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ABSTRACT
Cotton from the three cotton growing regions of Uganda was characterized
for 13 quality parameters using the High Volume Instrument (HVI). Principal
Component Analysis (PCA), Agglomerative Hierarchical Clustering (AHC)
and k-means clustering were used to model cotton quality parameters.
Using factor analysis, cotton yellowness and short fiber index were found
to account for the highest variability. At 5% significance level, the highest
correlation (0.73) was found between short fiber index and yellowness.
Based on Cotton Outlook’s world classification and USDA Standards, the
cotton under test was deemed of high and uniform quality, falling between
Middling and Good Middling grades. Our suggested classification integrates
all lint quality parameters, unlike the traditional methods that consider
selected parameters.

摘要

从乌干达三棉产区棉花的特点 13质量参数使用高容量仪器（ HVI）。主成
分分析（ PCA），凝聚层次聚类（ AHC）和 k均值聚类模型用于棉花质量
参数。采用因子分析、棉花枯黄、短纤维指数都占最高的变异。在 5% 的
显著水平的相关性最高（ 0.73 ）发现短纤维指数和黄色之间。根据棉花展
望世界分类标准和美国农业部标准，被测棉花质量高，质量均匀，中等和
中高档之间。我们建议的分类集成所有皮棉质量参数，不像传统的方法考
虑选定的参数。
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Introduction

Cotton Quality and HVI measurement

Cotton is the most globally traded fiber in conventional textile use. Some reasons for apparel preference
have been discussed(Kamalha et al. 2013; Norum and Ha-Brookshire 2011). Quality of cotton fiber is
judged on many factors, such as staple length, maturity, fineness, cleanliness, stickiness and strength, to
mention but a few. Cotton quality characteristics are of importance to farmers, traders, researchers, and
cotton spinners. Cotton fiber properties are influenced by a number of factors, including; type of breed or
species, farming and harvestingmethods, environmental and climatic profiles, processingmethods (such
as ginning), storage and handling among others. These fiber characteristics have inherent effect on
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processing capabilities or requirements, yarn properties (such as evenness, strength and fineness) and
fabric quality (such as dyeing quality, strength, and appearance)(Judith and Davidonis 2000). With
precise measurement and classification techniques, standardization is achieved at different levels in the
cotton supply chain(Judith and Davidonis 2000; Sharma 2014). Data from HVI measurement is usually
of wider dimension, offering difficulty in interpretation. Often, cotton fiber parameters show non-linear
relationships, hence robust data visualization and analysis is necessary to present such complex data for
decision making. Common statistical methods such as linear regression and measure of central tendency
are inferior for this cause(Mwasiagi, Wang, and Huang 2009).

Decades past, human classers were the basis for determining cotton quality. Often, classers had
limitations in evaluating some properties like strength and elongation, maturity, short fiber content and
fineness. Of the many systematic cotton measurement systems through the 1940’s to the 70’s, the HVI
has been named as the most versatile, reliable and dependable testing system for most important cotton
quality characteristics(Schleth, Furter, andGhorashi 2006; The United States Department of Agriculture/
USTER 2006). The High Volume Systems have evolved to cover over ten cotton parameters, which
include length, maturity, strength, trash percentage, color, fineness and Spinning consistency index
(SCI). The US Department of Agriculture (USDA) exclusively uses this measurement system, among
which is the USTER HVI 1000, which is the world reference for cotton classification(Furter 2009).

There are four cotton growing zones in Uganda; Northern, West Nile, Eastern and Kazinga
channel (Western). Uganda’s cotton quality classification is monitored and graded by the Cotton
Development Organization (CDO), with reference to the World Cotton Outlook(Government of
Uganda 2014; International Trade Centre 2011; Lubwama 2012). All Uganda’s cotton is handpicked,
and over 96% of this cotton is roller ginned. Our study focused on lint picked from three regions,
which account for the largest proportion of Uganda’s cotton yield. In the following sections, we
briefly introduce fundamentals of the multivariate techniques used in our study.

