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Characterisation and mapping of land cover/land use within forest areas over
long-multitemporal intervals is a complex task. This complexity is mainly due to
the location and extent of such areas and, as a consequence, to the lack of full
continuous cloud-free coverage of those large regions by one single remote
sensing instrument. In order to provide improved long-multitemporal forest
change detection using Landsat MSS and ETM � in part of Mt. Kenya
rainforest, and to develop a model for forest change monitoring, wavelet
transforms analysis was tested against the ISOCLUS algorithm for the derivation
of changes in natural forest cover, as determined using four simple ratio-based
Vegetation Indices: Simple Ratio (SR), Normalised Difference Vegetation Index
(NDVI), Renormalised Difference Vegetation Index (RDVI) and modified simple
ratio (MSR). Based on statistical and empirical accuracy assessments, RDVI
presented the optimal index for the case study. The overall accuracy statistic of
the wavelet derived change/no-change was used to rank the performances of the
indices as: RDVI (91.68%), MSR (82.55%), NDVI (79.73%) and SR (65.34%).
The integrated discrete wavelet transform�ISOCLUS (DWT�ISOCLUS) result
was 42.65% higher than the independent ISOCLUS approach in mapping the
change/no-change information. The methodology suggested in this study presents
a cost-effective and practical method to detect land-cover changes in support of
decision-making for updating forest databases, and for long-term monitoring of
vegetation changes from multisensor imagery. The current research contributes to
Digital Earth with regards to geo-data acquisition, data mining and representa-
tion of one forest systems.

Keywords: digital earth; long-multitemporal forest change detection; Spectral
Vegetation Index Differencing (SVID); ISOCLUS; discrete wavelet transform
(DWT); integrated DWT�ISOCLUS

1. Introduction

Despite the efforts by governments and conservation organisations, tropical

deforestation � mainly conversion of forest to agricultural land, continues to proceed

at an alarmingly high rate, and is estimated at 9.2 million hectares per year from

remote sensing survey (FAO 2006). Conservation of these tropical forests is very
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crucial for species diversity, climate stability and carbon cycle. Forest monitoring, in

form of change detection, is thus required to provide timely and reliable information

on forests condition, composition, and extent for making good decisions in forest

management and planning at a large scale.

Land use and land cover change (LUCC), in general, is increasingly recognised as

an important driver of environmental change on all spatial and temporal scales.
LUCC contributes significantly to earth atmosphere interactions, forest fragmenta-

tion and biodiversity loss. It has become one of the major issues for environmental

change monitoring and natural resource management. LUCC and its impacts on

terrestrial ecosystems including forestry, agriculture and biodiversity have been

identified as high priority issues in global, national and regional levels. Land use and

land cover, as the basic spatial element of landscape, plays an important role in the

study of landscape ecology. Analysis of the relationship between landscape spatial

patterns and functions is based on the accurate and timely information of land use

and land cover.

The Kenyan landscape, as in many developing countries, has undergone

significant forest changes. The extent of native forests in Kenya has steadily

decreased since independence, i.e. from 1964 to date. The establishment of human

settlements, logging and a range of other factors have all reduced forest cover,

however it is land clearing for agriculture that has been the most significant process

by far, and is a process that continues today. This land cover/land use dynamics has

greatly affected the main watersheds that also act as the key water towers in Kenya

such as: Mt. Kenya, Mau Ranges, and the Aberdare ranges.
At the sub-regional level, wide-scale land clearing, subsequent abandonment of

small-scale agricultural areas and several bush fires has resulted in severe landscape

disturbance in the Mt. Kenya ranges. Land use and land cover have undergone further

significant changes with the establishment of large-scale plantations in the area over

the last five decades. Consequently, all areas bordering the cool temperate rainforest of

the Mt. Kenya region are a mosaic of different land use histories formatted by both

natural and human disturbances. The different land use patterns have different

influences on imbedded remnant patches of cool temperate rainforest mainly through

edge effects, i.e. regions adjacent to the forest.

However, details of LUCC and its influence on the rainforest in this area are yet

to be assembled and interpreted. This study aims to model the long-term LUCCs,

from 1976 to 2000, in the Mt. Kenya ranges by integrating remote sensing (Landsat

MSS and ETM�) and historical aerial photography, to aid in the provision of

quantitative analysis of LUCC information in the area.
The characterisation and mapping of land cover/land use of forest areas over

long-multitemporal intervals is a complex task. This complexity is mainly due to the

extent of such areas and, as a consequence, to the lack of full continuous cloud-free

coverage of those large regions by one single remote sensing instrument. Further,

determination of large natural forest disturbances is time-consuming, difficult and

expensive through conventional field surveys or by means of aerial photo

interpretation.

Digital multitemporal satellite data with their ability to cover large areas at

relatively low costs and revisit frequency has created a high potential for natural

forest change detection. Different techniques have been reported for detecting

forestland cover change detection from multitemporal remote sensing data sets. In
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literature, more than 50 Vegetation Indices (VIs) (Bannari et al. 1995) have been

developed for different applications. Normalised difference vegetation index (NDVI)

differencing is the commonly used technique for vegetation dynamics modelling

(Lyon et al. 1998, Fung and Siu 2000, Young and Wang 2001, North 2002). While

NDVI is the most popular index, it has also undergone several transformations to

minimise soil and atmospheric effects, resulting in NDVI-related indices, which are

also functions of the simple ratio (SR) index. The SR indices arguably have higher

correlations with the field data.

