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Computing electrostatic potentials using regularization
based on the range-separated tensor format
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Abstract

In this paper, we apply the range-separated (RS) tensor format [6] for the construc-
tion of new regularization scheme for the Poisson-Boltzmann equation (PBE) describing
the electrostatic potential in biomolecules. In our approach, we use the RS tensor rep-
resentation to the discretized Dirac delta [21] to construct an efficient RS splitting of
the PBE solution in the solute (molecular) region. The PBE then needs to be solved
with a regularized source term, and thus black-box solvers can be applied. The main
computational benefits are due to the localization of the modified right-hand side within
the molecular region and automatic maintaining of the continuity in the Cauchy data
on the interface. Moreover, this computational scheme only includes solving a single
system of FDM/FEM equations for the smooth long-range (i.e., regularized) part of the
collective potential represented by a low-rank RS-tensor with a controllable precision.
The total potential is obtained by adding this solution to the directly precomputed
rank-structured tensor representation for the short-range contribution. Enabling finer
grids in PBE computations is another advantage of the proposed techniques. In the
numerical experiments, we consider only the free space electrostatic potential for proof
of concept. We illustrate that the classical Poisson equation (PE) model does not ac-
curately capture the solution singularities in the numerical approximation as compared
to the new approach by the RS tensor format.
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1 Introduction

Numerical treatment of long-range interaction potentials is a challenging task in computer
modeling of multiparticle systems, for example, in calculation of electrostatics in large sol-
vated biological systems, in protein docking, or in many particles dynamics simulations
[10, 16, 27, 30, 32]. The well-known Poisson-Boltzmann equation (PBE) introduced and
analyzed for example, in [15], is one of the most popular implicit solvent models for compu-
tation of the electrostatic potential in proteins. Other models include the generalized Born
(GB) methods [3] and the polarizable continuum models (PCM) [2]. The PBE computes the
electrostatic potential both in the protein and in the surrounding solvent, and it is widely
used in protein docking, in classification problems, and for computation of the free energy of
biomolecules in a self-consistent way.

The main difficulty in the traditional finite element method (FEM) approximation
schemes for the PBE problem is related to the presence of a highly singular source term
that includes a large sum of Dirac delta distributions which need to be resolved using rather
coarse grids. To overcome these limitations, a number of regularization schemes for the
finite element method (FEM) applied to the PBE, based on the full grid representation
of all functional data, have been considered in the literature, see for example [13, 34] and
references therein. Consequently, we note that the PBE theory has recently received major
improvement in terms of accuracy by the introduction of solution decomposition techniques
which have been developed for example, in [9, 29, 34], where the PBE is treated as an
interface problem. This aims at avoiding the discontinuities in traces and fluxes at the
interface between the biomolecule and the solvent and also to circumvent building the
numerical approximations corresponding to the Dirac delta distributions because of the
existence of an analytical expansions in the solute sub-region.

However, these techniques still face the following computational challenges. First, jumps
in the interface conditions, arising due to regularization splitting of the solution, need to
be incorporated to eliminate the solution discontinuity (e.g., Cauchy data) at the interface.
Second, the boundary conditions have to be specified using some analytical representation
of the solution of the PBE. And third, in regularization-based techniques, see for example,
[34], one has to solve multiple algebraic systems for the linear and nonlinear boundary value
problems before summing up the partial solutions which increases the computational costs.
We provide an overview of these techniques in Section 2.

Here, we present a new approach for the regularization of the PBE by using the range-
separated (RS) canonical tensor format introduced and analyzed in [6]. The RS tensor format
relies on the independent grid-based low-rank tensor representation of the long- and short-
range parts in the total sum of single-particle electrostatic potentials discretized on a fine 3D
n×n×n Cartesian grid Ωn in the computational box Ω ⊂ R3. This representation is based on
the splitting of a single reference potential, defined by a radial function like p(‖x̄‖) = 1/‖x̄‖,
into a sum of localized and long-range low-rank canonical tensors both represented on the
computational grid Ωn. The long-range part in the collective potential of a many-particle
system is represented as a low-rank canonical tensor with the rank only logarithmically de-
pending on the number of particles in the system. The rank reduction algorithm is performed
by the canonical-to-Tucker (C2T) transform via the reduced higher order singular value de-
composition (RHOSVD) [23] with a subsequent Tucker-to-canonical (T2C) decomposition.
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The short-range contributions to a many-particle potential are parametrized by a single low-
rank canonical tensor of local support. Notice that in [5] ,it was already sketched how the RS
tensor formats may be utilized for calculation of the free interaction energy of protein-type
systems, and the idea for regularized formulation of the PBE by using the smooth long-range
part of the free space electrostatic potential was outlined.

In this paper ,we introduce the new regularization scheme for the solution of the PBE
adapting the RS tensor format. It is based on a certain splitting scheme for the highly
singular solution and right-hand side in PBE, by using the RS tensor decomposition of the
discretized Dirac delta introduced in [21]. This approach requires only a simple modification
(regularization) in the right-hand side of the PBE in the solute region, but it does not change
the interface conditions and, hence, the FEM system matrix. The most singular component
in the potential is recovered explicitly by the short range part in the RS tensor splitting
of the free space potential. The main computational benefits are due to the localization of
the modified right-hand side within the molecular region and automatic maintaining of the
continuity in the Cauchy data on the interface. Furthermore, this computational scheme only
includes solving a single system of FEM equations for the smooth long-range (i.e., regular-
ized) part of the collective potential represented by a low-rank RS-tensor with a controllable
precision. The total potential is obtained by adding this solution to the directly precomputed
rank-structured tensor representation for the short-range contribution.

As numerical illustrations, we compute the free-space electrostatic potentials of
biomolecules using the RS tensor format in the framework of splitting scheme, and compare
them with the solutions calculated by the traditional FEM/FDM discretization methods for
the PBE [1, 13, 15].

The rest of the paper is organized as follows. Section 2 provides a short overview of existing
solution decomposition schemes for the PBE problem. Section 3 describes the principles of the
rank-structured tensor approximation to the long-range electrostatic potential and sketches
the RS tensor decomposition techniques [6] for the free space electrostatic potential of many
particle systems. The main Section 4 explains how the application of the RS tensor format
leads to the new regularization scheme for solving the PBE. Finally, Section 5 presents the
numerical tests illustrating the benefits of the proposed method, and comparisons with the
solutions obtained by the standard FDM-based PBE solver are provided.

