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REGULARIZATION OF POISSON–BOLTZMANN TYPE
EQUATIONS WITH SINGULAR SOURCE TERMS USING THE

RANGE-SEPARATED TENSOR FORMAT∗
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Abstract. In this paper, we present a new regularization scheme for the linearized Poisson–
Boltzmann equation (PBE) which models the electrostatic potential of biomolecules in a solvent.
This scheme is based on the splitting of the target potential into the short- and long-range compo-
nents localized in the molecular region by using the range-separated (RS) tensor format [P. Benner,
V. Khoromskaia, and B. N. Khoromskij, SIAM J. Comput., 2 (2018), pp. A1034–A1062] for represen-
tation of the discretized multiparticle Dirac delta [B. N. Khoromskij, J. Comput. Phys., 401 (2020),
108998] constituting the highly singular right-hand side in the PBE. From the computational point of
view our regularization approach requires only the modification of the right-hand side in the PBE so
that it can be implemented within any open-source grid-based software package for solving PBE that
already includes some FEM/FDM disretization scheme for elliptic PDE and solver for the arising lin-
ear system of equations. The main computational benefits are twofold. First, one applies the chosen
PBE solver only for the smooth long-range (regularized) part of the collective potential with the regu-
lar right-hand side represented by a low-rank RS tensor with a controllable precision. Thus, we elimi-
nate the numerical treatment of the singularities in the right-hand side and do not change the interface
and boundary conditions. And second, the elliptic PDE need not be solved for the singular part in the
right-hand side at all, since the short-range part of the target potential of the biomolecule is precom-
puted independently on a computational grid by simple one-dimensional tensor operations. The total
potential is then obtained by adding the numerical solution of the PBE for the smooth long-range part
to the directly precomputed tensor representation for the short-range contribution. Numerical tests
illustrate that the new regularization scheme, implemented by a simple modification of the right-hand
side in the chosen PBE solver, improves the accuracy of the approximate solution on rather coarse
grids. The scheme also demonstrates good convergence behavior on a sequence of refined grids.
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potentials, long-range many-particle interactions, low-rank tensor decompositions, range-separated
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1. Introduction. Numerical treatment of long-range interaction potentials is
a challenging task in computer modeling of multiparticle systems, for example, in

∗Submitted to the journal’s Methods and Algorithms for Scientific Computing section August 15,
2019; accepted for publication (in revised form) December 7, 2020; published electronically January
27, 2021.

https://doi.org/10.1137/19M1281435
Funding: The work of the fourth author was supported by the International Max Planck

Research School (IMPRS) for Advanced Methods in Process and Systems Engineering and the Max
Planck Society for the Advancement of Science (MPG).
†Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstr. 1, D-39106

Magdeburg, Germany (benner@mpi-magdeburg.mpg.de, matthias.stein@mpi-magdeburg.mpg.de).
‡Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstr. 1, D-39106

Magdeburg, Germany, and Max Planck Institute for Mathematics in the Sciences, Inselstr. 22-26,
D-04103 Leipzig, Germany (vekh@mis.mpg.de).
§Max Planck Institute for Mathematics in the Sciences, Inselstr. 22-26, D-04103 Leipzig, Germany

(bokh@mis.mpg.de).
¶Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstr. 1, D-39106

Magdeburg, Germany, and Moi University, Department of Mathematics and Physics, P.O. Box 3900-
30100, Eldoret, Kenya (kweyu@mpi-magdeburg.mpg.de).

A415

D
ow

nl
oa

de
d 

02
/0

9/
21

 to
 1

93
.1

75
.5

3.
21

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

https://doi.org/10.1137/19M1281435
mailto:benner@mpi-magdeburg.mpg.de
mailto:matthias.stein@mpi-magdeburg.mpg.de
mailto:vekh@mis.mpg.de
mailto:bokh@mis.mpg.de
mailto:kweyu@mpi-magdeburg.mpg.de


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A416 BENNER ET AL.

calculation of electrostatics in large solvated biological systems, or in many-particle
dynamics simulations [15, 50, 17, 28, 53, 43]. The Poisson–Boltzmann equation (PBE)
[25, 51, 21, 13] is one of the most popular implicit solvent models for computation
of the electrostatic potential in proteins [37, 29, 55, 1, 45, 23, 44]. Other mod-
els include the generalized Born methods [4] and the polarizable continuum mod-
els [3]. The PBE computes the electrostatic potential both in the protein and in
the surrounding solvent, and it is widely used in protein docking, in classification
problems, and for computation of the free energy of biomolecules in a self-consistent
way [18, 27].

The main difficulty in the traditional finite element method (FEM) approxima-
tion schemes for the three-dimensional (3D) PBE problem is related to the presence
of a highly singular source term that includes a large sum of Dirac delta distributions
which need to be resolved using rather coarse 3D grids. To overcome these limitations,
a number of regularization schemes for the FEM applied to the PBE, based on the
full grid representation of all functional data, have been considered in the literature;
see [24, 57] and references therein. Consequently, we note that the PBE theory has
recently received major improvement in terms of accuracy by the introduction of solu-
tion decomposition techniques which have been developed, for example, in [57, 47, 12],
where the PBE is treated as an interface problem. This aims at avoiding the discon-
tinuities in traces and fluxes at the interface between the biomolecule and the solvent
and also to circumvent constructing the numerical approximations corresponding to
the Dirac delta distributions because of the existence of analytical expansions in the
solute subregion.

However, these techniques still face the following computational challenges. First,
jumps in the interface conditions, arising due to regularizing splitting of the solution,
need to be incorporated to eliminate the solution discontinuity (e.g., Cauchy data) at
the interface. Second, the boundary conditions have to be specified using some ana-
lytical representation of the solution of the PBE. And third, in regularization-based
techniques [57], one has to solve multiple algebraic systems for the linear (or nonlinear)
boundary value problems before summing up the partial solutions, which increases
the computational costs. We provide an overview of the regularization techniques in
Appendix A.

Here, we present a new approach for the regularization of the PBE by using the
range-separated (RS) canonical tensor format introduced and analyzed in [7]. The
RS tensor format relies on the independent grid-based low-rank tensor representation
of the long- and short-range parts in the total sum of single-particle electrostatic
potentials discretized on a fine 3D n× n× n Cartesian grid Ωn in the computational
box Ω ⊂ R3. This representation is based on the splitting of a single reference
potential, defined by a radial function like p(‖x̄‖) = 1/‖x̄‖, into a sum of localized
and long-range low-rank canonical tensors both represented on the computational
grid Ωn. This RS splitting is justified by the previous approximation results for
the low-rank decomposition of function related tensors [22, 19, 33, 32]. The long-
range part in the collective potential of a many-particle system is represented as
a low-rank canonical tensor with the rank only logarithmically depending on the
number of particles in the system. The rank-reduction algorithm is performed by
rank-structured tensor operations including the reduced higher order singular value
decomposition (RHOSVD) [36]. The short-range contributions to a many-particle
potential are parametrized by a single low-rank canonical tensor of local support.
Notice that in [6], it was already sketched how the RS tensor formats can be utilized
for calculation of the free interaction energy of protein-type systems, while the idea
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RANGE-SEPARATED REGULARIZATION SCHEME A417

for regularized formulation of the PBE by using the smooth long-range part of the
free space electrostatic potential was outlined in [35].

In this paper, we introduce the new regularization scheme for the solution of the
linearized PBE adapting the RS tensor format. It is based on a localized splitting
scheme for the highly singular solution and right-hand side in the PBE, by using
the RS tensor decomposition of the discretized multicentered Dirac delta introduced
in [35]. This approach requires only a simple modification (regularization) in the
right-hand side of the PBE in the solute region, but it does not change the interface
conditions and, hence, the FEM system matrix. The most singular component in the
potential is recovered explicitly as the short-range part in the RS tensor splitting of
the free space potential on the grid. The computational advantages are due to the
localization of the modified right-hand side within the molecular region and auto-
matic maintaining of the continuity in the Cauchy data on the interface. The main
computational benefits are the following:

• The new computational scheme only requires solving a single system of the
FDM/FEM equations for the smooth long-range (regularized) part ur of the
collective potential, with the modified right-hand side that is represented by
a low-rank RS-tensor with controllable precision (see sections 3.2 and 4.2 for
details).

• The “singular” short-range part of the solution is computed directly (without
solving the differential equation) by 1D tensor operations, and the approxi-
mation error is controlled by the rank parameter.

• The total target potential is then obtained by summing up the PBE solution
for the regularized long-range part ur and the precomputed tensor represen-
tation for the short-range contribution.