The aim of this study is to investigate on the applicability of SR-based Spectral

Vegetation Indices (SVIs) for unsupervised forest disturbances detection. In this

study, SVIs that are based on SR, and developed to minimise the soil and

atmospheric effects are used for forest disturbance detection. The four SVIs tested

in this study include: (i) SR; (ii) NDVI; (iii) Renormalised Difference Vegetation

Index (RDVI) (Roujean and Breon 1995); and the (iv) modified simple ratio (MSR)

(Chen 1996). Scene-based comparative studies by Kalácska et al. (2004) showed that

MSR performed better than other SVIs like SR, NDVI, Non-Linear Index (NLI),

Soil-Adjusted Vegetation Index-2 (SAVI2) and Infrared Index (IRI). Such conclu-

sions cannot however be generalised as they may not necessarily hold for all scenes

under investigation. Similarly, Coppin and Bauer (1996) reported that image

differencing and linear transformations generally performed better than other

methods (i.e. post-classification comparison methods (delta comparison); mono-

temporal change delineation; multi-dimensional temporal feature space analysis;

composite analysis; change vector analysis (CVA)) in forest mapping and change

detection. The advantage of image differencing and linear transformation is in the

ability of these algorithms to utilise suitable image bands with inherent thresholds

through indices for the identification of the stable sub-space and emphasis of the

multitemporal data.

1.1 Objectives of the current study

This study proposes to use the combination of image differencing and linear

transformations, based on the comparison of the SR-derived VIs. The specific

objectives are to determine:

1) the optimal SVI for deriving forest disturbances in part of Mt. Kenya over the

25-year span from natural forest to other land use using Landsat MSS and

ETM�;

2) whether the scale-dependent wavelet transform analysis can reveal the

localised relationships between forest cover changes, in comparison with the

scale-invariant spectral clustering approaches, i.e. ISOCLUS, for change

information extraction from the SVI difference image.

The proposed approach is a deviation from the conventional use of semi-automatic

trial-and-error thresholding techniques. The main assumption made in this study is

to ignore the slight differences in the sensor wavelengths, due to the inherent design

specifications of the Landsat ETM� and Landsat MSS sensor systems (Carvalho

et al. 2001).
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The relevance of this paper to Digital Earth lies on the benefit in the digital geo-

data acquisition, data mining and representation of one of the key components of

the earth i.e. forest dynamics or space�time digital representation and analysis. Such

data goes along way in informing the public sector, private sector and decision

makers in the collective conservation and management of the earth. The model

presented in this paper can be extended to the national, trans-boundary and global

visualisation of the forest dynamics, much more accurately, via more intelligent

digital image descriptors.

1.2 Vegetation dynamics and multiscale representation: the study motivation

Reflectance of vegetation is a complex modelling exercise. Leaf reflectance is

influenced by the concentration of leaf biochemicals, water content and leaf

structure. All these constituents are variable in time and space. Temporal change

is induced by climate, catastrophic events (floods, fire, drought, disease) and

anthropogenic activities. The expression of temporal change is elicited by phenology

(annual cyclic process) and the diurnal cycle of the opening and closing of stomata in

the leaf. The stomata regulate the exchange of moisture, CO2 and O2. Spatial

differences in leaf characteristics result from species differences (needle leaf and

broadleaf), but also with the same species, spatial stratification of leaves has a strong

impact on canopy reflectance. The cell walls within the leaf cause multiple scattering

in many directions, depending on the angle between incident light and the

orientation of the cell walls. On the other hand, the waxy layer covering the leaf

epidermis (cuticle) results in a strong specular component. The foregoing argument

complicates change detection in forest environments.

The complexity of vegetation modelling and mapping requires integrated-

complimentary approaches. The motivation to this proposed approach is that in

order to improve the accuracy of the change maps, a multiscale strategy can be

adopted, in which transformed images at different scales are jointly used. The images

at the finest scales are likely to highlight many geometrical details, but also to be

more affected by noise. Data at coarser scales exhibit less precise details, but a

stronger immunity to noise. A multiscale approach, exploiting coarser scales to

globally identify changed areas and finer scales to improve the detection of details,

may represent an effective choice.

The rest of this paper is organised as follows. Section 2 is on the study area,

data and radiometric normalisation of the data sets. Section 3 presents the

proposed methodology on forest change detection using SVIs, followed by SVI

image differencing (SVID), and then feature extraction from the SVID images

using wavelets analysis and ISOCLUS. Sections 4 and 5, respectively, present the

study results and discussions. The study summary and conclusions are drawn in

Section 6.