2 On existing solution decomposition techniques

The PBE computes the dimensionless potential u(x̄) = ecψ(x̄)/KBT , which is scaled by
ec/KBT , and ψ(x̄) is the original electrostatic potential in centimeter-gram-second (cgs)
units at x̄ = (x, y, z) ∈ R3. It is given by

−∇ · (ε(x̄)∇u(x̄)) + κ̄2(x̄) sinh(u(x̄)) =
4πe2

c

KBT

Nm∑
i=1

ziδ(x̄− x̄i), Ω ∈ R3, (2.1)

subject to

u(x̄) =
e2
c

KBT

Nm∑
i=1

zie
−κ̄(d−ai)

εs(1 + κ̄ai)d
on ∂Ω, d = ‖x̄− x̄i‖, (2.2)
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where KBT , KB, T , and ec are the thermal energy, the Boltzmann constant, the absolute
temperature, and the electron charge, respectively, κ̄2 = 8πe2

cI/1000εsKBT is a function of
the ionic strength I = 1/2

∑m
j=1 cjz

2
j , where cj and zj are the charge and concentration of

each ion. The sum of Dirac delta distributions, located at atomic centers x̄i, represents the
molecular charge density, zi are the point partial charges of the protein, εs is the solvent
dielectric constant, ai are the atomic radii, and Nm is the total number of point partial
charges in the protein. The functions ε(x̄) and κ̄2(x̄) are piecewise constant defined by

ε(x̄) =

{
εm = 2 if x̄ ∈ Ωm

εs = 78.54 if x̄ ∈ Ωs

, κ̄(x̄) =

{
0 if x̄ ∈ Ωm√
εsκ̄ if x̄ ∈ Ωs

, (2.3)

where Ωm and Ωs are the molecular and solvent regions, respectively, as shown in Figure 2.1.
In order to overcome the difficulties arising from the singularities caused by the impulsive

source term, several solution decomposition techniques have been suggested in the literature.
In the following, we will discuss those techniques that form the state of the art for solving
the PBE. Following [34], the first solution decomposition is generally given by

−εm∆u(x̄) = C
Nm∑
i=1

ziδ(x̄− x̄i), x̄ ∈ Ωm,

−εs∆u(x̄) + κ̄2 sinh(u(x̄)) = 0, x̄ ∈ Ωs,

u(s+) = u(s−), εs
∂u(s+)

∂n(s)
= εm

∂u(s−)

∂n(s)
, s ∈ Γ,

u(s) = g(s), s ∈ ∂Ω,


(2.4)

where C = 4πe2c
KBT

, s+ and s− represent the grid points in the vicinity of the interface Γ in the
solvent and the molecular regions, respectively. The solution u(x̄) is decomposed as follows,

u(x̄) = G(x̄) + φ̃(x̄) + ψ̃(x̄). (2.5)

Ω

Γ
εm

m

+

+

+

+ _

_

_

_

Ω
s

ε
s

Ωd

+

+
_

_

Figure 2.1: Solute and solvent regions in the computational domain for the PBE.
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The corresponding components of u(x̄) include the analytical solution G(x̄) of the Poisson
equation in the molecular domain,

G(x̄) =
Ĉ

εm

Nm∑
i=1

zi
‖x̄− x̄i‖

, x̄ ∈ Ωm, (2.6)

the solution of the linear interface boundary value problem

∆φ̃(x̄) = 0, x̄ ∈ Ωm ∪ Ωs,

φ̃(s+) = φ̃(s−), εs
∂φ̃(s+)

∂n(s)
= εm

∂φ̃(s−)

∂n(s)
+ (εm − εs)

G(s)

∂n(s)
, s ∈ Γ,

u(s) = g(s)−G(s), s ∈ ∂Ω,

 (2.7)

and the solution of the nonlinear interface boundary value problem

∆ψ̃(x̄) = 0, x̄ ∈ Ωm,

−εs∆ψ̃(x̄) + κ̄2 sinh(ψ̃(x̄) + φ̃(x̄) +G(x̄)) = 0, x̄ ∈ Ωs,

ψ̃(s+) = ψ̃(s−), εs
∂ψ̃(s+)

∂n(s)
= εm

∂ψ̃(s−)

∂n(s)
, s ∈ Γ,

u(s) = 0, s ∈ ∂Ω.


(2.8)

Secondly, we recall the solution decomposition from [29] which takes the form

u(x̄) = û(x̄) + ũ(x̄).

The short-range part û(x̄) is given by

û(x̄) =

{
G(x̄) + u0(x̄) if x̄ ∈ Ωm,

0 if x̄ ∈ Ωs,
(2.9)

where u0(x̄) is a harmonic function which compensates for the discontinuity on the interface
and satisfies the following conditions

∆u0(x̄) = 0, if x̄ ∈ Ωm,

u0(s) = −G(s), s ∈ Γ.

}
(2.10)

The regular part ũ(x̄) is represented by

−∇ · (ε(x̄)∇ũ(x̄)) + κ̄2(x̄) sinh(ũ(x̄)) = 0,

[ũ(x̄)]Γ = 0, [ε∇ũ(x̄) · n]Γ = −εm∇(G(x̄) + u0(x̄)) · n|Γ .

}
(2.11)

Lastly, the solution decomposition in [9] is as follows: u(x̄) = G(x̄) + ur(x̄), where G(x̄) is as
in (2.6) and the regular part is given by

−∇ · (ε~∇ur) + κ̄2 sinh(ur+G) = ∇ · ((ε− εm)~∇G), in Ω

ur = g −G, on ∂Ω.

}
(2.12)
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We can also further decompose (2.12) into the linear and nonlinear components so that
ur(x̄) = ul(x̄) + un(x̄), where

−∇ · (ε~∇ul) = ∇ · ((ε− εm)∇G), in Ω

ul = 0 on ∂Ω,

}
(2.13)

and
−∇ · (ε~∇un) + κ̄2 sinh(un + ul +G) = 0, in Ω

un = g −G on ∂Ω.

