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ABSTRACT 

 

A common situation that occurs in everyday life is that of queuing or waiting in the line 

for services. Long queues have become a major source of concern in all service 

facilities and the most affected are the Intensive Care Units in medical facilities. This 

study is therefore a utility analysis of queuing problem at Moi Teaching and Referral 

Hospital (MTRH) Intensive Care Unit (ICU) in Kenya. The objectives were to 

determine the average time of a patient in the system, optimum number of beds required 

and establish the stability of the system using time and costs of the system. Admission 

data of ICU for six months was obtained from MTRH. Due to the nature of the problem, 

a Multi-server queuing Model (M/M/s) was used together with Improved Taguchi Loss 

Function to analyze the problem and an excel calculator was used to simulate the model 

results in five scenarios. It was found that the optimum number of beds required in the 

ICU was 13, which reduces the patient waiting time by 86.06% while server utilization 

remains good at 77%. Lastly, the stability of the system was found out to be achieved 

when the bed allocation is between 12 and 14 by using the total expected costs together 

with improved Taguchi Loss Function. Therefore, from the findings of this work, it is 

recommended that MTRH management, policy makers at county and national level and 

other health facilities with similar queuing problem improve the overall patient care by 

installing the optimum number of beds in order to meet the patient needs. The 

significance of the study is to provide sufficient information to the health service 

providers, county governments and national governments improve service delivery to 

reduce customer mortality rate.  
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CHAPTER ONE 

INTRODUCTION 

1.1 Background of the Study 

Waiting to receive service in a queue happen everywhere, it affects people in polling 

stations as they queue to vote, traffic on the road, patients in hospital, customers in 

shops, buying fuel from a petrol station, queuing on the bank Automatic Teller Machine 

(ATM) to withdraw cash, or making withdrawals or deposits in a bank that still require 

customers to queue physically. Though, currently we must appreciate the automated 

customer queuing in most banks in Kenya where customers get their number in relation 

to the type of service required and simply wait for their turn to be announced. This 

changes the bank scenario to a Multi-Phase, Multi Server queuing system. These queues 

are people lining up to be served or  are machines that are waiting to be repaired, 

Lorries lining to be loaded or unloaded, or aeroplanes waiting to take land or take off in 

a airport. (Resing, Adan and Jacques, 2015) Wrote that queuing models have many 

important application areas and some that he stated include; medical services, 

communication services, production lines, transportation networks, stocking and 

information processing services. Queuing models are mainly useful in the planning of 

these services in terms of layout, capacity and control.  

Foster., Michael & Ziya, (2010) observed that Queuing models provide solutions to 

problems of people waiting to receive service. That is why they are also particularly 

relevant in health care. Generally, they showed the applicability of modelling in health 

care service delivery. 

The first application of queuing theory, which is in fact the one that stimulated the 

development of the whole research area, was the design and analysis of telephone 
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network. In 20th century, in the early years, operators received telephone calls first 

before they connected to the person that the call was intended for, (Baun and Breuer 

2005).  He further states that, because of the diminishing demand of telephone calls due 

to the huge traffic, Erlang was tasked to provide a solution to the problem. He carried 

out experiments and later came up with a report on how to address delays problem in 

telephone calls automatic dialling. Success of his work encouraged the use of queuing 

in many other queuing problems. 

A queuing process has arrivals, service points, and customers waiting in line to be 

attended to by the service provider. The cost of ensuring quality, in the provision of 

products and services, is something that is difficult to measure. For example, the length 

of time a customer will wait in line before being served is a key measure of the quality 

perceived, and therefore a contributing factor of customer satisfaction, (Kembe, Onah 

and Iorkegh, 2012). 

According to Aronsky (2008), Emergency Department overcrowding is an international 

crisis that affects the quality of health care service. This is indeed true in that most 

hospitals offering Emergency services are overcrowded and many patients will not 

receive the service in time or may even loose life waiting. 

A study conducted by Paul and Li(2008) described that a hospital‟s efficiency in service 

provision depends on the number of available staff, availability of intact medical 

equipment‟s including operating rooms, laboratory, supplies of water, power, medical 

gases like oxygen and the state of the building. This scenario is evident in many 

hospitals which do not have enough facilities to handle all the incoming traffic.  

Obamiro (2010) studied the waiting line for expectant women in Ante natal care unit. 

The results of the study evaluated the effectiveness of a queuing model in identifying 

the shortcomings in the facilities that served the expectant mothers. The greatest 
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challenge was the waiting time of each mother to receive service depending on her time 

of arrival. 

Schoenmeyr, Dunn and Gamarnik, (2009) analysed some of the healthcare 

organizations functioning with very small differences, so decisions on compelling the 

scarce resources must be done well so that the investment will lead to the desired result. 

Queuing approach to waiting time problems is useful because it enables the research of 

future scenarios for which historical data are not applicable. Waiting times calculations 

assist in establishing the rate of service on hospital waiting lists and are a more reliable 

measure of hospital performance than the size of the waiting list. In some cases the 

patient may be removed from a waiting list and the reasons may include that they no 

longer require the procedure, are instead admitted as an emergency patient, receive their 

treatment at a different hospital. 
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1.2 Statement of the Problem 

Successful service providing entities strive to provide the best services to their 

customers while at the same time keeping their overall costs at a minimum. A service 

provider can lose a customer if the services they provide do not meet the customer‟s 

expectations. At the same time, the service provider must operate efficiently in order to 

get maximum profit. Health care facilities face similar problems. If a patient is required 

to wait for a long of time before receiving service, then the health care provider will 

eventually lose that patient to another medical provider. 

Overcrowding and congestion of patients is a common challenge in many hospitals in 

poor countries. The most affected health service facility in most hospitals is the 

Intensive care Unit (ICU). Only a few government hospitals in Kenya have the ICU 

facility and service and the cost of providing this service is very expensive. Mostly, 

critically wounded patients and those who undergo major surgeries require the service 

and this happens at any time during the day or night. A critically sick person who 

requires life supporting machines service may not wait for the service because the 

condition gets worse in every second which may lead to the death of the patient. This 

will be a big loss to the family, country and the hospital. A solution needs to be found 

that can reduce the risk associated with having to wait for service in an ICU facility. A 

very practical example is of the accident patient who had to suffer for 18 hours waiting 

for ICU service at Kenyatta National Hospital. The end result was loss of life.  Moi 

Teaching and Referral Hospital is the only public health facility serving the western part 

of Kenya and Rift Valley. The facility has only six ICU beds that are required to serve a 

third of the Kenyan population. 

The researcher therefore did utility analysis of ICU service, by using M/M/s queuing 

theory to examine the size of the queue, the cost in line waiting, the cost of service and 
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utility factor to optimize service delivery in Moi Teaching and Referral Hospital 

(MTRH) in Eldoret town. 

1.3 Objectives of the Study 

1.3.1 General Objective of the Study 

The general objective of this study was to apply a queuing theory model together with 

an Improved Taguchi Loss Function that describes the relationship between cost of 

running ICU and survival of patients to determine the optimum point which benefits 

both the hospital and the patients in Moi Teaching and Referral Hospital in Eldoret, 

Kenya. 

1.3.2 Specific Objectives  

The specific objectives of this study were to; 

i). Apply M/M/s queuing model representing the dynamics of ICU utility system to 

determine average time a patient takes in the system and the percentage of 

facility utilization. 

ii). Find the equilibrium point between patient waiting cost and service cost to 

determine the optimum number of beds required in the facility to minimize 

overall costs. 

iii). Determine the stability of the system using the M/M/s analysis of the expected 

total costs together with Improved Taguchi Loss Function in Moi Teaching and 

Referral Hospital in Eldoret, Kenya. 

1.4 Research Questions of the Study 

i). What is the average time a patient takes in the system and what is the percentage 

rate of facility utilization in the ICU as determined using M/M/s model? 
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ii). What is the equilibrium point between patient waiting cost and service cost to 

determine the optimum number of beds required in the facility? 

iii). What is the stability of the system achieved using the M/M/s analysis of the 

expected total costs with Improved Taguchi Loss Function in Moi Teaching and 

Referral Hospital in Eldoret, Kenya? 

1.5 Significance of the Study 

The study is to provide sufficient information to medical managers who make decisions 

on the use of available limited resources to improve service offered to patients and at 

the same time reduce strain to the health facility in the provision of services.  

Customer satisfaction is expected to improve after the study if managers apply these 

findings because they provides ways of minimizing the time that customers have to wait 

on the queue before being served and maximizing the utilization of the servers or 

resources. This will bring the equilibrium point between the service rate and arrival rate 

to optimize customer survival. 

The findings of the study is also a solution to the congestion problems in the hospitals 

that have ICUs by suggesting the optimum number of service facilities required at the 

minimum possible cost. 

The study again is of great benefit to the government since the mentioned benefits of the 

model to the patients and the hospital reduces mortality rate due to emergencies and life 

threatening diseases of the entire population.  

The model also provides essential information, after considering the cost of equipping 

the ICU and studying the pattern of customer arrivals to both county governments and 

National government to make budgetary allocations on the provision of satisfactory 

health services. 

Lastly the study is of great use to other researchers and academicians who will be 
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interested in this field of study. 

1.6 Theoretical Framework 

1.6.1 Queuing Theory Characteristics 

1.6.1.1 Arrival Characteristics 

 

The source of arrivals for a service facility has three characteristics. The size of the 

source population, arrival pattern of the customers to the service facility and the 

behaviour in which the customers arrive (Houda, Taoufik and Hichem, 2008). 

1.6.1.2 Size of the Calling Population 

The calling population limited or unlimited. When the number of arrivals is a small 

percentage of all the potential arrivals, the calling population is unlimited. Students 

reporting to school, cars arriving at a fuelling station and customers arriving at a 

banking facility are examples of unlimited calling population. Most facilities have 

unlimited calling population (Houda et al., 2008). 

1.6.1.3 Pattern of Arrivals at the System 

Customers arrive at a service facility randomly or in a pattern. For example, if one 

customer is arriving after every ten minutes, then the pattern of arrival is known. 

Customers can also arrive randomly. In this case, the arrival of the next customer is not 

known and each customer arrives independently. Poison distribution is frequently used 

to represent random arrivals of customers. Resing et al., (2015) said that the arrival 

process of customers is usually assumed that the inter arrival times are independent and 

have a common distribution. In many practical situations customers arrive according to 

a Poisson stream (exponential inter arrival times). Customers may arrive one by one, or 

in batches. An example of batch arrivals is the customs once at the border where travel 

documents of bus passengers have to be checked. 
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1.6.1.4 Behaviour of the Arrivals 

Customers who arrive at a service facility are assumed to wait for service without 

bulking or reneging. A customer is said to balk when the customer refuses to join a 

queue because of the length. On the other hand, a customer is said to have renege if the 

customer gets impatient while on the queue and decides to leave without getting service. 

This behaviour is common as we have often seen customers in the super markets leave 

their goods during busy days when the queue is very long without getting the service. 

Most queuing models assume that customers will join the queue and patiently wait for 

service. This is the reasons why analysis of the queue is should be done in order to 

improve customer satisfaction and reduce loss due to balking and reneging (Baun and  

Breuer, 2005). 

