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A B S T R A C T

In general, potholes on asphalt pavements can be detected and represented in 2D and 3D. However, pothole
detections through 3D imaging and image reconstructions have proven to be expensive in terms of acquisition
equipment and the computational and processing requirements and time. For potholes at incipient formations,
their detection, representation and quantification in terms of the surface-area are important for timely main-
tenance and repairs. By casting pavement image segmentation for pothole detection as a problem of clustering
multivariate features within mixed pixels (mixels), this study presents a low-cost 2D vision image-based approach
for the detection of potholes on asphalt road pavements in urban areas. The approach in this study is based on
the a priori integration of multiscale texture-based image filtering for textons representation using wavelet
transform, into the superpixel clustering of the pavement defects and non-defects using fuzzy c-means (FCM)
algorithm. For the extraction of the defects extrema (minima and maxima) in the hybrid wavelet-FCM clustering
results, fine segmentation based on morphological reconstruction is adopted to further smoothen and recognize
the contour of the detected potholes. The methodology is implemented in a MATLAB prototype, tested and
validated using 75 experimental image datasets. With a mean CPU run-time of 95 seconds, the average detection
accuracies by comparing the study results and the manually segmented ground-truth data were determined using
the Dice coefficient of similarity, Jaccard Index and sensitivity metric as 87.5%, 77.7% and 97.6% respectively.
The average magnitudes of the mean and standard deviation of the percentage errors in pothole size extractions
were detected as 8.5% and 4.9% respectively. The results of the study show that with well-planned road con-
dition surveys, the proposed algorithm is suitable for the detection and extraction of incipient potholes from 2D
vision images acquired using low-cost consumer-grade imaging sensors.

1. Introduction

In the recent past, a great deal of research has been dedicated to the
development of innovative methods and algorithms to improve on the
widely used manual-based “walk-and-record” road condition surveys.
Despite the fact that automated approaches have been proposed, the
manual-based pavement condition surveys are still predominantly
being used [1,2], for the identification, categorization and quantifica-
tion of the types and degrees of pavement defects [3,4]. In retrospect,
the American Transport Research Bureau (ATRB) and the UK's Trans-
port Research Laboratory (TRL) among other road maintenance agen-
cies have recommended that the manual interventions be eliminated in
order to reduce road survey costs, and also highlighted the drawbacks
of the current automated road survey systems [2,5].

Road pavement defects can broadly be classified as surface defects
and elevation-oriented defects. Potholes, patching and bleeding are

surface-elevation related defects which can be categorized according to
area-depth, and are mostly caused by loss of road layer aggregates as
summarized in Table 1. For these types of distresses, the surface-area
and depth or elevation information are an important geometric factor in
determining the extent and severity of the defect.

For maintenance and repairs (M& R), potholes should be detected at
the incipient stages before interfering with the road subbase or base as
illustrated in Fig. 1. In such cases, the surface-areas of the detected
potholes [7], become more significant than their depth di (Fig. 1). If
early and regular road maintenance is neglected, the incipient or minor
cracks on the road surface eventually cause substantial structural da-
mage to the road, which results in part into potholes.

Notably, the detection of potholes from 2D or 3D imagery should be
understood from the point of view of the pavement engineer and the
contractor, when it comes to road maintenance and repairs. That is, the
incipient pothole treatment as applied in partial, full-depth or injection
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patching is often carried out within a surface-area extent. Thus the
pothole detection system is supposed to ascertain the existence of the
potholes and estimate of the areal extents. This means that both the
depth and diameter of the pothole defects are particularly crucial when
the degree of severity of the pothole defect is of interest in M& R for
purposes of ranking and prioritization.

Therefore in this study, pothole depth is not considered since the
aim is to detect potholes at the initial stages before the depth exceeds
the design asphalt layer depths d1 or d2 (Fig. 1). This implies that of
significance is the detected pothole surface-area Adi for the corre-
sponding design depth di. In Fig. 1, ARdi refers to the estimated surface-
area during the actual pothole treatment or repair. In scenarios where
the potholes are considered to be less severe, ARdi can be considered to
be equivalent toAdi. It is also worth noting that during M&R im-
plementations, the volume of interest is normally not the exact depth/
volume of the detected pothole area, but the volume of cut as ap-
proximated by the area abcd in Fig. 1.

The automated pavement condition survey methods such as: 2D
aerial imageries and terrestrial photogrammetric data; 2D stereo-ima-
gery and laser point clouds, can be categorized as: (i) vibration-based
accelerometers sensors [8]; (ii) 3D-stereovision techniques [9]; (iii)
three-dimensional based laser scanning [10], and (iv) two-dimensional
vision image based techniques [11]. Although laser-scanning systems
provide highly accurate geometrical data of the pavement profile and
distress detection, the cost of the sensors is still relatively high, which
limits their application for routine pavement assessments [11–13].
Furthermore, the related computational approaches are expensive in
terms of data processing, and the approach cannot be applied over a
wide area for fast pothole detection as reported in Jo and Ryu [14] and
Koch and Brilakis [11]. In contrast, the use of 2D image data for road
condition surveys is widely used and has also yielded better results
[4,6,84]. In general, the detection of elevation-based defects such as
potholes is hindered by the costs involved in the data acquisitions and
processing [4].

For this study, 2D vision images are considered appropriate for
rapid and road condition survey, and for the early detection of potholes
on asphalt pavements. However, 2D image processing for pavement
surface assessments is a challenging task due to the inherent complex-
ities in the image characteristics and processing for pavement defect

detections [6,11,15–18].
In 2D images, pavement image segmentation is the most widely

used approach for pothole detection (e.g. [7,11]). The primary seg-
mentation methods used include thresholding, clustering and edge de-
tection and region extraction [19,85]. These conventional methods tend
to restrict each point of the data set to exclusively two clusters of data
and no-data. Furthermore, hard segmentation methods cannot maintain
much information which makes them suspect to noise and imaging
artifacts. As a consequence, the segmentation results are often crisp,
meaning that each pixel of the image belongs to exactly just one class.
Most pavement surfaces images are ambiguous and have indis-
tinguishable histograms. In such images, it is not easy for classical
thresholding techniques, such as Otsu [20] and Kapur et al. [21], to find
suitable criterion of similarity or closeness for thresholding, since they
only work well when two consecutive gray-levels of the image are
distinct. In 2D images therefore, issues such as limited spatial resolu-
tion, poor contrast, overlapping intensities, noise and intensity in-
homogeneity makes hard segmentation a difficult task and often results
in low accuracies in defect detection.

Statistically, image segmentation is an ambiguous problem because
of the following reasons [86]. First, the statistical characteristics of
local features comprising of colour, texture, edge, and contour do not
usually show the same degree of homogeneity or saliency at the same
spatial or quantization scale. As such segmentation results are not ex-
pected to be unique, and instead should prefer a hierarchy of segmen-
tations at multiple scales [22]. Secondly, even after accounting for
variations due to the scale, the different spectral or textural regions may
still contain some intrinsic complexities, making it a difficult statistical
problem to determine the correct number of segments and their di-
mensions. As such, a good segmentation algorithm for the detection of
features should be able to group similar image pixels into regions whose
statistical characteristics comprising of colour and or texture are
homogeneous or stationary, and whose boundaries are simple and
spatially accurate [23].

There is therefore the need to improve on the algorithms for de-
tection of pothole geometrics including surface-area, compactness,
shape, orientation and location. This study seeks to extend on the
pothole detection process by using multiclass feature clustering ap-
proach, based on fuzzy c-means (FCM). FCM clustering is a soft

Table 1
Categorization of surface elevation-based defects on flexible asphalt pavements.

Road distress category Distress characterization and distress type image

Area-depth or surface-elevation based road pavement distresses

(i) Pothole (ii) Patching (iii) Excess asphalt (Bleeding)

Pothole formations on asphalt  
layers of depths 1d  and 2d

Subgrade

Asphalt layer 

Capping

Subbase 

Subgrade

Asphalt layer 

Base

Subbase 

d1 Ad2 

d2 

Subbase or Base 

di 

d1 

id
A

iRdA

a

b

d

c

Fig. 1. One-dimensional depiction of cross-sections of flexible pa-
vement profiles [6] and possible incipient pothole structural failures
of depth d1 and d2 with the corresponding surface-areas Adi.
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segmentation method that has been used extensively to improve on the
compactness of the regions with its cluster validity and simple im-
plementation [24]. It is an unsupervised clustering technique that is
based on the idea of uncertainty of belonging, which is described by a
membership grading, and has the ability to employ more information
from the image in comparison with the crisp or hard segmentation
methods.