}
(2.14)

The fundamental idea in the above decomposition strategies is the pursuit of an efficient
solution decomposition technique for the short- and long-range parts in a target tensor.
However, all these techniques do not efficiently separate the long- and short-range components
in the total potential sum, hence there is a need to apply so-called interface (or jump)
conditions at the interface between the molecular region and the solvent region in order to
reduce discontinuities. In what follows, we describe the RS tensor format developed in [6],
applied as the main tool in our paper to modify the PBE to increase the accuracy of its
numerical approximation. A more detailed description of the new solution decomposition
technique is provided in Sections 4.1 and 4.2.

3 Rank-structured approximation of electrostatic po-

tentials

Tensor-structured numerical methods are now becoming popular in scientific computing due
to their intrinsic property of reducing the grid-based solution of the multidimensional prob-
lems to essentially “one-dimensional” computations. These methods evolved from bridging of
the traditional rank-structured tensor formats of multilinear algebra [24, 31] with the nonlin-
ear approximation theory based on a separable representation of multidimensional functions
and operators [11, 12, 20]. One of the ingredients in the development of tensor methods
was the RHOSVD which allows to reduce the rank of tensors in a canonical format by the
C2T decomposition without the need to construct the full size tensor [23]. Originally, it was
used for the reduction of the ranks of canonical tensors when calculating three-dimensional
convolution integrals in computational quantum chemistry, see the surveys [18, 22] and the
references therein.

Recently, tensor-based approaches were suggested as new methods for the calculation
of multiparticle long-range interaction potentials. For a given non-local generating kernel
p(‖x̄‖), x̄ ∈ R3, the calculation of the weighted sum of interaction potentials in an N -particle
system, with the particle locations at x̄ν ∈ R3, ν = 1, ..., N ,

P0(x̄) =
∑N

ν=1
zν p(‖x̄− x̄ν‖), zν ∈ R, x̄ν , x̄ ∈ Ω = [−b, b]3, (3.1)

is computationally demanding for large N . Since the generating radial basis function p(‖x̄‖)
exhibits a slow polynomial decay in 1/‖x̄‖ as ‖x̄‖ → ∞, it follows that each individual term in
(3.1) contributes essentially to the total potential at each point in the computational domain
Ω. This predicts the O(N) complexity for a straightforward summation at every fixed space
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point x̄ ∈ R3. Moreover, in general, the radial function p(‖x̄‖) has a singularity or a cusp at
the origin, x̄ = 0, making its accurate grid representation problematic. An efficient numerical
scheme for the grid-based calculation of P (x̄) in multiparticle systems can be constructed by
using the RS tensor format [6].

3.1 Canonical tensor approximation of the Newton kernel

First, we recall the grid-based method for the low-rank canonical representation of a spheri-
cally symmetric kernel function p(‖x̄‖), x̄ ∈ Rd for d = 2, 3, . . ., by its projection onto the set
of piecewise constant basis functions, see [7] for the case of the Newton kernel p(‖x̄‖) = 1

‖x̄‖ ,

for x ∈ R3. A single reference potential like 1/‖x̄‖ can be represented on a fine 3D n×n×n
Cartesian grid as a low-rank canonical tensor [7, 12].

In the computational domain Ω = [−b, b]3, let us introduce the uniform n×n×n rectan-
gular Cartesian grid Ωn with mesh size h = 2b/n (n even). Let {ψi} be a set of tensor-product

piecewise constant basis functions, ψi(x̄) =
∏3

`=1 ψ
(`)
i`

(x̄`), for the 3-tuple index i = (i1, i2, i3),
i` ∈ I` = {1, ..., n}, ` = 1, 2, 3. The generating kernel p(‖x̄‖) is discretized by its projection
onto the basis set {ψi} in the form of a third order tensor of size n×n×n, defined entry-wise
as

P := [pi] ∈ Rn×n×n, pi =

∫
R3

ψi(x̄)p(‖x̄‖) dx̄. (3.2)

Then using the Laplace-Gauss transform and sinc-quadratures, the 3rd order tensor P can
be approximated by the R-term canonical representation (see [7, 12, 17] for details),

P ≈ PR =
R∑
k=1

p
(1)
k ⊗ p

(2)
k ⊗ p

(3)
k ∈ Rn×n×n, (3.3)

where p
(`)
k ∈ Rn.

Note that the reference tensor for summation of the potentials is generated in a larger
computational domain, P̃R ∈ R2n×2n×2n, which is necessary for application of the shift-and-
windowing transforms Wν , see Section 3.2 and [19] for more details.

The canonical tensor representation of the Newton kernel (3.3) has been successfully
applied in computation of multidimensional operators in quantum chemistry [19, 23], where it
was shown that calculations using the grid-based tensor approximations exhibit the same high
accuracy level as the analytically based computation methods for the same multidimensional
operators. The recent assembled tensor summation method of the long-range electrostatic
potentials on large finite lattices [17] has been proved to keep the rank of the collective
potential on large 3D lattices to be as small as the rank of a canonical tensor for a single
Newton kernel.

3.2 Properties of the RS tensor format

Here we recall some properties of the range separated (RS) tensor format introduced in [6] for
modeling of the long-range interaction potential in multiparticle systems of general type. It
is based on the partitioning of the reference tensor representation of the Newton kernel into
long- and short-range parts with a following assembling of the collective electrostatic potential
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of a molecular system in a special way. According to the tensor canonical representation of
the Newton kernel (3.3) as a sum of Gaussians, one can distinguish their supports as the
short- and long-range parts,

PR = PRs + PRl
,

where
PRs =

∑
k∈Ks

p
(1)
k ⊗ p

(2)
k ⊗ p

(3)
k , PRl

=
∑
k∈Kl

p
(1)
k ⊗ p

(2)
k ⊗ p

(3)
k . (3.4)

Here, Kl := {k|k = 0, 1, . . . , Rl} and Ks := {k|k = Rl + 1, . . . ,M} are the sets of indices
for the long- and short-range canonical vectors. Then the optimal splitting (3.4) is applied

to the reference canonical tensor PR and to its accompanying version P̃R = [p̃R(i1, i2, i3)],

i` ∈ Ĩ`, ` = 1, 2, 3, such that

P̃R = P̃Rs + P̃Rl
∈ R2n×2n×2n.