1.6.2. Waiting Line Characteristics 

The waiting line is the number of customers in the queue waiting for service. The length 

of the line can be unlimited or limited. A line becomes a limited queue when it is 

restricted. A good example is admitting students in a class that can only accommodate 

40 students. The admitting person is forced to send away any other student after 

receiving the required 40. Unlimited queue is a line that is allowed to grow to any 

length. Such a case can be seen on a road where any number of vehicles can pass 

without any restriction. Resing et al., (2015) state that a customer may be patient and 

willing to wait for a long time. Or customers may be impatient and leave after a while. 

For example, customers call their customer service line of a mobile call service provider 

to get assistance, the same customers will hang up when they have to wait too long 

before an operator is available, and they possibly try again after a while. But in our case, 

critically sick patients may be transferred to other facilities, others may get better and 

others may die as they wait for service which affects the waiting line. 
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1.6.2.1 Queue Discipline 

This is the rule of how customers in the line are served in a service facility. Most 

models use First in First Out (FIFO), where the first customer to arrive will be the first 

to be served. A queue in front of the checkout counter of a supermarket may serve as the 

simplest illustration for a queuing system. There is one input stream, and one server 

who serve the customers in order of their appearance at the counter. This service 

discipline, which does not admit any preferences among users, is FIFO(Baun and 

Breuer, 2005). The second discipline is serving customers in random order. For 

example, critically sick patients are allowed to be served first. Another discipline is Last 

In First Served (LIFS) also known as Last In First Out (LIFO), is common when 

materials are piled so that the items on top are used first.  Other service disciplines 

include; Hold on Line (HL) where an important customer takes the head of the queue 

immediately he arrives. Pre-emption (PR), this happens when an important customer 

arrives and it is served immediately and the customer under service returns to the queue. 

Processor Sharing (PS), all customers are served simultaneously with service rate 

inversely proportional to the number of customers (Abate, 1995).  

1.6.3. Service Facility Characteristics 

The service facility is the third part of any system that deals with queuing. Service 

systems are usually classified in terms of their number of channels, or number of 

servers, and number of phases, or number of service stops that must be made by a 

customer (Aronsky and Hoot, 2008).  

1.6.3.1 Kendall Notation 

Kendall according to Houda et al., (2008) developed a notation that has been widely 

accepted for specifying the pattern of arrivals, the service time distribution, and the 
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number of channels in a queuing model. This notation is often seen in software for 

queuing model. The basic three-symbol Kendall notation is in the form: arrival 

distribution/service time distribution and number of service channels open. Specific 

letters are used to represent probability distributions. An abridged version of this 

convention is based on the format A/B/C/D/E/F. These letters represent the following 

system characteristics: 

A = represents the inter arrival-time distribution, B = represents the service-time 

distribution. [Common symbols for A and B include M (exponential), D (constant or 

deterministic), Ek (Erlang of order k), and G(arbitrary or general)]. C or S = 

represents the number of parallel servers. D = represents the queue discipline. E = 

represents the system capacity. F = represents the size of the population. 

In our case M is used to represents the inter arrival-time distribution and the service-

time distribution while S is used to represent the number of servers (Houda et al., 2008) 

1.6.3.2Single-Channel, Single-Phase System 

This is a system with one queue and one service facility according to Aronsky and 

Hoot, (2008). A good example is a supermarket with one paying point where all 

customers queue to make payments as illustrated in Figure 1. 
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1.6.3.3Single-Channel, Multiphase System  

A food restaurant which requires you to place your order at one point, pay at a second, 

and pick up the food at a third service stop, becomes a multiphase system with a single 

channel if it has only one queue(Aronsky and Hoot, 2008).  

 

                       queue 

Arrivals          

                                                                                                                        departures  

 

1.6.3.4 Multichannel, Single-Phase System 

This system has many service facilities where a customer is served once. Many banks 

today are multichannel service systems where customers form one queue in front of the 

tellers and the first customer in the queue get served in the next available teller. With 

advance in technology, these banks are now shifting to automated queueing system.  

Airline ticket counters is also another examble of a single channel,single phase queuing 

system (Aronsky and Hoot, 2008). 
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Figure1.2Single-Channel, Multi-Phase System, Source (Author) 

Figure 1.1Single-Channel, Single-Phase System, Source (Author) 
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1.6.3.5 Multichannel, Multiphase System 

In this system, a customer can be served in any of the many service facility and 

proceeds to another queue to be served in the next service facility. A good example is a 

dinner where guests are served from many service points and with different types of 

food being served (Aronsky and Hoot, 2008). 

                       Queue 

Arrivals          

          departures 

            Phase i  phase ii 

1.6.4 Service Time 

Service time patterns are like arrival patterns of customers. They can also be either 

constant or random. The time it takes to serve a customer can be fixed or random and an 

exponential distribution is often used. Constant service time means the amount of time 

taken to serve one customer is the same to time used to serve all the other customers. 

This is the case in services using machines such as an automatic car wash. More often, 

Service 
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Service 
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Figure 1.3Multichannel, Single-Phase System, Source (Author) 

Figure 1.3Multichannel, Multiphase System, Source (Author) 
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service times are randomly distributed like serving a customer in a bank or voters in a 

polling station. Resing et al., (2015) deduces that usually we assume that the service 

times are independent and identically distributed, and that they are independent of the 

inter arrival times. For example, the service times can be deterministic or exponentially 

distributed. It can also occur that service times are dependent of the queue length. For 

example, the processing rates of the machines in a production system can be increased 

once the number of jobs waiting to be processed becomes too large. 

1.7Definition of Terms Used in the Study 

 

A model is a representation of reality using mathematical concepts and language. 

 

Queuing theory is the mathematical study of waiting lines. 

 

Utility analysis is the evaluation of the proportion of the time that service facilities are 

in use. 

Emergency medical services are immediate medical attention that patients may require 

due to an operation, accident or any other serious health condition. 

Calling Population is the population of items from which arrivals at the queuing 

system come. 

ICU bed – is a complete medical bed equipped with lifesaving machines. 

Poisson distribution is a probability distribution that is often used to describe random 

arrivals in a queue. 

Service Cost is the cost of providing a particular level of service. 

Utilization Factor is the proportion of the time that service facilities are in use. 

Waiting cost is the cost of having customers or objects waiting to be served. 

Negative Exponential Probability Distribution is a probability distribution that is 

often used to describe random service times in a service system.  
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CHAPTER TWO 

LITERATURE REVIEW 

2.1 Introduction 

This chapter presents literature that has been reviewed by the researcher on Queuing 

Theory. It shows what other researchers have done in the same area of interest to the 

researcher. 

2.2 Queuing Theory 

The study of waiting lines is a technique of quantitative analysis named as queuing 

theory which is widely used in many service facilities in making decisions (Fomundam 

and Herrmann,2007). Queuing theory is generally considered as a branch of operations 

research because the results are often used when making business decisions about the 

resources needed to provide a service.  

The study requires the analysis of parameters which manage planning and selection of 

equipment in order to decide equipment requirement (type and optimum number), 

waiting time, idle time and time spent in system. Balancing the cost of providing 

services with the costs of customer waiting is the decision problem involved here. Use 

of queuing theory in healthcare is now utilized worldwide (Gillett, 2006). Research has 

shown that queuing theory can be useful in real-world healthcare situations, and reviews 

of this work have appeared. A queue in the more exact scientific sense consists of a 

system into which there comes a stream of users who demand some capacity of the 

system over a certain time interval before they leave the system again (Baun and 

Breuer, 2005).  

A considerable body of research has shown that queuing theory can be useful in real-

world healthcare situations, and some reviews of this work have appeared. Many 
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researchers have reviewed queuing models for evaluating the impact of bed assignment 

policies on utilization, waiting time, and the probability of turning away patients. Nosek 

and Wilson (2008) reviewed the use of queuing theory in pharmacy applications with 

particular attention to improving customer satisfaction. There work mainly focused on 

the time a customer waited to be served and how to reduce the same time to a level that 

a customer got satisfied. 

Fomundam and Herrmann, (2007) described the contributions and applications of 

queuing theory in the field of healthcare. They summarized a range of queuing theory 

results in areas of waiting time and utilization analysis, system design and appointment 

system. It is abundantly clear that waiting line model has come to be used in healthcare 

system. Originally developed for analysing the telephone traffic density, waiting line 

model has now found tremendous applications in almost all the service areas such as 

ATM, Banks, Petrol pumps queues, retail shops. Queues find further applications in 

airport traffic. Here, the servers are the several landing fields available for arriving 

airplanes, while the latter are the users of the system. Obviously, there cannot be any 

queue of planes waiting in the air, so that an arriving airplane finding all landing fields 

in use needs instead to fly an extra circle around the airport and then try again for a 

possibility to land. Such a manoeuver is called a retrial, and the corresponding queuing 

model is called a retrial queue. Since with every extra circle that a plane has to perform 

its gasoline is reduced more, the priority of such an aircraft to obtain a landing 

permission is increasing and should be higher than that of more recent airplanes with 

fewer retrials. Such an influence on the service schedule is called priority queuing 

(Baun and Breuer, 2005). A study done by Green, Kolesar, and Whitt, (2007) examined 

the effectiveness of a queuing model in identifying provider staffing patterns to reduce 
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the fraction of patients who leave without being seen and their conclusion was that 

queuing models can be extremely useful in most effective allocation of staff. 

Effective resource allocation and capacity planning are determined by patient flow 

because it informs the demand for health care services (Murray, 2000). Queuing theory 

provides exact or approximate estimation of performance measures for such systems 

based upon specific probability assumptions. In a hospital, these assumptions rarely 

hold, and so results are approximated (Cochran and Bharti, 2006). 

McClain (1976) reviews research on models for evaluating the impact of bed 

assignment policies on utilization, waiting time, and the probability of turning away 

patients. Nosek and Wilson (2008) review the use of queuing theory in pharmacy 

applications with particular attention to improving customer satisfaction. Customer 

satisfaction is improved by predicting and reducing waiting times and adjusting staffing. 

Preater, (2002) presents a brief history of the use of queuing theory in healthcare and 

lists many papers that have been written on it. However, it provides no description of 

the applications or results. Green, (2006) presents the theory of queuing as applied in 

healthcare. She discusses the relationship amongst delays, utilization and the number of 

servers, the basic M/M/s model, its assumptions and extensions; and the applications of 

the theory to determine the required number of servers. For example, understanding 

how to model a multiple-server queue, could make it possible to determine how many 

servers are actually needed and at what wage in order to maximize financial efficiency. 

Or perhaps a queuing model could be used to study the lifespan of the bulbs in street 

lamps in order to better understand how frequently they need to be replaced. The 

applications of queuing theory extend well beyond waiting in line at a bank (Kembe et 

al., 2012). 
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It may take some creative thinking, but if there is any sort of scenario where time passes 

before a particular event occurs, there is probably some way to develop it into a queuing 

model. Queues are so commonplace in society that it is highly worthwhile to study 

them,  even if only to shave a few seconds off one‟s wait in the checkout line. The 

researcher agrees that queuing theory is of valuable use in evaluating health care 

facilities and will use it to solve the problem at hand. Queuing theory can be applicable 

in many real world situations. 