2. Materials

2.1 Study area and data

The study area is part of Mt. Kenya, located centrally at approximately 08 09? S and

378 18? E (Figure 1a(i)). Mt. Kenya is one of the significant natural ecological units
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Figure 1a. (i) Map of Kenya and the location of Mt. Kenya. (ii) Landsat ETM�bands 543 of Mt. Kenya. The rectangular outline shows the

delineated study area, which is shown in Figure 1b.
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in Kenya, enclosing a total area of about 3132.56 km2. The top sub-alpine and alpine

belts; mixed forests, bamboo in the middle and afromontane forests at the bottom,

characterise the mountain. Due to the wide range of altitude that spans the

indigenous forest zone (from altitude 1200 to 3400 m), and the major climatic

differences between the slopes, the forest vegetation of Mt. Kenya is characterised by

a high diversity of forest types and various vegetation zones can be distinguished on

Mt. Kenya (Figure 1a(ii)).
For purposes of this study, a selected section of Mt. Kenya (enclosed rectangular

region in (Figure 1a(ii)) was chosen. Figure 1b shows the selected study area of

bands 431 false colour composite (FCC) corresponding to Landsat MSS and

ETM� images. The data sets were taken in the same time epoch (during the semi-

dry season of January of the corresponding years). This time was taken following an

in-depth analysis of the two main seasons (rainy and dry), to ensure no erratic

differences in the climatic conditions that may influence the phenological conditions,

for accurate long-multitemporal change detection. While in 1976 most of the

forestland was undisturbed, by 2000 most of the forest had experienced significant

disturbances resulting from natural- and human-based activities.

2.2 Data correction

The two Landsat data sets were geometrically rectified to the Universal Transverse

Mercator (UTM) map projection system-Zone 37 East. Aerial photographs and a

1:50,000 topographical map of 1997 were used to derive the ground control points

(GCPs) for the geometric correction.

The Landsat ETM � was first geometrically referenced to an accuracy of less

than half a pixel (B15 m). Nearest-neighbour resampling method was used to

resample the ETM� to 60 m�60 m pixel size in order to allow for pixel�pixel

comparison with MSS (of spatial resolution of 60 m� 60 m), and to avoid altering

the original pixel values of the MSS image. It is notable that the degrading of the

spatial resolution from 30 to 60 m did not degrade the scene features an the point

locational accuracy, since the landscape features being dealt with in this study

scene were generally larger than 60 m. The choice of nearest-neighbour resampling

was preferred in order to minimise on the textural properties, especially for not

very large textured landscapes, since wavelet transformation is used to describe

textural properties at different resolutions. Image-to-image registration was then

used to geometrically rectify the MSS to ETM� with an RMS error of

approximately 15 m.
To normalise the test data sets for accurate change detection, temporally pseudo-

invariant features (PIF), determined on the ground and image, were used as reference

for digital number (DN) correction. From empirical image investigations, the

Landsat MSS data was noisier as a result of the stripping effect (Figure 1b(i)).

The noise was particularly prominent at the low digital values (the darker image

components). Low and high image DN values corresponding to features of dark and

bright pixels, respectively, were used. The PIF correction was implemented based on

the empirical line (EL) approach (PIF-EL) (Figure 2).
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Figure 1b. False colour composite of bands 431 of the test site for: (i) Landsat MSS (1976) and (ii) Landsat ETM�(2000).
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The EL method is an atmospheric correction technique that provides an

alternative to radiative transfer modelling approaches. It offers a relatively simple

means of surface reflectance calibration, providing that a series of invariant-in-time

calibration target measurements are available. This technique has been applied with

variable success to both airborne data and coarser spatial resolution satellite sensor

data (Karpouzli and Malthus 2003). It assumes that a linear relationship exists

between image DNs and ground-measured reflectance for surfaces with a range of

contrasting albedo. This linear relationship is used to calculate gains and offsets that

convert DNs to reflectance factors (Clark et al. 2002). Researchers (e.g. Clark et al.

1997, Goetz et al. 1998) have used combinations of radiative modelling approaches

and empirical approaches for the derivations of surface reflectances from imaging

data.

The simplest approach to EL calibration is to use one target and assume that a

dark ground surface will produce a DN of zero. Using two targets of contrasting

albedo, or the two-target approach, allow the calibration to account for atmospheric

scattering. Generally, a linear relationship between ground spectral measurements

and image DNs is realised with more points, which is a factor of the size of the scene.

The ground target surfaces used were: (i) homogeneous; and (ii) comprised of pixels

of contrasting albedo. The calculated reflectance factor values were typically

considered valid only between the bright and dark target extremes and extrapolation

outside this range was avoided. The same ground surfaces were also used in the

change detection accuracy assessment.

Historical aerial photographs, ground reconnaissance at the forest edge, 1:50,000

topographical map and the FCC images were compared and used for ground-

reference. A total of 30 homogenous evaluation regions were selected as reference,

Figure 2. The concept of empirical line (EL) using two targets of contrasting albedo for

radiometric normalisation.
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partly for the PIF-EL radiometric normalisation and partly for the change detection

accuracy assessment and validation.