To boost the performance of the FCM, the original image is filtered
and smoothened a priori, by using a multiscale discrete wavelet trans-
form (DWT). The filtering process groups pixels into regions of coherent
texture for texton representation so as to obtain superpixels. The DWT-
FCM approach is able to perform soft segmentation while compensating
for intensity inhomogeneities on the superpixels. The DWT is preferred
to the undecimated-wavelet decomposition since the latter requires
higher computational load and yields high redundancy in the computed
wavelet coefficients, making the subsequent computational processing
such as edge detection and classification expensive [25]. Notably, de-
spite the fact that the incorporation of filters such as the Gaussian and
bilateral filters may enhance the fuzzy clustering performance, these
filters apply only on noise of limited frequency bandwidth, thus leaving
noise of certain frequency untreated [26]. The low-frequency compo-
nents of wavelets are capable of detecting the candidate defect pixels,
hence characterizing the coarse structure of the data and also identi-
fying the long-term trends in the original data. However, due to the
anisotropic properties of wavelets, the wavelets transform is not able to
effectively and automatically extract pavement defects with non-di-
rectional patterns and high textural variations such as potholes. Fur-
thermore, while wavelets are able to effectively represent dis-
continuities in at least one-dimensional signals, the tensor-product
construction may not be flexible in reproducing the continuity and
shape representation in 2D images [27]. As such, a spectral aggregation
approach is necessary in order to cluster and differentiate defects from
non-defects.

FCM depends on the Euclidean distance between pixels based on the
assumption that each feature is of equal importance. However, in most
real-world applications, features are not considered equally important.
Thus, this assumption may seriously affect clustering performance. To
address this drawback in FCM, this study introduces the mathematical
morphological reconstruction to reduce the noise of both high and low-
frequencies especially in the pothole edges by referring to the original
image to successfully segment the potholes. That is, the result should be
the production of segmentations that allow regions or classes to
overlap, as opposed to standard hard segmentations that enforce a
binary decision on whether a pixel is inside or outside the object. The
use of the morphological reconstruction is based on the fact that it is
suitable for: the extraction of the minima and maxima extremum;
hierarchical image construction, and has the advantage of speed and
noise resistance [28]. As such it can be able to compensate for the non-
pothole defect artifacts such as stones, pebbles and leaves which remain
after clustering.

The integrated hybrid wavelet-FCM clustering and morphological
reconstruction is proposed due to the following advantages over other
techniques: (i) non-parametric -in the sense that no noise distribution
needs to be assumed in advance; (ii) unsupervised - since the dataset
with missing or incomplete class labels can be appropriately handled,
and (iii) robust - the performance of pattern clustering using FCM
should not be affected significantly by small deviations or it should not
deteriorate drastically due to noise or outliers.

1.1. Empirical approach for pothole detection in 2D imagery

Fig. 2(a) shows a typical 2D-image frame of a pavement, whereby
Fig. 2(b)(i) is a tile-image cropped from an image frame. Visually, the
potholes in Fig. 2(b)(i) have different spectral reflectances and spatial
textures. In Fig. 2(b)(ii) however, the gray scale values of the potholes A
and B and the linear crack C are all observed to be less than those of the

surrounding unweathered pavement surfaces. In pavement distress
detection, the objective should be to detect and categorize the different
distress types. However, by using DWT-SMF method proposed by Ouma
and Hahn [17], the results in Fig. 2(b)(iii) and (b)(iv) are obtained,
whereby the darker pothole B and the linear distress segment C are well
detected as compared to pothole A. This illustrates the difficulty in
pavement distress detection in which the differentiations between the
unweathered material and the weathered pavements is not a straight-
forward image segmentation task.

From the results in Fig. 2, it can be argued that vision-based
methods operating on 2D images may be limited in detecting the sur-
face-elevation defect. While 3D reconstruction and laser scanning
methods may address this limitation, they are not only costly, but are
only capable of detecting some defects and not all of them simulta-
neously [4]. The illustration in Fig. 2(b) points to the fact that it is
important to develop pavement-defect-specific models. This is because
most of the techniques reported in pavement distress detections suffer
from dependence on multispectral data, classification, and local or
global registration and variations. In order to address the above phe-
nomenon in 2D image based pothole detection, the pothole detection
system should be based on the fuzzy intensity and morphological
properties of pavement distress features and structures such that the
two-dimensional pothole geometric properties are taken into account.

Given a 2D image, the objective in feature extraction is to accurately
locate, for every edge pixel, the following feature cues: orientation,
intensity differences on edge sides, subpixel positions and curvature. A
major difficulty in pavement images is the intensity inhomogeneity
artifact, which causes a shading effect to appear over the image. The
artifacts can significantly degrade the performance of segmentation
methods that assume that the intensity value of a defect class is constant
over the image. This forms the hypothesis in this study that in 2D vi-
sion-based pothole detection, robust smoothing at a suitable scale is a
prerequisite for good defect-detection results and is empirically illu-
strated in Fig. 3.

Fig. 3(a)(i) shows an image with similar pixel values within and
outside the candidate pothole region. The observed phenomenon in
Fig. 3(a)(i) is attributed to the effect in 2D imaging due to limitations of
the imaging systems in terms of the resolution and illumination con-
ditions. Physically, the presence of foreign objects such as stones and
pebbles within the pothole need to be compensated. This in part causes
“spill-in” and “spill-out” effects between the defect and non-defect re-
gions as depicted in Fig. 3(a)(iii), such that the desired detection or
segmentation in Fig. 3(a)(ii) may not be achieved. The second reason
for the observations in Fig. 3(a) can be attributed to the pothole pixels
comprising of different types and fractions of features or mixels, which
should be modeled and segmented independently.

Fig. 3(b) presents a section of a pavement image with the corre-
sponding histogram plot. The edge pixels labeled X between regions A
and B in Fig. 3(b) can be classified to belong to either of the two regions
due to the mixel problem. However after filtering and smoothing
(Fig. 3(c)), the pixels within region X have distinct grayscale values and
the edge gradient is much larger, such that the difference between areas
A and B can be estimated and mapped as in Fig. 3(d), hence minimizing
the “spilling” effects. Arguably therefore, it is only after efficient
smoothing that it is possible to cluster potentially homogeneous regions
and estimate the edge of the pothole. From the analysis in Fig. 3, it can
be concluded that potholes are defined by randomized shapes and
structures that cannot easily fit any analytical descriptions, hence the
reliance on intensity and textural models is required.

To achieve the filtering and smoothing in pothole detection, the
wavelets transform is used in this study. This is because the multiscale-
wavelet smoothing uses dual filtering, such that while approximating
the original image, it harmonizes the spectral reflectance within a given
neighborhood in (x ,y) directions, and effectively minimizes or elim-
inates noise and imaging artifacts within the image, such that noise is
reduced preferentially over image signal. Because wavelet transform
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concentrates the signal power, if a constant background is subtracted
from the wavelet transform of an image, then the signal should suffer
less loss than the noise. This results in the minimization of over-seg-
mentation during clustering, especially in regions with low feature
contrasts in the RGB imagery.

2. Literature review on pothole detection

2.1. Imaging and sensor methods for pothole defect detection

As already stated in the introduction, the use of sensors for auto-
mated pothole surveys on pavement surfaces can be categorized into
vibration-based, laser-scanning and vision-based techniques. Vibration-
based techniques employ the gradient variations from accelerometer
data. According to Yu and Yu [8], the accuracy of detection of potholes

using accelerometers is lower than that achieved with the other sensors
such as cameras and lasers, since the potholes are only detected when a
vehicle's wheels traverse a pothole, and consequently false detections
are likely to occur while vehicles drive over e.g. manhole covers, grates
and speed bumps [14]. Further studies on vibration-based methods for
pothole detections can be found in: Cong et al. [29], Jang et al. [30];
Madli et al. [31], Wang et al. [32] and Chen et al. [33].