2.3 Model design 

Our most important objective when designing a healthcare system is reducing waiting 

times because long patient wait on the queue is undesirable. This then has led many 

researchers interested in service delivery to design a model that can determine system 

capacity based on desired system goals and requirements. The variables of interest that 

can be measured using the model are usually staffing levels, beds, or other key 

resources.  

At the Dallas bureau, statistics shows that customer waiting time for birth and death 

certificates reduces by decreasing the time required to serve each customer says (Moore, 

1977). The researcher first used queuing theory to calculate the service rate required to 

achieve a target waiting time of 15 minutes. Then this service rate is converted to the 

time required to serve one customer. The reduced time required to serve each customer 

is attained through the introduction of new equipment and more efficient processes.  

Agnihothri and Taylor (1991) investigated scheduling department that handles phone 

calls whose intensity varies throughout the day to seek the optimal staffing at the 

hospital and putting into consideration  known peak and non-peak periods of the day. 

They grouped periods that received same call intensity and determined the necessary 

staffing for each such intensity, so that staffing varies dynamically with call intensity. 
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As a result of reorganizing server capacity over time, customer waiting time reduced 

and complaints immediately reduced without an addition of staff. Green et al., (2007) 

also used the same approach and named it Stationary Independent Period by Period to 

adjust staffing in order to reduce the percentage of patients that renege. He however, 

argues that congestion starts after the arrival peak, the staffing levels should lag behind 

the service demand levels. 

2.4 Variable of Arrival Rate 

Arrival rate is the number of arrivals in any given time period of the patients requiring 

emergency service in a health facility. In our case, the arrival is random and follows the 

Poisson distribution. 

According to Karlin and McGregor (1988), the Poisson distribution was named after the 

famous French Mathematician, Simeon Denis Poisson (1781-1840) who first studied it 

in 1837. He applied it to results such as the probability of death in the Prussian army 

resulting from the kick of a horse and suicides among women and children. The Poisson 

process is considered the most “random” arrival process because of its assumption that 

the number of arrivals in any given time period, which has a Poisson distribution, is 

independent of the number in any other non-overlapping time period. 

Rosenquist, (1987) studied how an increase in patient arrival rate affected waiting times 

and queue length for an emergency radiology service. A system with congestion 

discourages arrivals. Worthington (1991) argues that increasing service capacity which 

is the traditional method of attempting to reduce long queues has little effect on queue 

length because as soon as patients realize that waiting times would reduce, the arrival 

rate increases, which increases the queue again. Many healthcare systems have a 

variable arrival rate though some models assume a constant arrival rate. In some cases, 

the arrival rate may depend upon time but be independent of the system state. For 
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example, arrivals change due to the time of day, the day of the week, or the season of 

the year. In healthcare, the Poisson process has been verified to be a good representation 

of unscheduled arrivals to various parts of the hospital including ICUs and obstetrics 

units. 

2.5 Priority Queuing Discipline 

In a grocery checkout line, any arrival is added to the end of the queue and service is not 

performed on it until all of the arrivals that came before it are served in the order they 

arrived. Although this is a very common method for queues to be handled, it is far from 

the only way. The method in which arrivals in a queue get processed is known as the 

queuing discipline Biggs (2008). This particular example outlines a First-Come-First-

Serve discipline, or an FCFS discipline. Other possible disciplines include Last-Come-

First-Served or LCFS, and Service In Random Order, or SIRO. While the particular 

discipline chosen will likely greatly affect waiting times for particular customers for 

instance nobody wants to arrive early at an LCFS discipline, the discipline generally 

doesn‟t affect important outcomes of the queue itself, since arrivals are constantly 

receiving service regardless. 

According to Biggs (2008) Elective surgery waiting lists are used to manage access to 

public hospital elective surgery services and give priority to those in most urgent need 

of care. They have become an integral feature of our health system, and allow limited 

health resources to be allocated or „rationed‟ on the basis of need. Waiting lists also 

provide health consumers with an indication of how long they can expect to wait for 

their surgery. 

Siddhartan, Jones and Johnson, (1996) proposed a priority discipline for different 

categories of patients and then a first-in-first-out discipline for each category. They 

found that the priority discipline reduces the average wait time for all patients. 
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However, while the wait time for higher priority patients reduced, lower priority 

patients endured a longer average waiting time.  

Taylor et al., (1989) modelled an emergency anaesthetic department operating with 

priority queuing discipline. They were interested in the probability that a patient would 

have to wait more than a certain amount of time to be served. Haussmann, (1970) 

investigated the relationship between the composition of prioritized queues and the 

number of nurses responding to inpatient demands. The authors found that a slight 

increase in the number of patients assigned to a nurse with a patient mix with more 

high-priority demands resulted in very large waiting times for low priority patients.  

McQuarrie, (1983) showed that it is possible, when utilization is high, to minimize 

waiting times by giving priority to clients who require shorter service times. This rule is 

a form of the shortest processing time rule that is known to minimize waiting times. It is 

rarely found in practice due to the perceived unfairness unless that class of customers is 

given a dedicated server, as in a bank with a dedicated teller to customers with bulk 

money. Worthington (1991)analysed patient transfer from outpatient physicians to 

inpatient physicians. The patient was assigned one of three priority levels. Based on the 

priority level, there was a standard time period before which a referred patient should be 

scheduled to see the inpatient physician. The model assumed sufficient in-patient 

capacity to treat the highest priority category within. All these queuing priorities are 

applicable in many situations. The researcher used FIFO discipline in the study. 

2.6 M/M/1 Model 

This is a Single Channel Queuing model with Poisson arrivals and Exponential service 

time. This is the most common case of a queuing problem which involves a single-

channel (single –server) waiting-line. In this model arrivals form a single-line to be 

served by a single server. We assume the following conditions exist in this type of 
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system: Arrivals are served on FIFO basis, and every arrival completes service 

regardless of the queue length. Arrivals are independent of other following arrivals, but 

the average number of arrivals (arrival rate) remains the same. A Poison probability 

distribution is used to describe arrivals that come from unlimited calling population. 

The time used to serve one customer is not the same to the time used to serve the next 

customer, service time of each is independent of one other, but their average time is 

used. Negative exponential probability distribution is used to describe the random 

service time (Gupta,Zoreda and Kramer, 2007). 

2.7 The M/M/s Queuing Model 

This is a system with two or more servers (channels) available to serve arriving 

customers. Customers wait for service form one single line and then go on to be served 

in any of the available server. This model assumes that arrivals follow a Poisson 

Probability distribution and that service times are exponentially distributed. Service is 

first come, first-served and other assumptions listed for the single-channel model also 

apply. Waiting-line models are useful in both manufacturing and service facilities. 

Analysis of queues in terms of waiting-line length, average waiting time, and other 

factors helps us to understand service systems and provide ways of improving their 

performances (Gupta, 2007). 

Foster et al., (2010) observed that Queuing models are useful in that they provide 

solutions to problems of waiting that are particularly relevant in health care. More 

generally, they illustrate the strengths of modelling in health care research and service 

delivery. 

The Multi Server queuing model (M/M/s) is deduced from the Karlin and McGregor 

(1988) representation for the transition probabilities. This representation allows us to 

study the arrival of patients, the queue length, the waiting in line cost and service cost. 
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These then enabled us to determine the equilibrium to optimize service and reduce 

costs.  

Kembe et al., (2012) analysed the queuing characteristics at the Riverside Specialist 

Clinic of the Federal Medical Centre, Makurdi using a Multi-server queuing Model and 

determined the Waiting and service Costs with a view to determining the optimal 

service level. The results of the analysis showed that average queue length, waiting time 

of patients as well as overutilization of doctors could be reduced when the service 

capacity level of doctors at the Clinic is increased from ten to twelve at a minimum total 

costs which include waiting and service costs. The most common objectives of studies 

on the clinics have included the reduction of patient‟s time in the system (outpatient 

clinic), improvement on customer service, better resource utilization, and reduction of 

operating costs (Gorunescu, McClean and Millard, 2002). Analysis in such cases 

involves, in depth analysis of the patients arrival and flow, structure of the system, 

manpower characteristics and the scheduling system. Appropriate queuing models are 

then developed and applied for process modifications, appropriate staffing, scheduling 

or facility changes. The M/M/s model therefore is the best placed queuing model to be 

used in this study based on the objectives. 

McClain (1976) reviewed research on models for evaluating the impact of bed 

assignment policies on utilization, waiting time, and the probability of turning away 

patients. Nosek (2008) reviewed the use of queuing theory in pharmacy application with 

particular attention to improving customer satisfaction. Customer satisfaction is 

improved by predicting and reducing waiting times and adjusting staffing. Resing et al., 

(2015) Proposes an incremental analysis approach in which the cost of an additional bed 

is compared with the benefits it generates .Beds are added until the increase cost equal 

the benefits.  
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Shimshak, Gropp and Burden,(1981) considered a pharmacy queuing system with pre-

emptive service priority discipline where the arrival of a prescription order suspends the 

processing of lower priority prescriptions. Different costs are assigned to wait-times for 

prescriptions of different priorities.  

Gupta el (2007) chose the number of messengers required to transport patients or 

specimens in a hospital by assigning costs to the messenger and to the time during 

which a request is in queue. The author also calculated the number of servers required 

so that a given percentage of requests do not exceed a given wait time and the average 

number of patients in queue do not exceed a given threshold.  

2.8 Spread Sheet Simulation 

Spread sheets and software tools based on queuing theory research can automate the 

necessary calculations. For example, Albin, Barrett, Ito and Mueller, (1990) use the 

QNA software, which calculates the time that patients are in a multi-node network, 

server utilization, the mean and variance of the number of customers at each node, the 

mean and variance of waiting time at each node, the mean and variance of the number 

of customers in the network, and the proportion of customers at each node that arrived 

from other nodes.  

However, discrete-event simulation permits modelling the details of complex patient 

flows. Jacobson, Hall and Swisher, (2006) present a list of steps that must be done 

carefully to model each healthcare scenario successfully using simulation and warn 

about the slim margins of tolerable error and the effects of such errors in lost lives. 

Tucker, Barone, Cecere, Blabey and Rha(1999) and Kao and Tung (1981) used 

simulation to validate, refine or otherwise complement the results obtained by queuing 

theory. Albin et al., (1990) show how one can use queuing theory for get approximate 
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results and then use simulation models to refine them. We will not explore simulation 

studies further in this work.  

2.9 The Waiting in Line Cost and the Service Cost 

Resing et al., (2015) stated that in general we do not like to wait, but reduction of the 

waiting time usually requires extra investments. To decide whether or not to invest, it is 

important to know the effect of the investment on the waiting time. So we need models 

and techniques to analyse such situations. 

Young (1962) proposes an incremental analysis approach in which the cost of an 

additional bed is compared with the benefits it generates. Beds are added until the 

increased cost equals the benefits. Whilst much literature is devoted to the analysis of 

service systems with constant mean arrival and service rates. Green et al., (2007) state 

that most actual systems today are subject to time-varying demand, where arrival rates 

and the number of servers vary throughout the period of operation. In subsequent years 

and decades, research interest in healthcare modelling through queuing theory has 

developed and there now exist a multitude of studies. There are nine performance 

measures in queuing system which are queue length, loss probability, waiting times, 

system time, work load, age process, busy periods, idle period and departure times 

(Alfa, 2010). Among those performances, the waiting time is the most used measure of 

system performance by customers. According to Alfa (2010) the longer the waiting 

time, the worse is the perception of the level quality from a customer‟s point of view. 

