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Abstract 

Accurate assessment of physical activity (PA) is important to study the associations 

between PA and health outcomes, to evaluate the effectiveness of interventions and to 

derive public health recommendations. Despite limitations, accelerometry-based 

methods generate the best available measures for epidemiological research involving 

large number of children and adults. In this chapter, we review the most important 

methodological issues pertaining to the use of accelerometers to assess the overall 

volume of PA. We stress the importance of recording and keeping the raw data 

whenever possible. We review the validation studies using accelerometry to 

determine energy expenditure and calibration studies that attempt to derive thresholds 

(“cut-offs”) for differentiating between activity intensity categories. Conceptual and 

measurement issues due to the use of different thresholds are reviewed, as well as the 

temporal resolution issues such as sampling rate and epoch length. Different wear 

time detection algorithms and inclusion criteria are reviewed as well as options in 

data reduction (deriving meaningful variables from accelerometer data). We present 

an R package automatizing most of the steps in accelerometer data analysis. The 

chapter concludes with some insights into the future of accelerometry given the 

wearable revolution, and logistical considerations in using accelerometers in large 

field studies.  

 

1 Introduction 

1.1 Physical activity and health 

Physical activity (PA) can be defined as any bodily movement produced by skeletal 

muscles that result in energy expenditure (EE) (Caspersen, Powell & Chistenson 

1985). PA is related to all-cause mortality (Lee & Skerrett 2001); we therefore need 

objective methods of PA assessment to elucidate the dose-response relationship 

between PA and health outcomes. Evidence of the detrimental effects of a sedentary 

lifestyle on the health of children is constantly growing (Dencker & Anderson 2008). 

For example, an association between inactivity and childhood obesity is now 

generally accepted (Miller, Rosenbloom & Silverstein 2004; Ekblom, Oddsson & 
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Ekblom 2004; Trost et al. 2001). On the one hand, obese children and adolescents are 

prone to significant short- and long-term health problems such as cardiovascular 

diseases, hyperlipidaemia, hypertension, glucose intolerance, type 2 diabetes, 

psychiatric disorders and orthopaedic complications (Miller, Rosenbloom & 

Silverstein 2004; Reilly, Methven & McDowell 2003) and have an increased risk of 

developing adult obesity (Whitaker et al 1997; Mossberg 1989). On the other hand, 

increasing PA can counter the adverse effects of childhood obesity such as reducing 

visceral fat (Byrd-Williams et al. 2010). The effects of PA are not confined to the 

risks associated with obesity and overweight: the direct and indirect effects include 

bone health, muscular fitness, mood disorders, and cognitive aging (Miles 2007; De 

Vet & Verkooijen 2018). 

 

1.2 Physical activity guidelines 

In view of alarming levels of sedentariness and physical inactivity, several PA 

guidelines and recommendations have been worked out. In the global 

recommendations compiled by the expert group appointed by the World Health 

Organisation (WHO), low level of PA is mentioned as fourth leading risk factor of 

mortality (World Health Organization 2010), preceded by high blood pressure, 

tobacco use, and high blood glucose, and followed by overweight and obesity. It is 

noteworthy that PA is often mentioned as an effective strategy of prevention 

regarding the other leading causes of mortality (e.g., hypertension: Whelton et al. 

2002; overweight and obesity: Tremblay et al. 2005; Jakicic & Otto 2005; Ortega, 

Ruiz & Sjöström 2007). The WHO guidelines recommend for children and young 

people: 

(a) Accumulating at least 60 minutes daily moderate-to-vigorous activity 

(MVPA), whereas greater than that amount would provide additional health 

benefit; 

(b) Most of activity should be aerobic, some of it should be of vigorous intensity, 

and bone- and muscle-strengthening activities should be done at least three 

time a week. 
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Several national guidelines (e.g., US [American Academy of Pediatrics 2007], UK 

[Bull et al. 2010], and Estonia [Pitsi et al. 2017]) recommend reducing sedentary 

(sitting) time. For example, the American Academy of Pediatrics (2007) has 

recommended that television and video time should be restrained to a maximum of 

two hours per day for the prevention of paediatric overweight and obesity and 

resultant co-morbidities. There is emerging evidence that the health effects of 

sedentariness go beyond those of lack of PA (Zhou & Owen 2017). 

The promotion of PA among children is important for its direct health effects but also 

because of its potential to instil lifelong behaviour patterns that, if maintained into 

adulthood, will result in a more active and physically fit adult population (Sallis & 

Patrick 1994; Twisk, Mellenbergh & Van Mechelen 1997). This notion is dependent 

on the assumption that PA is tracked from childhood to adulthood; there are not many 

long-term tracking studies using objective methods (the short-term studies in children 

and adolescents have typically found moderate tracking, e.g., Rääsk et al. 2015a), 

whereas moderate to high stability of PA is found using parental and self-reports over 

several decades (Telama et al. 2014). 

A second indirect effect of PA in childhood is the development of both physical 

fitness (Ortega et al. 2015) and fundamental movement skills (Lubans et al. 2010; 

Barnett et al. 2009) that are important on their own right, and also as enabling a wider 

choice of PA later in life. 

 

1.3 Importance of physical activity assessment 

The current focus on accurate assessment of PA levels is essential for the 

determination of the dose-response relationship between PA and health outcomes 

(Wareham & Rennie 1998). For example, valid and reliable measures of PA are 

necessary in studies designed to 1) determine the association between PA and health 

outcomes; 2) document the frequency and distribution of PA in defined populations; 3) 

determine the level of PA required to influence specific health parameters; 4) identify 

the psychosocial and environmental factors that influence PA behaviour; and 5) 

evaluate the effectiveness of health promotion programmes to increase habitual PA in 

individuals group or communities (Wareham & Rennie 1998; Trost 2007).  
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Questionnaires have been widely used in PA assessment due to their affordability and 

ease of administration. Depending on the type of the study, a questionnaire may be 

the only feasible option. The differences between questionnaires and objective 

methods are not confined to the former being less accurate – using questionnaires, 

one should consider that the information is based on self-perception and memory, and 

is always multi-dimensional, reflecting not only the behaviour of interest but also 

concerns like self-concept and self-presentation. Therefore:  

(a) Questionnaire assessments of PA may be subject to misclassification, to a 

different degree in different respondents (Gorber & Tremblay 2016); 

(b) Respondents may be particularly poor at estimating the volume or frequency 

of a behavioural category that is artificial from their point of view (e.g., light-

intensity activity or, in general, any unstructured activity), but they may be 

quite reliable in estimating the frequency of personally meaningful behaviours 

or other relevant facts (e.g. and the frequency of walking from home to school, 

or the distance from school to home) (Rääsk et al. 2015a, 2017); 

(c) Questionnaire assessments may not be sensitive to change or may change 

differently from the behavioural change, for example, Rääsk et al (2015a) 

found a considerable decline in objective PA in adolescents over 2 years, but 

no change in self-reports, and only a very small decline in parent-reports. 

Consequently, questionnaires can be highly useful in initial stages of research and in 

assessing certain types of questions, but their use is highly problematic when one 

intends to estimate quantitative relationships – for example, dose-response 

relationships between PA and health outcomes, or the effect of an intervention. 

Caution must be exerted when treating questionnaire data as quantitative, even if they 

are expressed in terms of physical units such as minutes of MVPA. Potentially, 

questionnaires can complement accelerometer-based assessment in several ways, e.g., 

regarding the types of activities that the participant has performed. 

PA is a complex and multi-dimensional phenomenon; in every study, one must make 

some choices as to which parameters to assess. From a public health point of view, 

one of the most important parameters is the total volume of PA. This can be 

expressed (a) as daily or weekly energy expenditure in physical units, (b) in arbitrary 
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units, e.g., ‘counts’ per minute, (c) in natural units, e.g., daily steps, (d) in time-in-

intensity-category units, e.g., daily minutes of MVPA. In addition to the MVPA, the 

importance of light activity is being emphasised in more and more studies (Powell, 

Paluch & Blair 2011; Levine 2004). More complex variables that can be of public 

health interest are breaks in sedentary activities (Healy et al. 2008; Bailey & Locke 

2015) and ‘bouts’ of either MVPA or light activity – that is, periods where a certain 

intensity level has persisted for at least a certain amount of time (Mark & Janssen 

2009). These variables can be easily derived from accelerometer output and are 

directly related to PA recommendations. 

Some more specific health-relevant aspects of PA may be more difficult to assess 

with accelerometers. For example, for the fundamental movement skills to develop in 

an optimal way, it is important that the child have a reasonable amount of practice at 

a range of different activities (e.g., throwing, balancing, jumping, running). These 

skills could be tested directly, assessed via self-report or proxy reports, but using just 

one sensor on the waist, it is probably impossible to figure out how often the sensor 

bearer has engaged in the act of throwing something. The same logic applies to bone 

and muscle strengthening exercises, as well as balance exercises: at least, using only 

one sensor, it is probably impossible to tell whether these have been performed in 

recommended amounts. The motivation, enjoyment, or interest in PA may play a role 

in the lifelong continuity of PA behaviours, but are, again, difficult to assess with 

accelerometer-based devices. Depending on the research question, it may thus be of 

crucial importance to complement accelerometer-based data by assessments of fitness 

and skills, and/or self- or proxy reports of motivation, enjoyment, and context.  

Not all aspects of PA that are relevant to any given health outcome are fully known. 

For example, research into the chronobiology of PA has only recently started but 

there are data showing that a fragmented rhythm of daily PA is associated with lower 

cardiorespiratory fitness and higher metabolic risk (Garaulet et al. 2017). This 

example is one among the many showing that the public health relevance of the data 

collected in large-scale studies using accelerometer-based PA assessment is not 

limited to a few summary variables that are typically used. It is thus of crucial 
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importance to find ways to keep the data in their original form, not just the summary 

variables.  