The total electrostatic potential P0(x̄) in (3.1) is represented by a projected tensor P0 ∈
Rn×n×n that can be constructed by a direct sum of shift-and-windowing transforms of the
reference tensor P̃R (see [17] for more details),

P0 =
N∑
ν=1

zνWν(P̃R) =
N∑
ν=1

zνWν(P̃Rs + P̃Rl
) =: Ps + Pl. (3.5)

The shift-and-windowing transform Wν maps a reference tensor P̃R ∈ R2n×2n×2n onto its
sub-tensor of smaller size n×n×n, obtained by first shifting the center of the reference tensor
P̃R to the grid-point xν and then restricting (windowing) the result onto the computational
grid Ωn. However, the tensor representation (3.5) is non-efficient as the ranks are growing
linearly in the number of particles and remain non-reducible in both canonical and Tucker
tensor formats.

This problem is solved in [6] by considering the global tensor decomposition of only the
”long-range part” in the tensor P0, defined by

Pl =
N∑
ν=1

zνWν(P̃Rl
) =

N∑
ν=1

zνWν(
∑
k∈Kl

p̃
(1)
k ⊗ p̃

(2)
k ⊗ p̃

(3)
k ). (3.6)

In [6] it was proven that the canonical rank of the tensor Pl only logarithmically depends
on the number of particles N involved in the summation. It was also shown that the rank
reduction Pl 7→ PRL

may be efficiently implemented by using the C2T and T2C algorithms,
where the RHOSVD is a key ingredient [23]. As for the short-range part of the collective
potential, in the RS format it is represented by a single small size tensor supplemented by a
list of the particles’ coordinates.

According to the definition of the RS canonical tensor format introduced in [6], for the
given separation parameter γ ∈ N, which is used for partitioning of the canonical vectors into
the long and short range contributions, the RS-canonical tensor format specifies the class of
d-tensors A ∈ Rn1×···×nd which can be represented as a sum of a rank-RL canonical tensor

ARL
=
∑RL

k=1
ξka

(1)
k ⊗ · · · ⊗ a

(d)
k ∈ Rn1×...×nd (3.7)

8



Figure 3.1: The full free space electrostatic potential of a system with 782 particles
(left) and the sum of their short range contributions (right).

and a (uniform) cumulated canonical tensor

ÂS =
∑N

ν=1
cνAν (3.8)

generated by shifts of a short reference tensor A0 with rank(A0) ≤ R0. With these notations,
the RS canonical tensor format reads as

A =
∑RL

k=1
ξka

(1)
k ⊗ · · · ⊗ a

(d)
k +

∑N

ν=1
cνAν , (3.9)

where diam(suppAν) ≤ 2γ.
Lemma 3.9 in [6] presents the storage cost of the RS-canonical tensor A in (3.9) as follows:

mem(A) ≤ dRLn+ (d+ 1)N + dR0γ.

Given i ∈ I = I1 × · · · × Id, denote by a
(`)
i`
∈ RL

1×R the row-vector with index i` in the side

matrix A(`) ∈ Rn`×RL of A, and let ξ = (ξ1, . . . , ξd). Then the i-th entry of the RS-canonical
tensor A = [ai] can be calculated as a sum of long- and short-range contributions by

ai =
(
�d`=1a

(`)
i`

)
ξT +

∑
ν∈L(i)

cνAν(i),

at the expense O(dRL + 2dγR0). Here, L(i) := {ν ∈ {1, . . . , N} : i ∈ suppAν} is the set of
indices which label all the short-range tensors Aν that include the grid point i within their
effective support [6].

The RS tensor may be represented in a Tucker tensor format as well, see [6]. RS tensors
are efficient in many applications, for example for modeling of the electrostatics of many-
particle systems of general type, or for modeling of scattered multidimensional data by using
radial basis functions.

Next, we illustrate the performance of the canonical RS-tensor format in calculating the
collective free space electrostatic potential of a model molecular system with 782 atoms,
see also [6]. Summation is performed using the canonical tensor representing the reference

9



Figure 3.2: The low-rank tensor representation of the long-range part in the elec-
trostatic potential of 782 charged particles (left) and the error of the canonical rank
reduction.

Newton potential computed on the n × n × n 3D Cartesian grid with n = 257 and the
canonical rank R = 29. The RS-tensor construction is performed with r` = 14, Rs = 15,
simply by dividing the canonical vectors into two groups, that is from every 29 vectors of the
reference tensor and for every space dimension (x, y, z), 15 sharp Gaussians are separated
as the short range part, and 14 smoother Gaussians as the long-range part1. Then their
contributions to the collective sum of potentials are calculated separately. To reduce the
rank of the long-range collective sum, the C2T (and T2C) transforms using RHOSVD [23]
are used, with a choice of the truncation threshold 10−8. The resulting rank decreases from
R`,total = 10948, to R` = 382 and only logarithmically depends on the number of particles N
[6].

The left panel in Figure 3.1 shows the cross-section of the collective electrostatic potential
of a molecular system at the middle of a z-plane, while the right panel shows the cross-
section of only the short-range part of the collective potential ÂS. Notice that in the left
panel showing the total potential sum, the potential at the point of the plane with (x, y) =
(191, 143) equals to ∼ 0.057 units, while for the short range (right panel) the sum equals to
2.8 10−6. The left panel in Figure 3.2 presents the cross-section of the low-rank long-range
part of the collective potential at the same plane, while the right panel in this figure shows
the error of the rank reduction (the same truncation threshold 10−8 as chosen above).

4 Application of RS tensor format for solving PBE

The RS tensor formats can be gainfully applied in computational problems which include
functions with multiple local singularities or cusps, Green kernels with essentially non-local
behavior, as well as in various approximation problems treated by means of radial basis func-
tions. In what follows, we describe the new approach for the construction of computationally
effective boundary/interface conditions and source terms in the Poisson-Boltzmann equation
(PBE) describing the electrostatic potential of a biomolecule in gas phase and in solvent by

1Alternatively, separation of the reference tensor into the short- and long-range Gaussians may be per-
formed by a chosen ε-truncation for the given interatomic distance.
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solving the FEM/ FDM discretization of the regularized PBE. The main advantage of our ap-
proach is due to complete avoidance of the direct FEM approximation (interpolation) of the
highly singular right-hand sides in the traditional formulation of the PBE and, at the same
time, preventing the modification of the stiffness matrix and/or the continuity conditions
across the interface.