3. Theoretical background and experimental procedure

The fundamental theory behind the utility of SVI is that a leaf and thus the canopy

radiative transfer model should provide leaf reflectance and transmittance from leaf

biochemical content (chlorophyll, water content and dry matter) and structural

(textural and spatial) parameters. However, with remote sensing and the use of

airborne or spaceborne spectrometers, it is canopy reflectance which is measured,

not leaf reflectance. In that respect, the up-scaling from a single leaf to canopy is not

a trivial task. The transition from the leaf to the canopy level introduces effects due
to, e.g. variable solar illumination intensity and angles of observation, atmospheric

conditions, vegetation canopy architecture and under-storey. Thus the strategy in

this study is to model the biochemical contents and the structural parameters,

through an integrated SVI and wavelet transform approach.

3.1 Forest change detection using Spectral Vegetation Index Differencing (SVID)

According to Chen (1996), the SR index, and its associated indices (NDVI, RDVI

and MSR) are better correlated to the field data than do the rest of the indices that

cannot be expressed as a function of SR. Many unwanted noises cause simultaneous

increases or decreases in red and NIR reflectance in approximately the same

proportion, and therefore they can be greatly reduced by taking the SR. Indices such

as NLI, SAVI-2, and Global Environmental Monitoring Index (GEMI), that employ
mathematical operations other than ratioing, amplify the noise. Indices such as

weighted difference vegetation index (WDVI) and perpendicular vegetation index

(PVI) based on the absolute difference between the reflectance retain the noises. The

major draw back of SAVI and SAVI-1 is the reduction of their sensitivity to surface

parameters of interest because of the use of the parameter (L) in the denominator.

L dampens the background effect at the expense of the sensitivity (Chen 1996).

From the foregoing exposition, the following indices, represented by Equations

(1)�(4), were compared for the case study:

SR � rNIR= rR (1)

NDVI � (rNIR�rR)=(rNIR � rR) (2)

RDVI � ((rNIR�rR)=(rNIR � rR))1=2 (3)

MSR �
�rNIR

rR

�1

�
=

�rNIR

rR

�1

�1=2

(4)

In the above equations, rNIR and rR refer to the recorded ground reflectance in

NIR and R bands, respectively. Equations (2) and (4) can be re-written in terms

of Equation (1) as: NDVI�(SR�1/SR�1) and /MSR � (SR�1=(SR � 1)1=2);
respectively.

From the corrected MSS and ETM�data sets, the corresponding image differences

(SVID) are derived for multitemporal change detection. However, the results of such

SVID imagery do not automatically decipher the desired change/no-change features
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or classes. In common practice, trial-and-error-based thresholding procedures are

employed to map the change/no-change information. More advanced parametric

Bayesian approaches can also be used. However, in productive applications,

automated temporal feature dynamics needs to be adopted especially for the long-

multitemporal scenes, especially where training data is unattainable exactly at the

image acquisition time. Thus, the strategy in this study is to model the biochemical

contents using the SV indices and the structural parameters using the wavelet

transform, in sequential processing fashion.

Arguing that a clustering algorithm is suitable for mapping the change/no-change

information, the proposed technique (Figure 3) explores the theoretical proposition

of capturing change via SVID followed by a multiscale feature extraction using

discrete wavelet transform (DWT) and subsequently class identification using

ISOCLUS unsupervised algorithm, hence the DWT�ISOCLUS approach. The

proposed approach uses the ability of unsupervised classifier (ISOCLUS (PCI

1999)), in comparison with the integrated scale-based information extraction (DWT�
ISOCLUS), to automatically and finally segment the different classes represented in

the SVID image.

While the SVID image provides the spectrally segmented information, the DWT

extracts the textural image feature components. The advantage of using DWT is its

ability to capture and separate the image local features at different informative scales.

t1: MSS image t2: ETM + image

Spectral Vegetation
Index (SVI)

SVI image differencing
(SVID)

ISOCLUS DWT sub bands(s)

CHANGE MAP

Accuracy Assessment:
statistical and

empirical comparison

ISOCLUS

Adaptive linearscale fusion
of most informative

sub bands (s-n)

Figure 3. Block scheme of the proposed change-detection approach. t1 and t2 are the two

time epochs corresponding to MSS and ETM�, respectively, and DWT is the discrete wavelet

transform. (The dotted outline is the DWT�ISOCLUS algorithm).
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These informative scales can then be linearly fused/combined (Figure 3), to take

advantage of the finer and coarser scales.

3.2 Discrete wavelet transform (DWT) representation and image feature analysis

Briefly, a wavelet decomposition of any given signal (1-D or 2-D) is the process which

provides a complete representation of the signal according to a well-chosen division

of the time-frequency (1-D) or space-frequency (2-D) plane. Through iterative

filtering by low and high-pass filters, it provides information about low and high-

frequencies of the signal at successive spatial scales (Yu and Ekström 2003,

Memarsadeghi et al. 2006).

An s-scale multiresolution decomposition of the difference image D (s being a

predefined number of scales) is obtained by applying a dyadic DWT. D is

decomposed in terms of a low-pass transformed image and of three transformed

images conveying high-pass information about fine-scale details along the horizontal

image axis, the vertical axis, or both axes. Then, the procedure is recursively applied

S times to the low-pass component. As s increases in [1, s], coarser-scale

approximations of D are obtained, while the finest scale is D itself. More precisely,

detail components allows appreciating spatial details that are (2s)-times coarser than

the original image D0(s�1,2, . . . S). See Mallat (1989) and Daubechies (1991) for

general theoretical background on wavelet transforms.