Principal component analysis (PCA), Agglomerative hierarchical clustering (AHC) and
k-means clustering

PCA analyzes data in which observations are described by several inter-correlated quantitative
dependent variables. PCA extracts the most useful information and presents it in a new space, as a
set of linear and orthogonal variables called principal components (also called factors) (F1+F2. . ...+Fn):
where n is the total number of variables. Each variable or observation is represented on each principle
component by a geometric projection known as a factor score or factor loading(Dray 2008; Jolliffe
2002). Closely related variables essentially load similarly on a principal component. A variable’s
significance to a factor is represented by the percentage contribution or the factor loading of the
variable on the particular component(Abdi 2007). Correlation plots, scree plots and bi-plots among
others can be used to visualize PCA relationships. The squared cosine represents the component’s
contribution to the squared distance of a variable or observation to the origin(Dray 2008; Kruskal
1978). Variables or observations with larger squared cosines are significantly important to a component
and so is their importance to the total variability.

Hierarchical (connectivity) clustering establishes a hierarchy of clusters of objects on a set of
quantitative attributes, yielding multiple levels of abstraction of the original data set. Unlike
divisive clustering, AHC algorithms are a “bottom up” iterative classification technique, where
observations start in their own clusters, and pairs of clusters are merged up the hierarchy
(Addinsoft 2015a). Clustering of objects is based on combinations that minimize a given
agglomeration criterion. Often, a metric, indicating the distance between pairs of observations,
is used together with a linkage criterion which determines the distance between sets of observa-
tions. Commonly used metrics include: Manhattan distance, Euclidean distance, and squared
Euclidean distance. While, linkage criterion include: minimum within class variance, mean linkage
clustering, weighted pair group mean, and centroid linkage clustering(Addinsoft 2015a; MacKay
2003; O’Connor 1987; SAS INSTITUTE 2008; Ward 1963). A binary clustering tree known as a
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dendrogram is obtained (Figure 1), from which appropriate clusters may be selected. Graphically,
the y-axis of the dendrogram represents the dissimilarity distance, while the x-axis represents
items or observations. In our study, we performed AHC utilizing the squared Euclidean distance
and the weighted pair-group average.

Like AHC, k-means clustering is an iterative method which, converges on a solution, but solutions
obtained by k-means can vary for different starting points(Mwasiagi, Wang, and Huang 2009). The
definitive k-means algorithm works with in-memory information, yet it could be effectively stretched
out for out-of-memory occupant datasets. For a set of observations (x1, x2 . . ., xn), k-means clustering aims
at optimally dividing the n observations into k (≤ n) sets; S = {S1, S2, . . ., Sk} while minimizing the within-
cluster sum of squares. This sum of squares is the squared Euclidean distance; hence, it is the “nearest”
mean. Each observation is allocated to a cluster whose mean gives the least within-cluster sum of squares
(Addinsoft 2015b; MacKay 2003). Algorithms locate nearest centers and clusters by distance measures.
Some classification criteria include;Trace (W), Determinant (W),Wilks lambda, andMedian among others
(Addinsoft 2015b; Deza and Deza 2009; MacKay 2003; Mwasiagi, Wang, and Huang 2009). Our study
algorithm was based on k-means clustering using the Trace (W)/Median.

Both AHC and k-means have merits and drawbacks with regard to efficiency (in computation), and
effectiveness (in application). Unlike connectivity clustering (as for AHC), k- means is a centroid based
clustering system that requires a preset number of clusters as input and are nondeterministic.
Hierarchical clustering on the other hand does not require users to preset the number of clusters and
most hierarchical algorithms are deterministic. Also, the AHC output hierarchical structure is more
informative than the unstructured set of clusters returned by flat clustering of k-means. Additionally,
k-means calculations require probing over the whole dataset on each cycle, and it will only focalize to a
quality solution after a series of cycles. Finally, k-means clustering is associated with a linear complexity
compared to the quadratic complexity common with hierarchical clustering algorithms.