4.1 Tensor based regularization scheme for the PBE

The traditional numerical approaches for solving the PBE are based on either multigrid [28]
or domain decomposition [8] methods. Consider a solvated biomolecular system modeled by
dielectrically separated domains with singular Coulomb potentials distributed in the molec-
ular region. For schematic representation, we consider the system occupying a rectangular
domain Ω with boundary ∂Ω, see Figure 2.1, where the solute (molecule) region is represented
by Ωm and the solvent region by Ωs, such that

Ω = Ωm ∪ Ωs.

The linearized Poisson-Boltzmann equation takes the form, see [28],

−∇ · (ε∇u) + κ̄2u = ρf in Ω, (4.1)

where u denotes the target electrostatic potential of a protein, and

ρf =
N∑
k=1

zkδ(‖x̄− x̄k‖), zk ∈ R,

is the scaled singular charge distribution supported at points x̄k in Ωm, where δ is the Dirac
delta distribution, and zk ∈ R denotes the charge located at the atomic center x̄k. Here
εm = O(1) > 0 and κ̄ = 0 in Ωm, while in the solvent region Ωs, we have κ̄ ≥ 0 and εs ≥ εm
(in some cases the ratio εs/εm could be about several tens).

The interface conditions on the interior boundary Γ = ∂Ωm arise from the dielectric
theory:

[u] = 0,

[
ε
∂u

∂n

]
= 0 on Γ. (4.2)

The boundary conditions on the external boundary ∂Ω can be specified depending on the
particular problem setting. The simplest homogeneous Dirichlet boundary conditions

u|∂Ω = 0

can be utilized. We shall also consider the practically interesting inhomogeneous Dirichlet
boundary conditions taking the form

u(x̄)|∂Ω =
1

4πεm

N∑
k=1

zke
−κ̄‖x̄−x̄k‖

‖x̄− x̄k‖
, x̄ ∈ ∂Ω. (4.3)

The practically useful solution methods for the PBE are based on regularization schemes
aiming at removing the singular component from the potentials in the governing equation.
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Amongst others, we consider one of the most commonly used approaches based on the additive
splitting of the potential in the molecular region Ωm, see for example [28]. To that end, we
first discuss the additive splitting techniques introduced in [5], based on the application of
the RS tensor format,

u = ur + um0 , where um0 = 0 in Ωs, (4.4)

and where the singular component um0 satisfies the following Poisson equation in Ωm,

− εm∆um0 = ρf in Ωm; um0 = 0 on Γ. (4.5)

In this case, equation (4.1) can be transformed to an equation for the regular potential ur:

−∇ · (ε∇ur) + κ̄2ur = 0 in Ω, (4.6)

[ur] = 0,

[
ε
∂ur

∂n

]
= −εm

∂um0
∂n

on Γ.

To facilitate the solution of equation (4.5) with highly singular data in the right-hand
side, the singular potential U in the free space was utilized, see [6],

− εm∆U = ρf in R3, |U(x̄)| → 0, |x̄| → ∞, (4.7)

that can be written in the explicit form

U(x̄) =
1

4πεm

N∑
k=1

zk
‖x̄− x̄k‖

.

Introduce the characteristic (indicator) function, χ[Ωm](x̄), x̄ ∈ Ω, of the domain Ωm ⊂ Ω by

χ[Ωm](x̄) =

{
1 if x̄ ∈ Ωm

0 if x̄ ∈ Ωs = Ω \ Ωm.
(4.8)

Then the restriction of U onto Ωm can be calculated by

um = χ[Ωm]U,

implying the decomposition
um0 = um + uharm,

where the harmonic function uharm compensates the discontinuity of um on Γ,

∆uharm = 0 in Ωm; uharm = −um = −U on Γ.

The advantage of this formulation is twofold:

(a) the absence of singularities in the solution ur, and

(b) the localization of the solution splitting only in the domain Ωm.
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Grid representation of the free space singular potential U , which may include a sum of hun-
dreds or even thousands of single Newton kernels in 3D, leads to a challenging computational
problem. In our approach it can be represented on large tensor grids in Ω with controlled
precision by using the RS tensor format [6] characterized by the separability constant γ > 0
which in our application can be associated with the Van Der Waals inter-atomic distance, see
Section 3.2. The long-range component in the formatted parametrization remains smooth
and allows global low-rank representation in Ω. We conclude with the following

Proposition 4.1 Let the effective support of the short-range components in the reference
potential PR be chosen not larger than γ/2. Then the interface conditions in the regularized
formulation of the PBE in (4.6) depend only on the low-rank long-range component in the
free-space electrostatic potential of the atomic system. The numerical cost to build up the
interface conditions on Γ in (4.6) does not depend on the number of particles N .

Notice that here, we describe the splitting scheme in (4.5) – (4.6) just for illustration of
the applicability of the RS tensor format for the solution of the PBE. This scheme requires
modification of the interface conditions that is equivalent to a change of the system matrix
which leads to a complicated implementation scheme. To avoid this nontrivial task, in what
follows, we introduce an alternative approach, which will be discussed in the next section.

The regularization u = ur + um0 like in (4.5) – (4.6) benefits from the local-global sep-
arability in the low-rank RS tensor representation of the free space electrostatic potential.
Notice that here, we describe the splitting scheme in (4.5) – (4.6) just for illustration of
the applicability of the RS tensor format for the solution of the PBE. This scheme requires
modification of the interface conditions that is equivalent to a change of the system matrix
which leads to a complicated implementation scheme. To avoid this nontrivial task, in what
follows, we introduce an alternative approach, which avoids the additional computation of
the auxiliary harmonic function uharm in the rather complicated domain Ωm as well as the
modification of the interface conditions.

4.2 The new RS tensor based splitting scheme

In this section, we present the new splitting scheme which is based on the range separated
representation of the Dirac δ-distribution [21], which composes the highly singular right-hand
side in the target PBE (4.1) or Poisson equation (PE) (4.5). Here, we consider the PE as
proof of concept and validate the numerical results in Section 5. The idea is to modify
the right-hand side ρf in such a way that the short-range part in the solution u can be
pre-computed independently by the direct tensor decomposition of the free space potential,
and the initial elliptic equation applies only to the long-range part of the total potential,
satisfying the equation with the modified right-hand side by using the RS splitting of the
Dirac delta, see [21] for more details. The latter is a smooth function, hence the FDM/FEM
approximation error can be reduced dramatically even on relatively coarse grids in 3D.