Hence, waiting time is a determinant of customer satisfaction (Gillett, 2006). The longer 

their waiting time the more they will be dissatisfied. 

Customer satisfaction is improved by predicting and reducing waiting times and 

adjusting staffing levels. The waiting in line cost and the service cost are the utility 
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parameters that any researcher using quantitative analysis needs to analyse in order to 

improve service offered. 

2.10 Utility Factor and Optimal Service Cost 

This section is an overview of research into using queuing theory as an analytical tool to 

predict how particular healthcare configurations affect delay in patient service and 

healthcare resource utilization with the associated costs. 

Singh (2006) found that the queuing theory in healthcare organizations is very 

beneficial. He used Queuing model to achieve a balance or trade-off between capacity 

and services delays & used the POM-QM Software for to demonstrate it. In his study, 

Ahmed (2003) found that the accident & emergency department is the dedicated area in 

a hospital that is organized and administered to provide a high standard of emergency 

care to those in community who perceived the need for or in need of acute or urgent 

care including hospitals admission. 

Fomundam and Herrmann, (2007) summarized a range of queuing theory results in the 

following areas: waiting time and utilization analysis, system design, and appointment 

systems. Their goal was to provide sufficient information to analysts who were 

interested in using queuing theory to model a healthcare process and who wanted to 

locate the details of relevant models. An important example of such a system is an 

emergency department. Broyles and Cochran (2007) calculated the percentage of 

patients who leave an emergency department without getting help using arrival rate, 

service rate, utilization and capacity. From these percentages, they determine the 

resulting revenue loss. Therefore waiting time and utilization analysis in a queuing 

system aims at minimizing the time that customers have to wait and maximizing the 

utilization of the servers or other resources like doctors, ICU beds, and machines in 

order to reduce overall costs. 
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2.11 Minimizing Costs 

Determining server capacity by minimizing the costs in a healthcare queuing system is a 

special case of system design. Most of the research assigns costs to patient waiting time 

and to each server. After modelling the system using queuing theory, minimizing costs 

reduces to an exercise of finding the resource allocation that costs the least or generates 

the most profit.  

Keller and Laughhunn (1993) set out to determine the capacity with minimal costs 

required to serve patients at the Duke University medical centre. They find that the 

current capacity is good but needs to be redistributed in time to accommodate patient 

arrival patterns.  

Young (1962) proposes an incremental analysis approach in which the cost of an 

additional bed is compared with the benefits it generates. Beds are added until the 

increased cost equals the benefits.  

Shimshak et al., (1981) consider a pharmacy queuing system with pre-emptive service 

priority discipline where the arrival of a prescription order suspends the processing of 

lower priority prescriptions. Different costs are assigned to wait-times for prescriptions 

of different priorities.  

Gupta et al., (2007) choose the number of messengers required to transport patients or 

specimens in a hospital by assigning costs to the messenger and to the time during 

which a request is in queue. In this problem, non-routine requests are superimposed on 

top of routine, scheduled requests. The authors also calculate the number of servers 

required so that a given percentage of requests do not exceed a given wait time and the 

average number of patients in the queue do not exceed a given threshold.  

Assuming a phase-type service distribution, Gorunescu et al., (2002) assign costs based 

on a base stock inventory policy. In this pure loss model, there is a holding cost 
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associated with an empty bed, a penalty cost associated with each patient turned away, 

and a profit assigned to each day a bed is occupied.  

Khan and Callahan (1993) used advertisement in their model to control the demand for 

laboratory services. They determined the number of clients that would maximize profits 

for each staffing. The staffing level with maximum profits was chosen and was applied 

the necessary amount of advertising that would attract the desired number of clients. 

The model assumes that clients would leave without service if they wait above a certain 

amount of time.  

Rosenquist (1987) chooses staffing capacity in an outpatient radiology service with a 

limited waiting area by minimizing cost. He suggests scheduling patients when possible 

and segregating patients based on expected examination duration. Such measures would 

reduce variability and decrease expected waiting times.  

Gorunescu et al., (2002) use backup beds (only staffed during peak demand) to reduce 

the probability of patient turn-away at a marginal cost. The model assumes a phase-type 

service distribution. 

2.12 Optimizing Customer Survival 

Gorunescu et al., (2002) developed a queuing model for the movement of patients 

through a hospital department. Performance measures, such as mean bed occupancy and 

the probability of rejecting an arriving patient due to hospital overcrowding, are 

computed. These quantities enable hospital managers to determine the number of beds 

needed in order to keep the fraction of delays under a threshold, and also to optimize the 

average cost per day by balancing the costs of empty beds against those of delayed 

patients. This ensures that patients are served and their survival rate is increased. 

McManus, Long, Cooper and Litvack,(2004) presented a medical-surgical Intensive 

Care Unit where critically ill patients cannot be put in a queue and had to be turned 
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away when the facility was fully occupied. This is a special case, where the queue 

length cannot be greater than zero, which is called a pure loss model. Green, (2006) 

applied queuing models to determine the number of nurses needed in a medical ward. 

They are relying on queuing models such as Erlang-C and loss systems, to recommend 

bed allocation strategies for hospital wards. Green et al., (2007) survey and develop 

time-varying queuing networks that help determine the number of physicians and nurses 

required in an emergency department. If the performance of service provider falls 

significantly below customer‟s expectations, they will be dissatisfied. Some costs are 

incurred when service level is too low and a customer becomes dissatisfied. A low level 

of service may incur high cost of quality loss. Whereas, a high level of service will 

increase investment cost to maintain the process control, improve the process, or 

operator training (Plante, 2000). 

The main interest of these researchers was to increase patient survival in emergency 

departments. In recent years, however, queuing models have been developed and used 

in studying multi-facility interactions and their results have positively affected the 

management of service facilities towards optimizing customer survival. 

2.13Taguchi Loss Function 

 The Taguchi Loss Function (TLF) was derived by Genichi Taguchi in the late 1950s in 

Japan. Previous quality models had argued that no cost to the organization or the 

consumer was incurred unless the product went beyond its upper or lower specification 

limits. As analysed by (Gillett, 2006) the cost of a dissatisfied customer is not 

negligible, they described Waiting in line is a primary source of dissatisfaction. They 

mentioned that a well-known queuing theories and integrating theory behind the 

Taguchi Loss Function, a manager can derive the costs associated with this 

dissatisfaction & that customer dissatisfaction is not just an issue at the upper 
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specification limit, but rather for each moment in time beyond the targeted wait time. 

They illustrated by using the Taguchi Function, it can then be seen that these costs 

increase beyond the upper specification limit. However, by assessing these costs and 

then taking measures to reduce either the actual or perceived waiting times, 

organizations can quantitatively determine the cost-benefit relationship of improved 

waiting lines. Taguchi (1986) state that, the Taguchi Loss Function approach demon-

strates how reducing variation reduces costs even if all outcomes meet specification. 

Taguchi‟s concepts led to the development of the most complete definition of quality. 

All characteristics should have minimum, stable variation around an optimum value. 

With his loss function concept, Taguchi was able to demonstrate that reducing variation 

below specifications was the best economic alternative. 

At the time of the industrial revolution when the first attempts to make interchangeable 

parts were underway, one breakthrough was the invention of go and no-go gauges. For 

instance, testing the diameter of an axle might be done with two rings of steel, one 

slightly smaller than the other. The larger go gauge must fit over the axle, the smaller 

no-go gauge must not. This breakthrough made possible the manufacture of components 

in locations far removed from the point of assembly and is a cornerstone of mass 

production (Gillett, 2006). Soon afterwards, the concept of specifications (or tolerances) 

was developed. It was at this point that the first definition of quality developed:  All 

characteristics must remain within the go, no-go specifications. This is the well-known 

“goal post” approach to quality. Providing all outcomes stayed between the goal posts 

(the specifications), all was well. Often pharmaceutical organizations believe that if a 

result meets specification, not only does nothing more need to be said about it, but also 

nothing more should be said about it. Ignoring the variation in a key characteristic 

because it meets specification can be a terrible but all-too-common mistake. Gillett 
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(2006) stated that Taguchi followed and enhanced this line of thinking. He defined the 

cost of poor quality as the total loss incurred by society due to variation and poor 

quality. Taguchi was passionate about quality to the point where he claimed that the 

manufacturer of poor quality (with particular reference to rework and rejects) was far 

worse than a thief. When a thief steals $100 from a neighbour, he has gained and his 

neighbour has lost, but the net economic impact in the society is nil. Regardless of who 

holds it, the $100 will still be invested or spent on goods and services. However, if a 

manufacturer throws away $100 in rejects and rework, the cost of wasted resources can 

never be recovered by either the service provider or by society (Gillett, 2006). In 

addition, a process with high levels of variation in process flow will have lower 

throughput that would be the case if the variation in process flow was lower. The differ-

ence in throughput translates directly into unit costs. Higher variation in process flow 

costs money. This loss is permanent.  

To begin with, the theory that design engineers, chemists, and biologists strongly dislike 

variation is a useful way to introduce the Taguchi Loss Function. They always prefer 

perfect precision and have the best value in mind. However, all scientists understand 

that perfection cannot be easily achieved in practical situation.(Gillett, 2006), put it  that 

just like any other service provider, health care providers are the same in that their 

concerns is aimed at providing quality care to their patients while being aware of cost of 

offering the service. The trick is, if patients feel they have not been treated well and that 

they are not getting the level of care deserved, they could move out and seek out other 

health care providers. By minimizing the waiting time, to an acceptable duration, the 

risk of losing a patient is minimized. The operating cost in every service facility is also 

of interest to the health care provider. The number of servers available to serve patients 

in the facility directly translates to the amount of waiting time and operating cost. 
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Godfrey, (1992) proposed that this the technique used in manufacturing environments 

be applied to health care problems. He argued that just as the loss function technique 

helped improve manufactured components, health care providers can also benefit from 

employing the technique. He compared the two types of situations to show that this 

method can be applied in the health care setting. 

Some researchers have applied Taguchi‟s methods to health care scenarios in the past 

using single server channels  to study the factors affecting a patient‟s length of stay in 

an Emergency Department (ED). Rinderer (1996) applied Taguchi‟s design of 

experiments methodology in an emergency medical department to determine the most 

significant effects on loss of service in an attempt to reduce the performance measure. 

He significantly cited eleven factors in the study, the three factors that stood out 

distinctively on the response of the loss of service were found to be having a dedicated 

laboratory staff, having an extra physician in the ED and implementing an auto-hold 

policy where a patient could be held for a while as the management try to contact his or 

her private physician. The number of beds, physician or resources available to serve 

patients directly affects the amount of time a patient spends in a health care facility. 

This then prompts the use of Taguchi Loss Function together with queuing theory as a 

tool to determine these times and queue lengths to arrive at an optimum service level 

agreeable to both parties (Gillett, 2006). 
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CHAPTER THREE 

MATERIALS AND METHODS 

3.1 Introduction 

This chapter gives an over view of the methodology that was employed in this study and 

the model that was used to calculate the parameters necessary to solve the problem at 

hand. Data for six months was requested and obtained from Moi Teaching and Referral 

Hospital (MTRH) and the M/M/s model was used to calculate the parameters and 

spreadsheet software was used to simulate the data. An improved Taguchi Loss was 

then used to determine the stability of the system. 