A recent study was performed to elucidate cotton characteristics based on different harvesting
systems(Kazama et al. 2015), using PCA, and hierarchical cluster methods. Earlier, (Mwasiagi, Wang,
and Huang 2009) used k-means clustering and artificial neural network to classify cotton lint quality.
We did not find further relevant literature indicating the use of these three multivariate tools in the
relationship analysis of cotton quality. In our study, we performed PCA to transform cotton quality
parameters into factorial axes and consequently analyzed samples-variables relationships.
Particularly, we used PCA to elucidate, for possible quality control, the most contributing parameters
to the quality variability. We also draw comparison between k-means and AHC profiled classes,
integrating all HVI fiber quality characteristics in one analysis. Finally, our study compounds the
comparison between cotton growing regions, albeit in one country. These studies can be expounded
to compare growing countries and seasons among others and classify them accordingly.

Materials and methods

Materials

A total of 60 cotton lint samples were realized, from bales harvested in the 2013/2014 cotton growing
season, representing the Northern, Eastern and Western regions of Uganda. Sampling was done in
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Figure 1. A sample dendrogram from AHC of objects EFGHIJ.
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accordance with ASTM D1441-12- standard practice for sampling cotton fibers for testing. The samples
and datasets were labeled according to regions: SN for Northern, SW for Western and SE for Eastern.
Following data cleaning, and pre-processing, only 42 samples were retained for further study. Prior o
testing, the samples were then conditioned under standard atmosphere (21°C, 65% RH) for 24 hours
following ASTM D1776/D1776M- standard practice for conditioning and testing textiles.

Methods

The USTER® HVI 1000 (USTER Technologies, Switzerland) was used to characterize cotton fiber
quality (Table 1). Following normal distribution fitting, and Grubbs’ test (Two-tailed test) for
outliers(Grubbs 1969, 1950), we excluded outlying samples. Correlation analysis and factor analysis
were carried out using PCA to elucidate relationships within the data. A dissimilarity analysis was
also done for samples using the Euclidean distance measure, to ascertain the most dissimilar cotton
based on regional clustering. PCA was then used to find the most important parameters explaining
the variation in cotton quality. We finally performed AHC and k-means clustering to classify and
profile cotton samples. PCA and K-means clustering were performed using R- 3.2.3 software (The R
Foundation, Austria). We then performed AHC using XLSTAT 2014.5.03 (Addinsoft, USA) and
obtained consequent quality profiles and clusters, which we compared with k-means clustering
results. In our study, AHC was computed utilizing the squared Euclidean distance as metric measure
of dissimilarity and the weighted pair-group average as the linkage criteria (Addinsoft 2015a; SAS
INSTITUTE 2009, 2008).

Results and discussion

Descriptive statistics for samples

Grubbs test for outliers at 99% confidence interval, significance 5%, yielded p-values and critical
Z-scores to detect presence of outliers. We retained 42 (70%) samples whose summary statistics are
recorded in Table 1. Fiber strength, elongation, trash count and short fiber index had the highest
deviations from CDO’s quality reference values. Coefficients of variation, CV (%) values of the
samples, suggest that trash indicators presented the highest variance, followed by short fiber index.
This is obvious as these variables are mostly dependent on human and processing factors. Maturity,
uniformity index and whiteness were the least variant.

Table 1. Descriptive summary of cotton quality measurements from USTER® HVI 1000.