• The approach needs only a modification of the right-hand side (but not the in-
terface and boundary conditions) and thus any favorable PBE software based
on FEM/FDM discretization methods (construction of the stiffness matrix
and error analysis) and the respective solver for the linear system of equations
can be applied to calculate the regularized part ur. In numerical tests, we
compute the regularized solution ur by using the adaptive Poisson–Boltzmann
software (APBS) software package (version 1.5-linux64), employing the multi-
grid (PMG) accelerated FDM [24, 2, 25], with the modified right-hand side
as input data.

• The electrostatic interaction energy can be calculated directly from the com-
puted long-range potential ur at each atomic position. This is a property
which is hard to achieve by the commonly used regularization schemes be-
cause of their inability to decouple the short- and long-range components of
the potential only in the molecular region.

As numerical illustrations, we compute the free space electrostatic potentials of
biomolecules using the RS tensor format in the framework of our splitting scheme, and
compare them with the solutions calculated by traditional FEM/FDM methods for
the PBE, i.e., the APBS software package [24, 2], as well as the MATLAB program for
biomolecular electrostatic calculations (MPBEC) [54]. An example for the linearized
PBE is included.

The rest of the paper is organized as follows. In section 2, we formulate the
linearized PBE and outline the computational difficulties for numerical treatment of
this elliptic equation in 3D due to the highly singular input data. Section 3 describes
the principles of the rank-structured tensor approximation to the long-range electro-
static potential and sketches the RS tensor decomposition techniques [7] for the free
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A418 BENNER ET AL.

space electrostatic potential of many particle systems. In section 4, we explain how
the application of the RS tensor format leads to the new regularization scheme for
solving the PBE. Section 5 presents the numerical tests illustrating the benefits of
the proposed method, and comparisons with the solutions obtained by a standard
FDM-based PBE solver are provided. Finally, Appendix A provides a short overview
of existing solution decomposition schemes for the PBE problem.

2. Problem setting for the linearized PBE. We describe the presented new
RS splitting scheme for solutions of elliptic PDEs with jumping coefficients in the pres-
ence of singular source terms that models the electrostatic potential in biomolecular
systems (the PBE). In this section we discuss the corresponding problem setting.

We consider a solvated biomolecular system modeled by dielectrically separated
domains with singular Coulomb potentials distributed in the molecular region. For
schematic representation, we consider the system occupying a rectangular domain Ω
with boundary ∂Ω (see Figure 1), where the solute (molecule) region is denoted by
Ωm and the solvent region by Ωs such that

Ω = Ωm ∪ Ωs.

In this case, the linearized (dimensionless) PBE takes the form (see [46])

−∇ · (ε∇u) + κ̄2u = ρf :=

N∑
k=1

zkδ(‖x̄− x̄k‖) in Ω,(2.1)

where ρf is the scaled singular charge distribution supported at points x̄k in Ωm, δ
is the Dirac delta distribution, and zk ∈ R denotes the charge located at the atomic
center x̄k, while u denotes the electrostatic potential generated by these charges.
Given the dielectric constants εm, εs > 0, the piecewise constant coefficients ε = ε(x̄)
and κ̄ = κ̄(x̄) are defined by

ε(x̄) =

{
εm if x̄ ∈ Ωm,

εs if x̄ ∈ Ωs,
κ̄(x̄) =

{
0 if x̄ ∈ Ωm,

κ̄ if x̄ ∈ Ωs.
(2.2)

Fig. 1. Solute and solvent regions in the computational domain for the PBE.
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RANGE-SEPARATED REGULARIZATION SCHEME A419

Here ε = εm = O(1) > 0 and κ̄ = 0 in Ωm, while in the solvent region, Ωs, we have
for the constant κ̄ ≥ 0 and ε = εs ≥ εm (in some cases the ratio εs/εm could be about
several tens).

The interface conditions on the interior boundary Γ = ∂Ωm arise from the dielec-
tric theory (continuity of potentials and fluxes on the interface):

[u] = 0,

[
ε
∂u

∂n

]
= 0 on Γ,(2.3)

where [f ]Γ = limt−→0 (f(x̄+ tnΓ)− f(x̄− tnΓ)) denotes the jump of f across the
boundary. Here, nΓ means the unit outward normal direction of the interface Γ.

The boundary conditions on the external boundary ∂Ω, approximating the as-
ymptotic at infinity, |u(x̄)| → ∞ as ‖x̄‖ → ∞, can be specified depending on the
particular problem setting. The simple homogeneous Dirichlet boundary conditions

u|∂Ω = 0

can be utilized. In our numerical tests based on traditional FDM discretization in
a bounded domain, we apply the more accurate inhomogeneous Dirichlet boundary
conditions taking the form

u(x̄)|∂Ω =
εm

4πεs

N∑
k=1

zke
−κ̄(‖x̄−x̄k‖−Rk)

‖x̄− x̄k‖(1 + κ̄Rk)
, x̄ ∈ ∂Ω,(2.4)

where the constants Rk ≥ 0 denote the atomic radii. This condition is often used in
the literature for the practical solution of the PBE via FEM/FDM methods applied
on a bounded domain (also in case κ̄ = 0). Such an approximation can be motivated
by the fact that the function in (2.4) represents the dominating term in the exact
solution of the PBE in an unbounded domain, in the case when the molecular region
Ωm is the union of balls of radii Rk centered at x̄k; see details in [30]. This condition
is exact in the case of free space potential εs = εm and κ̄ = 0.

The source term in the right-hand side of the PBE (2.1) is strongly singular so
that the low regularity of the potential u does not allow the direct application of the
standard FEM approximation techniques with H1 finite elements. To overcome the
computational difficulties caused by lack of regularity, several solution decomposition
(regularization) techniques have been suggested in the literature. In Appendix A, we
sketch the most popular existing decomposition methods considered in the literature
and applied in the framework of differential formulations of models describing the
biomolecular electrostatics.

In what follows, we describe the RS tensor format developed in [7]. In the present
paper this format constitutes the main numerical tool to locally modify the singular
right-hand side in PBE in order to increase the accuracy and efficiency of its FEM
numerical approximation. The main idea of the new regularization approach for the
PBE is the splitting of the electrostatic potential based on the RS tensor decom-
position of the singular right-hand side [35] in the respective atomic volumes of the
biomolecules, thereby eliminating discontinuities in the potential at the solute-solvent
interface. A detailed description of the new solution decomposition technique is pro-
vided in sections 4.1 and 4.2.

3. Sketch of the rank-structured tensor approximation of electrostatic
potentials. Tensor-structured numerical methods are now becoming popular in sci-
entific computing due to their intrinsic property of reducing the grid-based solution
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A420 BENNER ET AL.

of the multidimensional problems to essentially “1D” computations. These methods
evolved from bridging of the traditional rank-structured tensor formats of multilinear
algebra [52, 16] with the nonlinear approximation theory based on a separable repre-
sentation of multivariate functions and operators [22, 19, 33]. One of the ingredients
in the development of tensor methods was the RHOSVD, one which allows one to
reduce the rank of tensors in a canonical format by the C2T decomposition without
the need to construct the full-size tensor [36]. Originally, it was used for the reduc-
tion of the ranks of canonical tensors when calculating 3D convolution integrals in
computational quantum chemistry; see [34, 32] and the references therein.

Recently, tensor-based approaches were suggested as new methods for the calcula-
tion of multiparticle long-range interaction potentials. For a given nonlocal generating
kernel p(‖x̄‖), x̄ ∈ R3, the calculation of the weighted sum of interaction potentials
in an N -particle system, with the particle locations at x̄ν ∈ R3, ν = 1, . . . , N ,

P0(x̄) =

N∑
ν=1

zν p(‖x̄− x̄ν‖), zν ∈ R, x̄ν , x̄ ∈ Ω = [−b, b]3,(3.1)

is computationally demanding for large N . Since the generating radial function p(‖x̄‖)
exhibits a slow polynomial decay in 1/‖x̄‖ as ‖x̄‖ → ∞, it follows that each individ-
ual term in (3.1) contributes essentially to the total potential at each point in the
computational domain Ω. This predicts the O(N) complexity for a straightforward
summation at every fixed space point x̄ ∈ R3. Moreover, in general, the radial func-
tion p(‖x̄‖) has a singularity or a cusp at the origin, x̄ = 0, making its accurate grid
representation problematic. An efficient numerical scheme for the grid-based calcu-
lation of P (x̄) in multiparticle systems can be constructed by using the RS tensor
format [7]; see the overview in section 3.2.