Multiresolution wavelet transforms, that are largely used for data compression

and browsing, are utilised in this study:

1) As a way to bring multiple types of data to the same spatial resolution without

losing significant information and without blurring the higher resolution data.

Multi-resolution wavelet decomposition preserves most of all important

features of the original data even at a lower resolution, especially global
scale features. We argue that scene changes are related to the scale, different

changes can be obtained at different scales for the same images, and the basic

strategy is therefore to build up a hierarchical network of change maps which

represent the change information at different scales simultaneously. Once the

changes at each scale have been detected, it is possible to derive more reliable

change map according to a proper multiscale fusion strategy.

2) For feature extraction purposes from the SVID image. Multiresolution

wavelet decomposition separates high and low-frequency components which
are then recomposed differently in the selective scale-driven fusion phase.

In this study, the Mexican hat wavelet, with the wavelet function defined by the

equation C(x; y)�(1�x2�y2)�e�(x2�y2)=2; was selected due to its shape and

irregular edges approximation abilities that approximates the forest canopies and

irregularly shaped farmlands and logged patches. The 2-D Mexican hat wavelet basis

function was successively convolved, over a range of five-dilation scales. However,

the significance of these levels must be quantified to retain or discard a level or its

sub-band for further processing, in this case fusion of most informative sub-bands.

Only the detail sub-bands were used for this study, since the approximation image

does not isolate any specific-scene features and the associated structural properties.
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One major advantage afforded by wavelets is the ability to perform local analysis.

That is to analyse a sub-image area of a larger image. Wavelet analysis is capable of

revealing aspects of data that other signal analysis techniques usually miss, like

trends, breakdown points, discontinuities in higher derivatives and signal component
similarities (Yu and Ekström 2003). Further, the DWT approach results in minimal

redundancy in the features that are detected at specific sub-bands and scales. This

makes the multiscale fusion viable with very minimal feature misrepresentation.

3.2.1 Discrete wavelet transform (DWT) informative level(s) selection strategy

The wavelet-subband energy content determination, Equation (5), was used to aid in

the selection of the significant sub-bands to be combined/linearly fused for further
processing.

Ei
j�

1

MN
S
M

m�1
S
N

n�1
(f ij (m; n))2 (5)

where: M, N�the size of given scope; /f i
j (m; n)�the element of sub-band from

wavelet transform; j�the direction of the wavelet transform, and i�the level of

wavelet transform. Ei
j is the wavelet energy signature reflecting the distribution of

energy along the frequency axis over scale and orientation, and varies according to

the information contained in a sub-band and its magnitude can be used to judge the

relevance of the level and its sub-bands, through comparison of the energy of the

successive levels.

Given that the image (f) can be represented in terms of the low-frequency (A) and

the high-frequency imagery sub-bands (horizontal (H); vertical (V) and diagonal
(D)) as: ð f �Al �Sl

i�1(Hi�Vi�Di)Þ after l-level decomposition, then it is possible

to combine or linearly fuse the most informative high-frequency sub-bands as

proposed in Figure 3.

3.3 ISOCLUS for change information extraction

ISOCLUS, unsupervised classification was used independently, and in an integrated

fashion with the DWT in the extracting of change/no-change information.

Unsupervised classification of a given scene is suitable when reliable training data

(for supervised classification) are either scarce or expensive, and when relatively little

a priori information about the data is available. Once a reliable clustering is arrived

at, the user can then label the corresponding image segments to obtain a classified

image.

Indeed, various unsupervised clustering schemes have been proposed and studied
over the years. In particular, classical methods such as K-means and ISODATA (Tou

and Gonzales 1974), which are based on iterative computations of cluster means,

have become standard in the remote sensing community. ISOCLUS is more involved

than K-means, in the sense that it provides additional heuristic procedures (e.g.

cluster merging and splitting) and some interactive features. In this study, the

ISOCLUS, which is very similar to ISODATA was implemented. The number of

clusters was set to 10 (as the maximum possible number of classes, based on the scene
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land cover reconnaissance), and termination was applied either after 20 iterations or

when a relative change in all of the cluster means did not exceed 1%.

The results for the implemented change detection strategy are presented and

described in Section 4.

4. Experimental results

In this section, the results from the study are presented. A brief explanation is

provided for the observed results.

4.1 Image differencing results

The results for the multitemporal image differencing for the four tested VIsare

presented in Figure 4. The corresponding image statistics in terms of histograms of

the SVID images are also presented.

Relating the difference images to the corresponding histograms, and the image
statistics presented in Table 1, it is observed that RDVI had the highest variance. RDVI

also presented the highest DN ranges (minimum and maximum). This implies that

RDVI captured more information in comparison to the other SVI difference images.

From the above SVID results, it is however not straightforward to determine

where to place the thresholds for change/no-change information determination. This

is when in most studies, trial-and error or parametric Bayesian techniques are used to

classify the change/no-change information. It may also be misleading at this stage to

conclude that a particular index is the best for this test area, without further
statistical and empirical investigations. To further quantify the significance of the

results of these indices with regards to the contained change/no-change information,

the results were analysed using multiscale wavelet transformation and ISOCLUS, as

depicted in the proposed methodology.