For ease of presentation, we consider the simplest case of the single atom with unit charge
located at the origin, such that the exact electrostatic potential reads u(x̄) = 1

‖x‖ , x ∈ R3.

Recall that the Newton kernel (3.3) discretized by the R-term sum of Gaussian type functions
living on the n×n×n tensor grid Ωn is represented by a sum of short- and long-range tensors,

1

‖x‖
 PR = PRs + PRl

∈ Rn×n×n,
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where PRs and PRl
are defined in (3.4).

Let us formally discretize the exact equation for the Newton potential, u(x̄) = 1
‖x‖ ,

−∆
1

‖x‖
= 4π δ(x̄),

by using the FDM/FEM Laplacian matrix A∆ instead of ∆ and via substitution of the canon-
ical tensor decomposition PR instead of u(x̄) = 1

‖x‖ . This leads to the grid representation of

the discretized Dirac delta [21]

δ(x̄) δh := − 1

4π
A∆PR,

that will be applied in the framework of our discretization scheme.
We remind that the 3D finite difference Laplacian matrix A∆, defined on the uniform

rectangular grid, takes the form

A∆ = ∆1 ⊗ I2 ⊗ I3 + I1 ⊗∆2 ⊗ I3 + I1 ⊗ I2 ⊗∆3, (4.9)

where −∆` = h−2
` tridiag{1,−2, 1} ∈ Rn`×n` , ` = 1, 2, 3, denotes the discrete univariate

Laplacian, such that the Kronecker rank of A∆ equals to 3. Here I`, ` = 1, 2, 3, is the identity
matrix in the corresponding single dimension.

Now we are in the position to describe the RS tensor based splitting scheme. To that end,
we use the splitting of the discretized δ-distribution into short- and long-range components
in the form [21],

δh = δs + δl, (4.10)

where

δs := − 1

4π
A∆PRs , and δl := − 1

4π
A∆PRl

. (4.11)

We recall that by construction, the short range part vanishes on the interface Γ, hence it
satisfies the discrete Poisson equation in Ωm with the respective right-hand side in the form
δs and zero boundary conditions on Γ [21]. Then we deduce that this equation can be
subtracted from the full discrete linear system, such that the long-range component of the
solution, PRl

, will satisfy the same linear system of equations (same interface conditions), but
with a modified right-hand side corresponding to the weighted sum of the long-range tensors
δl only. In the simple example of the single charge, we arrive at the particular discrete
Poisson equation for the long-range part in the full potential PR, Ul = PRl

,

− A∆Ul = δl, (4.12)

which can be solved by an appropriate iterative method.
Figure 4.1 illustrates the modified right hand side representing the long-range part of

the discrete Dirac delta δl. It it worth noting that the FEM approximation theory can be
applied to this formulation since the input data (i.e., the right-hand side) are regular enough.
However, it is not the case for the initial formulation with the highly singular Dirac delta
distribution in the right-hand side.
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Figure 4.1: The long-range part of the Dirac delta δl on an n⊗3 3D grid, n = 256.

This scheme can be easily extended to the case of many-atomic systems just by additive
representation of the short- and long-range parts in the total free space potential,

− A∆PRl
= δRL

, (4.13)

where we suppose that RL is the rank of the long-range part PRl
of the corresponding RS

tensor of type (3.9), and δRL
is calculated as shown in (4.15).

We summarize the following benefits of the aforementioned solution decomposition
scheme.

• Most important is that due to efficient splitting of the short- and long-range parts in
the target tensor representing both the single Newton kernel and the total free-space
potential, there is no need to modify jump conditions at the interface.

• A remarkable advantage is that the long-range part in the RS tensor decomposition of
the Dirac-delta distribution [21] vanishes at the interface and, hence, the modified right-
hand side generated by this long-range component remains localized in the “linear”
solute region.

• The boundary conditions are obtained from the long-range part in the tensor represen-
tation of the collective electrostatic potential which reduces the computational costs
involved in solving some external analytical function at the boundary.

• Only a single system of algebraic equations is solved for the smooth long-range (i.e.,
regularized) part of the collective potential discretized with controllable precision on a
relatively coarse grid, which is then added to the directly precomputed (avoiding PDE
solutions) low-rank tensor representation for the short-range contribution.

Next, we briefly comment on the general FEM approximation for the Laplacian. We recall
the tensor-based scheme for evaluation of the Laplace operator in a separable basis set [19]
applied for calculation of the kinetic energy part in the Fock operator.

Let the problem be posed in the finite volume box Ω = [−b, b]3 ∈ R3, subject to the
homogeneous Dirichlet boundary conditions on ∂Ω. For given discretization parameter n ∈ N,
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the equidistant n×n×n tensor grid ω3,N = {xi}, i ∈ I := {1, ..., n}3 is used, with the mesh-
size h = 2b/(n + 1). Then the Kronecker rank-3 tensor representation of the respective
Galerkin FEM stiffness matrix is given by (4.9).

Notice that the MATLAB representation of the matrix A∆ (say, the FD matrix) can be
easily described in terms of kron operations as follows

1

h2
A∆ = kron(kron(∆1, I), I) + kron(kron(I,∆1, I) + kron(kron(I, I),∆1), (4.14)

applied to a long vector of size n3 representing the Newton potential.
Then the rank-structured calculation of the “collective” right-hand side δRL

in (4.13) is
reduced to one-dimensional operations,

− δRL
=

RL∑
k=1

ξk(∆1a
(1)
k ⊗ a

(2)
k ⊗ a

(3)
k + a

(1)
k ⊗∆1a

(2)
k ⊗ a

(3)
k + a

(1)
k ⊗ a

(2)
k ⊗∆1a

(3)
k ), (4.15)

where a
(`)
k , ` = 1, 2, 3, are the canonical vectors and RL is the canonical rank of the long-range

part of the collective electrostatic free space potential of a biomolecule computed in the RS
tensor format (3.9).