3.1. Canonical tensor approximation of the Newton kernel. First, we
recall the grid-based method for the low-rank canonical representation of a spherically
symmetric kernel function p(‖x̄‖), x̄ ∈ Rd for d = 2, 3, . . ., by its projection onto the
set of piecewise constant basis functions; see [8] for the case of the Newton kernel
p(‖x̄‖) = 1

‖x̄‖ for x̄ ∈ R3. A single reference potential like 1/‖x̄‖ can be represented

on a fine 3D n× n× n Cartesian grid as a low-rank canonical tensor [22, 8, 32].
In the computational domain Ω = [−b, b]3, let us introduce the uniform n×n×n

rectangular Cartesian grid Ωn with mesh size h = 2b/n (n even). Let {ψi} be a set

of tensor-product piecewise constant basis functions, ψi(x̄) =
∏3
`=1 ψ

(`)
i`

(x̄`), for the
3-tuple index i = (i1, i2, i3), i` ∈ I` = {1, . . . , n}, ` = 1, 2, 3. The generating kernel
p(‖x̄‖) is discretized by its projection onto the basis set {ψi} in the form of a third
order tensor of size n× n× n, defined entrywise as

P := [pi] ∈ Rn×n×n, pi =

∫
R3

ψi(x̄)p(‖x̄‖) dx̄.(3.2)

Then using the Laplace–Gauss transform and sinc-quadratures, the third order tensor
P can be approximated by the R-term canonical representation (see [22, 8, 31] for
details),

P ≈ PR =

R∑
k=1

p
(1)
k ⊗ p

(2)
k ⊗ p

(3)
k ∈ Rn×n×n,(3.3)

where p
(`)
k ∈ Rn.
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Note that the reference tensor for summation of the potentials is generated in a
larger computational domain, P̃R ∈ R2n×2n×2n, which is necessary for application of
the shift-and-windowing transforms Wν ; see section 3.2 and [32] for more details.

The canonical tensor representation of the Newton kernel (3.3) has been suc-
cessfully applied in computation of multidimensional operators in quantum chemistry
[36, 32]. It was shown that calculations using the grid-based tensor approximations
exhibit the same high accuracy level as the analytically based computations for these
operators. For the recent assembled tensor summation method for charged particles
on rectangular finite lattices [31] it was proven that the canonical tensor rank of the
collective electrostatic potential of large many-particle lattices equals to the rank of
a single generating Newton kernel.

3.2. Short description of the RS tensor format. The RS canonical tensor
format was introduced in [7] for calculation of the free space collective electrostatic
potential of a many-particle system of general type.

Definition 3.1 (RS canonical tensors [7]). Given a reference tensor A0 sup-
ported by a small box such that rank(A0) ≤ R0, the separation parameter γ ∈ N,
and a set of distinct points xν ∈ Rd, ν = 1, . . . , N , the RS canonical tensor format
specifies the class of d-tensors A ∈ Rn1×···×nd , which can be represented as a sum of
a rank-RL canonical tensor

ARL
=

RL∑
k=1

ξka
(1)
k ⊗ · · · ⊗ a

(d)
k ∈ Rn1×···×nd(3.4)

and a cumulated canonical tensor

ÂS =

N∑
ν=1

cνAν ,(3.5)

generated by replication of the reference tensor A0 to the points xν . Then the RS
canonical tensor is represented in the form

A = ARL
+ ÂS =

RL∑
k=1

ξka
(1)
k ⊗ · · · ⊗ a

(d)
k +

N∑
ν=1

cνAν ,(3.6)

where diam(suppA0) ≤ 2γ in the index size.

In our application, we have ARL
= PRL

, where PRL
is defined in (3.10), while

the short-range part is specified by ÂS = Ps.
Lemma 3.9 in [7] presents the storage cost of the RS canonical tensor A in (3.6)

as follows:
mem(A) ≤ dRLn+ (d+ 1)N + dR0γ.

Given i ∈ I = I1 × · · · × Id, denote by a
(`)
i`
∈ RL

1×R the row-vector with index i` in

the side matrix A(`) ∈ Rn`×RL of A, and let ξ = (ξ1, . . . , ξd). Then the ith entry of
the RS canonical tensor A = [ai] can be calculated as a sum of long- and short-range
contributions by

ai =
(
�d`=1a

(`)
i`

)
ξT +

∑
ν∈L(i)

cνAν(i),

at the expense O(dRL + 2dγR0). Here, L(i) := {ν ∈ {1, . . . , N} : i ∈ suppAν} is the
set of indexes which label all the short-range tensors Aν that include the grid point
i within their effective support [7].
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A422 BENNER ET AL.

The RS tensor can be represented in a Tucker tensor format as well; see [7]. RS
tensors are efficient in many applications, for example, for modeling of the electro-
statics of many-particle systems of general type or for modeling of scattered multidi-
mensional data by using radial basis functions.

In what follows, we demonstrate how the RS tensor decomposition applies to the
construction of low-complexity rank-structured tensor representation of the electro-
static potential of a many-particle system, discretized on a fine 3D Cartesian grid.

First, we recall the main ingredients for modeling of the long-range interaction
potential in multiparticle systems of general type. The approach is based on the
partitioning of the reference tensor representation of the Newton kernel into long- and
short-range parts with a following assembling of the collective electrostatic potential of
a molecular system in a special way. According to the tensor canonical representation
of the Newton kernel (3.3) as a sum of Gaussians, one can distinguish their supports
as the short- and long-range parts,

PR = PRs
+ PRl

,

where

PRs =
∑
k∈Ks

p
(1)
k ⊗ p

(2)
k ⊗ p

(3)
k , PRl

=
∑
k∈Kl

p
(1)
k ⊗ p

(2)
k ⊗ p

(3)
k .(3.7)

Here, Kl := {k|k = 0, 1, . . . , Rl} and Ks := {k|k = Rl + 1, . . . ,M} are the sets of
indexes for the long- and short-range canonical vectors. Then the optimal splitting
(3.7) is applied to the reference canonical tensor PR and to its accompanying version

P̃R = [p̃R(i1, i2, i3)], i` ∈ Ĩ`, ` = 1, 2, 3, such that

P̃R = P̃Rs + P̃Rl
∈ R2n×2n×2n.

In this way, the generating Newton kernel, discretized on 2n× 2n× 2n grid, is placed
in the origin of the 3D box of twice larger size than the computational domain Ω. For
every particle in an N -particle system the rank-1 shift-and-windowing operator [31]

Wν =W(1)
ν ⊗W(2)

ν ⊗W(3)
ν , ν = 1, . . . , N,

is applied for shifting the generating Newton kernel according to the number of grid
points (in the sets of univariate indexes i` ∈ Ĩ`, ` = 1, 2, 3) corresponding to the x-,
y-, and z-coordinates of the corresponding particle and then windowing (restriction)
of the replicated tensor to the computational domain of grid size n× n× n.

Then the total electrostatic potential P0(x̄) in (3.1) is represented by a projected
tensor P0 ∈ Rn×n×n that can be constructed by a direct sum of shift-and-windowing
transforms of the reference tensor P̃R (see also [32] for more details),

P0 =

N∑
ν=1

zνWν(P̃R) =

N∑
ν=1

zνWν(P̃Rs
+ P̃Rl

) =: Ps + Pl.(3.8)

Thus, the shift-and-windowing transformWν maps a reference tensor P̃R ∈ R2n×2n×2n

onto its subtensor of smaller size n × n × n, obtained by first shifting the center of
the reference tensor P̃R to the grid point xν and then restricting (windowing) the
result onto the computational grid Ωn. However, the tensor representation (3.8) is
nonefficient as the ranks are growing linearly in the number of particles and remain
nonreducible in both canonical and Tucker tensor formats.
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This problem is solved in [7] by considering the global tensor decomposition of
only the “long-range part” in the tensor P0, defined by

Pl =

N∑
ν=1

zνWν(P̃Rl
) =

N∑
ν=1

zνWν

(∑
k∈Kl

p̃
(1)
k ⊗ p̃

(2)
k ⊗ p̃

(3)
k

)
.(3.9)

In [7] it was proven that the canonical rank RL of the long-term sum tensor Pl

(the number of rank-1 terms in Pl is about NRl ) only logarithmically depends on
the number of particles N involved in the summation. It was also shown in [36] that
the rank reduction

Pl 7→ PRL
(3.10)

can be efficiently implemented by using the canonical-to-Tucker (C2T) and Tucker-to-
canonical (T2C) algorithms, where the RHOSVD decomposition is a key ingredient
[36]. As for the short-range part of the collective potential, in the RS format it
is represented by a single small size tensor supplemented by a list of the particles’
coordinates.

The RHOSVD-based C2T algorithm provides the reduction of the canonical rank
due to exponentially fast decay of the singular values in the singular value decompo-
sition of the side matrices for the canonical tensor Pl; see details and the illustrating
figures in [7]. Combination of the C2T and T2C algorithms does not provide the best
canonical approximation; however, we observe the exponentially fast convergence in
the Tucker rank. This guarantees rather low canonical rank with an upper bound
equal to the square of the Tucker rank. Note that the C2T and T2C algorithms have
been used for reducing the ranks of the canonical tensors in many applications of
tensor numerical methods in quantum chemistry; see [32].