4.2 Optimisation of discrete wavelet transform (DWT) results

The five-level 2D-Mexican hat DWT resulted into 18 sub-bands corresponding to the

detail images. From the energy computation according to Equation (5), it was

observed that as the levels increased, the energy of the sub-bands successively

decreased and tended to reach as saturation or convergence as depicted in Figure 5.
Levels 3�5 had significantly lower energy than Levels 1 (120 m) and 2 (240 m). This

implies that as the resolution gets coarser, significantly lesser information is captured.

This may be attributed to the fact that at the coarser spatial resolutions (�240 m) the

wavelet transformation process tends to over aggregate the scene landscape

characteristics that are also difficult to interpret into classes. Thus for further analysis,

Levels 1 and 2 of each of the SVI difference images were selected. Notable is that the

vertical sub-band corresponding to the Levels 1 and 2 had consistently lower

information. This could relate to the fact that the orientation of most features within
the test area is predominantly in the horizontal and diagonal directions.

The explanation for the observations in Figure 5 is attributed to the fact the

wavelet high frequency primitives describe image texture. The higher the wavelet

level, the larger the textural clumps to be detected. Parts of the rainforest with

heterogeneous canopy cover expect to show a lot of texture at around 60 m. This
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Figure 4. Results of image differencing and the corresponding histograms for: (a) SR; (b)

NDVI; (c) RDVI; and (d) MSR.
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texture will rapidly decrease when pixels of 120 m, and more are used to represent

such terrain. This explains the decrease in energy content depicted in Figure 5. High

heterogeneity is observed in areas with small-scale farms and illegally logged trees,

and thus detectable in the high frequency wavelet primitives of the second level. This

Table 1. Summary of the SVI difference images statistics.

Difference index Minimum DN Maximum DN Mean Standard deviation

SR �1.23 �6.20 2.202 0.871

NDVI �0.34 �0.82 0.280 0.119

RDVI �28.22 �6.67 0.788 2.412

MSR �0.48 �2.02 0.880 0.270
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Figure 5. Energy measures for the 15 bands of SR, NDVI, RDVI and MSR, respectively.
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explains the need to combine the two DWT levels, in order to capture the textural

information captured in the two levels. This observation motivates and justifies the

scale-driven fusion of the most informative detail sub-bands.

The next task of isolating the change/no-change information from the optimal

RDV�DWT into their respective classes was carried out using ISOCLUS. A

comparison of the corresponding sub-bands in RDVI Levels 1 and 2 was carried

out. It was found that the following bands/band combinations were the most

informative: (i) Level 1 � vertical sub-band; (ii) Levels 1 and 2 � horizontal sub-bands

combination; and (iii) Levels 1 and 2 � diagonal sub-bands combination. These

selected sub-bands were fused and classified using ISOCLUS.

4.3. Discrete wavelet transform (DWT) results on the Spectral Vegetation Index
Differencing (SVID) images

Within the wavelet transform images, the no-change regions are automatically

represented by zero-grey level values (dark patches), and the changed regions have
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varied DN values depending on the ground land cover type. To thematically map

and quantify the change classes, the ISOCLUS algorithm is used. This is attributed

to the fact that the classes are isolated not only based on the spectral signatures, but

also on the basis of frequency patterns. These patterns depend on the directions or

orientations inhibited by the specific land cover category. To convert the combined

scale levels into ground classes, ground-truth data was used to correlate the DN

values/tones recorded in the transformed difference image to the respective change

classes.

From the DWT�ISOCLUS approach, the following eight classes were deter-

mined: class 1: cleared-land/bare-ground; class 2: dead bamboo stocks; class 3:

weathered bamboo, understory and logging; class 4: regenerating bamboo and

regenerating natural trees within mixed forest; class 5: mature tea plantations, farm

crops; class 6: young tea plantations; class 7: tree plantations; and class 8: un-

changed natural forest cover.

4.3.1 Accuracy assessment of the discrete wavelet transform (DWT) results

The accuracy of the integrated DWT�ISOCLUS results was assessed using reference

data in sub-section 2.1. Four performance indices were derived from the confusion

error matrix namely: overall accuracy and KAPPA coefficient � for the entire scene;

and for the individual classes, the omission and commission errors (or user and

producer accuracies) were used.

The overall accuracy and KAPPA coefficient results for the accuracy assessments

are presented in Table 2. Table 2 shows that RDVI gave the highest overall accuracy

of 91.68% in mapping the change information. This was followed decreasingly by:

MSR (82.55%), NDVI (79.73%) and lastly SR (65.34%). The RDVI results point to

the theoretical reasoning that the accuracy or performance of the SVI may be related

to its variance information (presented in Table 1).