Because of the 3D geometry of potholes defects, several research
studies have adopted depth information obtained from either 2D ste-
reovision or 3D laser scanning. Hou et al. [9] and Wang [34] used
stereovision imaging technique to create 3D surface models for pave-
ment condition assessment. The study results showed that there were
problems with complete 3D reconstruction using stereovision methods
attributed to the complexities in feature matching. To improve on the
results from Hou et al. [9], Salari and Bao [12] combined stereovision

Fig. 2. (a) Sample wide area 2D-image frames
acquired using smartphone. (b) Selected image-
tile visualization and detection of potholes and
linear distresses on asphalt pavements.

Fig. 3. (a) Conceptualization of the influence of imaging processing on pothole detection with the “spill-in” and “spill-out” effects. (b) Section of original image-tile with corresponding
histogram. (c) Smoothened or filtered section of original image showing intra- and inter-spectral and textural homogeneity. (d) Edge detection and estimation illustration in filtered
imagery.
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data with colour segmentation methods in pavement distresses in-
spection by using a neural network classifier and applying a probabil-
istic relaxation thresholding. The results were effective for the detection
of different pavement surfaces.

Bursanescu et al. [35] proposed a 3D vision system based on laser
sensors to obtain road-surface profiles. In NCHRP [36] and Wang [34],
laser sensors were used for road-surface-roughness and rutting mea-
surements. Li et al. [10] proposed a 3D transverse scanning technique
based on IR laser sensors and developed a system for 3Dsurface profile
generation for the detection of pavement distortions such as rutting and
shoving. Yu and Salari [37] presented laser-imaging techniques to
collect road information, and used artificial neural network algorithm
for pothole detection and severity estimation based on index of severity.

As argued in Salari and Bao [18]; Koch and Brilakis [11]; NCHRP
[36], and Zhou et al. [38], the currently available imagery and laser
scanner based methods are expensive technologies and systems and
therefore in most cases the equipment cost is a barrier in adopting the
automated methods. From the different sensor techniques for road
condition surveys, it is observed that most studies are based on image-
processing techniques due in part to the fact that 2D images yield better
results in road surface distress detections [39,84]. However, environ-
mental conditions such as light and shadow conditions, different
background textures, and non-crack patterns compromises the assess-
ment outcomes [17]. As such improvements on 2D colour image seg-
mentation techniques for pothole detections are necessary [40,41].

2.2. On pothole detection from 2D colour imagery

Despite the fact that the limitations and drawbacks in manual pa-
vement-assessment methods have resulted into the development of
automated defect assessments in the recent past, a majority of the
commercial pavement-assessment tools are based on image-processing
approaches for defect detection [39]. Zhou et al. [42] presented a
method for detection of potholes and patches in 2D images using DWT.
The method was however limited by the fact that it was restricted to the
level of presence [4]. Karuppuswamy et al. [43] modeled potholes as
circular obstacles with a white colour, and of 2-ft in diameter. By using
a standard imaging board, potholes were detected through blob
matching. Lin and Liu [44] proposed a pothole detection system from
2D images, in which partial differential equations were used for initial
segmentation to isolate distress regions. A non-linear support vector
machine was then applied to differentiate between potholes and other
types of distresses.

For distress detection on asphalt pavements, Nejad and Zakeri [45]
presented a comparative evaluation of the discriminating power of
several multiresolution texture analysis techniques using wavelet, rid-
gelet, and curvelet-based texture descriptors. They concluded that for
pothole detection, the curvelet-based signatures outperformed the other
multiresolution techniques, yielding an accuracy of 97.9%. By seg-
menting a road surface image into defect and non-defect regions using a
histogram shape-based thresholding algorithm, Koch and Brilakis [11]
detected pothole defects using morphological thinning and elliptic re-
gression with an accuracy of 86%. They further improved on the
method through the use of automated video-based pothole detection,
which was able to incrementally update the texture signature for non-
patches areas, and to track the detected potholes [15].

For detecting a variety of road-related objects such as lanes, road
signs and potholes, Danti et al. [46] presented a system of image pro-
cessing and classification. To detect potholes, black and white threshold
was applied to the image that highlights the pothole area. The results
showed that the algorithm was unable to deliver desirable result, as it
segmented many undesirable areas within an image. They re-
commended that a more effective filtering method should be adopted in
order to improve on the accuracy of the approach. Jog et al. [41]
presented an approach based on visual 2D recognition and 3D re-
construction for detecting and measuring the width, quantity, and

depth of potholes using a monocular camera mounted on a mobile
vehicle.

Through clustering, Buza et al. [7] presented a pothole detection
system based on the method by Koch and Brilakis [11]; however the
thresholding algorithm was modified to Otsu's image thresholding, so as
to automatically determine the correct threshold value necessary per
frame. The approach was based on unsupervised vision-based method
and does not require expensive data collection equipment, filtering and
training. The method was able to roughly estimate the pothole surface-
areas with accuracy of approximately 81%. A vision approach was also
employed by Murthy and Varaprasad [47], with images obtained from a
camera mounted on top of a vehicle, and a custom MATLAB code used
to detect potholes.

In Ryu et al. [48], a 2D vision-based method for detection of pot-
holes on asphalt and concrete pavements was presented. By using a
histogram shape-based thresholding and maximum entropy, potholes
were detected from the surroundings. A median filter was further used
to remove noise such as cracks, and the actual potholes extracted by
comparing the candidate regions with background regions through
histogram and standard deviation features. Their study results yielded
an overall accuracy of 73.3%. Radopoulou and Brilakis [49] and Ra-
dopoulou et al. [50] detected potholes from 2D video frames by re-
spectively using the semantic texton forests (SFT) algorithm and
through classification of distress severity from vision images and ele-
vation signals.

From the literature survey, 2D vision-images it is seen to suffice the
detection of potholes on asphalt pavements, especially if the defects are
at the incipient stages of formations as discussed in Fig. 1. Methodo-
logically, most of the reported studies relied on the use of thresholding,
which as stated in the introduction has limitations in autonomous
image segmentations and as such there is need for improved algo-
rithmic accuracy as presented in reviews by Radopoulou and Brilakis
[4] and Schnebele et al. [6]. It is conclusive that because pavement
images have high levels of intensity variation and texture content, the
detection of distresses is generally an ill-conditioned problem.

In general, despite the fact that the performances of image-seg-
mentation algorithms has improved significantly over the years, these
improvements have come partly at the price of ever more sophisticated
feature selection processes, more complex statistical models, and more
costly optimization techniques. The drawbacks of some of the widely
used segmentation algorithms, as presented above, for pavement pot-
hole detections, can be summarized as follows [51]:

(i) Clustering algorithms such as k-means and expectation-max-
imization (EM) are influenced by initial-value estimations, and
therefore have relatively low stability. The methods also are more
sensitive to noise and intensity inhomogeneities, resulting into the
inaccurate segmentation results [52].

(ii) Thresholding is an iterative procedure, which typically does not
take into account the spatial characteristics of an image and cannot
be applied to multichannel images. This makes it more sensitive to
noise and intensity inhomogeneities, which occur in pavement
images. Region-growing like thresholding is another segmentation
approach that is rarely used alone but usually within a set of
image-processing operations, and has the disadvantage that it re-
quires manual interaction to obtain the seed point(s). The main
limitation in using thresholding is that, in its simplest form, it is
only generates two classes and it is not possible to apply to mul-
tichannel images [51].

(iii) Supervised classifiers in general require tedious and robust
training data that are usually manually segmented, and then used
as references for the automatic segmenting new data. This makes
them subjective and influenced by the training data templates, and
do not perform spatial modelling.

(iv) The Markov Random Field (MRF) statistical model has the diffi-
culty in the selection of proper parameters for controlling the
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strength of spatial interactions. For example, too high a setting can
result in an excessively smooth segmentation and loss of important
structural details.