We summarize the tensor-based computational scheme which is the main ingre-
dient in the construction of our the RS splitting of the solution of the PBE.

Summary 3.2. In the case of multiparticle systems, we need the low-rank tensor
decomposition of the large sum of long-range canonical tensors (precomputed using the
single reference tensor for the Newton kernel), resulting in the cumulative canonical
tensor with large initial rank proportional to the number of single summands. The
construction of this tensor sum is done by translation (replication and summation)
of the reference tensor (centered at the origin) to the corresponding atomic centers
(shift-and-windowing transform). Then we perform the rank reduction in the resultant
cumulative canonical tensor with controllable precision. This rank-reduction algorithm
includes two steps (the so-called can-to-Tucker-to-can transform [36]:

(A) Compute the low-rank Tucker decomposition (with controllable accuracy) of
the initial canonical tensor with rather large canonical rank (in our case the
initial rank is proportional to the number of particles).

(B) Transform the low-rank Tucker tensor to the canonical one without lost of
accuracy, so that the canonical rank becomes only slightly larger than the
Tucker rank (this is done by transformation of the small size Tucker core
tensor to the canonical format without loss of accuracy).

The approach is justified by the fact that for the considered 3D tensor (obtained from
the discretized Newton kernel) it is proven in the previous works [22, 19, 33, 32] that the
Tucker approximation error decays exponentially fast in the Tucker rank. Due to this
favorable feature the whole regularization scheme can be implemented with controllable
precision by tuning the rank parameters. In application to multiparticle electrostatics
the effective canonical rank is almost independent on the number of particles.
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A424 BENNER ET AL.

Next, we illustrate the performance of the canonical RS tensor format in calculat-
ing the collective free space electrostatic potential of a model molecular system with
782 atoms; see also [7]. Summation is performed using the canonical tensor represent-
ing the reference Newton potential computed on the n×n×n 3D Cartesian grid with
n = 257 and the canonical rank R = 29. The RS tensor construction (for a single
Newton kernel) is performed with Rl = 14, Rs = 15, simply by dividing the canonical
vectors into two groups, that is, from every 29 vectors of the reference tensor and for
every space dimension (x, y, z), 15 sharp Gaussians are separated as the short-range
part and 14 smoother Gaussians as the long-range part.1 Then their contributions to
the collective sum of Newton potentials are calculated separately.

To reduce the rank of the long-range collective sum, the C2T (and T2C) trans-
forms using RHOSVD [36] are used, with a choice of the truncation threshold 10−8.
We notice that in our scheme the RS splitting of the collective free space electrostatic
potential is precomputed by using the RHOSVD algorithm in a preprocessing step
before setting up the modified PBE. The numerical cost of RHOSDV scales linear in
the number of particles N , O(n2N), and it can be reduced to O(nN) for larger values
on n and N . In the presented example the resulting canonical rank decreases from
NRl = 10948 to RL = 382, and it only logarithmically depends on the number of
particles N ; see [7].

The left panel in Figure 2 shows the cross section of the collective electrostatic
potential of a molecular system at the middle of a z-plane, while the right panel shows
the cross section of only the short-range part of the collective potential ÂS . Notice
that in the left panel showing the total potential sum, the potential at the point of
the plane with (x, y) = (191, 143) equals to ∼ 0.057 units, while for the short range
(right panel) the sum equals to 2.8 · 10−6. The left panel in Figure 3 presents the
cross section of the low-rank long-range part of the collective potential at the same
plane, while the right panel in this figure shows the error of the rank reduction (the
same truncation threshold 10−8 as chosen above).

4. Regularization of PBE by using RS tensor format. In what follows, we
describe the new approach for the construction of computationally effective bound-
ary/interface conditions and source terms in the PBE describing the electrostatic
potential of a biomolecule in gas phase and in solvent by solving the FEM/FDM
discretization of the regularized PBE. The main advantage of our approach is due
to complete avoidance of the direct FEM approximation (interpolation) of the highly
singular right-hand sides in the traditional formulation of the PBE and, at the same
time, preventing the modification of the stiffness matrix and/or the continuity con-
ditions across the interface in the chosen FEM discretization scheme for elliptic PDE
with jumping coefficients.

4.1. Across-the-interface tensor-based regularization scheme. The tra-
ditional numerical approaches for solving the PBE are based on either multigrid [46] or
domain decomposition [10] methods which may be combined with boundary element
methods [56, 20, 11] and [42]. We refer to [45, 23, 9] concerning the interface-based
FDM solver; see also references therein.

The practically useful solution methods for the PBE are based on regulariza-
tion schemes aiming at removing the singular component from the potentials in the

1Alternatively, separation of the reference tensor into the short- and long-range Gaussians can
be performed by a chosen ε-truncation for the given interatomic distance.
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RANGE-SEPARATED REGULARIZATION SCHEME A425

Fig. 2. The full free space electrostatic potential of a system with 782 particles (left) and the
sum of their short-range contributions (right).

governing equation. Besides the regularization techniques discussed in Appendix A,
here we consider one of the most commonly used approaches based on the additive
splitting of the potential in the molecular region Ωm; see, for example, [46]. To that
end, we first discuss the recent version of additive splitting techniques introduced in
[6], based on the application of the RS tensor format,

u = ur + um0 , where um0 = 0 in Ωs,(4.1)

and where the singular component um0 satisfies the following Poisson equation (PE)
in Ωm:

−εm∆um0 = ρf in Ωm; um0 = 0 on Γ.(4.2)

In this case, (2.1) can be transformed to an equation for the regular potential ur:

−∇ · (ε∇ur) + κ̄2ur = 0 in Ω,(4.3)

[ur] = 0,

[
ε
∂ur

∂n

]
= −εm

∂um0
∂n

on Γ.
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Fig. 3. The low-rank tensor representation of the long-range part in the electrostatic potential
of 782 charged particles (left) and the error of the canonical rank reduction.

To facilitate the solution of (4.2) with highly singular data in the right-hand side,
the singular potential U in the free space was utilized (see [7]),

−εm∆U = ρf in R3, |U(x̄)| → 0, |x̄| → ∞,(4.4)

which can be written in the explicit form

U(x̄) =
1

4πεm

N∑
k=1

zk
‖x̄− x̄k‖

.

Introduce the characteristic (indicator) function, χ[Ωm](x̄), x̄ ∈ Ω, of the domain
Ωm ⊂ Ω by

χ[Ωm](x̄) =

{
1 if x̄ ∈ Ωm,

0 if x̄ ∈ Ωs = Ω \ Ωm.
(4.5)

Then the restriction of U onto Ωm can be calculated by

um = χ[Ωm]U,

implying the decomposition
um0 = um + uharm,

D
ow

nl
oa

de
d 

02
/0

9/
21

 to
 1

93
.1

75
.5

3.
21

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 
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where the harmonic function uharm compensates the discontinuity of um on Γ,

∆uharm = 0 in Ωm; uharm = −um = −U on Γ.

The advantage of this formulation is twofold:
1. the absence of singularities in the solution ur, and
2. the localization of the solution splitting only in the domain Ωm.

Grid representation of the free space singular potential U , which may include a sum
of hundreds or even thousands of single Newton kernels in three dimensions, leads
to a challenging computational problem. In our approach it can be represented on
large tensor grids in Ω with controlled precision by using the RS tensor format [7]
characterized by the separability constant γ > 0 which in our application can be
associated with the van der waals interatomic distance; see section 3.2. The long-
range component in the formatted parametrization remains smooth and allows global
low-rank representation in Ω. We conclude with the following.

Proposition 4.1. Let the effective support of the short-range components in the
reference potential PR be chosen not larger than γ/2. Then the interface conditions
in the regularized formulation of the PBE in (4.3) depend only on the low-rank long-
range component in the free space electrostatic potential of the atomic system. The
numerical cost to build up the interface conditions on Γ in (4.3) does not depend on
the number of particles N .

The regularization u = ur + um0 like in (4.2)–(4.3) benefits from the local-global
separability in the low-rank RS tensor representation of the free space electrostatic
potential. Notice that here, we describe the splitting scheme in (4.2)–(4.3) just for
illustration of the applicability of the RS tensor format for the solution of the PBE.
This scheme requires modification of the interface and boundary conditions that is
equivalent to a change of the system matrix which leads to a complicated implementa-
tion scheme. To avoid this nontrivial task, in what follows, we introduce an alternative
approach, which avoids the additional computation of the auxiliary harmonic func-
tion uharm in the rather complicated domain Ωm as well as the modification of the
interface conditions.