Per-class errors of omission and commission (Tso and Mather 2001) were

computed for the eight-classes, with the results presented in Figure 6. The results

show that the un-changed class (class 8) areas were consistently mapped with the

highest accuracy in all the four vegetation indices. The class accuracy results shows

that the user’s accuracy ranges from 38.6% for class 6 using NDVI to 98.2% for class

7 with RDVI class, while the producer’s accuracy ranges from 40.6% for class 3 using

SR to 94.3% for class 4 with RDVI. Class 3 and class 6 constantly registered the

lowest users’ and producers’ accuracy in SR and NDVI. The other observed

Table 2. Results of the level of agreement with ground-truth reference data expressed in terms

of the overall accuracy percent and KAPPA coefficient.

Overall accuracy (%) KAPPA coefficient

SR 65.34 0.528

NDVI 79.73 0.685

RDVI 91.68 0.901

MSR 82.55 0.733
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differences were only in the classes that were difficult to discriminate due to their

spectral similarity and due to the fact that these classes were mixed within a spatial

location e.g. small scale mixed agricultural practices.

From the above accuracy results, RDVI presented the best overall results

especially in the spectrally difficult to discern classes like class 5, in comparison to

the other classes. SR in some cases, performed marginally or far better than NDVI

and MSR, e.g. in discerning class 2, class 5 and class 6. The SR class-based

performance can be attributed to its higher variance than that of MSR and NDVI

(Table 1). Nevertheless, it (SR) had the least overall accuracy and KAPPA coefficient

values. A-posteriori spectral reflectance curve analysis showed that the selection of the

RDVI was accurate, as RDVI presented the best spectral separability between the

representative classes. This observation can also be empirically inferred from

the RDVI�SVID image in comparison to the other classes, in the representation of

the scene features with the different grey-tones. Figure 7 presents the results of the

integrated DWT�ISOCLUS strategy.
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Figure 6. (a) Producers’ accuracy results for the eight classes from the four VIs; and (b)

Users’ accuracy results for the eight classes from the four VIs.
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4.4 ISOCLUS-based extraction of change information

From independent ISOCLUS classification on the RDVI, only three classes, apart

from the un-changed regions, were uniquely separable: crop plantations, degenerated

bamboo areas and dead bamboo stocks (Figure 8). The ISOCLUS approach could

not separate between the semi-dead bamboo stocks and tree plantations and other

classes, as was the case in the DWT�ISOCLUS. Also some of the crop plantations

were classified the same as illegally logged areas.

A comparison of the ISOCLUS approach and the optimal DWT�RDVI showed

that the DWT�RDVI performed better, by 42.65%, in isolating the various natural

forest changes. This depicts the fact that unsupervised classifiers, especially in

spectrally similar areas, may not perform well in capturing such landscape features.

This is in part due to their lack in the feature-differentiation based on textural

properties.

5. Discussions

Many techniques have been proposed for change detection in both optical and

synthetic aperture radar (SAR) remote sensing data. Often, changes are identified by

comparing pixel by pixel two images that are acquired on the same geographical area

at two different times. The comparison can be carried out according to a difference

operator (this is the typical case of multispectral images) or a ratio/log-ratio operator

(as usually done in a SAR image), as well as with more complex strategies based on

context-sensitive dissimilarity measures that are computed between statistical

distributions. The resulting difference/ratio image is then analysed according to

either automatic thresholding algorithms, or complex context-sensitive and multi-

scale algorithms to generate the final change-detection map. Focusing on thresh-

olding algorithms, which are the most widely used in the applications, the

thresholding algorithms derive automatically the change-detection map under the

assumption that the prior probability of the class of changed pixels is sufficient to

properly model this class with a significant statistical mode in the histogram of the

difference/ratio image. However, as the aforementioned kinds of forest changes

typically affect local portions of wide areas (e.g. regions or countries), a proper forest

change-assessment procedure requires the analysis of wide scenes and, thus, of large-

size images. This results in a small value of the prior probability of the class of

changed pixels, which may affect the capabilities of the thresholding techniques to

detect a proper threshold value if working on the whole image.

In the image-processing literature, local adaptive thresholding techniques have

been proposed for characterising the local properties of images. In change-detection

problems, these techniques compute a threshold value for each pixel neighbourhood

on the basis of local statistics and apply it to either the entire neighbourhood or only

the central pixel. As these methods result in many isolated change pixels and holes in

the middle of connected change components, post-processing steps are usually

adopted for reducing noise in the final change-detection map and making it

consistent with the hypothesis that changes are made up of a significant number of

connected pixels. Alternative approaches, which are mainly proposed for threshold-

based classification of large-size images, perform an independent analysis of
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multitemporal image data that results in different threshold values for each

considered region.

The experimental results in this study, based on the proposed DWT�ISOCLUS

approach, showed that all the compared indices performed better than 60%. The

significant difference among the SVIs could be from their independent inabilities to

isolate specific land cover that are spectrally very similar: for example tea plantations

from tree plantations, cash crops from subsistence crops (i.e. tea from maize), and
young from mature tree plantations. These though are only characteristic to this case

study. Within less spectrally homogeneous areas, the proposed approach may

perform much better, but care must be taken that the optimal results may not

necessarily be from the RDVI.

In practise, most of the change-detection methods usually involve the utility of

more spectral channels with the notion that it is more suitable to search the change

information within a wider spectral spectrum. Though this is a logical argument, this

study demonstrated that for forest change detection, the SR-based RDVI yielded

promising results. The impressive result from RDVI implies a minimised signal-to-

noise ratio by the index, and is significant because linear relationships with ground

biophysical parameters help simplify remote sensing data analysis and improve the

accuracy in retrieving these surface parameters (Roujean and Breon 1995).