This is the tensor ansatz to be used as the right-hand side in the equation (4.12), which
we apply in numerical experiments. With a subsequent usage of the canonical-to-full tensor
transform and after reshaping a three-tensor into a long vector, δRL

is applied in a standard
PBE iterative solver as the RHS for the long-range part. Another advantage of our scheme
is that the short-range part of the solution in the PBE (2.1) is obtained for free, since it is
merely incorporated as the set of short-range parts of the respective Newton potentials for
every particle in a biomolecule. That corresponds to a set of tensors in the second term of
the collective electrostatic potential in the RS tensor format (3.9).

4.3 Discussion of the computational scheme

We summarize the main computational tasks involved in the presented tensor-based numer-
ical scheme. The regularized PBE (RPBE) can be constructed as follows:

(a) Compute the regularized component δRL
of the discretized Dirac delta distribution in

(4.13) as described in [21];

(b) Substitute δRL
into the right-hand side of the PBE (4.1) to obtain the following RPBE

−∇ · (ε∇ur(x̄)) + κ̄2
2(x̄)ur(x̄) = δRL

, in Ω, (4.16)

subject to the boundary condition in (2.2).

(c) Discretize the RPBE (4.16) to obtain the following linear system of equations

Aur = b, (4.17)

which can be solved by any linear system solver.
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(d) Obtain the final PBE solution u by the sum

u = ur + us,

where us = PRs is the precomputed short-range component of the Newton potential
sum, see (3.4).

The splitting scheme described in Section 4.2 allows to reduce the initial equation to the
solution of the system with modified right-hand side by using the range-separated repre-
sentation of the discretized Dirac delta. The problem is reduced to the direct tensor-based
computation (without solving a PDE) of the short-range part in the collective free space
electrostatic potential, see (3.4), and to the subsequent solution of the PBE equation for the
long-range part only by the simple modification of the right-hand side. The advantage is
that the PBE applies to the smooth part, ur, of the total potential and hence a controllable
FDM/FEM approximation error on moderate size 3D grids can be achieved.

This method can be combined with the reduced basis approach for PBE with parametric
coefficients to further accelerate the numerical computations [4, 25]. This is because the
modified model is affinely dependent on the parameter κ̄, thereby providing a natural off-
line/on-line decomposition of the reduced basis method.

Finally, we notice that the important characterization of the protein molecule is given by
the electrostatic solvation energy [28], which is the difference between the electrostatic free
energy in the solvated state (described by the PBE) and the electrostatic free energy in the
absence of solvent. Having at hand the free energy EN (see [5], Lemma 4.1), the electrostatic
solvation energy can be computed in the framework of the regularized formulation of the
PBE as described above.

5 Numerical Tests

In this section, we consider only the free space electrostatic potential for the modified PE
and the RS tensor format based splitting scheme. We compare the results with those of the
traditional PE for various biomolecules. Notice that the PBE can be reduced to the PE by
considering the case of zero ionic strength which implies that the function κ̄2(x̄), hence the
Boltzmann distribution term, in (2.1) is annihilated. Consequently, homogeneous dielectric
constants of εm = εs = 1 are considered. We compute the electrostatic potentials using
n × n × n 3D Cartesian grids, in a box [−b, b]3 with equal step size h = 2b

n−1
. Note that

computations by the PBE/PE solver are bounded by n = 257, on a PC with 8GB RAM
due to the storage needs of the order of O(n3). Note that since the storage requirements for
the tensor-structured representation of the electrostatic potential is of the order of O(n), see
(3.3), in tensor computations of molecular potentials one can use much finer 3D grids.

First, we validate the FDM solver for the PE by comparing its solution with that of the
adaptive Poisson-Boltzmann solver (APBS) using the finite difference multigrid calculations
with PMG 2 option [1, 9]. Here, we consider a Born ion of unit charge, unit (Å) radius and
located at the origin ((0, 0, 0)). Figure 5.1 shows the single Newton kernel for the Born ion,
approximated by the PE on an n × n grid surface with n = 129 at the cross section of the

2PMG is a Parallel algebraic Multigrid code for General semilinear elliptic equations.
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Figure 5.1: The free space potential for the Born ion computed by the APBS (left),
the FDM solver (middle) and the corresponding error (right).

volume box in the middle of the z-axis computed by the APBS and the FDM solvers and
the corresponding error between the two solutions. The results show that the FDM solver
provides as accurate results as those of the APBS with a discrete L2 error of O(10−9) in the
full solution. Similar results for varying proteins are illustrated in [4].

Secondly, we compare the accuracy of the traditional PE model and of the PE model
modified by the RS tensor format for the approximation of the single Newton kernel. Figure
5.2 shows the single Newton kernel on an n×n grid surface with n = 129 at the cross section
of the volume box in the middle of the z-axis computed by the canonical tensor approximation
obtained by sinc-quadratures and the corresponding errors by the traditional PE model and
the modified PE model computed by the FDM solver. We notice that the solution of the
modified PE model is of higher accuracy than that of the traditional PE model because it
captures the singularities exactly, see the central region of Figure 5.2 (right).

In a similar vein, we consider the acetazolamide compound consisting of 18 atoms and
determine the accuracy of the traditional PE model vis a vis the PE model modified by the RS
tensor format. Figure 5.3 shows the sum of the electrostatic potentials for the acetazolamide,
computed on an n × n grid surface with n = 129 by the canonical tensor approximation
obtained by sinc-quadratures and the corresponding errors by the traditional PE model and
the modified PE model computed by the FDM solver. It is clearly shown that the modified
PE model provides highly accurate solutions as compared to those of the traditional PE due
to the accurate treatment of the solution singularities by the RS tensor format.

Figure 5.2: The Newton potential computed by the canonical tensor decomposition
(left), the error of its computation on the same grid by using the classical PE
(middle) and by the modified PE (right).
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Figure 5.3: The Newton potential sums computed by the canonical tensor decom-
position (left), the error of its computation on the same grid by using the classical
PE (middle) and by the modified PE (right).

Figure 5.4: Demonstration of the solution singularities for the acetazolamide
molecule captured by the canonical tensor approximation (left), by the modified
PE model (middle) and by the classical PE (right).

We notice, in addition, that the classical PE model does not capture accurately the
singularities in the electrostatic potential due to the numerical errors introduced by the Dirac
delta distribution and partly due to the smoothing effect caused by the spline interpolation of
the charges onto the grid. The modified PE model, on the other hand, is able to capture the
singularities due to the independent treatment of the singularities by the RS tensor technique.
This is clearly demonstrated in Figure 5.4.