3.2General Model Characteristics and Assumptions 

MTRH is a level five hospital serving more than 10 counties. The neighboring health 

facility of the same standards is Kenyatta National Hospital in Nairobi, which implies 

that the calling population is infinite. Despite the presence of competing hospitals in its 

proximity, the provision of emergency services which require ICU facilities is solely in 

MTRH except for isolated cases. The following assumptions were made for the queuing 

system at MTRH which is in accordance with the queuing theory. They are; 

i) Arrivals follow a Poisson probability distribution at an average rate of  

   customers (patients) per unit of time.  

ii) The queue discipline is First-Come, First-Served (FCFS) basis by any of the 

servers and there is no balking or reneging. There is minimal priority 

classification for some extremely critical arrivals but not significantly 

affecting the services.  

iii) Service times are distributed exponentially, with an average of μ patients per 

unit of time.  
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iv) There is no limit to the number of the queue (infinite).  

v) The service providers are working at their full capacity.  

vi) The average arrival rate is greater than average service rate. This is 

necessary to create a queue.  

vii) Servers here represent doctors, beds, theatre, ICU equipment and other 

medical personnel necessary to provide full services to the ICU patients.  

viii) Service rate is independent of line length; service providers do not go faster 

because the line is longer.  

A model satisfying the above assumptions has the capacity to capture all the parameters 

that involve a multi-channel server system, where clients are served in a parallel server 

system. The waiting customers in a queue can be fully served if they are attended by 

any one of the available servers.  This model could apply to many qualitative analyses 

of different situations. Some of the physical examples that apply include, a mobile 

phone provider customer care or an operator help desk, where the time on hold on the 

phone would represent the time in queue; and the queue length would be the number of 

calls that the system will accept and put on hold before giving a busy signal on the 

caller's mobile phone or playing a recorded message asking the caller to hang up and try 

again later. Also in an hospital setting, the ICU admission desk, the time waiting for a 

bed after a request represent the time in queue and the queue length would be the 

number of requests waiting for service. This can also apply to a retail store, where 

customers wait to be served over a counter with many cashiers.  With these conditions, 

the most appropriate model adopted for this work is the Multi-server Queuing model 

(M/M/s)that can capture the dynamics of an emergency medical service with respect to 

utility of ICU resources. 
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3.3 Model Flow Chart 

Following the characteristics of the hospital emergency service, and the assumptions of 

the model, the following flow chart represents the flow of patients in the queuing 

system. The system is illustrated to include 𝑠 servers, one queue and a general ward 

facility for recuperating patients. In this study, the patients either admitted directly to the 

general ward are not considered to be in the queue, and those discharged from ICU are 

assumed to have left the system. Also, in case a patient admitted in the general ward 

becomes seriously sick and require ICU services, it is assumed that the patient will join 

the queue for the services. Patients in the queue are not necessarily waiting in the bench, 

but could be admitted in the general ward as they wait for space in the ICU facility. 

 

   

                         Queue 

Arrivals                                 

departures  

            

 

3.4 Development of M/M/1Model Equations 

Before the performance measures of the service facility are worked out using M/M/s 

model, the assumptions and formulas of M/M/1 model are first presented that lead to the 

target model considering that the starting point is one service facility that will 

eventually give way to calculating parameters of more than one service facilities. 

ICU  

Bed 

 

ICU  

Bed 

ICU  
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Figure 3.1Multichannel, Single-Phase System, Source (Author, 2018) 
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For this model, a systematic approach to determine important parameters of 

performance is presented in the service system. After calculating these numeric 

measures, it then becomes possible to add in cost data obtained from the model and use 

them to make decisions that balance desirable service levels with waiting line and 

service costs. 

3.4.1Assumptions of the M/M/1Model 

The assumptions of this model are; arrivals are served on a First-In, First-Out (FIFO) 

basis, and every arrival waits to be served  regardless of the length of the line or queue, 

also arrivals are independent of preceding arrivals, but the average number of arrivals 

(arrival rate) does not change over time. It is also assumed that arrivals are described by 

a Poisson probability distribution and come from an infinite or a very large population. 

Also service times vary from one customer to the next and are independent of one 

another, but their average rate is known and service times occur according to the 

negative exponential probability distribution. Lastly the service rate is faster than the 

arrival rate (Gupta, 2007). 

3.4.2M/M/1 Queuing Equations 

To determine the properties of this single channel, you find an expression that 

represents the probability of   customers in the system at time 𝑡 represented by   (𝑡). 

But you shall first find the value for   (𝑡  𝑡 )   

The probability of   customers in the system at time 𝑡   𝑡 can be determined by 

summing up probabilities of all the ways this event could occur. The event can occur in 

four mutually exclusive ways (Gupta, 2007). 
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Table3.1Probability of n Customers in the System at Time t+dt 

Event Number of 

units at time 𝑡 

Number of 

arrivals in time 

 𝑡 

Number of 

services in time 

 𝑡 

Number of units 

in time 𝑡   𝑡 

1 

2 

3 

4 

n 

    

    

  

0 

0 

1 

1 

0 

1 

0 

1 

  

  

  

  
 

 

Now we compute the probability of occurrence of each of the events, noting that the 

probability of a service or arrival is   𝑡or   𝑡and ( 𝑡)2 →0 

Probability of event   1 = Probability of having  units at time 𝑡 

 × Probability of no arrivals 

× Probability of no services 

       (𝑡) (    𝑡)(    𝑡) 

       (𝑡)      𝑡    𝑡 +     ( 𝑡)2] 

       (𝑡)      𝑡    𝑡] 

Similarly Probability of event 2     : (𝑡) (    𝑡) (  𝑡) 

         : (𝑡) (  𝑡), 

Probability of event 3       ; (𝑡)    𝑡] (    𝑡) 

         ; (𝑡)   𝑡]  

Probability of event 4       (𝑡) (  𝑡)(    𝑡) 

         (𝑡)         ( 𝑡)2]     

Note that other events are notpossible because of the small value of 𝑡that causes ( 𝑡)2

 to approach zero, as in event 4. 

Since one and only one of the above events can happen, we can obtain    (𝑡   𝑡), 

where  ( >  ) by adding probabilities of above four events 
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⸫   (𝑡   𝑡) =   (𝑡)      𝑡    𝑡] +    : (𝑡) (  𝑡) +    ; (𝑡)   𝑡]+ 0 

 =  (   )     (𝑡)        : (𝑡)      ; (𝑡)   

Taking the limit when  𝑡   , weget the following differential equation  which 

givesthe relationship between      ; (𝑡)   : (𝑡) at any time 𝑡, mean arrival rate 

 and mean service rate µ; 

 
𝑑 

𝑑𝑡
  (𝑡)      ; (𝑡)        : (𝑡)    (   )  (𝑡)  where            (3.1) 

After solving for    (𝑡   𝑡) where   >  , it is necessary  to solve for   (𝑡   𝑡)  

when    . 

In this case,only two mutually exclusive and exhaustive events can occur as shown 

below         

Table 3.2   (𝑡   𝑡)  when    . 

Event Number of 

units at time 𝑡 

Number of 

arrivals in time  𝑡 

Number of services 

in time  𝑡 

Number of units 

in time 𝑡   𝑡 

1 

2 

0 

1 

0 

0 

- 

1 

0 

0 

 

Probability of event 1   = Probability of having no unit at time 𝑡 

 × Probability of no arrivals 

× Probability of no services 

       (𝑡)  ×  (    𝑡)  ×   

Probability of event 1   = Probability of having one unit at time 𝑡 

 × Probability of no arrivals 

× Probability of one service 

       (𝑡)  ×  (    𝑡)  ×    𝑡 
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Taking note thatif there is no unit in the system, the probability of no service would be 

1, then the probability of having no unit in the system at time 𝑡   𝑡  is given by 

summing up the probabilities of above two events. 

  (𝑡   𝑡)      (𝑡)    (    𝑡)     (𝑡) (   𝑡) (    𝑡) 

        (𝑡)      (𝑡). 

When  𝑡   , the differential equation which gives the relationship between    and    

at any time 𝑡, mean arrival rate  and mean service rate µ; 

 
𝑑 

𝑑𝑡
     (𝑡)]       (𝑡)      (𝑡)  where        (3.2) 

Equetions (3.1) and (3.2) provide relationships involving the probability density 

function   (𝑡)for all values of   but still we do not know the value of   (𝑡). 

Assuming that the steady condition of the system is when the probability of having no 

customers in the system is independent of time, then 

  (𝑡)    ,   
𝑑

𝑑𝑡
   (𝑡)]      

Therefore, for a steady state system, the differential equations (3.1) and (3.2) reduce to 

difference equations (3.3) and (3.4) below; 

         ;       :   (   )  , where  >   (3.3) 

              where    .   (3.4) 

From equation (3.4), we get;    = 
 

𝜇
       

Putting     in equation (3.3), we get 

       (   )     2    

Or     (   )
 

𝜇
     2    

  Or  
  

𝜇
     2    

Or  2  (
 

𝜇
)
2
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similarly, putting   2 in equation (3.3), we get     

    3  (
 

𝜇
)
3

         

In general,      (
 

𝜇
)
 

  𝑓𝑜𝑟  >     (3.5)   

Now the other properties of the single - channel system can be found out as follows; 

Expected (average) number of customers in the system, 

 𝑠  (  
 

𝜇
) *

 𝜇⁄

( ; 𝜇⁄ ) 
+ =  

 𝜇⁄

 ; 𝜇⁄
 =  

 

𝜇; 
  (3.6)  

Expected (average) number of customers waiting in the queue, 

    𝑠   𝑣 𝑟     𝑢   𝑟       𝑠 𝑟𝑣   

     𝑠  
 

𝜇
   

 

𝜇; 
 

 

𝜇
  

 

𝜇
 

 

𝜇; 
   (3.7)   

Average time a customer spends in the system queue is, 

    
  

 
 

 

(𝜇; ) 
 = 

 

𝜇; 
      (3.8)   

Average waiting time of a customer in the, 

        
 

𝜇
 , = 

 

𝜇; 
 

 

𝜇
 =  

 

𝜇
 

 

𝜇; 
     (3.9)  

While the facility Utilization rate is given by,  

   
 

𝜇
         (3.10)   

3.5 The M/M/s Model Application  

This is a single channel, multi-server model with patient arrival rate and service rate per 

hour. For this queuing model, it is assumed that the arrivals follow a Poisson probability 

distribution at an average rate of   patients per unit of time. It is also assumed that they 

are served on a First-Come, First-Served (FCFS) basis by any of the servers (in these 

case ICU beds). The service times are distributed exponentially, with an average service 

rate of   patients per unit time with 𝑠number of servers. Customers are served in order 
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of arrival. We suppose that the occupation rate per server is smaller than one (Resinget 

al., 2015).  
 