4.2. The localized RS tensor splitting scheme. In this section, we present
the new splitting scheme which is based on the RS representation of the Dirac δ-
distribution [35], which composes the highly singular right-hand side in the target
PBE (2.1) or PE (4.2). First, we consider the PE as the proof of concept and validate
the numerical results in section 5. We also present numerical tests for the linear PBE
(LPBE). Following [35], we modify the right-hand side ρf in such a way that the short-
range part in the solution u can be precomputed independently by the direct tensor
decomposition of the free space potential, and the initial elliptic equation applies only
to the long-range part of the total potential. The latter is a smooth function, hence
the FDM/FEM approximation error can be reduced dramatically even on relatively
coarse grids in three dimensions.

To fix the idea, we consider the simplest case of the single atom with unit charge
located at the origin, such that the exact electrostatic potential reads u(x̄) = 1

‖x‖ ,

x ∈ R3. Recall that the Newton kernel (3.3) discretized by theR-term sum of Gaussian
type functions living on the n×n×n tensor grid Ωn is represented by a sum of short-
and long-range tensors,

1

‖x‖
 PR = PRs

+ PRl
∈ Rn×n×n,

where PRs
and PRl

are defined in (3.7).
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Let us formally discretize the exact equation for the Newton potential, u(x̄) = 1
‖x‖ ,

−∆
1

‖x‖
= 4π δ(x̄),

by using the FDM/FEM Laplacian matrix A∆ instead of ∆ and via substitution of
the canonical tensor decomposition PR instead of u(x̄) = 1

‖x‖ . This leads to the grid

representation of the discretized Dirac delta [35]

δ(x̄) δh := − 1

4π
A∆PR

that will be applied in the framework of our discretization scheme.
We recall that the 3D finite difference Laplacian matrix A∆, defined on the uni-

form rectangular grid, takes the form

A∆ = ∆1 ⊗ I2 ⊗ I3 + I1 ⊗∆2 ⊗ I3 + I1 ⊗ I2 ⊗∆3,(4.6)

where −∆` = h−2
` tridiag{1,−2, 1} ∈ Rn`×n` , ` = 1, 2, 3, denotes the discrete univari-

ate Laplacian, such that the Kronecker rank of A∆ equals to 3. Here I`, ` = 1, 2, 3, is
the identity matrix in the corresponding single dimension.

Now we are in a position to describe the RS tensor–based splitting scheme. To
that end, we use the splitting of the discretized δ-distribution into short- and long-
range components in the form [35]

δh = δs + δl,(4.7)

where

δs := − 1

4π
A∆PRs

and δl := − 1

4π
A∆PRl

.(4.8)

We observe that by construction, the short-range part vanishes on the interface Γ,
hence it satisfies the discrete PE in Ωm with the respective right-hand side in the form
δs and zero boundary conditions on Γ. Then we deduce that this equation can be
subtracted from the full discrete linear system, such that the long-range component
of the solution, PRl

, will satisfy the same linear system of equations (same interface
conditions), but with a modified right-hand side corresponding to the weighted sum of
the long-range tensors δl only (see Lemmas 3.1 and 3.2 in [35]). In the simple example
of the single charge, we arrive at the particular discrete PE for the long-range part in
the full potential PR, Ul = PRl

,

−A∆Ul = δl,(4.9)

which can be solved by an appropriate method.
Figure 4 illustrates the modified right-hand side representing the long-range part

of the discrete Dirac delta δl. It it worth noting that the FEM approximation theory
can be applied to this formulation since the input data (i.e., the right-hand side) are
regular enough in contrast to the initial formulation with the highly singular Dirac
delta distribution in the right-hand side.

This scheme can be easily extended to the case of many-atomic systems just
by additive representation of the short- and long-range parts in the total free space
potential,

−A∆PRl
= δRL

,(4.10)
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Fig. 4. The long-range part of the Dirac delta δl on an n⊗3 3D grid, n = 257.

where we suppose that RL is the rank of the long-range part PRl
of the corresponding

RS tensor of type (3.6), and δRL
is calculated as shown in (4.12). This decomposition

scheme remains applicable to the LPBE; see section 4.3.
We summarize benefits of the aforementioned solution decomposition scheme.
• Most important is that due to efficient splitting of the short- and long-range

parts in the target tensor representing both the single Newton kernel and the
total free space potential, the singular component (short-range part) does not
contribute to the jump condition at the interface.

• A remarkable advantage is that the long-range part in the RS tensor decom-
position of the Dirac delta distribution [35] vanishes at the interface and,
hence, the modified right-hand side generated by this long-range component
remains localized in the “linear” solute region Ωm.

• The boundary conditions on ∂Ω are obtained from the long-range part in the
tensor representation of the collective electrostatic potential which reduces
the computational costs involved, in contrast to solving the equation with
some analytical function used to define the boundary condition.

• Only a single system of algebraic equations discretizing the elliptic PBE is
solved for the smooth long-range (i.e., regularized) part of the collective po-
tential discretized with controllable precision on a relatively coarse grid, which
is then added to the directly precomputed (avoiding PDE solutions) low-rank
tensor representation for the short-range contribution.

Next, we briefly comment on the general FEM approximation for the Laplacian.
We recall the tensor-based scheme for evaluation of the Laplace operator in a separable
basis set [32] applied for calculation of the kinetic energy part in the Fock operator.

Let the problem be posed in the finite volume box Ω = [−b, b]3 ∈ R3, subject
to the homogeneous Dirichlet boundary conditions on ∂Ω. For given discretization
parameter n ∈ N, the equidistant n × n × n tensor grid ω3,N = {xi}, i ∈ I :=
{1, . . . , n}3, is used, with the mesh-size h = 2b/(n − 1). Then the Kronecker rank-3
tensor representation of the respective Galerkin FEM stiffness matrix is given by (4.6).

Notice that the MATLAB representation of the matrix A∆ (say, the FD matrix)
can be easily described in terms of kron operations as follows:

1

h2
A∆ = kron(kron(∆1, I), I) + kron(kron(I,∆1, I) + kron(kron(I, I),∆1),(4.11)

applied to a long vector of size n3 representing the Newton potential.
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Then the rank-structured calculation of the “collective” right-hand side δRL
in

(4.10) is reduced to 1D operations,

−δRL
=

RL∑
k=1

ξk

(
∆1a

(1)
k ⊗ a

(2)
k ⊗ a

(3)
k + a

(1)
k ⊗∆1a

(2)
k ⊗ a

(3)
k + a

(1)
k ⊗ a

(2)
k ⊗∆1a

(3)
k

)
,

(4.12)

where a
(`)
k , ` = 1, 2, 3, are the canonical vectors and RL is the canonical rank of the

long-range part of the collective electrostatic free space potential of a biomolecule
computed in the RS tensor format (3.6).

The tensor ansatz (4.12) is proposed to be used as the right-hand side in (4.10),
as well as in the case of LPBE, which we study in the numerical experiments. With
a subsequent application of the canonical-to-full tensor transform and after reshaping
the three-way tensor δRL

into a long vector, the result can be used in a standard
PBE iterative solver as the right-hand side for calculation of the long-range part in
the solution. Another advantage of our scheme is that the short-range part of the
solution in the PBE (2.1) is obtained for free, since it is merely incorporated as the
set of short-range parts of the respective Newton potentials for every particle in a
biomolecule. That corresponds to a set of tensors in the second term of the collective
electrostatic potential in the RS tensor format (3.6).

4.3. Sketch of the computational scheme for linear regularized PBE.
We summarize the main computational tasks involved in the presented tensor-based
numerical scheme. Note that here, we compute the original potential ψ(x̄) = κBTu(x̄)/
ec by rescaling the LPBE in (A.1) by κBT/ec. The linear regularized PBE (LRPBE)
can be solved by the following steps.

First, we compute the regularized right-hand side and the short-range part of the
solution by using tensor techniques [32, 7, 35] by the RS tensor decomposition of the
collective Dirac delta (RSDD) algorithm.

Algorithm RSDD.
1. Generate the low-rank canonical tensor representation for the Newton kernel

using n× n× n Cartesian, with complexity O(n) [8].
2. Calculate the collective free-space electrostatic potential P0 = Ps + Pl (see

(3.8)) of an N-particle molecule by using the RS canonical tensor format [7]
and the multigrid C 2T transform [36]. The complexity is of the order of
O(Nn).

3. Transform the short-range tensor Ps to a full format n × n × n-tensor and
reshape it to long vector of size n3, which serves as the short-range part in
the solution of PBE [35].

4. Compute the long-range part of the collective Dirac delta, δRL
, as in (4.12),

by applying the Laplace operator to the long-range free-space electrostatic po-
tential Pl; see [35]. The complexity is in O(nR), where R is the rank of the
tensor Pl.