The IDEFICS study is one of the largest European studies of childhood obesity and 

includes eleven countries and more than 16,000 children aged between 2-9.9 years 

(Bammann et al. 2006; Ahrens et al. 2011). One of the aims of the IDEFICS study 

was to investigate the primary factors leading to childhood obesity by assessing the 

lifestyle patterns of children within the European Union in order to develop suitable 

interventions aimed at countering the obesity epidemic. A number of novel 

interventions were utilised within the IDEFICS study in order to improve health 

awareness and encourage healthy eating and physical activity in children. The 

IDEFICS study is the first large-scale study to assess PA objectively (i.e. 

accelerometry) among pre-school and primary school children (Ahrens et al. 2011). 

The I.Family study continued the IDEFICS study with a focus on the familial, social 

and physical environment to assess the determinants of eating behaviour and food 

choice and its impact on health outcomes (Ahrens et al. 2017).  

 

2 Accelerometry-based activity monitoring 

An activity monitor must be able to detect motion, transform the motion information 

into some usable units, and store this information over a period of time. A simple 

mechanical pedometer (or passometer in earlier use) may contain a pendulum that 

would move back and forth with every step and some mechanism to make a gear 

wheel advance by one position with every movement of the pendulum, etc. 

Mechanical pedometers can detect steps with some accuracy but are, by definition, 

restricted by the concept of step (thus ignoring the intensity and speed dimensions); in 

addition, pedometers are not good at detecting slow-paced movement (Martin et al. 

2012). Accelerometer-based monitoring provides, by the review by Esliger and 

Tremblay (2007), a reasonable compromise between validity and feasibility. More 

affordable methods such as diaries and pedometers have lower validity; methods with 

higher validity such as direct observation, calorimetry, and doubly labelled water 

(DLW), tend to be costly and more burdensome to the participants. In comparing 

accelerometry with the latter methods with better validity, one must notice that 
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accelerometer-based monitors offer an excellent temporal resolution (differently from 

DLW), and, at the same time, good ecological validity (participants can carry the 

equipment with them for weeks and, in principle, years, with no major interference 

for their daily life – differently from both observation and calorimetry). 

The term accelerometer means, in strict sense, only the sensor, which is a crucial but 

not the only component of the activity monitor. Today, most of the activity monitors 

contain a capacitive MEMS (“microelectromechanical systems”) or a piezoelectric 

sensor (John & Freedson 2012). MEMS sensor is used, for example, in the devices 

used in the IDEFICS and I.Family studies: Actigraph models GT1M and GT3X, 

ActiTrainer, as well as the 3DNX that was used in the IDEFICS validation study 

(Bammann et al. 2011; Ojiambo et al. 2012; Horner, Rayson & Bilzon 2011). A 

piezoelectric sensor is used, for example, in ActiCal, as well as older models from 

ActiGraph such as AM 7164 (John & Freedson 2012). As to our knowledge, there is 

yet no systematic comparison of the advantages and disadvantages of different sensor 

types in activity monitors. ActiGraph’s decision to change the sensor type seems to 

have been motivated by cost efficiency and feasibility, whereas the claim is that the 

later and the earlier models yield comparable results (John & Freedson 2012). There 

are studies comparing devices with different sensors: for example, Fudge and 

colleagues (2007) have compared sensors of different type (piezoelectric sensor in 

CSA 7164 vs MEMS sensor in GT1M and GT3X) but these comparisons are 

confounded with differences in firmware.  

Studies of technical variability support the notion that MEMS sensor used in GT3X is 

reliable in estimating PA in the frequencies that are common to most types of human 

daily activities (Santos-Lozano et al. 2012).  

Bouten and colleagues (1997) have reviewed studies on human body acceleration and 

concluded that a sensor with amplitude range of about -6 to +6 G and with frequency 

range of about 20 to 100 Hz would be sufficient if the sensor is placed at waist level. 

One cannot but notice that several older devices, including GT1X, fall short of this 

requirement; however, it is unclear whether this causes a serious bias in the estimates 

of daily activity volume.  
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The activity monitoring device must also contain a unit for filtering and pre-storage 

processing of the signal. The pre-processing may be done at the hardware level (as in 

ActiGraph AM 7164), in updatable firmware within the device (as in GT1M), or in 

the computer when downloading the data (as in GT3X+). Given the memory 

limitations in the earlier (pre-GT3X) models, storing the raw data over a period of 

several days was not possible, so the data must have been processed within the device 

and stored as values aggregated within an “epoch” (this term is used in the literature 

to denote the time interval of measurement; typical values of an epoch are between 1 

and 60 seconds). Temporary malfunctioning at this level may result in implausible 

and impossible values (Rich et al. 2013) which must be corrected before analysis. 

Another set of issues is related to the band-pass filter included in ActiGraph firmware: 

the signal outside the range of 0.25 to 2.5 G is markedly attenuated by the software 

(John & Freedson 2012). This is likely to be the reason for the “plateau” seen in 

GT1M output when the device is worn while running: the output (counts per minute) 

rises linearly until a certain speed (9-10 km/h) and then either declines or continues to 

rise at a much gentler slope (Fudge et al. 2007). Other researchers (possibly using 

different versions of firmware) have noticed even a decrease in counts at higher 

running speeds, such as to make it impossible to distinguish between running at 8 

km/h from 18 km/h. (John, Tyo & Bassett 2010). Indeed, Chen and colleagues (2012) 

saw a plateau effect in post-filtered activity in GT3X and in the 60s integrated data 

(“counts”), but not in the original pre-filtered data. Due to firmware features, thus, the 

ActiGraph monitors may underestimate the intensity of vigorous activity. This is, 

however, unlikely to influence the estimates of the duration of vigorous activity, and 

it is probably not very influential for estimating the total daily volume of PA, as 

running faster than 9 or 10 km/h is, regrettably, a rare and short-lived event for most 

participants in epidemiological studies. Nevertheless, as the reason for the band-pass 

filter is to exclude the movement frequencies unlikely to occur in humans, it remains 

to be determined whether a better trade-off can be achieved (i.e., better representation 

of high-speed running, but not at the expense of including more non-humanly-

possible movement). 
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The memory capacity of the ActiGraph devices has been constantly rising: from 64 

kB in AM 7164 to 1 MB in GT1M to 512 MB (possibly more) in GT3X+. The 

recording time will depend on both memory and temporal resolution: choosing a 

shorter epoch in older models means that the memory is filled up faster. 

Note that the recording capacity of the device also depends on the battery capacity. 

As the battery time tends to shorten with use, it is advisable to check the batteries 

regularly, and charge them occasionally even when the devices are not in use (e.g., 

between the field work periods). 

The sensor, processing unit, memory and the battery comprise the functional parts of 

an activity monitor. These are, however, not the only parts that can influence the 

results. The casing is important to protect the inner workings of the device from the 

external forces, but one should also consider the aesthetic component: participants are 

to carry this with them for at least several days. In large studies, the casing is often 

the first component to show the signs of wear. The belt to attach the device on waist 

has some important features to pay attention to: (1) ease of use (can it be used to 

attach the device firmly in an easy way?) and (2) washability. 

Nowadays, on the one hand, there is consensus that raw measurements (in physical 

units) should be used whenever possible, (1) to minimise dependence on proprietary 

algorithms and filters, (2) to allow maximal comparability between different devices, 

and (3) to record data at maximal temporal resolution. On the other hand, a large 

number of studies have used older-generation devices where raw recordings are not 

available due to memory restrictions. Thus, ActiGraph counts have become a de facto 

standard of comparison. Some authors have argued for converting the counts back to 

physical units but it is only possible to do it approximately (John & Freedson 2012) – 

so the comparability achieved with this step may be an illusion. The potential benefits 

that using raw data may once bring have so far remained largely just that: potential 

benefits. There is no convincing evidence, for example, that using high-resolution 

data would bring about a qualitative jump in the accuracy of estimation of daily 

energy expenditure, or the gross volume of PA. It is likely that high-resolution data 

may allow better accuracy at activity recognition, but even this has its limits with a 

single sensor whose exact location regarding body parameters is not known. 
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Applications with more sensors with more exact placement, however, are not likely to 

be feasible in large epidemiological studies.  

For the time being, thus, while we recognise the need of recording and storing the 

data at maximum available resolution and in physical units, we restrict the following 

discussion to the “counts” output of ActiGraph devices. This is admittedly a 

temporary solution but is relevant as long as the older generation of activity monitors 

(not capable of recording at high resolution) or data thereof are used.  

 

3 Practical and methodological issues in accelerometer-based PA assessment 

3.1 Issues in choice of the device 

When the IDEFICS study started in 2006, the question of choosing an activity 

monitor was essentially that of a choice between brands: hypothetically, is ActiX 

better than ActiY? The decision to use ActiGraph’s GT1M and ActiTrainer devices in 

the study was based on the widespread use of these monitors and lower costs 

compared to other devices in the same category. Since then, the focus has slowly but 

steadily moved towards establishing non-proprietary algorithms and metrics working 

on raw acceleration data (John & Freedson 2012; van Hees et al. 2013): with this 

approach, the brands are to be decomposed into functional units such as sensor, 

memory, and algorithms. From this perspective, a clear and simple recommendation 

is to select a device that allows recording and downloading raw data in physical units 

(see, e.g., van Hees et al. 2013; de Almeida Mendes et al. 2018; van Hees 2018 on the 

analysis of such data). 

Using physical units and recording raw data is essential for inter-brand comparability, 

for being able to separate sensor-related and algorithmic components of PA 

assessment, and for being able to use any algorithms derived in the future. Whether 

the raw data provide a higher level of precision is open to debate, and the conclusion 

will probably depend on which parameter of PA one intends to estimate.  

Besides openness and validity, one also needs to pay attention to feasibility and 

affordability. When planning the IDEFICS study, there was a remarkable price 

difference between activity monitors with uniaxial and three-axial recording. We 

therefore investigated the question whether the other spatial axes besides vertical add 
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anything worthwhile to the assessment of general volume of PA. In the validation 

study with doubly labelled water (Ojiambo et al. 2012), we compared two devices: 

GT1M (only longitudinal/vertical axis) and 3DNX (three axes: longitudinal, 

mediolateral, and anterior-posterior) and found that while all three axes were 

correlated with PA energy expenditure (PAEE), only vertical axis contributed unique 

predictive variance. In terms of variance explained, using the vertical axis alone was 

better than a combination of all three axes (vector length). The main reason for this 

result is probably that the movements along the vertical axis are the most laborious 

because they go, half of the time, in exactly opposite direction to that of gravity. A 

study by Howe and colleagues (2009) reached the same conclusion using a different 

device (RT3): vector magnitude counts were no more predictive of EE than vertical 

counts (unfortunately, the other axes besides vertical were not analysed separately). 