𝑠𝜇
     

If there are   patients in the queuing system at any point in time, then the following two 

cases may arise: Case one is if   𝑠, then there will be no queue. However, (𝑠–  ) 

number of servers will not be busy. Case two is if the number of customers in the 

system is more than or equal to the number of servers   𝑠 then all servers will be 

busy and the maximum number of customers in the queue will be (  –  𝑠)   If    is the 

probability that there are no customers (patients) in the system,    the probability of n 

customers in the system,     expected number of customers in the queue,  𝑠expected 

number of customers in the system,   expected time a customer (patient) spends in the 

queue,  𝑠 expected time a customer (patient) spend in the system, then; 

   𝑡 isprobability that an arrival enters the system between time𝑡 and time𝑡  

 𝑡interval and     𝑡is probability that no arrival enters the system within interval 

𝑡 𝑡    𝑡. 

   𝑡 is the probability of one service completion between 𝑡 and 𝑡   𝑡 time 

interval. 

Using   : (𝑡);         2 … as the transient state probability of exactly    customers 

in the system at time 𝑡  assuming the system started its operation at time zero and 

  : (𝑡   𝑡);         2 …. at time 𝑡   𝑡, the properties of the Multi-channel model, 

it‟s necessary to find an expression for the probability of    customers in the system at 

time 𝑡. This can happen in three ways, namely when         𝑠    and   𝑠  

 . 

There will be three cases in this system. 

       (        ) : 
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Let us first find   (𝑡   𝑡). This event can only occur in two exclusive and exhaustive 

ways: 

Table 3.3Probability of n Customers in the System at Time t when n=0 

Event Number of 

units at time 𝑡 

Number of arrivals 

in time  𝑡 

Number of 

services in time  𝑡 

Number of units 

in time 𝑡   𝑡 

1 

2 

0 

1 

0 

0 

- 

1 

0 

0 

 

  (𝑡   𝑡)     (𝑡) (    𝑡)     (𝑡)  (    𝑡)  (  𝑡)    

=   (𝑡)     (𝑡)   𝑡    (𝑡) (  𝑡)     (𝑡)   ( 𝑡)2 

Noting that  𝑡2 and ( 𝑡)2    , we get, 

    =   (𝑡)     (𝑡)   𝑡    (𝑡) (  𝑡) 

  
  (𝑡:𝑑𝑡);   (𝑡)

𝑑𝑡
 =    (𝑡)       (𝑡)  

Taking the limit    𝑡    
𝑑

𝑑𝑡
   (𝑡)]     (𝑡)     (𝑡)   

Considering the steady state system,            

  = 
 

𝜇
     (3.11)   

       (            ) :  

When   lies between       𝑠     all customers arriving will be immediately served 

and   channels out of 𝑠 will be busy. Let us first find   (𝑡   𝑡). This event can occur 

in three exclusive and exhaustive ways. 

Table3.4Probabilities of n Customers in the System at Time t when 1 ≤ n ≤ s-1 

Event Number of 

units at time 𝑡 

Number of arrivals 

in time  𝑡 

Number of services 

in time  𝑡 

Number of units in 

time 𝑡   𝑡 

1 

2 

3 

n 

n-1 

n+1 

0 

1 

0 

0 

0 

1 

N 

n 

n 
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  (𝑡   𝑡)  

   (𝑡) (    𝑡)(     𝑡)+  ; (𝑡)   𝑡    (   )  𝑡]+  : (𝑡) (  

  𝑡)  (   )  𝑡].       

 =  (𝑡)   (    ) 𝑡]     ; (𝑡)   𝑡    : (𝑡) (   )  𝑡 

  (𝑡:𝑑𝑡);   (𝑡)

𝑑𝑡
 =  (    )  (𝑡)     ; (𝑡)  (   )    : (𝑡)   

Considering the steady state system,  

   ;  (    )   (   )   :    𝑓𝑜𝑟     𝑠     (3.12) 

Now equation (3.11) gives    = 
 

𝜇
        

Putting     in equation (3.12)  , we get 

       (   )   2  2    

     (   )
 

𝜇
   2  2    

    
  

𝜇
   2  2    

    2  
 

2
(

 

𝜇
)
2

   
 

2!
(

 

𝜇
)
2

       

similarly, putting   2 in equation (3.12), we get     

    3  
 

3!
(

 

𝜇
)
3

        

  in general,    
 

 !
(

 

𝜇
)
 

  𝑓𝑜𝑟     𝑠     (3.13)   

Case 3 (when n  ) 

When   𝑠     substituting it in equation (3.12), we get 

    𝑠;2  (  𝑠   ) ) 𝑠;  𝑠  𝑠:       

   𝑠  
 

𝑠𝜇
   (𝑠   ) ] 𝑠;  

 

𝑠𝜇
 𝑠;2   (3.14)   

Now from equation (3.15), 
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   𝑠;  
 

(𝑠; )!
(

 

𝜇
)

𝑠; 

   

and   𝑠;2  
 

(𝑠;2)!
(

 

𝜇
)

𝑠;2

         

From equation (3.14), 

  𝑠  
 

𝑠𝜇
   (𝑠   ) ]

 

(𝑠; )!
(

 

𝜇
)

𝑠; 

   
 

(𝑠;2)!
(

 

𝜇
)

𝑠;2

  (3.17) 

      =
 

𝑠𝜇

 

(𝑠; )!
(

 

𝜇
)

𝑠; 

   
(𝑠; )𝜇

𝑠𝜇(𝑠; )!
(

 

𝜇
)

𝑠; 

    
 

𝑠𝜇
 

 

(𝑠;2)!
(

 

𝜇
)

𝑠;2

    

      =
 

𝑠!
(

 

𝜇
)

𝑠

    
 

𝑠𝜇
 

 

(𝑠;2)!
(

 

𝜇
)

𝑠;2

    
 

𝑠𝜇
 

 

(𝑠;2)!
(

 

𝜇
)

𝑠;2

     

      =
 

𝑠!
(

 

𝜇
)

𝑠

           

Similarly, when   𝑠   , substituting in equation (3.12) and simplifying, we get 

   𝑠:  
 

𝑠𝜇
  𝑠  

 

𝑠𝜇
 
( 𝜇⁄ )𝑠

𝑠!
   

 

𝑠 𝑠!
(

 

𝜇
)

𝑠: 

      

   𝑠:2  
 

𝑠  𝑠!
(

 

𝜇
)

𝑠:2

         

In general      
 

𝑠 −𝑠 𝑠!
(

 

𝜇
)
 

   , for n 𝑠  (3.15) 

We now need to find the value of    in terms of𝑠      . Then the values of          

can be used to develop the other equations. 

To find the value of     we use the relation; 

∑        
 ;         

∑      ∑        
 <𝑠

𝑠; 
 ;        

 ∑
 

 !

𝑠; 
 ; (

 

𝜇
)
 

    ∑
 

𝑠 −𝑠 𝑠!
 
 ;𝑠 (

 

𝜇
)
 

          

   *∑
 

 !

𝑠; 
 < (

 

𝜇
)
 

 ∑
𝑠𝑠

𝑠 𝑠!
 
 <𝑠 (

 

𝜇
)
 

+ = 1     

   *∑
( 𝜇⁄ ) 

 !

𝑠; 
 <  

𝑠𝑠

𝑠!
∑ 𝑥 (

 

𝜇
)
 

 
 <𝑠 + = 1      

   [∑
( 𝜇⁄ ) 

 !

𝑠; 
 <  

𝑠𝑠

𝑠!
{(

 

𝑠𝜇
)

𝑠

 (
 

𝑠𝜇
)

𝑠: 

 (
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Now the other properties of the multi-channel system can be found out. 

The expected (average) number of customers in the system denoted by  𝑠will be, 
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while the expected (average) number of customers waiting in the queue    is, 
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In order to check the survival of patients, the necessary parameter, is the average time a 

customer spends in the system defined as, 
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Before a patient is served, the patient is expected to wait in the queue defined as, 
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with the chances of having to wait given by the proportion defined in form of a 

probability as;  (  𝑠)   
𝜇 (

 

 
)
𝑠
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         (3.21) 

The utilization factor (ρ).The fraction of time when beds are occupied  

      
 

µ𝑠
      (3.22) 
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There are very slim chances that a patient arrives and finds no queue. This happens 

when the service rate   is faster than the arrival rate . The interpretation of this in the 

physical situation is that the ICU is idle, thus will have a cost impact to the facility. The 

chances of a customer or a patient to enter the service without waiting is given by  

 (  𝑠). 

The analysis of parameters used to check the minimum number of servers necessary to 

meet the requirements of the patients without idle servers is obtained from the average 

number of idle servers given by𝑠. 

The utilization rate of the servers is defined by    
 

𝑠𝜇
 and thus the efficiency of 

M/M/s model is obtained from the ratio, 

     
 𝑣       𝑢         𝑢𝑠𝑡    𝑠 𝑠  𝑣 𝑑

𝑡 𝑡    𝑢         𝑢𝑠𝑡    𝑠
   

3.6 Calculating Costs in the Model 

The cost of quality, as related to both the product and the service, is often difficult to 

measure. Obviously, some costs are incurred when a customer becomes dissatisfied. 

However because these costs are not readily quantifiable, sometimes they remain 

unknown but cost benefit analysis can be used to approximate these cost.  

A low level of service may be inexpensive, at least in the short run but in the long run, it 

may incur high cost of customer dissatisfaction such as loss of future business. A high 

level of service will cost more to provide services and the service provider may not be 

able to break even. (Rising, 2015). Observed that the amount of work in the system does 

not depend on the order in which the customers are served. The amount of work 

decreases with one unit per unit of time independent of the customer being served and 

when a new customer arrives the amount of work is increased by the service time of the 

new customer. Two major costs are therefore necessary to make decision.  
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In order to evaluate and determine the optimum number of servers in the system, two 

costs must be considered in making these decisions:  

(i) Service costs  

(ii) Waiting time costs of customers.  

The emergency medical service cost is directly incurred while providing the services. 

This normally includes salaries paid to employees, cost of facilities, equipment and 

tools used, cost of service space, waiting space and supplies. The second entails the cost 

associated with the customer having to wait for service including lack of patience, 

opportunity cost, death while waiting, increased dissatisfaction, including cost of 

visiting competing institution. 

In this study, the costs involving provision of emergency health service include the bed 

and other facilities necessary in ICU, like doctor‟s salary, consultation fees, support 

staff costs, oxygen, theatre cost and even the cost of losing a patient through death. 

In order to evaluate and determine the optimum number of servers in the system, two 

opposing costs must be considered in making these decisions: (i) Service costs (ii) 

Waiting time costs of customers as discussed in section 3.2 above. Economic analysis of 

these costs helps the management to make a trade-off between the increased costs of 

providing better service and the decreased waiting time costs of customers derived from 

providing that service. 

Denote the expected service cost by, 

   𝐸(𝑆𝐶)  𝑠𝐶𝑠      (3.23) 

 

where 𝑠 is the number of servers and 𝐶  is the service cost for each server, let the 

expected waiting cost of the system be  

𝑬( 𝑪)     𝑪𝒘     (3.24) 

where;   is the arrival rate,  𝑠 is the average time an arrival spends in the system and 
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𝐶𝑤 is the opportunity cost of waiting by customers. 