Quality attribute Abbr Unit Min Max Mean Stdev Std error CDO reference CV %

Spinning consistency index SCI % 128 142 135.3 3.63 0.56 60 (min) 2.7
Micronaire Mic (-) 3.68 4.52 4.2 0.21 0.03 3.8–4.2 5.2
Maturity Mat % 0.86 0.88 0.87 0.007 0.00 0.85 (min) 0.8
Upper half mean length UHML mm 26.8 30 28.7 0.98 0.15 27 (min) 3.4
Uniformity index UI % 83. 85.9 84.2 0.78 0.12 85 (min) 0.9
Short fiber index SFI % 6.1 8.8 7.2 0.77 0.12 6 (max) 10.7
Fiber strength Str g/tex 26.6 30.4 28.2 0.95 0.15 30 (min) 3.4
Fiber Elongation Elg % 4.3 6.2 5.3 0.44 0.07 6.5 (min) 8.3
Color grade: whiteness Rd % 73 76.2 74.4 0.79 0.12 74–76 1.1
Color grade: Yellowness +b (-) 9.7 12.4 10.5 0.80 0.12 7–10 7.6
Trash particle (count) TrCnt (-)/g 17 49.0 29.5 8.36 1.29 20 (max) 28.4
Trash (area) TrAr %/g 0.16 0.78 0.44 0.17 0.03 2 (max) 38.4
Leaf grade Lfgd (-) 1.0 7.0 3 1 0.18 4 (max) 35.2

**Abbr=Abbreviation; Min=Minimum; Std error=Standard error.
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Factor analysis of variables and samples on principal components

We normalized data for PCA using the zero-mean normalization- xi�meanAð Þ=StdevA; xi is an entry
in a column A. Based on Pearson (n) correlation computation, at significance level 0.05 (Table 2), the
13 principal components/factors F1-F13 (Table 3) are presented, with varying eigenvalues and
explanation rates. Generally, no single factor explained the variability significantly, suggesting that
at least five principle factors were important. The first component, F1 explains the maximum
variability (0.3097), corresponding to an eigenvalue of 4.03. For further analysis, we retained only
components F1 to F5, which had eigenvalues ≥ 1.0 (accounting for 73.6% of variability). From the
eigenvector matrix, we computed a correlation matrix; variables/factors (factor loadings matrix), from
which, a matrix of squared cosines of variables was computed (summary in Table 4). The squared
cosines represent the significance of each variable to the principle components, and so to the overall
variability. The highest correlation was between trash particle count and trash area (0.75), followed by
short fiber index and yellowness (0.73). There was also moderate correlation among trash indicators;
trash area, leaf grade and trash particle count. Micronaire and short fiber index had the highest
negative correlation.

Generally, most parameters were strongly independent without obvious variation in respect to a host of
other variables. From Figure 2, Figure 3, and Table 4, we can elucidate that cotton yellowness accounts for
the highest variability in fiber quality, closely followed by short fiber index and trash particle count. Of
successive importance were: fiber length, uniformity index, trash area, strength and elongation, in sequence.

Spinning consistency index and leaf grade were of least pertinence to the PCA model. This
finding implies that critical control of yellowness and short fiber index would lead to control of
several other parameters. This can be said to be true, since trash indications practically have
influence on most physical properties such as length, strength, elongation, and colour. High trash
content lowers the quality grade of cotton.

Table 2. Pearson correlation coefficients between variables.