In a recent study using GT3X, Chomistek and colleagues (2017) found the triaxial 

composite to have a higher correlation with DLW-derived daily and PA energy 

expenditure than the vertical counts alone. The difference was, however, small 

(unadjusted correlations between total EE and counts were 0.59 vs 0.55 for women, 

and 0.58 vs 0.54 for men). It is unfortunate that the raw files were not preserved in 

that study, so it is not possible to check whether the result depends on proprietary 

algorithms used to derive counts (e.g., the band-pass filter discussed above; cf. John 

& Freedson 2012) or would remain the same with open-source algorithms (e.g., van 

Hees 2018). The main conclusion of our DLW study, however, remains unaltered: the 

vertical axis counts are the most important in predicting daily EE, with the other axes 

adding, if anything, only a small fraction of variance. This should not be taken as a 

recommendation to use uniaxial sensors if there is a choice: on the contrary, more 

information is generally preferable to less. However, when one is interested in 

predicting the gross volume of PA, it cannot be taken for granted that the “vector 

magnitude” (vector length) metric should be preferred to the use of vertical axis alone.  

 

3.2 Validity and calibration 

In this section, we are mostly interested in methods to estimate the total volume of PA, 

as well as the time spent in different levels of intensity of activity. Consequently, two 
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types of validation studies are relevant: (a) validating the accelerometer output 

against doubly labelled water, and (b) studies of classifying activities into intensity 

categories, typically using indirect calorimetry as a criterion. The DLW enables EE to 

be accurately measured in free living conditions, which makes it the method of choice 

in validating the total volume of PA.  

The studies relating accelerometer output to DLW have been of variable quality 

(Plasqui, Bonomi & Westerterp 2013) and have yielded varying results (Sardinha & 

Júdice 2017); the zero-order correlation of accelerometer output and energy 

expenditure is, at best, moderate. Below, we would like to point out two studies that 

have used ActiGraph devices and a similar age group to that of the IDEFICS study.  

Butte and colleagues (2014) validated two complex multivariate prediction models 

(cross-sectional time series and multivariate adaptive regression splines, described in 

Zakeri et al. 2013 in more detail) including biometric variables, accelerometer counts 

and heart rate (HR) as predictors and achieved good accuracy in prediction (root 

mean squared error (RMSE)=105 kcal/day); the accuracy was slightly lower without 

including HR (RMSE=116 kcal/day). Due to the choice of modelling strategy, 

however, it is not easy to find out the independent contribution of accelerometer 

counts to the prediction. In addition, even though this strategy may optimise 

predictive accuracy, it is less optimal for understanding the functional relationships in 

question. 

In the IDEFICS validation study (Ojiambo et al. 2012), we found, using multiple 

linear regression, that body mass alone predicted 71% of the variance in daily energy 

expenditure (EE); vertical counts from an ActiGraph device (ActiTrainer, compatible 

with GT1M but capable of recording HR as well) added another 11 percentage points. 

The prediction formula was: 

EE = 0.72196 + 0.15984  weight + 0.00332  CPM 

The RMSE for this model was 0.49 MJ/day (approximately 117 kcal), thus not very 

different from that found by Butte and colleagues using a more complex model (note, 

however, that this is a biased comparison as Butte’s study included separate model 

development and testing steps). 
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The other device included in the study, 3DNX, was equally predictive of the EE: the 

model R2 increased by 10 percentage points when vertical counts of 3DNX were 

added to body mass: 

EE = 0.03109 + 0.16699  weight + 0.00856  CPMvertical 

where CPMvertical represents the vertical (longitudinal) axis counts of the 3DNX 

device. The other two axes, however, were not significant when added to the model 

and had, in fact, negative regression coefficients: 

EE = 0.61127 + 0.16328  weight + 0.01662  CPMvertical  

– 0.00391  CPManteroposterior – 0.00593  CPMmediolateral. 

It is interesting to note that not only did the counts from anterioposterior and 

mediolateral axis not reach statistical significance in the model (the p-value for 

mediolateral axis was 0.066), but their corresponding regression coefficients were 

negative. It would be premature to offer a substantive interpretation to the sign of 

these coefficients, but it does seem to indicate that the lack of prediction was not due 

to insufficient statistical power. 

We are far from claiming that our study represents the optimal strategy in predicting 

DLW from accelerometer output. On the contrary, the relationship between PA, body 

parameters, and EE is unlikely to be confined to linear main effects. Using allometric 

modelling as suggested by Carter and colleagues (2008) may be a better strategy from 

a substantive point of view, even if the predictive advantage is modest.  

One should also note that the percentages of explained variance depend on both the 

variance in body parameters as well as the diversity of lifestyles in the population 

under study. For example, Ojiambo et al. (2013) studied a highly active group, 

children and adolescents in Kenya, and found that accelerometer counts (average 

counts per minute) explained about 12% of the variance in daily energy expenditure 

when added to the model after body weight. Interestingly, time spent in light-intensity 

activity contributed another 12%. Tentatively, this may mean that time spent in low-

intensity activities is an independent predictor of EE, regardless of the intensity of 

these activities. To see this effect in data, however, one needs a population where 

there is a large variance in the amount of light-intensity activities: a large share of 

light PA in Ojiambo’s study was likely to involve going to school and back; the 
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distance between home and school varied from 0.8 to 13.4 km. As another example, 

Horner and colleagues (2013) studied a highly active military population (mean 

PAEE 6.4 MJ/day (SD=2.3 MJ/day), which is even more than the 5.7 MJ/day 

(SD=3.0 MJ/day) in Ojiambo’s very highly active population) and found the largest 

share of total EE to be explained by body parameters, with accelerometer counts 

adding only 4%. Superficially, one might think that in a highly active population, the 

contribution of PA in EE should be higher. This seeming paradox is explained by the 

highly structured nature of military activities, offering little room for individual 

choice over the intensity or duration of an activity. 

We have heretofore discussed validity as a problem of prediction of variance. In the 

research using DLW as a criterion, there is little data on validity in the absolute sense, 

including possible bias in estimating EE from a regression-based model like the ones 

described above. This would probably depend on not just the device being validated, 

but also the anthropometric parameters, as well the level and patterning of PA in the 

population under question. However, predicting the absolute value of EE is rarely a 

primary objective (among other reasons, PA recommendations are not expressed in 

the units of EE); there is more reason to demand accuracy and lack of bias in the 

estimation of time spent in different categories of activity intensity. For example, to 

estimate whether a child conforms to the recommendation of at least 60 minutes daily 

MVPA, one would need an unbiased estimate of daily minutes of MVPA. To obtain 

such measures, one needs to calibrate the accelerometer output against some other 

measure. There are several ways of doing it, but the most common are (1) developing 

a regression formula relating accelerometer counts to EE and using this formula to 

find cut points for successive intensity categories (e.g., Freedson, Pober & Janz, 2005; 

Treuth et al. 2004; Puyau et al. 2002; Mattocks et al. 2007; Pate et al. 2006), and (2) 

finding an optimal trade-off between sensitivity and specificity when using 

accelerometer counts to predict the intensity category of an activity (e.g., Sirard et al. 

2005; Evenson et al. 2008; van Cauwenberghe et al. 2010). Butte and colleagues 

(2014) implemented a combination of these strategies by using EE via oxygen uptake 

as a criterion but sensitivity/specificity analysis via ROC curves as an analytical 

approach. In some cases, there is a confusion about which criterion has been actually 
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used. For example, Hislop et al (2012) have cited the Evenson et al. (2008) study as 

being based on oxygen uptake as a criterion; in fact, VO2 was only used to describe 

the activities and calculating maximum VO2 but cut points were developed based on 

pre-classified activities. One might thus say that VO2 was only indirectly used as 

validation criterion, as it was used to demonstrate the validity of classification of 

activity intensities, but it was not used in data analysis to develop cut points.  

Migueles and colleagues (2017) offer a comprehensive overview of Actigraph cut 

points for all age groups and metrics; a subset (restricted to vertical counts and 

younger age groups) is shown in Table 1. In studies comparing different sets of cut 

points, there is no clear winner. The second strategy is specifically targeted for 

maximising accuracy and minimising bias, thus it is not surprising that it has worked 

out best in a comparison using these criteria. Namely, Trost and colleagues (2011) 

have concluded that “Of the five sets of cut points examined, only the EV cut points 

provided acceptable classification accuracy for all four levels of physical activity 

intensity”. With this in mind, the Evenson cut were applied in the IDEFICS study. It 

is interesting to compare it with two more recent calibration studies by Butte et al. 

(2014) and van Cauwenberghe et al. (2010). First of all, the cut points differentiating 

between light and moderate activity are all at approximately 2200 counts per minute 

(CPM) (range 2120-2336 CPM, see Table 1), differing from each other by no more 

than 10%. This is roughly consistent with several other studies (Martinez-Gomez, 

Ruiz & Ortega 2011), even though some studies suggest a higher threshold of about 

3000 CPM (Guinhouya, Hubert & Zitouni 2011). The thresholds for vigorous activity 

range from 3520 to 4450 CPM, the largest difference being thus about 20%. The 

picture is drastically different with the threshold between sedentary and light activity: 

100 CPM (25 counts per 15 s) as estimated by Evenson et al., 240 CPM as estimated 

by Butte et al., and 1492 CPM (373 counts per 15 s) as estimated by van 

Cauwenberghe et al. – a 1500% difference between the lowest and the highest 

estimate. The latter cut-point is not uniquely high, being similar to that obtained by 

Sirard et al. (2005) in a calibration study with direct observation as criterion. 

