when evaluated offline, based on the achieved average ac-
curacy of 1.0 across the scanning days. When TeaNet was
evaluated in a real deployment environment, it achieved an
average accuracy of between 0.7179 and 0.8646 across the
scanning days. Additionally, when majority voting was em-
ployed to aid in the decision-making process of TeaNet, per-
formance improved to an average ranging between 0.8372
and 0.8916.

Table 2 presents the performance of the RBM-TeaNet
model in terms of sensitivity. In the tea factory, overfer-
mented tea was not found, since such tea is low in quality

J. Sens. Sens. Syst., 10, 153—-162, 2021
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Table 2. Confusion matrix of RBM-TeaNet model during the fermentation of tea.

Class Unfermented Fermented Overfermented Sensitivity
10 August 2020 (unfermented) 41 4 0 91.1%
10 August 2020 (fermented) 3 39 5 83.0%
11 August 2020 (unfermented) 45 6 0 882%
11 August 2020 (fermented) 6 29 2 784%
12 August 2020 (unfermented) 42 5 0 894%
12 August 2020 (fermented) 3 23 4 76.7%
13 August 2020 (unfermented) 48 3 0 94.1%
13 August 2020 (fermented) 6 26 5 703%
14 August 2020 (unfermented) 42 5 0 89.4%
14 August 2020 (fermented) 3 28 4  80.0%
15 August 2020 (unfermented) 48 4 0 923%
15 August 2020 (fermented) 0 28 5 848%
16 August 2020 (unfermented) 45 2 0 957%
16 August 2020 (fermented) 4 27 3 794 %

and no tea factory allows the fermentation of tea to reach
that level. Generally, the model had good sensitivity across
days, with a minimum of 70.3 % being achieved on 13 Au-
gust 2020 where the model classified six fermented images as
underfermented and five of the fermented images were clas-
sified as overfermented. More promisingly, the model could
not confuse unfermented and overfermented tea. This is be-
cause of the clear distinction in the two classes in terms of
colour.

5 Conclusions

This research has proposed a tea fermentation detection sys-
tem based on IoT, deep learning, and majority voting tech-
niques. The IoT components were Raspberry Pi 3 Model
B+ and a Pi camera. The deep learner model was composed
of three convolutional layers and three pooling layers. The
model developed was deployed to monitor tea fermentation
in real time in a tea factory in Kenya. The capabilities of the
system were assessed based on the ground truths provided by
tea experts. The results from the evaluation are promising and
signify a breakthrough in the application of IoT, CNNs, and
majority voting techniques in the real-time monitoring of tea
fermentation. The same technique can be applied to monitor
the processing of other categories of tea that undergo fermen-
tation, including Oolong tea. Additionally, the prototype can
be used for monitoring the fermentation of coffee and cocoa,
since all of them have a distinction in colour based on the
fermentation degrees. It is recommended that future studies
monitor the physical parameters (temperature and humidity)
of tea during fermentation to find their effect on the quality
of the made tea.
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