It can be argued that the reason why the RDVI performed much better in this

application is because classes of interest are discriminated well in the low to medium

vegetation cover range. For other applications where the landscape is predominately

natural forest and soil, i.e. no human activities, it is suggested to use the modified

soil-adjusted vegetation index (MSVI2̂ 0.5) to capture the two main land cover
information.

It should be noted that forests can be distinguished from many other land cover

types by high texture in the red band (red-edge) often referred to as high standard

deviation or heterogeneity, calculated with a moving window over the red band

covering forests. However due to the spatial, textural and spectral heterogeneity of

forest landscapes, not all the desirable information can be captured from the red

band alone. Thus VIs should be relied upon to capture the spectral and textural

information in other significant bands. The fundamental question that arises is how

to capture these spectral and textural feature primitives from the indices.

The proposed DWT�ISOCLUS approach was able to isolate change information

of different categories. Theoretically, local-region-based change detection is used

with informative multiscale approach to improve on the discriminability of the

changed/un-changed classes, and to analyse the changes at different scales

simultaneously (by scale-driven fusion). This is important in detecting the

complex-large landscape changes.
The independent ISOCLUS, in comparison to the optimal DWT�ISOCLUS

approach gave an accuracy of only 49.03%. Probably the main reason for the poor

performance of the ISOCLUS is the fact the partial forest disturbances are more

difficult to detect, and requires additional primitives such as textural information.

Focusing on the DWT�ISOCLUS, the number of the scales was varied in the

range [1, 5] (Figure 9). When just one scale is used (s�1), the method degenerates

84.07%. A higher detection accuracy is obtained, as determined before, when using

the first two scales (i.e. s�1). The overall accuracy results deteriorate as the number

of scales increase from (s�3, 4 and 5), as shown in Figure 9. When (s�5), the results
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near that of the standard ISOCLUS classification results. These results confirm the

importance of the scale-driven information optimisation in the proposed method,

and suggest sensitivity to the number and location of the scales.

6. Summary and conclusions

This study presented comparative-unsupervised approach for digital change detec-

tion by exploring the potential of SR-based multitemporal SVI differencing and

transformation for change type determination within forest systems. The SVI

difference images were compared using DWT and ISOCLUS classification for

isolation of change/no-change information. RDVI gave the best results as depicted

by highest KAPPA coefficient and overall accuracy statistics in comparison with SR,

NDVI and MSR indices. With regards to change type isolation, it was found that

DWT combined with ISOCLUS performed much better than the independent

ISOCLUS on the optimal (RDVI) difference image.

The experimental results reported in this paper confirm the effectiveness of the

presented techniques. Such effectiveness depends mainly on the powerful ability

provided by local-region-based change detection and multiscale fusion. Thanks to

this ability, the proposed approach turns out to be superior to the traditional

method. Despite the promising preliminary results, the accuracy needs to be further

improved in future developments especially in the changed region borders.

The results show that a hierarchal-statistical selection and integrated wavelet

analysis represents a powerful set of image processing capabilities that have

considerable potential to quantify ecologically relevant patterns at multiple scales.

The presented technique shows both high sensitivity to geometrical details and a

high robustness to noisy components in homogeneous areas and heterogeneous land

cover. The approach has considerable potential for the long-term monitoring of

vegetation change from multisensor remotely sensed imagery.

The methodology suggested in this study presents a cost-effective and practical

method to detect land-cover changes to support decision making for updating forest

databases. Further comparisons of other wavelet transforms will be tested to infer

0

20

40

60

80

100

1 2 3 4 5

number of scales s(+1)

D
W

T
-I

S
O

C
LU

S
(o

ve
ra

ll 
de

te
ct

io
n 

ac
cu

ra
cy

 (
%

))

0

10

20

30

40

50

60

IS
O

C
LU

S
(o

ve
ra

ll 
de

te
ct

io
n 

ac
cu

ra
cy

 (
%

))

DWT-ISOCLUS ISOCLUS

Figure 9. Behaviour of the detection accuracy as a function of the number of considered

scales for the DWT�ISOCLUS, against the 48.3% ISOCLUS accuracy.

130 Y.O. Ouma & R. Tateishi



their significance in related tasks of larger extents. Also for further research, the

Markov Random Field (MRF) multiscale fusion and classification-based system will

be tested against the current approach, as a means of integrating the DWT features

and the spatial contextual information.
Finally, the relevance of the current research to Digital Earth lies in the benefit in

the digital geo-data acquisition, data mining and representation of one of the key

components of the earth i.e. forest dynamics or space-time digital representation and

analysis. Such data goes a long way in informing the public sector, private sector and

decision makers in the collective conservation and management of the earth, more so

as the world experiences a raise in carbon emissions and the consequences related

thereto, such as drought and global warming. It is envisaged that the model

presented in this paper can be extended to the national, trans-boundary and global
visualisation of the forest dynamics, much more accurately, via more intelligent

digital image descriptors.
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