How can one reconcile this degree of divergence? One can first notice that some 

activities would certainly be misclassified by van Cauwenberghe et al.’s criterion: for 
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example, slow walking would almost certainly produce less than 373 ActiGraph 

counts per 15 seconds: the average was 295 in Evenson et al.’s (2008) study for 

walking at 3.2 km/h, while the mean VO2 was 12.7 ml/kg/min. However, the mean 

counts for sedentary play were 447.9, that is, more than for slow walking (265.3). The 

relationship between counts (acceleration measured at waist level) and energy 

expenditure is thus dependent on activity type, particularly at a low-intensity 

spectrum. Sedentary free play may involve frequent upper-body movements that 

cause acceleration at the site of the sensor but do not involve displacement of the 

whole-body mass like in walking. Maintaining a single threshold for all activities may 

thus result in misclassifying some of the sedentary activities (e.g., active play) as light, 

or, alternatively, misclassifying some of the light activities (e.g., slow walking) as 

sedentary. To avoid both of these sins at the same time, one might consider an 

algorithm similar to Crouter & Bassett’s (2008) or Crouter, Horton & Bassett’s (2012) 

branched regression approach – applying different formulae depending on the 

coefficient of variation (CV) of the counts –, or using different thresholds depending 

on the position of the body, which can be estimated by the “inclinometer” function 

included in some more recent devices such as GT3X. However, the accuracy of 

classification based on CV or inclinometer is far from perfect, which introduces an 

additional source of error.  

 

Table 1 about here 

 

In addition, one should take into account that the threshold estimates depend on the 

design of the study. In Evenson et al.’s study, for instance, there was a noticeable gap 

between sedentary and light activities: the average output from the accelerometer was 

6.6 counts per 15 s for the highest-averaging sedentary activity, whereas the average 

was 294.7 for the lowest-averaging light activity (walking at 3.2 km/h). If this middle 

range were filled with sedentary and light activities of various grades of intensity, the 

discrimination would become a more difficult task, and the estimated threshold might 

shift up or down, depending on how the tasks are selected. Using measured EE values 
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instead of task indicators (as in Butte et al. 2014) may be a partial solution to this 

problem. 

In conclusion, cut points are not arbitrary criteria, but neither do they represent the 

absolute truth. Because the relationship between EE and accelerometer output differs 

across activities, the statistically optimal set of thresholds could be derived in a 

calibration study with a representative sample of activities. The representative 

activities would, however, be different across individuals.   

Some authors discourage the use of cut points, arguing that average acceleration 

(preferably measured in physical units) per time unit is a better summary of the data 

set and a better predictor of EE than time in intensity categories. This is only partly 

justified as the estimates of time in intensity categories contain at least two sources of 

error that are not present when using average acceleration: (1) uncertainty of the 

threshold estimates, and (2) ignoring the differences of intensity within categories, i.e., 

light activity at 1.51 MET is treated as equal to light activity at 2.99 MET, whereas 

the first is almost sedentary and the second is almost moderate. These difficulties may 

be alleviated by converting counts to EE units (METs, calories or joules) using some 

of the approximate formulae in the literature or using MET∙minutes or count∙minutes 

instead of simple minutes as a statistic. One would need, however, additional 

calibration studies (or reanalyses of existing studies) to do this in the optimal way, as 

most of the calibration formulae are based on linear equations, and some have 

implausible implications. For example, Treuth formula (Treuth et al. 2004) for 

predicting METs from counts has 2.1 as intercept, and a positive slope for counts: that 

is, the result can never be less than 2.1 METs. In other words, the formula can never 

predict sedentariness (MET < 1.5), even for 0 counts. In addition, it is possible that 

the optimal cut points may depend on the anthropometric parameters such as height 

or weight.  

It is thus clear that using cut points for activity intensity categories does not only 

allow a finer description of activity: it also introduces additional sources of error to 

the estimates. Selecting the best threshold is not always possible as we do not yet 

have complete information; as a minimum precaution, it is therefore important to 

recognise that the choice of thresholds may make a difference with huge clinical and 
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biological implications (Pate et al. 2006; Vanhelst et al. 2014a). However, it is an 

oversimplification to consider using cut-points an ad hoc solution to the imperfections 

in our data collection procedures that we will eventually get rid of. Indexing of PA as 

time-in-intensity-categories has a number of shortcomings from a measurement 

theoretical point of view; however, such summaries are meaningful from a 

physiological and practical point of view, e.g., when justifying health 

recommendations or planning interventions. More fine-grained summaries may be 

useful for more specialised purposes, but one needs to take into account that finer 

distinctions tend to be less reliable. 

Finally, it is a common practice to adjust cut points when using a different epoch 

from that of the calibration study. For example, a calibration study found that 25 

counts per 15 seconds can be used to differentiate light activities from sedentariness; 

using 60 s epoch, the threshold would thus be 100 CPM. This is a potential source of 

error: the optimal cut point would probably be slightly different if 60 s epoch was 

used in the calibration study. There are, however, no studies making this direct 

comparison; meanwhile, one may conjecture that the difference is likely to be small. 

It is important, however, to use the exact, unrounded multipliers when adjusting the 

cut points. For example, the methods section of one study (Gabriel et al. 2010) 

contained this sentence: “For classification of 10 s epochs, NHANES threshold values 

were multiplied by a factor of 0.17 (i.e., 10s/60s).” The value 0.17 is 2% higher than 

the true value (1/6); hopefully, the authors had used the true value instead of the 

rounded value, but this is not clear from the text. For comparing studies using 

different sets of cut offs and if original raw data are not available, one can use 

equating based on linear models (e.g., Brazendale et al. 2016). 

 

3. 2 Accelerometer placement 

Following the general principle that more data is better than less, one should try using 

as many sensors as possible; in addition, according to the law of diminishing returns, 

each additional sensor is likely to give less extra information than the previous one. 

The possibilities are limited by budget, logistics and burden on participants; all these 
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considerations typically lead to using a single sensor in moderate to large cohort 

studies.  

If a single sensor is used, it should ideally be placed as close to the mass centre of the 

body as possible (Rosenberger et al. 2013), which means approximately at the hip 

level. Wearing the device at the back would probably minimise the distance from the 

mass centre, but placement at left or right side may be more convenient, and the 

difference in distance is not large. The hip location, being close to the centre of 

gravity of the body, correlates well with EE associated with movement against 

gravitational resistance which is a major component of EE as corroborated by the 

studies referred above, where the vertical axis was the best predictive of EE: Ojiambo 

et al. 2012; Howe, Staudenmayer & Freedson 2009; Chomistek et al. 2017). The right 

side of the body may be preferred for convenience as most people are right-handed 

(Corder et al. 2008). Ward and colleagues (2005) reported that it made very little 

difference if the accelerometer was worn on the right or left side. 

At high ambulatory speeds (>9 km/h), ankle placement may supersede hip 

(Kyröläinen, Belli & Komi 2001). This is partly due to biomechanical shifts in the 

transition from walking to running leading to altered joint kinematics. This is, 

however, a secondary consideration when assessing children’s overall volume of PA, 

which only infrequently includes such speeds. Ankle placement may be useful for 

capturing fast running and biking, and it also probably captures sedentary fidgeting. 

Thus, it would be most useful in combination with another sensor at the hip level, and 

perhaps as a way of detecting the posture. Moreover, considering the “plateau” effect 

in ActiGraph devices (and possibly other devices using band pass filter), one would 

recommend using either raw signal or other devices when fidelity in capturing 

locomotion at high speeds is important. 

Wrist placement can be more convenient than hip: typically, watches are worn on 

wrist. As a corollary, this means that if the device does not include a watch, it should 

be worn on the watch-less hand, which is usually the right hand; so, placement on 

non-dominant wrist, which seems to be preferable (Sirichana et al. 2017), may be 

inconvenient for right-handed watch-wearers. Other researchers (Dieu et al. 2017) 
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have found little difference between dominant and non-dominant hand, but there is 

evidence (Sirichana et al. 2017) that the difference is there for low-intensity activities.  

With both wrist and hip placement, one must consider that the correlation between 

acceleration and EE may be different for different activities. As a thought experiment, 

imagine giving a pedometer to three persons. Person A is instructed to collect 1000 

steps in walking (wearing the device at waist), whereas person B’s task is to hold the 

device in hand and collect the same number of ‘steps’ while sitting. Person C is 

instructed to walk while holding the device in his right hand, and to raise the hand up 

above his head with every second step, while lowering it at the next step. Which one 

of them used the most energy? Who covered more distance, A or C?  

Now imagine that for yet another person, D, the pedometer is hidden inside a 5 kg 

dumbbell; otherwise he is instructed to walk and move hand in synchrony with person 

C. He will expend considerably more energy in this process, but chances are that the 

final step counts will be identical. 

On theoretical grounds, one would say that for capturing the overall volume of PA, 

the wrist placement is suboptimal because in addition to the energy costly counter-

gravity movements of the whole body, it reflects the less energy costly hand-only 

movements. These components cannot be disentangled without additional 

information. Accordingly, several studies have found considerably higher correlations 

between oxygen intake and hip-placed sensor as compared to wrist sensor 

(Rosenberger et al. 2013). In one study, however, similar correlations were found 

(Phillips, Parfitt & Rowlands 2013; r = 0.90 vs. 0.97); this result may be partly 

explained by a small number of activities included in the study, and the different 

metric that was used (average within-individual r’s, which do not adequately reflect 

the predictability of EE from counts without individual calibration). It thus seems 

likely that both sites can be used to estimate the overall volume of PA, but site-

specific calibration has to be undertaken. For instance, Shiroma et al. (2016) have 

found that ActiGraph GT3X counts from wrist are up to 5 times higher than for hip, 

and their variance is higher. 

Other sites that could be worth considering include chest (wearing the device in the 

form of neck pendant, Zhang, Macfarlane & Sobko 2016), shoe (Lin et al. 2016), and 
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ear (Manohar et al. 2009). Several multiple-sensor systems have been used, e.g. 

Wockets (Rosenberger et al. 2013). Studies using multiple sensors have brought 

about only a modest increase in the predictability of EE from accelerometer data: for 

example, in one study (Montoye et al. 2016), predictions based on three sites (wrist, 

thigh, ankle) had slightly higher correlations with EE than the hip accelerometer (r = 

0.79 vs 0.72). This is in concordance with the view that counter-gravity movements 

of the whole body (best captured by a vertical sensor placed near the mass centre of 

the body) are the major component of EE. 