(v) Artificial neural networks (ANN) are inherently parallel networks,
and their processing are usually simulated on a standard serial
computer, thus reducing computational advantage. Because of the
many interconnections used in a neural network, spatial informa-
tion can be easily incorporated into its classification procedures.
However, ANNs require good and large training samples, making
them subjective and also require significant computational time.

From the literature review, it is conclusive that to improve on
pothole detection, the task should be divided into two steps comprising
of pattern extraction, to achieve clean information comprising of can-
didate pixels and pattern classification, to provide failure or defect in-
formation. This forms the basis for the use of wavelets for noise filtering
and region smoothing [46], and the extension of the detection process
to the clustering of the scene multivariate features using FCM and fi-
nally fine segmentation of wavelet-FCM results using morphological
reconstruction approach in order to resolve the “spill-in” and “spill-out”
phenomenon and to extract the extrema for pothole defect detection.

3. Methodology

Because of the inherent spectral and spatial complexities on pave-
ment surfaces as illustrated in Figs. 2 and 3, a non-crisp clustering
approach is preferred. There exist several clustering algorithms pro-
posed for dealing with different problems such as partitioning clus-
tering, hierarchical clustering, neural network based clustering, mixture
model based clustering and kernel based clustering [53]. The most
widely used clustering algorithm is the partitioning clustering, such as
k-means, fuzzy c-means, and their variations. FCM is better than k-
means because of its non-crisp characteristics. However, FCM tends to
perform poorly under noisy environment and therefore modified fuzzy
clustering algorithms have been proposed [54,55]. This drawback is
overcome in this study by using the hybrid approach of scale-based
spectral and textural filtering using wavelets, a priori to FCM clustering.
From the clustered information into n-classes, the extraction of the
minima and maxima extrema is necessary in order to segment the
pothole defect pixels. Morphological reconstruction is an operator
provided by mathematical morphology, which is suitable for hier-
archical segmentation and is effective in extrema extractions as well as
hierarchical image construction [28]. Further, morphological re-
construction has the advantage of providing a good symbolic descrip-
tion of the image and has the ability to extract geometrical information
in signals through appropriate transformations by referring to the ori-
ginal image.

3.1. 2D image filtering using multiscale wavelet transform

Since image textures may often contain both statistical and struc-
tural properties, a spatial analysis method should be able to represent
both types of properties in order to completely describe the texture
[56]. Various methods for texture feature analysis have been proposed
during the last decades [57]. However the image texture analysis pro-
blem remains difficult and still subject to intensive research. A major
class of feature extractors relies on the assumption that texture can be
defined by the local statistical properties of pixel gray-levels.

From an image histogram, first-order statistics can be derived and
used as texture features. However, first-order statistics do not suffice for
adequate texture description, and therefore second-order statistics are
necessary as efficiently reflected in features computed from the gray-
level co-occurrence matrices [58]. Second-order statistics have also
been found to be inadequate [59], as such other texture analysis
schemes such as Markov Random Fields [60]; fractal models [61] and
Wold decomposition [62] have been proposed.

Several multichannel texture analysis systems have been developed
[63–65]. However in the last decade, wavelet theory has emerged and
has become a mathematical framework which provides a more formal,
solid and unified framework for multiscale image analysis [66,67]. The
main advantage of wavelet analysis is that it has the ability to perform a
local analysis by analyzing a localized area of a larger signal. Further-
more, wavelets analysis is translation invariant process which has the
desirable property for the accurate localization of region boundaries in
terms of spectral and textural feature properties [68]. This is attributed
to the hypothesis that wavelets, through dual filtering is capable of
revealing some aspects of data that other signal analysis techniques
often miss, such as trends, breakdown points, and discontinuities in
higher derivatives.

In summary, 2D-DWT is computed by applying a separable filter
bank to the image according to Eqs. (1)–(4) [69].

= ∗ ∗ − ↓ ↓L b b H H L b b( , ) [ [ ] ] ( , )n i j x y n i j1 2,1 1,2 (1)

= ∗ ∗ − ↓ ↓D b b H G I b b( , ) [ [ ] ] ( , )n i j x y n i j1 1 2,1 1,2 (2)

= ∗ ∗ − ↓ ↓D b b G H I b b( , ) [ [ ] ] ( , )n i j x y n i j2 1 2,1 1,2 (3)

= ∗ ∗ − ↓ ↓D b b G G I b b( , ) [ [ ] ] ( , )n i j x y n i j3 1 2,1 1,2 (4)

where ∗ denotes the convolution operator; ↓2,1(↓1,2) is the sub-
sampling along the rows and columns and = →I I x( )0 is the original
image. H and G are respectively the low and high bandpass filters. In is
obtained by dual low-pass filtering and is therefore referred to as the
low resolution image at scale n. The detail images Dni are obtained by
bandpass filtering in a specific direction and contain directional detail
information at level or scale n. The original image I0is thus represented
by a set of subimages at several scales {Id,Dni}i=1,2 , 3 , n=1, … , d, which
is a multiscale representation of depth d or level of decomposition.

In practice, the multiscale wavelet filtering and denoising can be
divided into the following three steps according to Donoho and
Johnstone [70]:

(i) decompose the noisy signal into the time-frequency domain by a
selected set of orthonormal wavelet basis.

(ii) threshold the wavelet coefficients by suppressing coefficients
smaller than a specific value and preserving other larger coeffi-
cients, and

(iii) reconstruct the thresholded coefficients into the original time do-
main.

Typical wavelet types found in literature are the Haar, Morlet,
Gaussian, Meyer, Daubechies and Symlet wavelets. Obviously, the se-
lection of wavelet basis and defining a proper threshold to discard
partial detail coefficients are imperative for a successful denoising. The
most widely used wavelet basis in the context of image analysis, and
also adopted in this study, is the Daubechies wavelet [66]. While the
initial Haar basis function, also termed as first-order Daubechie's basis,
is best suited in representing step signals or piecewise constant signals,
the Daubechies basis function is preferred for smoother signals [71].

Thresholding in wavelet analysis has been proposed through either
hard or soft methods [70]. While hard thresholding discards wavelet
coefficients below a threshold τ and maintains the same level for wa-
velet coefficients that exceed the threshold value, soft thresholding
discards wavelet coefficients below the threshold τ, but also shrinks
larger coefficients towards zero by the value of the threshold. Thus,
hard thresholding can result in better reproduction of peak dis-
continuities, while soft thresholding with a larger bias can give better
visual quality and fewer artifacts. The implementation of the 2D-DWT
in this work follows from Ouma and Hahn [17], whereby optimal wa-
velet level is obtained through empirical analysis and thresholding of
the optimal-level wavelet is implemented by using soft multi-thresh-
olding so as to obtain at least three classes, and not the crisp two-
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classes.

3.2. Fuzzy c-means clustering

FCM is a soft extension of the hard k-means, and is a popular
clustering algorithm based on the minimization of the distance-based
objective function [72]. The technique attempts to partition every
image pixel into a collection of M-fuzzy cluster centers with respect to
some given criteria [73]. Fuzzy cluster analysis allows gradual mem-
berships of data points to clusters measured as degrees in [0, 1]. This
gives it the flexibility to express the fact that data points can belong to
more than one cluster. Furthermore, these membership degrees offer a
much finer degree of detail of the data model. Aside from assigning a
data point to clusters in shares, membership degrees can also express
how ambiguous or definite a data point should belong to a cluster [74].
The mathematical representation and implementation of the FCM is
briefly explained below.

By letting X=(x1,x2,… ,xN) denote an image with N pixels to be
partitioned in c clusters, where xi represents multispectral (features)
data, the FCM algorithm is an iterative optimization that minimizes the
cost function Jm defined according to Eq. 5. The objective function is
based on the minimization of the Euclidean distance between the input
data xk and the cluster center ci, subject to the following probability
constraints: ∑i=1

Cuik=1, 1≤k≤n and 0 < ∑k=1
nuik < n, 1≤ i≤c.

∑ ∑=
= =

J U C u d( , ) ( ) ( )m
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ik
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(5)

where uik is the degree of membership of pixel xk in the ith cluster
center; dik=‖xk−ci‖2 is the Euclidean distance between any measured
feature and the center; ci is the d-dimension clustering center and
m∈[1,+∞] is the weighted matrix defining the fuzziness factor which
is used to control the fuzzy degrees of the cluster results.