The splitting scheme described in section 4.2 allows one to reduce the initial equa-
tion for the solution of the system with modified right-hand side by using the new
splitting via RS representation of the discretized Dirac delta distribution. In this
approach the problem is reduced to computation of the short-range part in the col-
lective free space electrostatic potential of the system and to the subsequent solution
of the PBE equation for the long-range part only by the simple modification of the
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RANGE-SEPARATED REGULARIZATION SCHEME A431

right-hand side. The advantage is that the PBE applies to the smooth part of the
total potential and hence a controllable FDM/FEM approximation error on moderate
size 3D grids can be achieved.

Next, the quantities obtained in algorithm RSDD are used for the solution of the
LRPBE.

Algorithm LRPBE.
1. Compute the regularized component δRL

of the Dirac delta distribution in
(4.10) by the RSDD algorithm.

2. Substitute δRL
into the right-hand side of the PBE (2.1) to obtain the LRPBE

−∇ · (ε∇ur(x̄)) + κ̄2(x̄)ur(x̄) = δRL
, in Ω,(4.13)

subject to the Dirichlet boundary conditions from (2.4).
3. Discretize the LRPBE (4.13) to obtain the following system of equations

Aur = b,(4.14)

which can be solved by any linear system solver.
4. Insert the short-range component us = Ps of the free space potential in (3.8)

computed in algorithm RSDD. Obtain the final LPBE solution u by the sum

u = ur + us.

This method can be combined with the reduced basis approach for PBE with
parametric coefficients to further accelerate the numerical computations [39, 5, 38, 40].
This is because the modified model is affinely dependent on the parameter (κ̄), thereby
providing a natural off-line/on-line decomposition that can be used within the reduced
basis method.

Finally, we notice that an important characterization of the protein molecule
is given by the electrostatic solvation energy [46], which is the difference between
the electrostatic free energy in the solvated state (described by the PBE) and the
electrostatic free energy in the absence of solvent, i.e., EN . Having at hand the free
energy EN , the electrostatic solvation energy can be computed in the framework of
the regularized formulation of the PBE as described above.

5. Numerical tests. In this section, we first consider the free space electro-
static potential computed by the modified PE and the RS tensor format–based split-
ting scheme. We compare the results with those of the traditional PE for various
biomolecules. In this case, the PBE can be reduced to the PE by considering zero
ionic strength which implies that κ̄2 = 0, hence the Boltzmann distribution term in
(2.1) is annihilated. Consequently, homogeneous dielectric constants of εm = εs = 1
are considered. Moreover, we consider a numerical example for the LPBE such that
κ̄2(x̄) > 0 and εs/εm ≈ 40.

We compute the electrostatic potentials using n× n× n 3D Cartesian grids, in a
box [−b, b]3 with equal step size h = 2b/(n − 1). Conventional computations by the
PBE/PE solver are limited to n = 257, on a PC with 8GB RAM due to the storage
needs of the order of O(n3). Notice that since we solve the discrete elliptic system
only for the smooth long-range part of the collective potential, our approach allows
us to have satisfactory approximation accuracy of the solution already for moderate
grid size.
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In our numerical tests, we first precompute the modified right-hand-side b in
(4.14) (to be used to compute the regularized part ur of the potential), as well as the
singular part us in the total potential u = ur + us (both presented on the Cartesian
grid). We control the numerical error in the precomputed right-hand side and in
the singular part us by turning the rank parameter in the RS tensor decomposition.
Given the modified right-hand side as input data, the FDM discretization of the PBE
(construction of the stiffness matrix A in (4.14)) and solving the arising linear system
of equations (4.14) for ur (with the modified right-hand side) is performed by using
the adaptive Poisson–Boltzmann software (APBS) package (version 1.5-linux64), em-
ploying the multigrid (PMG) accelerated FDM [2, 25] as well as MPBEC [54]. The
FDM error estimate is determined by the results of traditional FEM approximation
theory applied to the chosen FDM discretization scheme, and the corresponding con-
tribution to the total error can be considered independently on the error analysis of
our tensor-based RS splitting sketched in section 3.2.

In RS tensor calculations, first, the reference Newton kernel is generated using the
2n× 2n× 2n 3D Cartesian grid, with a given ε- accuracy. Usually, for grids with the
univariate size n ≤ 1024, and ε ∼ 10−6, the rank is R ≤ 30. The result is the tensor
representation of the Newton kernel at the origin of the computational box, in a form
(3.3) of a sum of discretized Gaussians, which are split into short- and long-range parts
(by sorting them according to chosen criterion). After replication (shifting-windowing)
of both short-range and long-range parts of the reference Newton kernel, according to
coordinates of the charges particles, the tensors are separately summed. The short-
range part is transformed directly from the canonical tensor to a full size format and
then reshaped to a vector of size n3 which becomes actually a singular part of the solu-
tion. The sum of long-range parts undergoes the C2T and T2C transforms to reduce
the canonical rank, where precision is controlled by the truncation threshold. Then
the Kronecker tensor product form of the 3D Laplace operator (4.12) is applied to
the result of canonical rank truncation to produce the canonical tensor representation
of the long-range contribution δRL

to the modified right-hand side of the PBE. This
tensor is first transformed to a full size format and then reshaped to a vector of size n3

to be applied in the conventional PBE solver as the input for the right-hand side. Ulti-
mately, the obtained solution of regularized PBE is added to the already precomputed
short-range part. The basic tensor operations are performed by using the programs
from the MATLAB TESC package on tensor numerical methods developed in recent
years by the second and third authors; see [32] for short descriptions and related
references.

5.1. Validating the accuracy of RS splitting for the free space poten-
tial. We compare the accuracy of the free space electrostatic potential calculated by
the traditional PE model and by the PE model modified by the RS tensor format
for the approximation of the single Newton kernel. Figure 5 shows the single New-
ton kernel on the grid with n = 129 at the cross section of the volume box in the
middle of the z -axis computed by the canonical tensor approximation obtained by
sinc-quadratures and the corresponding errors when using the traditional PE model
and by the modified PE model computed by the FDM solver. We notice that the so-
lution of the modified PE model is of higher accuracy than that of the traditional PE
model because it captures the singularities exactly; see the central region of Figure 5
(right).

In a similar vein, we consider the electrostatic potential of the acetazolamide
molecule consisting of 18 atoms and determine the accuracy of the calculation of the
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RANGE-SEPARATED REGULARIZATION SCHEME A433

Fig. 5. The Newton potential computed by the canonical tensor decomposition (left), by the
error of its computation on the same grid by using the classical PE (middle), and by the RS-modified
PE (right).

Fig. 6. The total free space electrostatic potential (left) and its long-range component (right)
computed by the regularized PE.

free space potential obtained by traditional PE model versus the PE model modified
by the RS tensor format. This molecule is used as a ligand in the human carbonic
anhydrase (hca) protein-ligand complex for the calculation of the binding energy in
the APBS package [25] and MPBEC [54].

Figure 6 shows the total free space electrostatic potential computed by the regu-
larized PE and its long-range component, respectively, while Figure 7 shows the error
between the exact Newton potential and the classical PE (left) and the regularized
PE (right) visualized on an n × n grid surface with n = 129. It is shown that the
RS-modified PE model provides more accurate solutions as compared with those ob-
tained of the traditional PE due to the accurate treatment of the solution singularities
by the RS tensor format.

We notice that the classical PE model does not capture accurately the singularities
in the electrostatic potential due to the numerical errors introduced by the Dirac delta
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A434 BENNER ET AL.

Fig. 7. The error of the free space potential between the exact Newton potential sums and the
classical PE solution (left) and between the Newton potential sums and the regularized PE solution
(right).

distribution and partly due to the smoothing effect caused by the spline interpolation
of the charges onto the grid. The RS-modified PE model, on the other hand, is able
to capture the singularities due to the independent treatment of the singularities by
the RS tensor technique. This is demonstrated in Figure 8.

5.2. The regularized Poisson equation on a sequence of fine grids. Here,
we illustrate the accuracy of the potential obtained by the RS-modified PE by calcu-
lating the free space electrostatic potential on a sequence of fine grids and compare
it with the Newton (Coulomb) potential obtained by accurate canonical tensor cal-
culations. We first consider the Coulomb potential case and show the absolute error
for the finest Cartesian grid and the discrete L2 norm of the error on a sequence of
Cartesian grids.

Figure 9 shows the absolute error of O(10−11) obtained on a 2573 Cartesian grid
and 32 Å box length. Table 1 shows the decay of the discrete L2 norm of the error on
a sequence of refined grids.

Next, we consider the acetazolamide molecule with 18 atoms. The electrostatic
potential is computed as in the previous case, employing the same grid properties.
The absolute error is shown in Figure 10 and the error behavior with respect to mesh
refinement is shown in Table 2.