In the second decade of the 21st century, it would be difficult not to notice that many 

people are, most of the time, carrying a cell phone containing an accelerometer sensor. 

Besides their primary application of rotating the screen orientation when necessary, 

these sensors are used in PA applications, and have been used in research. For 

example, Manohar et al. (2011) have successfully used iPhone (fixed at back) in PA 

assessment. In addition to being a success, this study illustrates two difficulties with 

using cell phone sensors: (1) for reliable PA assessment, the placement of the sensor 

has to be known (or devised); (2) people use a large number of different devices with 

considerable variability in accelerometer sensors.      

In conclusion, for measuring the overall activity level, the best site for the sensor is as 

close to the mass centre of the body as possible; hip is the most often used site; other 

sites (e.g., back at waist level) may be as informative but each site needs specific 

calibration. Other sites add little information that would be directly relevant to EE but 

can be highly useful for activity recognition. In this regard, only crude distinctions, 

e.g., distinguishing bipedal locomotion (walking, jogging, and running) from other 

activities might be possible with a single sensor at hip. 

 

3.3 Temporal resolution, epochs and bouts 

The question of temporal resolution consists of at least four sub-questions: sampling 

rate of the sensor, sampling rate of the recording, sampling rate used in the analysis, 

and, finally, minimal length of an episode that one considers to be meaningful or 

important. These questions are interrelated. 
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The sampling rate of the sensors is typically in the range of about 20 Hz to about 

100 Hz in the commercially available activity monitors. This is probably enough to 

register the volume of everyday activities (Chen et al. 2012); however, if one is 

interested in the question of intensity of the load to weight-bearing bones (which 

ultimately has an impact on bone density), then one may need much higher 

frequencies, up to 1000 Hz (Kitamura et al. 2009).  

Not all of the activity monitors allow storing the original unprocessed measurements. 

In these cases, the pre-processed and integrated signal is stored, using arbitrary units 

(counts) and in pre-specified time units (epochs). The length of the epoch depends on 

the memory capacity of the device and the desired period of observation, and, to a 

lesser extent, on the battery capacity. Within these limits, it is always advisable to 

select the lowest possible epoch length for recording. Some monitors (such as the 

newer Actigraph devices) offer the possibility to download raw data and, at the same 

time, a pre-processed file with counts using an epoch set by the user. The most useful 

option is to do both and set the lowest possible epoch value for the file with counts. 

First, processing the raw data files is time consuming and still more complicated than 

processing the count data files. One might thus want to do the preliminary or even all 

of the analyses using the count data. Even in this case, however, it is important to 

keep the raw measurements (for example, the .gt3x files in the case of GT3X) as this 

is the only way to ensure independence from proprietary algorithms. Second, even if 

one has decided to use, say, 60-second epoch in the analysis, these data can be easily 

derived from a 1-second epoch file, whereas it is (at least, for the time being) more 

tedious to derive it from the raw data. In the absence of raw data, it is not possible to 

go back from a longer epoch (say, 60 s) to a shorter (say, 1 s) one. That is, one can 

always aggregate if one has the unaggregated data, but, in the absence of time 

machine, it is not possible to disaggregate the data that are already aggregated. There 

is a further consideration in choosing the epoch: for comparability with other studies, 

it is sensible to use epochs that are submultiples of both 60 and 15 (that is, 1 and 5) as 

these can be reintegrated to the most commonly used epochs. 

If the previous questions have been successfully solved, one has a choice regarding 

the epoch to use in further analyses. This choice affects some of the summary 
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variables derived from the data (e.g., wear time; time in intensity categories) but not 

others (e.g., average counts per minute; total counts). There is no simple answer to the 

question of optimal epoch, but one should think of biological relevance. For example, 

consider a single 30 milliseconds (ms) long period of vigorous activity in the middle 

of 10 minutes of sedentariness. Does this data point reflect the activity of the 

organism? In other words, can one say that during a 10-minute period, the organism 

was otherwise sedentary, but vigorously active for 30 ms? This would probably not 

make sense. But what about 100 ms? 500 ms? 1 s? It seems reasonable to assume that 

within a few seconds one can do something vigorous, for instance, jump, or lift a 

heavy dumbbell; it is, however, difficult to imagine any activity that is much faster. 

Thus, an analytical epoch much lower than “a few seconds” does probably not make 

sense.  

There are a number of studies showing that the choice of epoch has an impact on the 

estimates of time in intensity categories (Ojiambo et al. 2011; Edwardson & Gorely 

2010; McClain et al. 2008). Gabriel et al (2010) have shown that MVPA estimates 

had a comparable correlation with self-reported MVPA at 10 s and 60 s epochs, but 

the correlations with meaningful outcome variables (e.g., body weight, body mass 

index (BMI), fat and lean mass) were stronger at 60 s epoch. The generalisability of 

these results is unknown but in any case, this should not be taken as an argument for 

recording at a higher (60 s) epoch. Rather, one should make a difference between an 

analytical epoch and the minimum required length of PA episodes to be relevant to 

health. The latter issue also comes under the name of „bouts“. Gabriel et al.’s results 

could mean that the MVPA episodes with shorter duration that 1 minute are irrelevant 

for health. However, integrating the data into longer epochs is not an optimal solution 

to this question; rather, one should make a difference between very short episodes 

(<60 s), and not so short (≥60 s episodes), and compare their respective contributions 

to the prediction. This is a potential complement to Mark and Janssen’s (2009) result 

that short (5-9 min) and medium-to-long (≥10 min) bouts of MVPA are incrementally 

protective of overweight. In future studies, it is recommendable to keep the effects of 

epoch and bouts analytically separate, and analyse different lengths of bouts while 

keeping the lowest possible epoch.  
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3.4. Wear time detection  

Wear time detection is of crucial importance if the device cannot be worn 

continuously for the whole period of observation: for example, in the IDEFICS study, 

the participants were instructed to remove the accelerometer at night and for certain 

activities (e.g., taking a shower). With waterproof devices worn on wrist, it is feasible 

to have an uninterrupted period of observation, but this gives rise to another problem: 

distinguishing sleep time from wake time. 

It has been argued that wear time validation can be considerably more exact using 

raw data as compared to time-integrated counts: high-resolution data are sensitive to 

the very small movements which almost invariably occur when the device is worn but 

can be ‘integrated out’ when the count units are calculated. To our knowledge, no 

direct comparison between wear time validation methods used in raw and time-

integrated data has been made so far. Van Hees et al. (2011) describe a wear time 

detection algorithm that can be used with wrist-worn accelerometer using raw data. 

Zhou et al. (2015) describe a method to improve the accuracy of this method by 

combining it with data from an integrated sensor of body temperature. 

In time-integrated data, there are three commonly used algorithms: 

(1) Consecutive zeroes method: Janssen et al. (2015) compared different versions 

of this rule and found ≥20 mins to be the best criterion.  

(2) Troiano et al. (2008): Non-wear was defined by an interval of at least 60 

consecutive minutes of zero activity intensity counts, with allowance for 1–2 

minutes of counts between 0 and 100. 

(3) Choi et al. (2011a) method: “1-min time intervals with consecutive zero 

counts for at least 90-min time window (w1), allowing a short time interval 

with nonzero counts lasting up to 2 min (allowance interval) if no counts are 

detected during both the 30 min (window 2) of upstream and downstream 

from that interval; any nonzero counts except the allowed short interval are 

considered as wearing” 

Choi et al. (2011a) have compared the last two methods and found the latter to be 

more accurate, and both perform better at vector length metric than on vertical counts. 
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The choice of a wear time validation algorithm is most influential on the estimates of 

sedentary time; the other parameters estimated from data (time in intensity categories; 

average acceleration or counts per time unit) are only influenced if expressed as 

proportions of wear time.   

Another occasionally used method for detecting non-wear time is using diaries (e.g., 

Ottevaere et al. 2011); this method shares many problems with other self-report 

methods but could provide useful information if high compliance is ensured, and if 

concordant with the recorded activity data. Our experience in the IDEFICS study is 

that activity diary is the component with the poorest compliance; one cannot be sure 

whether all non-wear events are recorded; in addition, the degree of retrospectiveness 

of the diaries is unknown (i.e., whether the times were recorded right after the event, 

or in the evening, or reconstructed right before returning the diary to the survey 

centre). These are among the reasons why algorithmic methods are preferred in most 

studies. However, there are occasions where significant PA occurs, but the activity 

monitors cannot be worn for technical, convenience-related or aesthetic reasons: for 

example, swimming, dance competitions, or different contact sports. In these cases, 

using activity diaries to impute missing data can be a viable strategy to avoid 

underestimating the true PA levels (de Meester et al. 2011). 

In estimating the amount of time that needs to be observed, the calendar day is most 

often used as a unit. This is one of the natural units by which human activities are 

organised (in addition to weeks, months, and years), but from a data analytical point 

of view, the period between 00:00 to 24:00 is no different from any other 24h period. 

This means, in principle, that incomplete days could be used in analyses if the 

missing time could be imputed from another day. However, this would make it more 

difficult to analyse, for example, the effects of weekdays, so keeping day as a natural 

unit of analysis has some obvious advantages. 

There is a lot of discussion in the literature about (a) the valid day issue: the number 

of hours of wearing time in a day that is needed in order to keep that day in the 

analyses, and (b) the issue of minimum number of valid days required to consider 

the recording representative of a participant’s usual levels of PA. 
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There is no universal answer to these questions: it depends on the organisation of 

daily activities in the population under study. In a hypothetical population where 

there are consistent individual differences in activity levels but no within-individual 

differences between hours in a day or days in a year, one hour of recording would be 

sufficient to characterise any individual’s level of activity. In real populations, 

however, these premises do not hold: individuals’ activity levels fluctuate, days and 

hours differ widely from each other. For an empirically based answer on minimum 

recording time, one would thus need to observe a population for a considerable period 

(say, a few years) to get a truly representative estimate of all kinds of different 

fluctuations in PA that may occur, and their regularity or irregularity (e.g., seasonal 

variation may be different depending on the weather in a particular year; so at least a 

few years of observation are needed for a true picture of seasonal variation). If this 

becomes too difficult for participants, one could sample random hours, days or weeks 

from a year. Based on this data set, one could derive a sampling algorithm to 

minimise the necessary recording time to get a credible estimate of a person’s yearly 

activity. To our knowledge, such a study has not yet been carried out, but it is not 

unrealistic given today’s technical capabilities. 