Adding equation (3.23) and (3.24) yields 

𝐸( 𝐶)  𝐸(𝑆𝐶)  𝐸( 𝐶) 

      𝐶  𝑠𝐶𝑠    𝑠𝐶𝑤   (3.25) 

Then the results of this model were run using the excel calculator software. 

The expected total cost of the queuing model with (  2 3 … 𝑠) servers will be 

calculated and tabulated. Later, the results will be plotted on a graph to get the 

equilibrium point of optimum service versus costs as shown below. 

 

3.7 Loss Function for Waiting Lines 

Following the principles of formulating Taguchi loss function (Ross & Gillet, 2000), 

there is no cost to the service providing organization or the consumer was incurred 

unless the product or service went beyond its upper or lower specification limits. (USL 

or LSL). As expected, customers incur costs when the services provided are not meeting 

the expected limits, that is, the services are either too low to meet the required 

expectations, or too high that the consumer is not able to meet the cost. The traditional 

quality loss function was a square function illustrated in Figure 3.2 below.  
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In this function, the customers are equally satisfied, and therefore do not incur any loss, 

as long as the quality of services meets the specifications between LSL and USL.  

This is not realistic, and thus, an improved Taguchi loss function shown in Figure 3.3 

was formulated using a quadratic function. 

 

 

 

The Taguchi Loss Function takes a different perspective on when the costs of poor 

quality are incurred. Taguchi theorized that rather than incur costs beginning at two 

finite points that are +/- a specific level of tolerance from the target value (or 

Figure 3.4Taguchi Loss Function, Source (Gillett, 2006) 

Figure 3.3The Traditional Quality Loss Function. Source (Gillett, 2006) 
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specification nominal value), costs are actually incurred as soon as the value moves 

from its target value. In addition, rather than continue at a constant rate, these costs are 

incurred at the square of the deviation from the target value, and therefore continue to 

increase the farther the specification deviates from the targeted value. The only point in 

the model at which no loss is incurred is at the actual targeted value. In contrast with 

traditional models, the Taguchi Loss Function is represented in Figure 3.3. 

3.8 Tolerance Cost 

The upper specification limit and the lower specification limits can alternatively be 

defined by how much a client is willing to spend for a medical service without any 

duress or influence. That is, drawing an horizontal line in Figure 3.4 of this minimum 

cost a client is willing to spend, will intersect with the cost function in two points, LSL 

on the left and USL on the right hand side. 

However, it is obvious that people have different preferences or tastes or tolerance to 

unsatisfactory services. Also, due to different lifestyle and social status, the cost of 

waiting differs. The waiting cost is inversely proportional to the individual level of 

tolerance. The less the tolerance, the higher the cost of waiting. This is graphically 

illustrated in Fig3.5 below. 

 

 

 

Figure 3.5Tolerance Interval and Cost for different Individuals A, B, C and D,  

Source (Gillett, 2006) 
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The tolerance parameter 𝝈 determines the spread of the cost function and the peak of the 

sides or the height where it intersects with USL and LSL lines. 

3.9Determining the Stability of the System 

By combining the Taguchi Loss Function with the appropriate queuing equations of 

calculating costs, we are able to calculate the cost of customer dissatisfaction associated 

solely with the time spent waiting for service and facility idle time cost and determine 

the Lower Specification Limit and Upper Specification Limit to define the stability of 

the system. Note that only the positive side of the Taguchi loss function is used for 

waiting time, since waiting time is only one-sided because a negative wait time is 

impossible, but to have a full graph, the other side of Taguchi Loss Function  represents 

the facility idle time costs. Two derivations are provided, one using cost of time in line, 

and the other using idle time cost of the system. In some cases, the customer is only 

concerned with the time in line. For example, at an amusement park, the time in line is 

the primary concern. Most customers would prefer that the ride last longer, which would 

make the time in system longer. In other situations, the customer‟s concern is getting 

through the system as fast as possible. When your car is in the garage, you are primarily 

concerned with getting it back. Therefore, time in system would be the preferred 

measure. 

The Taguchi loss function is a quadratic function which can hit the zero line on both 

sides of specification limits. It also has a uniform gradient for various values of quality 

tolerance.  

3.10 Waiting Time in Queue 

The probability distribution function of time in the line is defined as; 
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where   
 

𝜇
 is the utilization factor and  (   ) is the probability of no waiting time. 

Here, we require that  >  . Using this probability density function with our cost loss 

function 𝑓( ), we obtain expected cost per customer as; 

     𝐶    𝑠𝐶𝑤𝑓( )    

 

The total cost therefore will be  

 𝐶  𝑠𝐶𝑠    𝑠𝐶𝑤𝑓( )   

3.11 Waiting Time and Idle Time Costs 

In order to solve this queuing problem, the facility needs to be operated so that an 

optimum balance can be obtained between the customers waiting time cost and the 

servers idle time cost. The cost of servers‟ idle time in this case is the payment to be 

made to the servers for the period for which they are idle. While the cost of waiting in 

line is the loss of business to the customers during waiting or loss of customer who 

decides never to come again because of the length of the queue. 

Waiting time losses can be reduced by increasing investment on facilities but will 

directly increase the cost of providing service and some servers may incur idle time 

costs. Its desirable then, to obtain the minimum sum of these two costs and this can be 

obtained by planning for the flow of customers into the facility and providing proper 

number of servers. If both variables are well controlled, the optimum balance of costs 

can be obtained. 
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3.12 Relationship between Level of Service and Waiting Time Costs. 

 

 

 

 

 

 

 

 

 

   

 

 

 

 

 

3.13Relationship between Level of Service and Cost of Providing Service 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In this study, an infinite function is formulated which a minimum has cost as an 

asymptote. The cost is a function of standard deviation and the target value of expected 

minimum total cost. It also has a normal distribution of probabilities in a target value on 

the interval  ∞    ∞. The modified function is defined as; 

 Let 𝐶𝑤 be the cost of rejection at the specification limit   and let   be the mean target 
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Figure 3.6 Relationship between Level of Service and Waiting Time Costs. 

Figure 3.7Relationship between Level of Service and Cost of Providing Service 
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specification value with a standard deviation of 𝜎. Then the cost of rejection should 

satisfy the condition; 

𝐶𝑤  {
 𝐾𝑓(𝜎  )      ≠        ∞    ∞

                                               
 

where 𝐾 is a constant of proportionality denoting the maximum cost obtained at the 

limit. 

 

 

 

3.14 Estimating Waiting Cost in Relation to Tolerance Cost 

The cost of waiting for an individual patient is estimated to be equal to the cost of losing 

a customer to other competing facilities due to congestion and dissatisfaction and the 

cost of patient losing life. This is because the emergency service is about life and death. 

In this model, it is assumed that the more the patient waits in line the more the risk of 

losing life. Therefore, the cost of waiting that is, equal to the average earnings of a 

middle class individual patient multiplied by time of waiting and evaluated per hour. 

This leads to a waiting cost of 𝐶  per unit time. The total expected costs are computed 

using the M/M/s model and a tolerance value assumed for the patients and the facility 

Figure 3.8Improved Taguchi Loss Function, Source (Gillett, 2006) 



54 

 

utilization. The vertical height from the baseline (at the baseline which is the target 

value, there is no loss) to the loss function curve described how the amount of loss 

increased as results move further away from the optimum value, until eventually, 

complete loss occurs. Therefore the estimate of the individual cost of a patient is 

directly proportional to the tolerance range of the individual and the cost of losing the 

customer to other facilities or death. However, it is the concept of tolerance that is 

critical. If we understand that this variation always adds to costs.  
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CHAPTER FOUR 

ANALYTIC RESULTS 

4.1 Introduction 

In this chapter, simulation of queuing costs is done in order to determine the optimum 

cost of the facility. The results will inform the management on the minimum number of 

servers required in order to reduce the waiting costs and at the same time provide 

service at a minimum service cost 

4.2 Data Analysis 

The following data was obtained from MTRH showing the bed occupancy, or number of 

servers and the service and arrival rates of the patients to the ICU. 

Number of ICU beds   n  =6 

Arrival rate of patients     =5 

Service rate per server  µ   =0.5 

Average waiting cost   𝐶𝑤  = Ksh 450 

Average service cost   𝐶𝑠  = Ksh 400 

Total system cost    𝐶  = Ksh 850 

4.2.1 Calculating the Dynamics of an ICU System to Determine Average Time of a 

Patient and System Utilization. 

Computing for 8beds, 9 beds and 10 beds is impossible. This was because the arrival 

rate of patients was greater than the combined service rate. The problem cannot 

therefore be solved in that given situation. This means the queue will keep on increasing 

and patients who continue arriving will have to wait for long and some may not get to 

be served. The facility in this case cannot handle the incoming traffic. 

For example, if we try to compute the probability that there are no patients in the system 
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using equation 3.36 with 10 ICU beds, the results is as follows; 
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Clearly 5-5=0, and 5/0 is infinity, meaning the facility cannot support the incoming 

traffic. 

We therefore start calculating the parameters from 11 beds as follows, 

Probability of no patients in the system 

Let s =11,  5         5 
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Wq   
Lq

λ
,  =

6 82 

5
 = 1.3642 

with the chances of having to wait given by the proportion defined in form of a 

probability as;    (  𝑠)   
𝜇 (

 

 
)
𝑠

(𝑠; )!(𝑠𝜇; )
      

   = 
  5 (

5

  5
)
11

(  ; )!(   ×   5;5)
        247 =0.681 

Utilization factor (ρ), representing the time the beds are occupied; 

     
 

µ𝑠
,    

5

  5 ×   
 =0.9090909 

Developing excel calculator using the above model equation and using to run the data. 

Calculating performance of 11 beds using the excel calculator was as follows; 

Table 4.1Performance of 11 Beds using the Excel Calculator 

Parameter Value Unit 

Arrival Rate (lambda) 5 customers/hour 

Service Rate per Server (mµ) 0.5 customers/hour 

Number of Servers 11 servers 

Average time between arrivals 0.2 hour 

average service time per server 2 hour 

combined service rate (s×mµ) 5.5 customers/hour 

Rho (average server utilization) 0.9090909   

Po (9) Probability the system is empty) 0.00002   

L (average number in the system 16.821182 customers 

Lq (average number waiting in the queue) 6.821182 customers 

W (average time in the system) 3.3642364 hour 

Wq (average time in the queue) 1.3642364 hour 
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From the table indications, under these model conditions of 11 beds, it is clear that the 

system is able to handle the traffic quite well, and is utilizing 90% of capacity. Traffic 

intensity shows that the arrival rate is 5 customers per hour and the combined service 

rate of 5.5 customers per hour. On average, at any given time there will be about 17 

customers in the system and about 7 customers waiting in the queue. Although just over 

59% of customers will have to wait in the queue, wait times are relatively brief at about 

1.3 hours. Though the probability of 0.0002 chances that at any given moment the 

system will be full and someone will balk, or refuse to wait in the queue, and thus not 

enter the system at all. 