Variables SCI Mic Mat UHML UI SFI Str Elg Rd +b TrCnt TrAr Lfgd

SCI 1.00 0.22 0.03 0.03 −0.20 0.03 0.05 0.07 −0.18 −0.09 0.26 0.38 0.09
Mic 0.22 1.00 0.25 0.13 0.17 −0.60 −0.15 0.39 −0.16 −0.53 0.33 0.25 0.26
Mat 0.03 0.25 1.00 −0.19 0.19 −0.39 0.10 0.05 0.10 −0.20 0.24 0.14 0.07
UHML 0.03 0.13 −0.19 1.00 0.10 −0.21 −0.08 0.16 0.13 −0.18 0.11 0.01 0.09
UI −0.20 0.17 0.19 0.10 1.00 −0.37 0.03 0.43 −0.12 −0.27 0.08 −0.19 0.09
SFI 0.03 −0.60 −0.39 −0.21 −0.37 1.00 −0.09 −0.52 −0.15 0.73 −0.48 −0.38 −0.32
Str 0.05 −0.15 0.10 −0.08 0.03 −0.09 1.00 −0.02 0.23 −0.05 0.14 0.17 −0.15
Elg 0.07 0.39 0.05 0.16 0.43 −0.52 −0.02 1.00 −0.17 −0.58 0.33 0.27 0.35
Rd −0.18 −0.16 0.10 0.13 −0.12 −0.15 0.23 −0.17 1.00 −0.11 0.26 0.23 0.15
+b −0.09 −0.53 −0.20 −0.18 −0.27 0.73 −0.05 −0.58 −0.11 1.00 −0.54 −0.44 −0.42
TrCnt 0.26 0.33 0.24 0.11 0.08 −0.48 0.14 0.33 0.26 −0.54 1.00 0.75 0.55
TrAr 0.38 0.25 0.14 0.01 −0.19 −0.38 0.17 0.27 0.23 −0.44 0.75 1.00 0.50
Lfgd 0.09 0.26 0.07 0.09 0.09 −0.32 −0.15 0.35 0.15 −0.42 0.55 0.50 1.00

Values in bold are different from 0 with a significance level alpha=0.05.

Table 3. PCA explanation rate for variability (Eigenvalues).

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13

Eigenvalue 4.03 1.82 1.45 1.27 1.00 0.90 0.65 0.43 0.41 0.37 0.30 0.23 0.15
Variability (%) 30.97 13.97 11.18 9.76 7.68 6.92 4.97 3.30 3.16 2.85 2.30 1.75 1.17
Cumulative % 30.97 44.94 56.12 65.88 73.56 80.5 85.5 88.8 91.9 94.77 97.1 98.8 100

Table 4. Squared cosines of the variables as representative contribution to total variability.

Variable +b SFI TrCnt UHML UI TrAr Str Elg Mic Rd Mat Lfgd SCI

Largest Squared cosine 0.7 0.68 0.61 0.48 0.46 0.46 0.43 0.43 0.42 0.39 0.39 0.38 0.36
Component F1 F1 F1 F4 F2 F1 F5 F1 F1 F3 F4 F1 F3
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We also observed that F1 chiefly defines +b, SFI, Trcnt, TrAr, Elg, Mic and Lfgd; F2 defines UI;
F3 defines Rd and SCI; F4 defines UHML and Mat; and F5 defines Str (Figure 3 and Table 4). This
taxonomy of cotton quality parameters can be rightly coded and classified accordingly. It was found
that parameters defining trash and fineness loaded similarly, while maturity loads with fiber length.
The loading of samples (Figure 4) presents a clustering map between regions. Generally, samples
from the Western and Nothern regions were clustered closer and load similarly compared to samples
from the Eastern region.

In addition, there was higher variance within samples from the Eastern region compared to
within other regions. The Northern region cotton was the most closely and uniformly clustered.
Considering the Euclidean distance between regions, the highest dismilarity was found between
samples from the Western and Eastern regions. The Western and Northern regions’ cotton was
closest in quality similarity. Cotton from Eastern Uganda had more short fibers and a yellowness
index compared to the other regions (Figure 3 and Figure 4)
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Also, PCA clustering depicts that the Northern region cotton registered the highest values for
micronaire, length, elongation, uniformity, and maturity than the counterparts. While, the Western
region had cotton with the highest trash count/area, leaf grade (worst) and spinning consistency
index. Variations in these properties can be a result of variations in soils, climate, farming and
processing. Through efficient blending and mixing of fibers from such different regions, yarn
spinners would achieve better quality yarn.

AHC and k-means Cotton Quality classification

From AHC and k-mean clustering algorithms, we elicited three classes to compare samples con-
tained, and profiles corresponding (Table 5, Table 6, and Figure 5).