If Ui=(u1i,u2i,… ,uMi)T is the set of membership degree of the ith
pixel associated with each cluster center; xi is the ith pixel in the image,
and ci is the ith cluster center, then U=(U1,U2,… ,UN) is the mem-
bership degree matrix and C=(c1,c2,… ,cM) is the set of cluster cen-
ters.

The objective function Jm of the FCM clustering technique reveals
the clustering quality of the output images in terms of the degree of
compactness and uniformity of the cluster centers. Specifically, a
smaller value of Jm indicates a more compact and uniform cluster center
set that leads to more desirable clustering results. However, a closed-
form solution for calculating the minimum value of Jm does not exist
because different types of input images consist of different pixel dis-
tributions. Hence, different expressions of the objective function Jm are
produced. Consequently, a formula that may be specifically used to
calculate the minimum value of Jm for all types of images during the
FCM clustering process does not exist [75]. To achieve minimization of
the objective function Jm, the alternative strategy is to carry out the
FCM clustering technique in an iterative manner. Fuzzy partitioning is
carried out through an iterative optimization of the objective function,
with the update of membership uik and the cluster centersci according to
Eqs. 7 and 8, and the iteration stops when Eq. 9 is satisfied. In order to
get the minimum value of Jm(U,C) let:
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After an alternative optimization, the membership function uik and
the cluster center ci are respectively updated as in Eq. (7), and the
update of the cluster centers by ci as in Eq. (8):
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where m > 1 is known as the fuzzifier with m=2 as set by Bezdek
[72]; C is the number of clusters and N is the number of map units, and
the iteration stops when:

− <+u u εmax ‖ ‖ik ik
t

ik
t( 1) ( ) (9)

where ε is a termination criterion between 0 and 1, whereas t is the
iteration number.

This procedure converges to a local minimum or a saddle point of
Jm, and therefore multiple runs may produce different results as the
minimization process is significantly sensitive to the initial randomly
selected cluster centers. Starting with an initial guess for each cluster
center, the FCM converges to a solution for ci representing the local
minimum or a saddle point of the cost function. Convergence can be
detected by comparing the changes in the membership function or the
cluster center at two successive iteration steps.

From the above formulation, the cost function is minimized when
pixels close to the centroid of their clusters are assigned high-mem-
bership values, and low-membership values are assigned to pixels with
data that are far from the centroid. The membership function represents
the probability that a pixel belongs to a specific cluster. In the FCM
algorithm, the probability is dependent solely on the distance between
the pixel and each individual. The output from FCM clustering is a list
of cluster centers and n membership-grades for each pixel, where n is a
number of desired clusters. A pixel will be assigned to the cluster with
highest membership-grade. Further details on the FCM clustering al-
gorithm can be found in [74].

From the above representation, FCM is not robust to tolerate noise
or outliers because of assigning relatively high membership values to
outliers across c-clusters [55]. This is because for an outlier, all the
ratios dik/djk will be close to unity, leading to all membership values of
an outlier close to 1/c. These rather high membership values may cause
an improper estimation of cluster centers since outliers will attract the
centroids of clusters. Therefore if a small weight (membership) can be
assigned to the “noisy” data points and a large weight to the “clean”
data points, the estimation of cluster centers will be more accurate. This
conceptualization inspires the proposed denoising using DWT, in order
to boost the performance of the conventional FCM clustering.

3.3. Morphological reconstruction

Morphological reconstruction is based on two input images, a
marker image as the starting point and a mask image as the constraint,
and a structuring element which is used to define connectivity [76].
Morphological reconstruction processes the marker image, based on the
characteristics of the mask image. The high-points or peaks, in the
marker image specify where processing begins, and the processing
continues until the image values stop changing. Conceptually, mor-
phological reconstruction can be thought of as repeated dilations of the
marker image until the contour of the marker image fits under the mask
image. In this way, the peaks in the marker image are spread out or
dilated. Reconstruction by dilation, that is the geodesic transformations
of a marker image F and a mask image G, can be represented in Eqs.
(10)–(11) [77].

= = +R f δ f δ f δ f( ) ( ) with ( ) ( )G G
i

G
i

G
i( ) ( ) ( 1) (10)

= = ∧−δ f δ f δ f δ f g( ) ( ) with ( ) ( )G
n

G
n

G
B( ) ( 1) (1) ( ) (11)

where δG(n) is a geodesic dilation and B is a at disc-shaped structuring
element with a suitable radius.

For the two grayscale images Fand Gdefined on the same domain D,
taking their values in the discrete set {0,1,… ,N−1} and such that
F≤1 (i.e. for each pixel p∈DI ,J(p)≤ I(p)), the reconstruction ρI(F) of
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Gfrom F is given as in Eq. 12, which can be modified such that the
grayscale reconstruction ρI(F) of G from F is obtained by iterating
grayscale geodesic dilations of F under G until stability is reached ac-
cording to Eq. 13 [78].

= ∈ − ∈ρ F p k N p ρ T J( )( ) max{ [0, 1] | ( ( ))}I T I k( )k (12)

  = = ∘ ∘…∘
→+∞ →+∞

−

ρ F δ F δ δ δ F( ) lim ( ) lim ( )I x
I

n
x

I I I

n

( ) (1) (1) (1)

times (13)

As illustrated in Fig. 4(a), the marker image intensity profile is re-
presented as the red line defined by f, and the mask image intensity
profile is represented as the blue line g. The final image intensity profile
is represented as the green line Rg [79]. The arrows show the directions
of propagation from the marker intensity profile to the mask intensity
profile. The green regions between f and g shows the changes in-
troduced by the morphological reconstruction process. When applied to
binary images, morphological reconstruction pulls out the connected
components of an image identified by a marker image as illustrated in
Fig. 4(b), where the dark patches inside three objects in the mask image
G, on the left correspond to the marker image F. The result of the
morphological reconstruction is shown on the right of Fig. 4(b). The
reconstruction ρI(F) of marker F from mask G is the union of the con-
nected components of F which contain at least a pixel of G [79]. In
Fig. 4, the marker intensity profile is propagated spatially but is
bounded by the mask image's intensity profile.

In this study, 8-connected neighborhood is chosen so that at any
given dilation, the objective is to have one object. Just like binary re-
construction extracts the marked components of the mask, grayscale
reconstruction extracts the peaks (maxima) of the mask which are
marked by the marker image. The primary difference between binary
and grayscale morphological reconstruction algorithms is that in binary
reconstruction, any pixel value change is necessarily the final value
change, whereas a value update in grayscale reconstruction may later
be replaced by another value update.

3.4. Pothole detection performance measures

To objectively measure the quality of the detected and extracted
potholes, it is important to use measures which provide information
about the segmented regions and boundaries. This, as already stated
above, is because segmentation is an ill-defined problem, as there is no
single manual ground-truth segmentation against which the output of
an algorithm may be compared. Rather the comparison should be made
against the set of possible perceptually consistent interpretations of the
image, of which only a minuscule fraction is usually available [80].

In this study the Dice coefficient of similarity and the Jaccard Index
are used to determine the validity of the study results, and is im-
plemented as presented in Ouma and Hahn [17]. These measures
compares the results obtained from the algorithm to a set of manually
segmented images, and determines the degrees of over- and under-
segmentations by determining the fractions of spatial overlaps between
the segmentation results and the ground-truth data. The advantage of
these measures is that they count the fractions of pairs of pixels whose

labels are consistent between the computed segmentation and the
ground-truth, averaging across multiple ground-truth segmentations.

If S is the segmentation provided by the proposed algorithm and G is
the manually segmented image, then the Dice coefficient dC is defined
according to Eq. 14, for two similarly labeled regions r in S and G. Dice
coefficient can also be expressed in terms of the Jaccard index jI as
expressed in Eq. 13, where G is the average ground-truth data. The
ground-truth set is generally defined as G={g1,g2,… ,gN}, and

= ∑G g nN
i1 where n is the number of manually segmented images. In

this study, n=3 is adopted such that at least two matching ground-
truth datasets are merged [17].
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The Dice coefficient like the Jaccard Index is in the range [0, 1],
where high values indicate a large similarity between the segmented
image and the ground-truth reference data. Because of their formula-
tions, dC is always larger than jI, except at 0 and 1 when both are the
same. In this study, the results of the Dice and Jaccard accuracy mea-
sures are compared with the sensitivity metric, alongside the pothole
surface-area detection error rates. Sensitivity or recall refers to the
proportion of images containing potholes that have been correctly
classified or segmented.