In (temporary) lack of long-term studies, shorter ones have been used to predict the 

reliability of data, presuming that the future resembles the past. For example, Trost et 

al. (2000) studied youth in different age groups and found, using Spearman-Brown 

prophecy formula, that to achieve a reliability (measured as intraclass correlation, 

ICC) of 0.90, one would need to observe eleven days in 1st-to-3rd-graders, but twenty 

days in 10th-to-12th-graders. In contrast, Vanhelst et al. (2014b), using slightly 

different method, found that any combination of a weekday and a weekend day was 

sufficient to explain >90% of the variance in PA in obese youth (aged 7-18 years). 

Ojiambo et al. (2011) found one-day ICCs of 0.32, 0.33, and 0.35 of average counts 

per minute, sedentary time, and MVPA, respectively, which in combination with the 

Spearman-Brown formula predicted that about five days would be needed to achieve 

a reliability of 0.7, seven to nine days for an ICC of 0.8, and 17 to 19 days for an ICC 

of 0.9. Such studies can, however, only serve as a rough guide, for several reasons. 
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1) Intraclass correlations are based on random-effects model and assume 

interchangeability of observations (Shrout & Fleiss, 1979). However, 

consecutive days are not independent of each other, which means one would 

need a longer study to estimate the level of autocorrelation, and they are not 

randomly selected. Randomly selected three days from a year might give us 

an unbiased estimate of a person’s yearly activity but in a typical study, these 

would be three consecutive days, which is highly improbable to happen by 

chance (the probability is about 2.07×10-8).  

2) Under specific conditions, ICCs may underestimate the true reliability 

(Hallgren 2012); the amount to which this happens in PA studies is unknown 

– to ask this question, one should first make sure that the assumption of 

interchangeability holds.  

3) With the exception of the Vanhelst et al. (2014b) study, the difference 

between weekdays and weekends is often ignored, and a general 

recommendation regarding the number of days is given.  

4) ICC, as typically applied in PA studies, considers only one source of reliable 

variance (“true” levels of PA that are different between individuals) whereas 

there are many (e.g., there is an interaction between time of the day and 

person: some people are more active in the morning, and some in the 

afternoon). This situation could be more adequately modelled by 

generalisability theory (Brennan 2001) or similar methods.  

5) Using the day as the unit of analysis seems natural but is not without problems. 

A single day of measurement seems likely to reflect, to a certain degree, the 

habitual activity of people, but its reliability cannot be computed using ICC 

without subdividing it, say, by hours. Dividing a day by hours, however, is not 

a full solution because (a) it is an arbitrary division which needs to be justified 

against alternatives such as half-hours or “academic hours” (45 minutes); (b) 

in this case, one would need to consider additional components of variance – 

time of day and person by time-of-day interaction, e.g. in the generalisability 

theory framework (Brennan 2001); (c) more fine-grained divisions mean more 

units of observation from each person, possibly leading to higher estimates of 
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reliability of the composite; however, reliability estimates should not depend 

on the arbitrary selection of unit of analysis.  

6) Most severely, the ICC as ratio of the between-individual variance to the total 

variance is a group-based and sample-dependent measure of reliability. In 

other words, according to this model, the accuracy of a single measurement 

occasion depends on how different the other people are from the person being 

measured. A larger ICC could be achieved by increasing the between-

individual variance of the sample, for example including a few more sedentary 

individuals and competing athletes. To find a small ICC, it suffices to find a 

highly homogenous sample. This is counterintuitive: a seeming change in 

reliability of a measurement has occurred without anything having been 

changed in the measurement itself. It would thus be desirable to develop a 

way to assess the accuracy of PA measures that would not depend on 

individual differences.  

Against this background, one cannot fully rely on the ICC-based estimates as a guide. 

This information should be complemented by common sense, former studies, and 

knowledge of the target population. In addition, the desired level of reliability is not 

fixed: higher reliability is needed for individual diagnosis and in smaller samples. In 

population-based studies, one has to simultaneously manage two risks: (a) poor 

representativeness of individual measurements due to a too short period of 

measurement, and (b) poor representativeness of the sample due to low compliance in 

PA measurements. Because protocol adherence tends to decrease with days of wear 

(Trost 2007; Corder et al. 2008), a compromise between feasibility and accuracy is 

necessary.  

Seasonality of PA is a question that may need more attention: for example, Rääsk et 

al. (2015b) found a correlation of 0.19 between minutes of MVPA and time of 

measurement (indexed as absolute difference in days between winter solstice and the 

first day of accelerometry). This is a small correlation, but it results in a considerable 

mean difference when measurements from different seasons are compared. There are 

other studies of seasonality of PA (e.g., Kolle et al. 2009) but a consensus has not yet 

found of how and to which extent the seasonality must be taken into account.  
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It is common knowledge that people’s PA differs by time of day, and there are 

usually differences between weekdays and weekends. From this, the minimum 

requirement for PA recording is one full weekday and one full weekend day. 

Recoding more weekdays and, if possible, a whole week, is desirable to capture the 

between-day differences that are likely to occur; longer periods are even better but 

may reduce compliance. Repeating the assessment at a different time of the year 

would probably do more for representativeness than prolonging an assessment by the 

same number of days.  

In the IDEFICS study, the initial decision was to record at least three days of activity 

for each child, including one weekend day whereas it was strived for a recording time 

of seven days in the I.Family study. This decision was based on the number of 

activity monitors available in each centre, the time available for field work, and the 

time needed to set up the devices including downloading the data, charging the 

batteries, and setting the device up for next recording. In some centres, more devices 

were available, and longer recording times were thus possible. For deriving reference 

values for the whole sample (Konstabel et al. 2014), it was decided to use the 

inclusion criterion of at least one weekend day and one weekday (with at least eight 

hours of wear time) – this way, 7684 children could be included (only 5047 when two 

weekdays were required instead of one – that is, the sample size would have been 

about 35% less).  

Ideally, the recording period should cover a whole week or all different days of the 

week. In many studies, this is not possible to achieve, given common difficulties such 

as the number of available devices, the study period or the desired sample size. A 

simple way to compactly present PA variables in these cases is to use a weighing 

scheme that is proportional to the number of weekdays and weekend days in a week: 

either a weighted sum (5×WD + 2×WE) or a weighted average (5×WD + 2×WE)/7, 

where WD is the average value in weekdays and WE is the average value in weekend 

days (Konstabel et al. 2014; Ortega et al. 2013). Note that the result applies to the 

typical week, not to the average week: for that purpose, one should consider holidays, 

school breaks, vacations, illness days, and the like; the corrected proportion of non-

business days could be used, but one cannot assume that all non-business days are 
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like typical weekend days – consequently, this additional correction could do more 

harm than good. 

 

3.6 Aspects of data reduction 

Ideally, participants in a study comply with the study protocol. In the IDEFICS study, 

this meant putting on the accelerometer the first thing in the morning and taking it off 

every night right before going to sleep; removing it only for taking shower and 

swimming (or other events which may do harm to the device); recording all non-wear 

events in the activity diary. However, protocols are not completely observed and there 

will be differences in wear time for unknown reasons. Several ways to correct or 

adjust for these differences have been used; the simplest of them being controlling for 

wear time (either for number of valid days or average daily wear time; Ortega et al. 

2013) or expressing time in activity intensity categories as percentage of wear time 

(Rääsk et al. 2015). We have also used a hybrid method: to find adjusted MVPA, the 

daily MVPA was first expressed as a fraction of wear time, and then multiplied by 

average wear time in minutes (Konstabel et al. 2014). The rationale for this was that 

the outcome in minutes is easier to communicate and understand than a fraction, 

especially if that fraction is, unfortunately, close to zero. Additionally, wear times 

were different across sexes and age groups, thus adjusting provided a simple way of 

factoring wear time out of the group comparisons. This form of “adjusted minutes” 

(of, say, MVPA) would, however, presume that the activity at non-wear times is, on 

the average, as intensive as the activity at the time when the device was worn. There 

are two complementary ways to minimise the impact of such assumptions: (a) trying 

to achieve good compliance and (b) imputing the periods of missing data either using 

closest-in-time activity form the same day or another day from the same individual or 

using activity diaries. In some special cases, one could consider using group averages 

from the same period in imputing. Conceptually, this might make sense in groups 

sharing a common daily schedule of activities, e.g., the military (Horner et al. 2013), 

or possibly, students at school time.  

Minutes in activity categories are useful summary statistics for ease of 

communication and understandability. They have, however, a disadvantage of 
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ignoring the within-category differences: activities at 1.51 MET and 2.99 MET are, 

for example, treated equally as light, even though there is an almost twofold 

difference in intensity. For some purposes (e.g., public health recommendations – and, 

consequently, studies validating such recommendations), ignoring the within-

category variance is probably inevitable, or if one believes that the error becomes too 

large, the solution might be to create an additional category. However, there are 

questions (e.g., the relative contribution of activities at different intensity levels to the 

energy balance) where ignoring the within-category differences is simply not possible. 

For these purposes, one could decompose the total daily counts into intensity 

categories. Using formulae from the literature (Alhassan et al. 2012), one can 

transform these decomposed counts into EE units (METs or kcal or kcal/kg), or EE-

per-time units (e.g., MET∙minutes). For example, Rääsk et al. (2015a) have found 

longitudinal decreases in both light activity and MVPA in a study of adolescent boys. 

In addition, Konstabel et al. (2017) showed that in terms of EE, the decreases in light 

activity mattered more. 