Under k-means, we pre-specified three (3), as the number of classes based on AHC returned optimum
upon convergence. The metrics and linkage criterion have already beenmentioned in the methods section.

Table 5. AHC classes and clusters of cotton samples for n = 3.

Class 1 2 3

No. of samples 11(26.2%) 30(71.4%) 1(2.4%)

SN1 SE6 SN2 SN8 SN14 SW5 SW11 SE11
SE1 SE7 SN3 SN9 SN15 SW6 SW12
SE2 SE8 SN4 SN10 SW1 SW7 SW13
SE3 SE9 SN5 SN11 SW2 SW8 SW14
SE4 SE12 SN6 SN12 SW3 SW9 SW15
SE5 SN7 SN13 SW4 SW10 SE10

Table 6. k-means classes and clusters of cotton samples for n = 3.

Class 1 2 3

No. of samples 6(14%) 26(62%) 10(24%)

SN1 SN2 SN11 SW3 SW11 SE10 SN4 SW12
SE2 SN3 SN12 SW4 SW13 SE11 SN8 SE1
SE5 SN5 SN14 SW6 SW14 SN10 SE3
SE7 SN6 SN15 SW7 SW15 SN13 SE4
SE9 SN7 SW1 SW9 SE6 SW5
SE12 SN9 SW2 SW10 SE8 SW8
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Data normalization was used to suppress the dominance of variables defined by larger magnitudes, since
the clustering methods are magnitude responsive. With Normalization accords equal importance to each
variable, while recognizing the ranks of individual entries through scores (weight).

AHC and k-means profiles, composition and clusters were slightly related. These slight differences arise
from the differences in metrics and linkage criterion already presented. Most samples fell within class 2;
comprising mainly of the Northern and Western regions’ cotton. This clustering is in agreement with our
PCA results. Save for a few samples, the Eastern region cotton shows a detachment from the other two
regions in terms of quality clustering. Themaximumnumber of possible classes is equivalent to the number
of objects. However, higher numbers of classes, lead to low quality of clustering despite the fact that the
“within class variance” also lowers with increasing number of classes. For both AHC and k-means
clustering, we established that centroids of classes 2 and 3 are the closest, giving more credence that cotton
from the Northern and Western Uganda have closely related quality compared to cotton from Eastern
Uganda (Table 7 and Table 8). The AHC dendrogram (Figure 5) shows the clustering and closeness of
classes.

Sample SE11most portrays an outlying property.We computed the centroid values (Table 7 andTable 8)
and a profile plot (Figure 6) for the three classes, for quality classification and profiling. The class centroids
indicate expected thresholds within the different classes of cotton fiber quality. Class 2 represents the vast of
the cotton samples, hence adopted for a general representation of Ugandan’s cotton for the 2013/2014
season.

Using this classification, and basing on CDO quality standards (Table 1) matched with the World
Cotton Outlook values, Uganda’s cotton is generally of high spinning consistency index, high
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Figure 5. Schematic plot of AHC dendrogram of the 42 samples for classes 1, 2 and 3.

Table 7. AHC class centroids as indicative values of cotton quality classification.

Class SCI Mic Mat UHML UI SFI Str Elg Rd +b TrCnt TrAr Lfgd

1 135 4.03 0.86 28.5 83.7 8.2 27.8 4.8 74.3 11.6 21 0.30 3
2 136 4.28 0.87 28.8 84.4 6.8 28.2 5.5 74.4 10.1 33 0.50 4
3 129 3.68 0.87 28.8 85.5 7.7 29.9 5.1 74.5 11.6 17 0.16 1

Table 8. k-means class centroids as indicative values of cotton quality classification.