To further analyze the accuracy of the results, a volume overlap
between the 2D binary images is also presented, in terms of the surface-
area, so as to enable the visualization of the difference between the
variability of average manual segmentation and the results from the
proposed methodology. From the surface-area differences between the
ground-truth and segmentation results, the mean and standard devia-
tion of error percentages in pothole size and shape extractions are also
determined for the experimental results. The surface-area of the de-
tected pothole is approximated according to the Eq. 15, and can be
defined by an optimal rectangular bounding box.
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where Adi is the total pothole area as detected within an imaging frame;
lp=wp is the size of a defect or pothole pixel IP; (x,y) is the coordinate
or position of the defect pixel IP, and therefore ∑x∑yIp(x,y) is the total
defect pixel counts which is based on the total number of defect pixels
in the image and a 2 × 2 averaging window.

The implementation of the proposed methodology and the results
validation procedure is schematically presented in Fig. 5. Details on the
processing steps are as presented in our initial study as reported in
Ouma and Hahn [17]. The prototype is implemented in MATLAB ver-
sion 7.11 (R2010b) and supported by the MATLAB Image Processing
Toolbox.

Fig. 4. (a) One-dimensional illustration of morphological reconstruction of marker image F through repeated dilations under the mask image G. (b) Markers inside the objects in the left
image and the image on the right show the reconstructed objects and the final binary image.
(Figure adopted from [79]).
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4. Image data acquisition and test data

Currently, monitoring of the road conditions is carried out either via
the following techniques or a combination thereof [81]: (i) manual
inspections where raters visually survey and judge the road condition
[3]; (ii) specialized road condition survey vehicles comprising of dif-
ferent motion and image sensors, and (iii) in some cases citizens who
call in their observations [13]. Due to the volume of roads that needs to
be inspected, manual surveys are limited in terms of productivity and
more so given the fact that the capacity of every road in a given net-
work is often utilized to full capacity due to high traffic volumes,
leading to an ever faster degradation that necessitates more frequent
inspections. The requirement for higher inspection frequency cannot be
tackled manually due to subjectivity and accuracy in data collection,
time, cost and human resource constraints. The second method, also
known as automated road condition survey, is generally expensive in
terms of equipment costs, processing techniques involved and invest-
ments in skilled human personnel. The third method is carried out
voluntarily through reports or by citizens' complaints, and is most of the
times about severe pavement distresses, like large potholes on main
roads [13].

For urban roads, it is desirable to have a low-cost automated system
that can be used to monitor the roads on a continuous basis with
minimal human intervention. This study exploits the pervasive and
‘smart’ nature of consumer-grade smartphone devices to collect the
road condition data through smartphone colour camera imaging. By
using such devices, no dedicated and expensive platforms and drivers
are needed for automated data collection. In this study, the main device
for the data collection is the car-charged and GPS enabled Samsung
Galaxy S5 camera, with a resolution of 1080 × 1920 pixels. By
mounting the camera on the windshield of a Toyota Hiace van, using a
universal car windshield mount holder, a camera shutter delay of 5-
frames per second in automated mode was used in order to accom-
modate the variable vehicle speeds. The dash-cam images were cap-
tured in terms of wide frames, from which the tiles, referred to as the
test datasets were extracted for implementing the algorithm.

Most of the test images used in this study were taken when the

weather was overcast or cloudy, during high-shadow or after light
rains, since these conditions offered good lighting and imaging condi-
tions, hence minimizing the artifacts encountered in during to natural
and environmental conditions. From the captured data and for further
processing, experimental distresses images with minimal blur [82] were
selected at 10-m chainages. The smartphone-GPS was used to locate the
chainages of the observed pavement failures for the case study of 3-km
Nandi road in Eldoret Town, Kenya [3]. The experimental data sets
were varied in terms of pothole sizes and shapes, different imaging
conditions such as noise, background features and illumination and
shadow conditions and also taking into consideration the various pa-
vement conditions such as pavement discolorations and other pavement
defects like linear cracking. With these variations, a total of 75-test
image datasets were selected for testing and validating the proposed
FCM-DWT approach. All the selected test images contained potholes,
and the proposed method only detects and extracts potholes in a single
image-tile, but does not automatically identify pothole-images from a
range of different pavement images. The characteristics of the test data
sets comprising of pothole defects and the non-pothole defects are
summarized in Table 2.

5. Results and analysis

5.1. Pothole detection and extraction results

Representative results for the 2D vision-based detection of pothole
defects are presented in Fig. 6. Tiles of the original images are presented
in Fig. 6(a), and Fig. 6(b) and (c) respectively shows the detections of
candidate pothole defect areas using DWT, before and after soft-
thresholding, at level-3 of Daubechies-4 (db4). Despite the fact that
thresholding of the wavelets transform smoothened image results
(Fig. 6(c)) is able to show the presence of not only potholes, but also
linear cracks, there are also observed artifacts within the image which
are attributed to noise and background information. Through clustering
using FCM, the results in Fig. 6(d) indicate that three-clusters are de-
termined. These clusters are characterized by pothole distresses, other
distresses like linear cracks, non-distress features and no-data regions.

Fig. 5. Schematic workflow of the approach for
pothole detection on asphalt pavements using the
proposed hybrid wavelet-FCM and morphological
reconstruction from 2D imagery. Ial(x,y) is the
filtered image at DWT optimal-level l.
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By using morphological reconstruction between the FCM image and the
filtered original image, as depicted in Fig. 5, the final pothole seg-
mentation and detection results are obtained as presented in Fig. 6(e).
In order to determine the minimal indicator for the extent of pothole
surface-area, especially during maintenance and repairs, the results for
the first two processing output in Fig. 6(e) are automatically defined
within a minimal rectangular bounding box. Fig. 6(f) presents the
corresponding manually delineated ground-truth data, which is the
average of at least two or three manual pothole area segmentations, as
explained in Section 3.4.

In some of the resulting morphologically reconstructed images in
Fig. 6(e), small blobs representing non-potholes are observed. These
blobs characterize either linear distresses segments or dark asphalt
areas which are aggregated during the clustering process and are not
completely eliminated by using the morphological reconstruction fil-
tering. The blobs are intuitively eliminated on the basis of their size and
proximity to the pothole. That is, the smaller and further the blobs are
from the pothole, the higher the probability that they are neither parts
of linear distresses nor potholes. The final results presented in Fig. 6(e)
are thus those cleaned of the non-pothole regions. However, in

Table 2
Characteristics of the test datasets depicting pothole defects and non-pothole defects.

Test pothole image data characteristics Sample image data

– Illumination and light intensity variations
– Background asphalt background
variations

– Cracks
– Oil stains
– Patches
– Pebbles
– Shadows
– Other noise or artifacts

Original 2D image tile
Candidate defect areas 

detected from level-3 DWT Thresholded DWT results
FCM clustering of the 

DWT results
Morphologic reconstruction 
results for pothole detection 

Reference segmentation 
ground-truth data 

\

)f()e()d()c()b()a(

Fig. 6. Pothole detection results: (a) original image; (b)–(d) intermediate results; (e) final results from morphological reconstruction, and (f) ground-truth reference image.
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computing the pothole detection accuracy, the results before clean-up
are used as presented and discussed in Section 5.2 below.

For the image preprocessing, clustering and morphological re-
construction, the average CPU run-time for the proposed approach was
95 s. The overall results show that the proposed approach is able to
detect the pavement distresses, by extracting the potholes in terms of
their shapes and surface-area extents. From the study hypothesis, it is
observed that the presented algorithmic approach is more biased in
detecting round shaped features than the linear cracks. That is, despite
the fact that linear features are also characterized by dark pixels as
potholes, their spatial sizes and textural differences inhibit their de-
tections using the proposed algorithm and are only detectable when
their sizes exceed a certain width.