 

4 Software for data analysis 

 

At the time when data collection in the IDEFICS study was finished, the standard 

way to analyse GT1M data was a combination of manual pre-processing in 

spreadsheet software (e.g., deleting manually the long sequences of counts where the 

participant either appears not to be wearing the device or has written in the activity 

diary that the device was not being worn), then using the macros or spreadsheet 

functions to compute summary statistics, and then copying these summary statistics 

into another table for final analysis. In small samples, this does not result in too 

extensive workload and may even lead to important insights about the data, as 

everything is checked by the human eye. For a large epidemiological study, this 

method is obviously unpractical and could lead to human errors. There were also a 

number of software programs available, such as MAHUffe, MeterPlus, and Kinesoft, 

which allowed some laborious steps of preprocessing to be automatized. We needed, 

however, a fully customisable system which would be well integrated with a good 
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statistical platform. Therefore, we decided to write a program using the software R 

(Ihaka & Gentleman 1996; R Core Team 2017). To date, this has evolved into an R 

add-on package “accelerate” (Konstabel 2018) which provides a comprehensive set of 

functions to process the ActiGraph (7164, GT1M, and GT3X count data) and 3DNX 

data. The previous versions of the package have been used in analysing data from 

several projects (e.g., Rääsk et al. 2017; Garaulet et al. 2017; Ortega et al. 2013). 

 

4.1. Design choices 

R was chosen as a platform because of its widespread use, integration of a statistical 

environment with programmability, availability of a large number of statistical and 

data analysis methods as add-on packages, integration with literate programming 

tools, and extensibility. The main goals of the package are comprehensiveness and 

ease of use which means inclusion of all commonly used methods and tasks in a 

simple workflow. The package was designed to be modular and easily extensible. 

Each subtask is programmed as a separate function; the user can change each part 

separately without the need of changing the whole program (for example, new 

functions can be added for new data file formats, or new analytical methods). For 

extensibility and robustness, the number of dependencies was kept at minimum. 

Finally, as accelerometer data files can be quite large, sparing use of memory had to 

be kept in mind. For example, data files are processed sequentially rather than loading 

them all into the memory and, instead of storing a timestamp with each data point, the 

timestamp is reconstructed when necessary, given the start time and time interval 

between the observations (‘epoch’). 

 

4.2. Reading in and preprocessing the data 

The first layer in the accelerate package are functions to read in the data files in 

various formats. There are three separate functions to read in plain text file formats 

from Actigraph: read.actigraph.dat (for ‘dat’ files), 

read.actigraph.csv (for ‘csv’ files) and read.csa (for ‘dat’ files from older 

models such as CSA 7164). These plain-text formats store date and time information 

in local formats (e.g., 02/06/2018, 06.02.2018, and 2018-02-06 all refer to the same 
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date, 6th of February, 2018); the functions thus contain algorithms to automatically try 

to interpret such information in a meaningful way (e.g. taking into account that 

downloading the data is a later event than initialising the device, that there are no 

more than 12 months in a year, etc.). Alternatively, one can set the date format to be 

used in an extra argument named dateformat. The newer ‘agd’ file format used by 

Actigraph, as well as the 3DNX device (read in respectively by read.agd and 

read.3dnx) store dates in unambiguous format, so reading in is more 

straightforward. Finally, the read.actigraph function accepts any of the 

Actigraph file formats (except for the older CSA format) and chooses the appropriate 

function to use based on file extension (e.g., ‘agd’ files are redirected to read.agd). 

All the reading-in functions accept a get.id argument which refers to a function to 

derive an identification code (ID) of the participant based on the file name or any 

information within the file. Two such functions are provided, getID which uses all 

digits in the file name as an ID, and getNAME which deletes the file extension and 

any digits, and uses the rest as an ID. An appropriate function should be chosen or 

written based on the conventions of the study. 

The data are stored as a list of two components, X, a data frame containing the data, 

and HD, a vector containing all other relevant information such as start date/time of 

recording, the epoch, serial number of the device, ID code of the participant, file 

name, etc.  

By default, the reading-in functions do some pre-processing, such as filtering out the 

faulty data (e.g., negative counts) and detecting the wear and non-wear times (the 

latter are replaced by missing data codes). This behaviour is controlled by two 

arguments, .filter, and preprocess; to suppress all pre-processing, one can 

set both of these to identity.  

Two algorithms of wear time detection are available: the delete.zeros function 

implementing the “consecutive zeros” algorithm (detecting the periods with at least N 

minutes of consecutive zeros, where N is, by default, 20), and the wmChoi function 

implementing the algorithm proposed by Choi and colleagues (2011a) adapted with 

slight changes from the PhysicalActivity package (Choi et al. 2011b). 
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For sequential processing of many files, the package includes a function 

process.folder that can be adapted to various tasks that involve applying 

similar rules to every file. This mechanism is used in read.actigraph.folder 

which reads in, preprocesses and summarises all Actigraph files in a folder 

(reintegrating every file to a common epoch to avoid treating files with different 

epochs in the same way), producing a data frame where each day is represented by a 

row, and participants are identified by different values in the ID column. The 

mechanism can be easily adapted to different sets of rules and different tasks, such as 

producing a feedback sheet to every participant and possibly sending it via e-mail. 

The function takes care of errors when reading in or summarising the files: instead of 

quitting and giving an error message, the messages are recorded and saved for later 

inspection. By default, process.folder does timing in all cases, so it is possible 

to estimate how much time each operation might take, even retrospectively. 

For example, to read in and summarise all over 2000 Hungarian files from the 

IDEFICS baseline survey (T0), the following code was used: 

> HT0 <- read.actigraph.folder("Hungary_T0") 

This can take some time, so for estimating when the processing will be complete one 

might try the argument LIST to read in just a few files first: 

> HT0 <- read.actigraph.folder("Hungary_T0", LIST=1:5) 

> attr(HT0, "timing") 

 

4.3. Summarising the data 

Suppose we have read in a file using … 

> x <- read.actigraph("sampledata/1036.dat") 

We can now summarise the data by some time unit. Usually, this would be days, but 

in some cases, shorter periods, such as hours or half-hours can be useful. The code 

uses R’s built-in function cut.POSIXt to divide the time sequence, so 

specifications like “30 mins” or “hours” or “2 days” are all valid. Thus, the first line 

in the following code segment summarises x by days, the other one by 30-minute 

segments: 

> summary(x, "DSTday")  # the default  
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> summary(x, "30 mins") # each row summarises a 30-min 

period 

One could use just “days” in the first line, but “DSTday” takes care of the daylight 

saving time; due to this, in many countries, one day in a year will only have 23 hours, 

while another has as many as 25. 

The summary outputs a data frame with some information about each time period in 

the file. First, the file name, subject’s ID, epoch, model and serial number of the 

device are included; these data are, obviously, identical for all rows based the same 

file. The next three variables can be different for each row in the summary: Period 

(the start of the time period, as a date/time variable with class POSIXct), Length 

(nominal length of the period, including non-wear time), and Wkdy (day of the week, 

coded as integers from 0 to 6, starting from Sunday). The following variables depend 

on what has been recorded in the data file and the functions one chooses using the 

argument STATS to summary. The CNTSTATS function outputs some of the most 

common statistics used for counts: valid time (val.time), total counts 

(tot.counts), average counts per minute (avg.cpm), and time in intensity 

categories. One or more sets of cut points can be specified using the cutoffs 

argument; both minutes in intensity category, as well as the corresponding proportion 

of valid time are computed. The CNTSTATS2 function uses the cut points in a 

slightly different way. In addition to minutes in each intensity category, it outputs the 

sum of counts in each intensity category, which can be converted to quasi EE units 

(Konstabel et al. 2017), as discussed in Section 3.6. If the file contains information on 

steps or heart rate, this can be analysed using STEPSTATS and HRSTATS. Finally, 

HRSTATS2 combines count and heart rate data to find median heart rate in each 

category of activity intensity (an analysis by Ojiambo et al. 2012).  

As an example, the following line will compute the count and step statistics by each 

day in category x, using Evenson cut points; the results will be expressed in a 

compact way, i.e., errors in the data file (e.g., negative counts) are not included in the 

table and time in intensity categories is expressed only as minutes (instead of minutes 

and a fraction of valid time): 
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> summary(x, STATS=c(CNTSTATS, STEPSTATS), cutoffs = 

Cutoffs.Evenson, short = TRUE)  

The data can be plotted using the generic plot function. The plot.acc method 

will plot counts as lines, using time as the x-axis. Figure 1 is produced by the 

following code: 

> plot(x, cutoffs=Cutoffs.Evenson)  # figure 1 

 

Figure 1 about here 

 

Another way to visualise the daily PA profile is to partition the time periods into 

activity categories in the order of increasing intensity (see Figure 2). This can be done 

with aciPlot:  

> aciPlot(x, select=Wkdy %in% 5)  # figure 2 

 

Figure 2 about here 

 

Finally, the function summarize is intended to summarise the data at the next level 

with one row per participant. This can be applied to a summary of a single file (such 

as the output summary(x)) or of a number of files (such as the output of 

read.actigraph.folder). The two main arguments to summarize are: 

condition (an expression using variables in the output of summary, such as 

val.time > 8*60) and no.days (number of valid time periods – typically 

days – that a participant must have in order to be included). Another version, 

summarize2, treats weekdays and weekend days differently: the reqdays 

argument can be set as a named vector, such as c(wd=5, we=2) to require at least 

five valid weekdays and two weekend days for a participant’s data to be included. 

 

5 Future perspectives in accelerometry 

Accelerometry is among the best ways to measure PA but it has inherent limitations: 

for example, static efforts and weight carrying seem unlikely to be captured, 

especially with a single sensor. In addition, the relationship between movement and 
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EE may be different in different types of activity (e.g., biking as compared to 

running). There seem to be two ways forward for more accurate prediction of EE. 

First, while portable VO2 systems do already exist, they are not convenient for 

carrying along during several days of ordinary life. The advancement of technology 

may provide even better solutions that, if not affordable for large-scale testing, could 

provide a breakthrough in calibrating and validating the accelerometry-based 

monitors. Secondly, activity recognition algorithms could be developed either based 

on the advancements of Crouter et al.’s (2008) two-regression model, multiple 

accelerometer sensors or a combination of different sensors. While the “black box” 

modelling strategy (e.g., using artificial neural networks) is guaranteed to give a 

result, joining the efforts of biomechanics and metabolic physiology is more likely to 

advance our substantive understanding of the nature of PA energy expenditure at 

different activities. 