5.1 Solutions to the modified Poisson equation on a sequence of
fine grids

Here, we illustrate the accuracy of the modified PE by calculating the free space electrostatic
potential on a sequence of fine grids and compare with the solution of the exact Newton
potential determined by the canonical tensor representation. We first consider the aforemen-
tioned Born ion case and show the absolute error for the finest Cartesian grid and the discrete
L2 norm of the error for a sequence of Cartesian grids. Figure 5.5 shows the absolute error of
O(10−11) obtained on a 2573 Cartesian grid and 32 Å box length. Table 5.1 shows the decay
of the discrete L2 norm of the error for a sequence of grid refinements.

Next, we consider the acetazolamide molecule with 18 atoms. This molecule is used as
a ligand in the human carbonic anhydrase (hca) protein-ligand complex for the calculation
of the binding energy in the adaptive Poisson-Boltzmann software (APBS) package [14] and
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Figure 5.5: Absolute error between the solutions of the Newton potential and the
modified Poisson equation for the Born ion.

n 97 129 257
Discrete L2 norm 4.1176× 10−7 9.5516× 10−8 2.7975× 10−9

Table 5.1: The discrete L2 norm of the error with respect to grid size for the Born
ion.

the MATLAB program for biomolecular electrostatic calculations, (MPBEC) [33]. The elec-
trostatic potential is computed as in the previous case, employing the same grid properties.
The absolute error is shown in Figure 5.6 and the error behaviour with respect to mesh
refinements is shown in Table 5.2.

Figure 5.6: Absolute error between the solutions of the Newton potential sums
and the modified Poisson equation for the acetazolamide molecule.
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n 97 129 257
Discrete L2 norm 4.1176× 10−7 1.1936× 10−7 3.7003× 10−9

Table 5.2: The discrete L2 norm of the error and the relative error with respect to
grid size for the acetazolamide molecule.

Figure 5.7: Absolute error between the solutions of the Newton potential sums
and the modified Poisson equation for the protein Fasciculin 1.

Finally, we consider the protein Fasciculin 1, with 1228 atoms, an anti-acetylcholinesterase
toxin from the green mamba snake venom [26]. Again, we compute the electrostatics potential
as in the previous case, but with 60 Å box length and a 2573 as the minimum Cartesian grid
because of a larger molecular size. The results provided in the Figure 5.7 and Table 5.3
illustrate a similar trend of accuracy as in the previous test examples.

5.2 Accurate representation of the long-range electrostatic poten-
tial by the RS tensor

Here, we highlight the advantages of the RS tensor format in the low-rank approximation
of the long-range component in the total potential sum. For this purpose, the RHOSVD
within the multigrid C2T transform [23] is used which provides computation of the low-
rank canonical/Tucker tensor representation of the long-range part at the asymptotic cost
of O(Nn). Here, N is the number of charges in the molecule while n represents the grid

n 129 193 257
Discrete L2 norm 1.2919× 10−6 1.7395× 10−7 4.3060× 10−8

Table 5.3: The discrete L2 norm of the error and the relative error with respect to
grid size for the protein Fasciculin 1.
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Figure 5.8: The error due to the low-rank approximation of the long-range com-
ponent for the 379 atomic molecule for n = 1293 (left), n = 2573 (middle) and
n = 5133 (right) grids.

Figure 5.9: The error due to the low-rank approximation of the long-range com-
ponent for the 379 atomic molecule for n = 2573 grid at a lower tolerance.

dimension in a single direction. Figure 5.8 shows an error of O(10−5) of the RS tensor format
approximation compared with the full size representation at various grid dimensions. These
data correspond to the long-range RS-rank equal to 10, with ε-truncation threshold chosen
as O(10−6) for the Newton kernel and O(10−7) for the C2T transform. Figure 5.9 shows the
error obtained if we take another rank truncation criterion ε of an order less for both the
Newton (i.e., O(10−7)) and for the C2T transform (O(10−8)), indicating that the error will
be one order less too, i.e., O(10−6)).

6 Conclusions

In this paper we demonstrate that the range-separated tensor format is gainfully applicable
for the solution of the PBE for calculation of electrostatics in large molecular systems. The
efficiency of the new tensor-based regularization scheme for the PBE is based on the excep-
tional properties of the grid-based RS tensor splitting of the Dirac-delta distribution. The
main computational benefits are due to the localization of the modified right-hand side within
the molecular region and automatic maintaining of the continuity of the Cauchy data on the
interface. Another advantage is that our computational scheme only includes solving a single
system of algebraic equations for the smooth long-range (i.e., regularized) part of the collec-
tive potential discretized by FDM. The total potential is obtained by adding this solution
to the directly precomputed low-rank tensor representation for the short-range contribution.
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The various numerical tests illustrate the main properties of the presented scheme. For ex-
ample, it is clear from Figure 5.4 that the classical PE model does not accurately capture
the solution singularities which emanate from the short-range component of the total target
electrostatic potential in the numerical approximation. In this paper, we emphasize that this
problem can be efficiently circumvented by applying the range-separated tensor format as a
solution decomposition technique in order to modify the PBE/PE. In the modified PBE/PE,
the Dirac-delta distribution is replaced by a smooth long-range function from (4.11). We
thus only need to solve for the long-range electrostatic potential numerically and add this
solution to the short-range component which is computed a priori using the canonical tensor
approximation to the Newton kernel. The resultant total potential sum is of high accuracy
as evident from Figures 5.5 - 5.7 and Tables 5.1 - 5.3. Finally, we summarize that the reg-
ularization scheme presented in this paper has capabilities for various generalizations which
can be effectively implemented with minor changes in the RS tensor decompositions. We
notice the following directions:

– The possibility of PBE computations on much finer grids is also an advantage of the
proposed approach. Tensor techniques practically may be applied to finer grids compared to
traditional finite element approaches;

– The regularization scheme remains verbatim in the case of the nonlinear PBE since it
requires only the modification of input data for the right-hand side in the molecular region
Ωm, where the equation is linear, but this does not affect the nonlinearity domain Ωs;

– Our approach allows the efficient calculation of electrostatics under multiple rotations
of the biomolecule, which is the crucial problem in the numerical modeling of proteins.
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