The results in Fig. 6 shows that the empirically set out con-
ceptualization in Figs. 2 and 3, that the pothole detection system should
be independent of other distresses present within the scene as well as
noise and background information, is achieved to a high degree.
Comparatively, the run-time for the proposed approach is on average 4-
times faster than the clustering of the original image. The final results of
the study show the ability of the proposed approach to detect the
presence of the potholes in shape, size and compactness.

5.2. Quantitative verification of pothole detection from 2D-vision imagery

To validate the results of the detection and extraction of the pothole
defects, the ground-truth reference data from manual image segmen-
tation are used. As presented in Ouma and Hahn [17], the manual
segmentation results from three experts, were compared and merged
based on overlap and neighborhood rules such that: (i) a pixel marked
as a crack by two or more experts is considered as a crack pixel, and (ii)
every pixel marked as a crack and next to a pixel kept by step (i) or (ii)
is also considered as a crack. The reliability of the reference segmen-
tation images was evaluated by comparing the percentage area overlap
and the mean distance between each pixel detected by only one expert
and not kept in the reference image, and the reference segmentation.
For the 75 distress test images, the reference segmentation ground-truth
data was accepted when overlaps were more than 90% and the mean
distances are less than 10% between any two reference segmentation
images.

Using the above derived ground-truth data, the accuracy of detec-
tion using the Dice and Jaccard based similarity measures were de-
termined with the maximum similarity being observed as 96.2% and
92.7% respectively. In cases where the degrees of overlaps between the
ground-truth and the results were more than 95%, few outliers char-
acterized by lines and or clustered blobs were detected on the pavement
surface. Notably, the image results which registered high similarities
with the ground-truths were taken either before or in the afternoons, i.e.
when there is maximum shadow effect. In similar cases, some of the
images were acquired after light rainfall. On the other hand, the pothole
detections with least similarities to the ground-truth were mostly ob-
served for images which were captured when the shadow effects are at
a minimum. For these sets of test images, which accounted for 9% of the
test data, the least corresponding Dice and Jaccard indices were de-
termined as 81.8% and 68.2% respectively. This observation points to
the fact that road condition surveys should be planned, in terms of the
time of day, weather condition and season for data capture, so as to
obtain the best results [13].

From the volume overlap analysis presented in Fig. 7, it is observed
that the regularly formed and near-elliptical shaped potholes are easier
to detect, hence indicating maximum-overlaps with the ground-truths
(Fig. 7(a)). This is in part due to the fact that their shadow formations
are regular, making easier to segment. Similar results are observed in
Fig. 7(c), in which more than one pothole is detected within the same
image frame with an accuracy of more than 90%. On the contrary, in
Fig. 7(b) and (d), where there are other pavement distresses char-
acterized by multiple linear cracks, slightly larger overlaps between the

detected potholes and the ground segmentations are observed. Notably
the potholes with the multiple pavement deformations are mostly
formed around the road kerbs.

In all the results for the 75 test images, it is observed that the shape
and size of the ground-truth partially coincides with that of the seg-
mented potholes, or in most cases, the pothole ground-truth is slightly
smaller in size than the detected potholes. This implies that the pro-
posed approach is accurate to a high-degree in detecting the pothole
edges, however in a few results there is an observed marginal over-
clustering around the edges of the potholes. For the 75 test datasets, the
overall average accuracy using the Dice coefficient of similarity and the
Jaccard index were determined as 87.5% and 77.7% respectively. The
relative magnitudes of the mean and standard deviation of error per-
centage in pothole size and shape extraction for the experimental da-
tasets were respectively determined as 8.5% and 4.9%.Since the ob-
jective as indicated in the introduction section is on the detection of the
presence and extent of the pothole, the results in this study are accurate
and acceptable for purposes of maintenance and repairs of incipient
potholes. Most importantly, the algorithm is able to estimate the size
and shapes of the potholes, with minimal deviations as depicted in
volume analysis in Fig. 7. The results presented in Figs. 6 and 7 are
particularly important in scenarios where the shapes of the potholes are
complex and cannot be mathematically approximated.

For a user, the relationship between the accuracy of the detected
potholes should be correlated to the accuracy of extraction of the size
and shape of the potholes. This relationship is presented in Fig. 8, with
the results showing that high detection accuracy does not automatically
translate into an accurate extraction of the shape and surface-area of
the detected pothole. The sample results in Fig. 8 represent results from
the highest, the median and least detections for the surface-area dif-
ferences and the accuracy measures. The results in Fig. 8 show that the
errors in the surface-areas were not more than 10% in magnitude.

Comparatively from Fig. 8, for the test images #2 and #17, it is
observed that the relative magnitudes of the errors of the detected
surface-areas of the potholes are nearly similar. However, the degree of
similarity to the ground-truths is not exactly the same as determined
using the Jaccard index. On the other hand, by using the Dice coeffi-
cient, the detection accuracies are seen to be more correlated to the
surface-area error magnitudes. On the contrary, by comparing test
images #19 and #20, it is observed that while the pothole surface-area
detection errors are nearly equal, the degrees of similarities differ. Si-
milar results are observed for test images #10 and #13, and 14 and 15.
While it can be argued that these relationships are magnitude depen-
dent, it can be concluded that a user should always check the perfor-
mance and validity of pothole detection in terms of both the surface-
area error and the detection accuracy.

By comparing the Dice coefficient and the degree of sensitivity for
pothole detection, it is observed that sensitivity, which is the counter-
part of specificity, shows that all the pothole detections results are at
above 94% with an average sensitivity of 97.6%. This observation af-
firms our earlier argument in Ouma and Hahn [17] that sensitivity and
specificity metrics tend to overestimate the actual accuracy. From the
analysis, the Dice similarity measure is considered to be more optimal
for pothole detection accuracy assessment and can be used as an in-
dicator for correlating the accuracy of pothole surface-area extraction.
From the validation results, it is evident that the performance of the
proposed algorithm is acceptable with an average accuracy of 87.5%
using the Dice similarity coefficient.

In general, the pothole defect regions which are most difficult to
detect are those that are very shallow, hence present insignificant
shadows and are formed without regular or near-regular shapes. Those
that are not very shallow and are near-elliptical in shape are detected
with accuracies of more than 90%. The misdetections were observed to
be concentrated particularly around the edges of the potholes and the
image frame or scene. This observation implies that edge detection for
potholes is in some scenarios a complicated 2D-image processing task,
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which may not be completely resolved by using 2D-RGB imagery alone.
This is attributed to the fact that at the pothole edges, there is a high
degree of multispectral and multispatial variations which cannot be
resolved without a spatial constraint such as additional texture and or
depth information.

5.3. Further discussions and analysis

In order to further illustrate and verify the performance of the
proposed algorithm, the result of an image frame-tile with pothole is
presented in Fig. 9. In Fig. 9(a) the original image in colour and
grayscale with the regions marked A, B, C and D for illustrations is
presented. Fig. 9(b) shows the results of the multiscale filtering, which
is derived from level-3 of the approximation image. As presented and
compared in Fig. 9(f), it is empirically evident that at a specific scale the
proposed filtering using multiscale wavelets is effective in region
smoothing and edge enhancement. For example, in terms of edge pre-
servation and enhancement, the results in Fig. 9(f)(i) depict an intra-
smoothing within regions A and B resulting in the preservation of the
edge region between the two regions. This is what is envisaged in the
empirical hypothesis and is necessary in order to boost the feature
identification and clustering using FCM as illustrated in Fig. 3.

Further in Fig. 9f(ii), there is observed intra- and inter-region
smoothing which constitutes to the aggregation of features. As evident
in Fig. 9(f)(ii), the regions C and D in the original image are constituted
by heterogeneous features. However at level-3 of wavelets filtering, the

Fig. 7. Evaluation of pothole detection results comparing original image and the magnitude of the surface-area differences between the detected potholes and the ground-truth.

Fig. 8. Relationship between pothole size and shape detection and the corresponding
detection accuracies.
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results in image A3 shows that the regions C and D tend to be smoother
and more homogeneous as compared to the original image and the
preceding wavelet levels. And as expected, the results at scales above
level-3 are much coarser and tend to over-aggregate and oversmoothen
the features, resulting into the blurring of information within the re-
gions.