Finally, we consider the protein Fasciculin 1, with 1228 atoms, an antiacetylcholi-
nesterase toxin from green mamba snake venom [41]. The electrostatics potential is
computed as in the previous case but with 60 Å box length and 2573 as the minimum
Cartesian grid size, due to a larger molecular size. The results shown in Figure 11
and Table 3 illustrate a similar trend of accuracy as in the previous test examples.
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RANGE-SEPARATED REGULARIZATION SCHEME A435

Fig. 8. Demonstration of the solution singularities for the acetazolamide molecule captured
by the canonical tensor approximation (left), by the RS-modified PE model (middle), and by the
classical PE (right).

Fig. 9. Absolute error between the solutions of the Newton potential and the RS-modified PE
for the Born ion.

5.3. Accurate representation of the long-range electrostatic potential
by the RS tensor. Here, we highlight the advantages of the RS tensor format in the
low-rank approximation of the long-range component in the total potential sum. For
this purpose, the RHOSVD within the multigrid C2T transform [36] is used which
provides computation of the low-rank canonical/Tucker tensor representation of the
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Table 1
The discrete L2 norm of the error with respect to grid size for the Born ion.

n 97 129 257

Discrete L2 norm 4.1176 × 10−7 9.5516 × 10−8 2.7975 × 10−9

Fig. 10. Absolute error between the solutions of the Newton potential sums and the RS-modified
PE for the acetazolamide molecule.

Table 2
The discrete L2 norm of the error and the relative error with respect to grid size for the

acetazolamide molecule.

n 97 129 257

Discrete L2 norm 4.1176 × 10−7 1.1936 × 10−7 3.7003 × 10−9

long-range part at the asymptotic cost of O(Nn). Here, N is the number of charges
in the molecule while n represents the grid dimension in a single direction.

Figure 12 shows an error of O(10−5) of the RS tensor format approximation
compared with the full size representation at various grid sizes. These data correspond
to the long-range RS rank equal to 10, with ε-truncation threshold chosen as O(10−6)
for the reference Newton kernel and O(10−7) for the C2T transform.

Figure 13 shows that the error is reduced by one order of magnitude, i.e., to
O(10−6), if we take a stronger rank truncation criterion ε of an order less for both
the Newton kernel, i.e., O(10−7), and for the C2T transform, O(10−8).

5.4. Numerical tests for LRPBE. In this section, we use the dielectric and
kappa functions as defined in (A.3) for an inhomogeneous dielectric medium (i.e., εm =
2, εs = 78.54 and κ2 = 8πNAecI/εs, where NA = 6.0221367× 1023, ec = 4.8032424×
10−10, and I = 0.15M) as the LRPBE parameters which are mapped on the grid
using the smoothed molecular surface method, which is calculated using the Connolly
approach [14]. The atomic charges are obtained from the acetazolamide molecule con-
sisting of 18 atoms, which is used as a ligand in the human carbonic anhydrase (hca)
protein-ligand complex for the calculation of the binding energy [25, 54]. Figure 14
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Fig. 11. Absolute error between the solutions of the Newton potential sums and the RS-modified
PE for the protein Fasciculin 1.

Table 3
The discrete L2 norm of the error and the relative error with respect to grid size for the protein

Fasciculin 1.

n 129 193 257

Discrete L2 norm 1.2919 × 10−6 1.7395 × 10−7 4.3060 × 10−8

illustrates the full electrostatic potential computed for the acetazolamide molecule us-
ing the LRPBE (left) computed by using the RS tensor decomposition for the Dirac
delta, and the long-range part of this potential (right) on an n × n × n grid with
n = 129 in the volume box (32 Å).

Figure 15 shows the difference between the potential from LPBE compared with
that calculated by the new RS regularized scheme, for the case of 0.15 ionic strength.
We observe that the computational error for the traditional regularization scheme
indicated in Figure 7 (left) for the case of free space collective potential is almost of
the same order of magnitude as that presented in Figure 15 for the case of linearized
PBE.

Remark 5.1. We demonstrate the conspicuous difference between the RPE and
the LPBE solutions in Figures 6 and 14, respectively, due to the effect of the inho-
mogeneous (or jumping) dielectric coefficient and the ionic strength in the latter. As
a result of these coefficients, we can see that the short-range potential component of
the LPBE in Figure 14 (left) is halved due to the change of εm from 1 in free space to
2 in the solvated state, while the long-range potential component in Figure 6 scales
by approximately 1/80 in addition to the effect of the ionic strength as a damping
coefficient.

5.4.1. Validation tests for the LRPBE. To validate the RS tensor–based
LRPBE solver, we consider the analytical solution of the Born ball model similar to
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Fig. 12. The error due to the low-rank approximation of the long-range component for the 379
atomic molecule for n = 1293 (left), n = 2573 (middle), and n = 5133 (right) grids.

Fig. 13. The error due to the low-rank approximation of the long-range component for the 379
atomic molecule for n = 2573 grid at a lower tolerance.

that in [58]. However, in our model, we use the centimeter-gram-second units instead
of the SI units, in addition to the scaling differences for the constant 4π,

ψ(x̄) =

{
αz
εmd

+ αz
R

(
1
εs
− 1

εm

)
if x̄ ∈ Ωm,

αz
εsd

if x̄ ∈ Ωs,
(5.1)

where Ω = Ωm ∪ Ωs = [−6, 6]3, d = ‖x̄‖, α = 4π2ec × 108, εm = 2, εs = 78.54,
z = 1 is a unit charge, and R = 3 is the atomic radius of the Born ion. Note that the
given values for εm and εs correspond to those of physiological processes, wherein the
dielectric constant for biomolecules such as proteins is 2, while that of the surrounding
ionic solution, whose major component is water, is 78.4. See [26] for details.

Table 4 illustrates the validation results for our LRPBE solver for the Born
ball model on a sequence of fine grids. The discrete L2 error demonstrates good
convergence of our LRPBE model. Note that Editha, one of the computer clusters at
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Fig. 14. The full electrostatic potential (left) and its long-range component (right) computed
by the LRPBE at 0.15 ionic strength for the acetazolamide molecule.

Fig. 15. The difference between the potential from LPBE compared with that calculated by the
new RS regularized scheme at 0.15 ionic strength.

the MPI in Magdeburg, was used to carry out the last computation in Table 4 due to
its large memory requirement, i.e., 56, 623, 104 mesh points.

We point out that our numerical experiments indicate that the computational
error is quite uniformly distributed over the computational domain depicting some
small spikes at the atomic centers (this is expected); see Figures 12 and 13. Hence,
the L∞ error appears to be of the same order as the L2 error.
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Table 4
Discrete L2 error between the solution to the LRPBE in (4.13) and the analytical solution in

(5.1) for a Born ion of unit charge and radius R = 3 on a sequence of fine grids.

Mesh size h Number of mesh points Discrete L2 error
h1 = 0.25 110 592 5.1059e-02
h2 = h1/2 884 736 1.2504e-02
h3 = h2/2 7 077 888 3.0426e-03
h4 = h3/2 56 623 104 7.3218e-04

Notice that the computational runtimes for the classical LPBE and the LRPBE
using our solvers are almost equal because the linear systems are solved by the same
solver, that is, the aggregation-based algebraic multigrid (AGMG2) method [48, 49].

6. Conclusions. In this paper we demonstrate that the RS tensor format is gain-
fully applicable for the solution of the PBE for calculation of electrostatics in large
molecular systems. The efficiency of the new tensor-based regularization scheme for
the PBE is based on the exceptional properties of the grid-based RS tensor split-
ting of the Dirac delta distribution. The main computational benefits are due to the
localization of the modified right-hand side within the molecular region and auto-
matic maintaining of the continuity of the Cauchy data on the interface. Another
advantage is that our computational scheme only includes solving a single system of
algebraic equations for the smooth long-range (i.e., regularized) part of the collective
potential discretized by the FDM. The total potential is obtained by adding this so-
lution to the directly precomputed low-rank tensor representation for the short-range
contribution.

The various numerical tests illustrate the main properties of the presented scheme.
For example, it is clear from Figure 8 that the classical PE model does not accurately
capture the solution singularities which emanate from the short-range component of
the total target electrostatic potential in the numerical approximation. We emphasize
that this problem can be efficiently circumvented by applying the RS tensor format as
a solution decomposition technique in order to modify the PBE/PE. In the modified
PBE/PE, the Dirac delta distribution is replaced by a smooth long-range function
from (4.8). We thus only need to solve for the long-range electrostatic potential
numerically and add this solution to the short-range component which is computed a
priori using the canonical tensor approximation to the Newton kernel. The resultant
total potential sum is of high accuracy as evident from Figures 9–11 and Tables
1–3. On the other hand, the computational error for the traditional regularization
scheme indicated in Figure 7 (left) for the case of free space collective potential is
almost of the same magnitude as that presented in Figure 15 for the case of linearized
PBE.