Class SCI Mic Mat UHML UI SFI Str Elg Rd +b TrCnt TrAr Lfgd

1 140 3.7 0.86 26.78 83.3 8.7 27.1 4.8 73.9 12.3 27 0.41 4
2 137 4.51 0.87 28.44 85.1 6.9 27.9 5.3 73.5 10.4 35 0.34 3
3 135 4.33 0.86 30.45 84.1 6.6 26.8 5.4 73.5 10.2 25 0.43 4
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micronaire, high maturity, long staple length, high uniformity, normal short fiber fraction, normal
strength, normal elongation, high reflectance, normal yellowness, high trash particle count but very
low trash area, and average leaf grade. Internationally, this cotton qualifies for Middling to Good
Middling grading (USDA equivalent standards). These characteristics suggest that Uganda’s cotton
falls in the premium range of fibers often listed as basis for the Cotlook A’ Index computations.

The quality profile plots (Figure 6) indicate variation of quality attributes between classes. For
instance, considering AHC, class 1 is defined by the lowest values of length, uniformity index, and
elongation, and highest for short fiber index, and yellowness. Class 2 has the highest values for trash
indicators, elongation, length, micronaire and spinning consistency index; however with the lowest
yellowness and short fiber index. With k-means clustering, the trend is slightly different, with class 2
having higher spinning consistency index and trash count. Our k-means results are similar to those
obtained by Mwasiagi’s team(Mwasiagi, Wang, and Huang 2009) indicating that longer cottons often
have higher values of micronaire, maturity, spinning consistency index, strength, uniformity, elonga-
tion and reflectance, but lower values for yellowness, short fiber index and trash measurements values.

Our AHC and k-means results are slightly different, although with some similarities. This is partly
explained by the different metrics used in each method, and the nature of convergence of each
algorithm. For cotton classification, the use of AHC would be more representative, since AHC
compares each sample to all samples within the subset, linking closely related objects. On the contrary,
k-means collects objects to a nearest centre drawn by a criterion. Hence, for k-means, objects could
belong to more than one centre (class) depending on criteria, and re-allocation. Depending on
interests or preference of a cotton buyer or spinner, and different applications, cotton fiber quality
classification can also be tailored to include selected characteristics. Our suggestion for AHC over
k-means is not absolute; k-means clustering has been found exceptionally handy for a corpus of
commonsense settings and widely used applications. Many researchers have focused on increasing the
performance of the algorithm by reducing the amount of passes needed for 5-means(Bottou and
Bengio 1995). Hence, improvements have been introduced, with new derivatives for targeted applica-
tions(Bottou and Bengio 1995; Kulis and Jordan 2011). However, these methodologies often give
surmised results, with possibility of deterministic or probabilistic limits. A key preference of 5-means is
it’s convergence to a local minimum, which does not hold accurate for the estimated versions.

Conclusion

In view of the high dimensionality of HVI data, multivariate statistics are a versatile tool in mining
and analysis. PCA, AHC and k-means clustering were effectively applied to the data in question, and
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relationships were drawn among quality characteristics. Of particular importance is to use PCA
along with any of the two clustering techniques. We established that cotton from Uganda’s Eastern
region is slightly different in quality from that produced in the North and West of the country, for
the particular cotton season studied. Three unique classes of cotton quality were drawn by AHC and
k-means clustering. It is upon the relativity in application and effectiveness of computation that one
would opt for one method over the other. We assert that AHC is a better method in view of the
connectivity relationship that fixes an object to one class, for similar iterations, which is not true for
k-means clustering. Using these methods together with the USDA standards, this batch of Uganda’s
cotton can be classified as middling to Good Midlling. We also established that cotton yellowness and
short fiber index closely account for much of the variability in cotton fiber quality, and that HVI
quality parameters are less related, and are highly independent of each other. The highest correlation
(0.73) was found between cotton yellowness and short fiber index.

Our future focus is to analyse Uganda’s cotton quality data from preceding and current seasons,
for comparative purposes and to affirm findings in the regional cotton differences.
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