By applying soft-thresholding to the optimal wavelet filtering re-
sults, the result in Fig. 9(c) is obtained. The results in Fig. 9(c) comprise
of unclustered but indicative information on the presence potholes,
with “spill-in” and “spill-out” effects as illustrated in the inset image in
regions P and Q. The subsequent results of the hybrid wavelet-FCM
clustering are presented in Fig. 9(d). As compared to the three-band
FCM clustering in Fig. 9(e), it is observed that the conventional FCM not
only has a higher processing run-time, but also presents low quality
clustering results as compared to the wavelet-FCM approach. The final
pothole segmentation output is presented in Fig. 9(g), which is the
product of the morphological reconstruction for extrema extractions
from the DWT-FCM results. An optimal bounding box is used to auto-
matically highlight the possible minimum or maximum rectangular
area in the displayed frame-tile, so that an end-user can easily estimate
the area Adi for M&R purposes.

A comparative overlay of the ground-truth reference image and the
segmentation results (Fig. 9(h)) shows that the pothole is detected with
Dice similarity and Jaccard indices of 0.95 and 0.91 respectively, and a
sensitivity metric value of 0.99. The results in Fig. 9(h) indicate that
there are observed minor errors in the magnitude of surface-areas and
shape detections of the pothole, especially around the edges. These as
discussed below are attributed to by the “spill-in” and “spill-out” ef-
fects, which are contributed to by either over-clustering due to low-
spectral resolution and or the lack of spatial information. In overall, the
empirical illustrations in Fig. 9 show that the proposed algorithm per-
forms quite well in preserving the two-dimensional geometric proper-
ties of pothole such as edges, area and shape and localization in space
and position.

In further assessment of the performance of the algorithmic ap-
proach, it is important to investigate the results in which the algorithm
has failed to produce good results. While the results shows that 2D
vision-based imaging is suitable for imaging pothole defects, one of the
constraints is that the data capture must be planned and carried out at
specific times of the day, weather conditions and or seasons. Poor il-
luminations without shadow effects will result into lack of sufficient
cues for pothole detection as illustrated in Fig. 10. This, coupled with
low-spectral resolution camera sensors may result into poor detections
and extractions of the actual size and extent of pothole defect.

As shown in Fig. 10(a), the presence of shadow improves the

detection of pothole distress, in such a way that part of the pothole
region marked A is detected, while parts of region B are not detected.
Empirically, the poor detection of region B is attributed to the fact that
the region is only slightly deteriorated as the presence of part of the
asphalt layer is still visible. Secondly, the region B is shallower in depth
than region A, and hence the shadow effect is minimal. To estimate the
optimal area for reconstruction purposes, a bounding box is constructed
on the final image as shown in the right image. From Fig. 10(b), it is
observed that 2D image data is suitable in detecting the centroid
P25(x,y) of the pothole, and can thus be used as a detector and an in-
dicator of presence of a pothole for maintenance and repairs. Thus the
results in Fig. 10(a) and (b), though are of slightly lower accuracy, can
still serve as indicators in the automated pothole detection process.

With improved illumination and planned data acquisition, the per-
formance of the methodology improves as illustrated in Fig. 10(c),
where two potholes are accurately detected in shape and size with Dice
similarity and Jaccard index coefficients of 0.89 and 0.76 respectively.
The results in Fig. 10(c) not only illustrate and emphasize the sig-
nificance of shadow based cues in pothole detection in 2D-vision
images, but also that combined improvements can be made in terms of
edge detection.

The initial processing results of the study, as presented and dis-
cussed in Figs. 6–10, shows that the approach of 2D pavement image
filtering using wavelets is effective in reducing noise without over-
blurring the edges in the image. The difficult part of the implementa-
tion is on the setting of the level of signal noise in the wavelet transform
by choosing the optimal scale of smoothing. In the acquired pavement
images there are almost always areas at the edge of the image that
contain no signal, but only noise. These areas can be used to char-
acterize the noise in the image, such that a user chosen percentage of
the maximum noise can be subtracted from the wavelet transform of the
image. This process may reduce the noise more than it does the signal
and may not blur the edges significantly. However, there may be also
some reductions in the signal power which can reduce smaller struc-
tures in the filtered image and may also add some local artifacts around
edges. As such the amount of signal subtracted should be limited.

The observations in Figs. 6–7, where non-pothole areas are also
detected after morphological reconstruction can be attributed to the
drawbacks in the FCM clustering as discussed in the results section, in
which case the marker image, which is the product of FCM clustering,
should be contain only true object pixels so that no other regions are
reconstructed. Therefore the use of more aggressive thresholds and
spatial information may be applied to improve on the accuracy of the
results as suggested by Xu et al. [83]. This is because the conventional
FCM method clusters pixels only based on the illuminations and does

Fig. 9. Illustration of the processing sequence and performance of pothole detection algorithm using the wavelet-FCM clustering and morphological reconstruction.
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not pay attention to the locations of pixel. This makes the FCM method
become highly sensitive to any kind of additive noise, and implies that
if there is a noisy pixel in a homogeneous and heterogeneous level, this
single pixel is attributed to a different pixel of its adjacent pixels and an
unconventional output is realized in the segmentation stage. This ob-
servation could have contributed to the results in the study where there
is some observed degree of misclassifications, even where the shadow
influence was optimal.

While the proposed algorithm performs well in detecting potholes in
general, the clustering phase can be further improved by introducing
spatial neighborhood weighting especially for edge detection in the
FCM algorithm. Furthermore, the image pixels in the immediate
neighbors possess relatively similar feature data, therefore, the prob-
ability that adjacent pixels belongs to the same cluster will be high as
illustrated in Figs. 2 and 3. Since the conventional FCM algorithm does
not fully utilize this information, a noisy pixel can be wrongly classified
because of its abnormal feature data. This fronts for, besides the a priori
filtering, the incorporation of spatial information into the fuzzy c-means
in order to improve on the clustering accuracy results in autonomous
pothole detection.

6. Conclusions

The maintenance, restoration and improvement of urban road in-
frastructure is one the grand global challenges as outlined by the US
National Academy of Engineering, the UK Royal Academy of
Engineering and the Chinese Academy of Engineering. This study pre-
sents an autonomous approach for the improvement of pothole detec-
tion based on 2D image processing. The method sequentially comprises
of multiscale wavelet transform filtering with the objective of back-
ground noise minimization and image smoothing, followed by un-
supervised fuzzy c-means clustering, and morphological reconstruction
for fine tuning the pothole detection and segmentation results in order
to extract the pothole defects from the non-defects. Results from 75
experimental datasets show that the approach is much faster than the
conventional FCM and accurately estimates the shapes and sizes of the
potholes with an average Dice coefficient of similarity of 87.5%. The
mean and standard deviations for the errors in the shape and size de-
tections between the ground-truth and the detected potholes were

respectively determined as 8.5% and 4.9%. In overall, the proposed
method is considered to be an optimal compromise between accuracy,
cost and applicability in pothole detection.

With the high costs of 3D imaging and or reconstruction systems,
this study recommends the use of 2D vision-based imaging system for
rapid detections of incipient pothole defects on asphalt pavement sur-
faces. Due to the visual nature of the approach, it is evident that the
solution is dependent on lighting conditions, obstructions in the line of
view, rain and any other factors that visually enhance or impair the
ability to see the target potholes on the pavement surfaces. As such
improvements in the algorithm by incorporating spectrometric and
spatial information are recommended. This will enable the gathering of
detailed spectral information regarding the chemical and mineral
properties of the asphalt surface at a higher spatial resolution. There is
also need to modify the FCM clustering algorithm so as to take into
account additional spatial information. In addition, considerations of
low-cost 3D imaging systems needs to be investigated and integrated
into the low-cost pothole detection systems, especially in studies where
accuracies in depth and volume are necessary such as in distress se-
verity and prioritization analysis for road maintenance and repairs.
Finally, for an autonomous pothole detection and extraction system, a
method that detects potholes in an arbitrary sequence of pavement
imagery should be introduced, a priori to the actual detection, ver-
ification and quantification of the pothole geometric elements
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