Finally, we summarize that the regularization scheme presented in this paper
has capabilities for various generalizations which can be effectively implemented with
minor changes in the RS tensor decompositions. We notice the following directions:

• The possibility of PBE computations on much finer grids due to its good
convergence behavior is also an advantage of the proposed approach. Tensor
techniques practically can be applied to finer grids compared to traditional
finite element approaches;

2AGMG implements an aggregation-based algebraic multigrid method, which solves algebraic
systems of linear equations, and is expected to be efficient for large systems arising from the dis-
cretization of scalar second order elliptic PDEs [48].
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• The regularization scheme remains verbatim in the case of the nonlinear PBE
since it requires only the modification of input data for the right-hand side
in the molecular region Ωm, where the equation is linear, but this does not
affect the nonlinearity domain Ωs;

• Our approach allows the efficient calculation of electrostatics under multiple
rotations of the biomolecule, which is a crucial problem in the numerical
modeling of proteins.

Appendix A. Sketch of the existing analytical solution decomposition
techniques. In this paper we present the new solution decomposition scheme for the
elliptic PDE with piecewise constant coefficients on the example of linearized PBE;
see the dimensionless formulation in (2.1). However, our approach also applies to the
case of nonlinear PBE since the regularization procedure is completely localized in
the “linear” molecular region Ωm and does not change the equation on the interface
and in the interior of Ωm. Hence, in what follows, we sketch some commonly used
regularization schemes for the case of nonlinear PBE, described in the literature.
We discuss this issue for the equation in the form (A.1), where the specific physical
constants are imposed because this is convenient for the comparison of our numerical
results with some others presented in the literature.

The PBE models the dimensionless potential u(x̄) = ecψ(x̄)/κBT , which is scaled
by ec/κBT , and ψ(x̄) is the original electrostatic potential in centimeter-gram-second
units at x̄ = (x, y, z) ∈ R3; see (2.1). It is given by

−∇ · (ε(x̄)∇u(x̄)) + κ̄2(x̄) sinh(u(x̄)) =
4πe2

c

κBT

Nm∑
i=1

ziδ(x̄− x̄i), Ω ∈ R3,(A.1)

subject to

u(x̄) =
e2
c

κBT

Nm∑
i=1

zie
−κ̄(d−ai)

εs(1 + κ̄ai)d
on ∂Ω, d = ‖x̄− x̄i‖,(A.2)

where κBT , κB , T , and ec are the thermal energy, the Boltzmann constant, the abso-
lute temperature, and the electron charge, respectively, κ2 = 8πNAe

2
cI/1000εsκBT is

a function of the ionic strength I = 1/2
∑m
j=1 cjz

2
j , where cj and zj are the charge and

concentration of each ion, and NA is the Avogadro constant. The sum of Dirac delta
distributions, located at atomic centers x̄i, represents the molecular charge density,
zi are the point partial charges of the protein, εs is the solvent dielectric constant,
ai are the atomic radii, and Nm is the total number of point partial charges in the
protein. The functions ε(x̄) and κ̄2(x̄) are piecewise constant defined by

ε(x̄) =

{
εm if x̄ ∈ Ωm,

εs if x̄ ∈ Ωs,
κ̄(x̄) =

{
0 if x̄ ∈ Ωm,√
εsκ if x̄ ∈ Ωs,

(A.3)

where Ωm and Ωs are the molecular and solvent regions, respectively, as shown in
Figure 1.

Note that in (A.3), κ̄2 describes both the ion accessibility and the bulk ionic
strength (or concentration) I. Consequently, we denote by κ̄(x̄) the position-dependent
piecewise constant κ̄ function in order to distinguish it from the scalar variable κ. The
factor 1000 in the definition of κ̄ is associated to the need of using the molarity in
liters instead of cubic centimeters. The boundary condition (A.2) is the analytical
solution for the linearized PBE for a spherical molecule. In fact, this form of potential
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is analogous to the Yukawa-type potential, which is well known to decay exponentially
with respect to distance. We refer to [26] for more details.

In order to overcome the difficulties arising from the singularities caused by the
impulsive source term, several solution decomposition techniques have been suggested
in the literature. In the following, we will discuss those techniques that form the state
of the art for solving the PBE. Following [57], the first solution decomposition is
generally given by

−εm∆u(x̄) = C

Nm∑
i=1

ziδ(x̄− x̄i), x̄ ∈ Ωm,

−εs∆u(x̄) + κ̄2 sinh(u(x̄)) = 0, x̄ ∈ Ωs,

u(s+) = u(s−), εs
∂u(s+)

∂n(s)
= εm

∂u(s−)

∂n(s)
, s ∈ Γ,

u(s) = g(s), s ∈ ∂Ω,

(A.4)

where C = 4πe2
c/κBT , s+ and s− represent the grid points in the vicinity of the

interface Γ in the solvent and the molecular regions, respectively, while the Dirichlet
boundary conditions g(s) are defined by the right-hand side in (A.2). The solution
u(x̄) is decomposed as follows:

u(x̄) = G(x̄) + φ̃(x̄) + ψ̃(x̄).(A.5)

The corresponding components of u(x̄) include the analytical solution G(x̄) of the PE
in the molecular domain,

G(x̄) =
C

4πεm

Nm∑
i=1

zi
‖x̄− x̄i‖

, x̄ ∈ Ωm,(A.6)

the solution of the linear interface boundary value problem

∆φ̃(x̄) = 0, x̄ ∈ Ωm ∪ Ωs,

φ̃(s+) = φ̃(s−), εs
∂φ̃(s+)

∂n(s)
= εm

∂φ̃(s−)

∂n(s)
+ (εm − εs)

∂G(s)

∂n(s)
, s ∈ Γ,

u(s) = g(s)−G(s), s ∈ ∂Ω,

(A.7)

and the solution of the nonlinear interface boundary value problem

∆ψ̃(x̄) = 0, x̄ ∈ Ωm,

−εs∆ψ̃(x̄) + κ̄2 sinh(ψ̃(x̄) + φ̃(x̄) +G(x̄)) = 0, x̄ ∈ Ωs,

ψ̃(s+) = ψ̃(s−), εs
∂ψ̃(s+)

∂n(s)
= εm

∂ψ̃(s−)

∂n(s)
, s ∈ Γ,

u(s) = 0, s ∈ ∂Ω.

(A.8)

Second, we recall the solution decomposition from [47] which takes the form

u(x̄) = û(x̄) + ũ(x̄).

The short-range part û(x̄) is given by

û(x̄) =

{
G(x̄) + u0(x̄) if x̄ ∈ Ωm,

0 if x̄ ∈ Ωs,
(A.9)
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where u0(x̄) is a harmonic function which compensates for the discontinuity on the
interface and satisfies the following conditions:

∆u0(x̄) = 0 if x̄ ∈ Ωm,

u0(s) = −G(s), s ∈ Γ.
(A.10)

The regular part ũ(x̄) is represented by

−∇ · (ε(x̄)∇ũ(x̄)) + κ̄2(x̄) sinh(ũ(x̄)) = 0,

[ũ(x̄)]Γ = 0, [ε∇ũ(x̄) · n]Γ = −εm∇(G(x̄) + u0(x̄)) · n|Γ .
(A.11)

Last, the solution decomposition in [12] is as follows: u(x̄) = G(x̄) + ur(x̄), where
G(x̄) is as in (A.6) and the regular part is given by

−∇ · (ε~∇ur) + κ̄2 sinh(ur +G) = ∇ · ((ε− εm)~∇G) in Ω,

ur = g −G on ∂Ω.
(A.12)

We can also further decompose (A.12) into the linear and nonlinear components so
that ur(x̄) = ul(x̄) + un(x̄), where

−∇ · (ε~∇ul) = ∇ · ((ε− εm)∇G) in Ω,

ul = 0 on ∂Ω,
(A.13)

and

−∇ · (ε~∇un) + κ̄2 sinh
(
un + ul +G

)
= 0 in Ω,

un = g −G on ∂Ω.
(A.14)

The fundamental idea in the above decomposition strategies is the pursuit of an
efficient solution decomposition technique for the short- and long-range parts in a
target tensor. However, all these techniques do not efficiently separate the long- and
short-range components in each of the atomic volumes of the biomolecule. Rather,
they split the Laplacian operator at the solute/solvent interface using the dielectric
coefficient as a cutoff function, thereby creating the need to apply so-called interface
(or jump) conditions at the interface in order to reduce the discontinuities.
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