As many contemporary devices allow downloading the raw data, and software for 

analysing such data is becoming easily accessible (van Hees 2018), using raw data 

should be considered especially in the cases where counts-based methods of analysis 

are known to be suboptimal as e.g. in wear time detection as well as at the low and 

high end of the intensity spectrum. Combining different sensors (e.g., temperature or 

light sensors) could be an alternative way of wear-time detection.  

There is a large number of sensors that can be used in combination with 

accelerometry and probably an even larger field of unexplored or underexplored 

possibilities. For example, altimeters (pressure sensors) could be used to classify 

inclined locomotion (e.g., walking upstairs) to enhance the accuracy in EE estimation 

(Yang & Hsu 2010). 

For understanding and intervening on PA, it has to be treated as a meaningful human 

activity rather than just physical movement. For that purpose, linking the 

accelerometer data with information on mood and behaviour (e.g, diaries, experience 

sampling or electronically activated recording), physiological reactions, and context 

(e.g., geographical location from geographic information systems (GIS)) is crucial. 

GIS, in particular, offers a large array of possibilities to relate PA to what is 

changeable in the environment (Buck et al. 2015a, b). 
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6 Assessing physical activity in the field 

Besides technology and algorithms, the data quality also depends on human factors 

and field work logistics. The first, crucial, task is to make sure that the person who 

wore a device is identifiable. In the IDEFICS study, this was done in slightly 

different ways in different study centres, depending on the local conditions. In one 

participating country, for example, it was necessary to label the devices with child’s 

name. This was especially important in the younger, kindergarten-aged group, who, 

in the workdays, had organised nap time from approximately 1pm to 3pm. Typically, 

the teacher would collect the devices before the nap, and distribute them again after it; 

this would not be possible without the labels. In school-aged children, in contrast, the 

labelling was more of a precaution, as the devices were typically not removed during 

the day. Nevertheless, the labels were occasionally lost, and the devices were 

uncoupled from the participants for other reasons. For example, it happened that 

several siblings from the same family were wearing the activity monitors at the same 

time, or classmates inadvertently (or perhaps advertently) swapped their devices. In 

such cases, if the swapping happened on the first day or right before returning the 

devices, the data could be used, in case the bearers of the devices were identified by 

parents’ or teachers’ reports, comparing activity diaries with the recorded data or 

other information. In a few cases, the device was returned but was not worn or 

contained mostly missing data because the child either could not or forgot to wear it 

or was ill at the time. If logistically possible, the child was then offered a new 

opportunity, and the latter file was used in analyses.  

There are some reports on reactivity on wearing accelerometers (Dössegger et al. 

2014), that is, higher than usual activity on the first day of measurement, which 

thereafter returns to the presumably usual level. The IDEFICS study was not planned 

for assessing reactivity. For example, the first day of wearing was not chosen at 

random but determined based on logistics and device availability; however, indirect 

assessment of reactivity might be possible. We did try to minimise reactivity by 

emphasising in the instructions that the participants should continue with their usual 

activities. The problem is, of course, that the reactivity might not always be 
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intentional or even conscious: by being given an activity monitor, participants are 

inevitably reminded about physical activity, and this may be enough to prompt an 

increase in activity. In addition, reactivity due to the personnel at schools or 

kindergartens may have a longer lasting effect and be even more difficult to control. 

The motivation and compliance of the participants is an important factor in data 

quality. Feedback on PA has potential to increase motivation; quick and fully 

automatic ways of creating feedback were not available to us at the baseline survey of 

the IDEFICS study, but by the end of the study period, we had developed a 

rudimentary script, which is included in a simplified form in the accelerate 

package (do.feedback). However, providing feedback (as well as other ways of 

boosting interest in PA assessment) could increase reactivity. One might also want to 

consider the potentially adverse effect of negative feedback. Thus, the “too little PA” 

message should be framed in a positive and encouraging way. 

There are logistic issues that may do harm to motivation even if the participant is 

otherwise interested in PA assessment. One of these is the fear of losing or damaging 

the device. There is a trade-off involved in eliminating this fear completely because 

for obvious reasons, we do not want the participants to lose or damage the devices. 

Another issue is that of aesthetics and hygiene. First, the devices tend to look less and 

less new with every user, up to a point when one must do something about it; second, 

in study logistics, one must plan sufficient time for washing and drying the belts 

sufficiently often. 

When downloading the data, it is useful to regularly check the files, for example, 

making a plot similar to Figure 1. If the data do not look like human activity, one 

should investigate the reason. The malfunctioning hardware may need to be repaired 

or removed from use; temporary problems at download time are unlikely but can be 

repaired by downloading the data anew (which is impossible if the device is already 

set up to record new data); incompatibilities with new versions of firmware may be 

resolved by using other (newer or older) versions of download software; finally, 

during the IDEFICS study, several data files with firmware-related problems were 

successfully repaired in collaboration with the device manufacturer. It is useful to 
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become aware of these problems as early as possible; thus, having a look at the files 

right after downloading is probably a good idea. 
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Figures and Tables 

Table 1 Cut points (lower thresholds for light, moderate and vigorous intensity) for children, using ActiGraph vertical 

counts  

First author, 

year 

Activity monitor, activities Method, 

prediction equation 

Age (N) Thresholds: 

LIG/MOD/VIG 

(epoch) 

Freedson 1997  CSA 7164 

Walking and jogging on treadmill 

METs = 2.757 + 

0.0015CPM - 

0.08957age  

- 0.000038CPMage 

6–17 

(80) 

101 / 2220 /4136 

(60) 

Puyau 2002  CSA 7164 

SED: nintendo, arts, play 

LIG: aerobic warm-up, walk 

MOD: tae bo, play, walk 3.5 mph 

VIG: jog, jump rope, walk, skip , 

soccer  

AEE = 0.0183 + 

0.000010CPM 

6–16 

(26) 

800 / 3200 / 8200 

(60) 

Treuth 2004  Actigraph 7164 

Rest, watch TV, play computer 

game, sweep floor, walk (2.5mph, 

3.5mph), aerobics, bicycling, 

shoot baskets, stair walk, run 

METs = 2.01 + 

0.00171CP30s 

= 2.01 + 0.000856CPM 

14.1±0.3  

(74 girls) 

101 / 3000/ 5200 

(60) 

Sirard 2005  ActiGraph (7164) 

SED: talk, play 

LIG: walk (3.2±0.6) 

MOD: walk (4.3±0.6) 

VIG: jog (6.9±3.9) 

ROC, direct observation 3–5  

(16) 

Age-specific: 

3y: 302 / 615 / 1231 

4y: 364 / 812 / 1235 

5y: 399 / 891 / 1255 

(15) 

Pate 2006  ActiGraph 7164 

Rest, walk/jog (2, 3, 4 mph) 

VO2 (ml/kg/min) =  

10.0714 + 0.02366CP15s 

* 

3–6  

(29) 

.. / 420 / 842 

(15) 

Mattocks 2007  ActiGraph 7164 

Lie, sit, walk / jog (4.4±0.7, 

5.8±0.8, 9.2±1.5), hopscotch 

 

EE (kJ/kg/min)= -0.933 + 

0.000098CPM + 

0.091age + 0.0422∙sex 

(m=0, f=1) 

12.4±0.2 

(163)  

101** / 2306 [3 

METs] / 3581 [ 4 

METs] / 6130 (60) 

Evenson 2008  ActiGraph #AM7164-2.2 

SED: sit, watch  DVD, colour 

books 

LIG: walk (2 mph) 

MOD: stair climbing, walk (3 

mph), dribble basketball 

Vigorous: basketball, jumping 

jacks, run (4 mph) 

ROC, direct observation 

(activity intensities 

validated by VO2)  

5–8  

(33)  

26 / 574 / 1003 

(15) 

 

>100 / 2296 / 4012 

(60**) 

Van 

Cauwenberghe 

2010  

ActiGraph GT1M 

SED: sit/stand on floor listening to 

a story; draw sitting on the floor; 

play  

LIG: walk (3.2; 4.0), play 

MOD:  walk (4.8; 5.6; self-paced) 

play 

VIG: walk/jog (6.4; 7.2; 8.0), play 

ROC, direct observation 5.8±0.4 

(18) 

373 / 585 / 881 

(15) 

1492 / 2340 / 3524 

(60) 

Butte 2014  Actigraph GT3X+ 

Watch TV, colouring, play video 

games, play with toys, dance, 

aerobics, run in place, nap, free 

activities 

VO2 (room respiration 

calorimetry); smoothing 

splines; ROC 

4.5±0.8 

(50) 

240 / 2120 / 4450 

(60) 

Notes. 

CPM = counts per minute; CP15s = counts per 15 seconds; CP30s = counts per 30 seconds; 

Activities are categorised into SED (sedentary), LIG (light), MOD (moderate) and VIG (vigorous) if this classification is 

given in the original paper. 

Age is reported as range (min–max) or mean±SD. Activity monitors are cited as reported in the original papers. 



52 

 

Intensity categories are usually defined as <1.5 METs for sedentary, 1.5-3 for light, 3-6 for moderate, and >6 for 

vigorous intensity (Trost et al. 2001). There are different definitions of 1 MET, two of the most common being EE at 

resting state, and 3.5 ml O2/kg/min (approximately 1 kcal/kg/h). Pate et al. (2006) used a different criterion (see note 

below); Mattocks et al. (2007) developed cut-points for both 3 METs (usual threshold for moderate activity) and 4 METs 

(their preferred threshold). Puyau et al. (2002) reported their criteria in kcal/kg/min as 0.015, 0.05, and 0.1, 

corresponding to 0.9, 3, and 6 kcal/kg/h. The first threshold may be an error or a typographical error, as 0 .025 would 

correspond to the usual threshold of 1.5 METs.  

* 20 and 30 ml/kg/min used as criteria for moderate and vigorous level, based on visual inspection of VO 2 data points 

** From review by Trost et al (2001) 
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Figure 1 A single participant’s activity across 6 days (red lines correspond to Evenson cut points)
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Figure 2 Activity profile in a single day (“Day 4” in Figure 1) by 30-min segments 
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