4.2.2Performance Measures of the System 

The results of the model in five scenarios generated using the excel calculator were as 

shown in the table below; 

Table 4.2Performance Measures of the Model in Five Scenarios 

No. of 

beds 
  µ       𝑠  𝑞        𝑤 

11 5 0.5 0.000025 90.9 16.82 6.821 3.364 1.364 0.682 

12 5 0.5 0.000036 83.3 12.247 2.247 2.249 0.449 0.449 

13 5 0.5 0.000041 76.9 10.951 0.951 2.190 0.190 0.285 

14 5 0.5 0.000043 71.4 10.435 0.435 2.087 0.087 0.174 

15 5 0.5 0.000044 66.7 10.204 0.024 2.041 0.041 0.102 

 

The results on the table clearly show that, all the parameters worked change when the 

number of beds change. The server utilization   drops from 100% with 6 beds to 66.7% 

with 15 beds. The expected average number of customers (Ls) in the system is 

approximately 17 customers with 11 beds and 11 customers with 15 beds. The average 

number of customers waiting (Lq) is approximately 7 customers with 11 beds and drops 



59 

 

to around one customer waiting with 15 beds. The average time a customer spends in 

the system (  ) is 3.4 hours with 11 beds and drops to 2 hours with 15 beds. The 

average waiting time of a customer on the queue is 1.4 hours with 11 beds which also 

drops to no waiting with 15 beds. 

4.2.3 Probability of No Patient in the System 

The figure below displays the probabilities of no patient in the system in five scenarios 

of 11,12,13,14 and 15 beds.  

 

The probability of having no patient is the system result analysis is almost zero and the 

probability increases as the number of beds is increased. 

4.2.4 Average Number of Patients in the Queue 

The figure below shows the comparison of average number of patients waiting in line 

(queue) against number of beds in five scenarios. 
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Figure 4.1 Probability of No Patient in the System 
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From the findings, we can see clearly that as you increase the number of beds, the 

average number of patients waiting in the line reduce. With eleven beds the number of 

patients is seven and with 14 and 15 beds, the number reduces to an average of one 

patient waiting to be served in the line. This means if we further increase the number of 

beds beyond 15 beds, there will be no patient waiting and that means loss to the facility 

due to idle servers. 

4.2.4 Comparing Number of Patients in the System against Number of Beds 

The figure below displays the results of the number of patients in the system per hour 

against number of beds in five scenarios. 

 

From the graph the average number of patients in the system per hour is 17 with 11 
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beds, 13 with 12 beds, 11 with 13 beds, 11 with 14 beds and 11 with 15 beds. The 

average number in the system becomes less than the number of beds immediately the 

number of beds is more than 13. 

4.2.5 Comparing Server Utilization against Number of Beds 

The figure below represents server utilization in five scenarios compared with the 

number of beds in each scenario. 

 
 

From the graph, the server utilization of between 66.7% to 90.9% is good to the hospital 

since that indicates there will be minimal idle time of the servers. However, less than 

70% server utilization means increased idle time of the servers which will increase the 

service cost. 

4.2.6 Comparing Waiting Time Against Server Utilization 

The figure below shows the average waiting time of a patient per hour against server 

utilization in five scenarios. 
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The graph showing comparison between the length of time a customer has to wait with 

server utilization indicates that the more the time a customer has to wait the less the 

server utilization. Here an optimum point to be identified by the planners to reduce the 

waiting time while maintaining good server utilization. 

4.2.7 Comparing Average Patient Time in the System against Number of Beds 

The figure below displays the analysis of the average time a patient spends in the 

system compared with the number of beds in five scenarios. 
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From the graph, we can see that the amount of time a customer has to spent in the 

system reduces as the numbers of servers are increased. The reduced average time is 

good for the customer but may increase the operating costs of the facility. 

4.2.8Determining the Equilibrium Point and the Optimum Number of Beds. 

Though, it is very hard to determine the cost of waiting for service, because the patient 

is not the only person waiting but with some other relatives waiting also, we assume 

that the only person incurring cost is the patient. The average cost estimate per hour 

includes the cost of a patient loosing life while in the system. 

The actual estimate of cost of service was also a hard task to determine. MTRH is a 

public hospital and they use approved government rates because they receive grants to 

ease the load of the patients. In our case, the actual estimates of average cost of service 

was considered, which included the cost of the bed and its equipment‟s, the specialists 

manning the beds and the general cost of running the facility. 
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4.4.1Working out the Costs 

The general cost estimates were; 

Cost of waiting for service per our = ksh 450 

Cost of offering the service per hour = ksh 400 

The expected service cost is 

   𝐸(𝑆𝐶)  𝑠𝐶𝑠  

   𝐶𝑠  𝑘𝑠ℎ 4   

   𝐸(𝑆𝐶)  𝑠𝐶𝑠    × 4   =4400 

waiting cost of the system  is; 

   𝐸( 𝐶)    𝑠𝐶𝑤 

    =5 × 3.364 × 450 =7569.53 

Expected Total Costs 𝐸 ( 𝐶)    𝐸 (𝑆𝐶)    𝐸 ( 𝐶)    

   𝐸 ( 𝐶)    𝑆𝐶𝑆   (  𝑠) 𝐶𝑤        =4400+ 7569.53=11969.53 

An excel calculator was again developed to compute the expected cost 

Computed costs were as follows; 

 

Table 4.3 Average Patient Time in the System against Number of Beds 

No.of 

beds 
λ µ 

 𝑠 
𝐶𝑠 𝐶𝑤 𝐸 (𝑆𝐶) 𝐸 ( 𝐶) 𝐸 ( 𝐶) 

11 5 0.5 3.36424 400 450 4400 7569.53 11969.53 

12 5 0.5 2.44939 400 450 4800 5511.12 10311.12 

13 5 0.5 2.19018 400 450 5200 4927.91 10127.91 

14 5 0.5 2.08707 400 450 5600 4695.90 10295.90 

15 5 0.5 2.04082 400 450 6000 4591.84 10591.84 

 

The results on the table shows that as the number of servers are increased and the arrival 

rates and service rates remain constant, the expected service cost increases from ksh 
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2400 with six beds to ksh 6000 with 15 beds. The expected waiting cost on the other 

hand reduces from ksh 7569.50 with 11 beds to ksh 4591.80 with 15 beds. Our interest 

is on the total expected costs where we can see that with 11 beds the amount is ksh. 

11969.50, 12 beds is ksh. 10311.10, 13 beds is ksh. 10127.91, 14 beds is ksh. 10295.50 

and lastly ksh. 10591.80 

4.4.2Comparing the Expected Service Cost with the Number of Beds. 

The figure below shows the analysis of the expected cost of service per patient per hour 

against number of beds in five scenarios of 11, 12, 13, 14, and 15 beds. 

 

 

As the number of beds increases the total expected service cost rises. It can be seen that 

with 11 beds the service cost is ksh 22,000 and the cost rises to ksh 30,000 with 15 beds. 

4.4.3Analysing the Expected Waiting Cost with the Number of Beds 

The figure below displays analysis of the expected waiting cost of a patient per hour in 

five scenarios of 11,12,13,14 and 15 beds. 
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Figure 4.7 Expected Service Cost against Number of Beds 
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The expected waiting costs keep on reducing as the number of servers‟ increases. From 

the graph, we can see that the cost drops from Ksh. 8000 to Ksh. 3000 when beds are 

increased from 11 to 15. 

4.4.4Analysing the Expected Total Cost with the Number of Beds 

The figure below displays the analysis of expected total costs of the system in five 

scenarios. 

 

 

The graph of total cost indicates that, the less the number of beds the higher the total 

cost. It also shows that the total cost drops as the number of beds are increased to a 

given number but again rises as the beds keep on increasing. The optimal number of 
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beds required that posts the lowest total cost is 13 with a total cost of approximately ksh 

10,000. Increasing the number of beds to 15 is not cost effective to the hospital while 

reducing the number of beds to 11 will disadvantage the patient.  

4.4.5Optimum Number of Beds Required  

The figure below shows the analysis results of comparing the expected total costs of the 

system against number of beds where the optimum number of beds required is 

determined. 

 

 
 

The graph indicates that the optimum number of beds required is 13. It also shows that 

if we increase the beds beyond 13, the overall cost will rise up as well as the cost of 

service though the waiting cost will reduce. Further, the graph shows that if beds are 

reduced to 11, the total cost will increase as well as the cost of waiting for service 

though the cost of service reduces. 

4.2.9 Determining the Stability of the System 

Having in mind that if we only use waiting time, the positive side of the Taguchi loss 

function is used to determine the system stability since a negative wait time is 
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impossible. But in this study, two derivations are provided, one using time in line, and 

the other using idle time of the servers. Our main interest is loss on parties, the patient 

and the facility. From the results of total expected cost, it is clear that costs converged to 

a minimum at some point. It‟s also evident that as you move in either direction, costs 

increase. We therefore use the total costs and values of normal distribution to come up 

with a graph to determine the stability of the system. 

Assuming that each side is willing to tolerate loss of up to Ksh 300, in the total costs 

and considering values of total costs of the five scenarios calculated, we generate values 

that will be fitted into the Improved Taguchi Loss graph. 

Assuming that a customer is willing to wait for a maximum of 30 minutes without 

complaining, and the facility does not wish to have an idle bed but wish to have 100% 

utilization without over straining. The results of the expected total costs were; 

Table 4.4 Expected Total Costs 

Beds λ    µ SC WC E(SC) E(WC) E(TC) 

11 5 90.9  0.5 400 450 4400 7569.53 11969.53 

12 5 83.3  0.5 400 450 4800 5511.12 10311.12 

13 5 76.9  0.5 400 450 5200 4927.91 10127.91 

14 5 71.4  0.5 400 450 5600 4695.90 10295.90 

15 5 66.7  0.5 400 450 6000 4591.84 10591.84 

 

Now, applying the limit of Ksh 300 tolerance of both parties, and subtracting the target 

value of Ksh 10127.91, we obtain costs within the limit and beyond the limit as shown 

below; 
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Table 4.5 Cost of Rejection 

No of beds Total Expected costs Cost of Rejection 

11 11969.53 1841.62 

12 10311.12 183.21 

13 10127.91 0.00 

14 10295.90 167.99 

15 10591.84 463.93 

 

We then fit the costs of rejection into Taguchi Loss Function graph with Ksh 300 being 

the Lower Specification Limit and Upper Specification Limit with time intervals of 0.5 

hours as shown 

 

 

 

 600           300      0.00        300  600 

 

 

From the graph, our target value is the least expected rejection cost, which is 0.00, 

equivalent to Ksh. 10,127.91 total cost in Table 4.4 above. The other rejection costs 

within the accepted tolerance value of Ksh 300 are Ksh 183.21 and Ksh 167.99. From 

our assumption that a customer is willing to loss Ksh 300, we deduce that the system is 
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stable if the cost of rejection lies within this limit. The numbers of beds that fall within 

these limits are 12 to 14. Therefore the stability of the system is achieved with 12 to 14 

ICU beds. Allocating more beds or fewer beds outside the limits means the service 

system will either be too costly to the facility or to the patient. 
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CHAPTER FIVE 

SUMMARY, CONCLUSION AND RECOMMENDATIONS 

This chapter presents the conclusion of the study, recommendation and further research 

that arises after the study to fill the gaps that were not addressed. 

5.1 Summary of the Findings 

The study analysed data from Moi, Teaching and Referral Hospital with an objective of 

addressing the queuing problem in the Intensive Care Unit that has six ICU beds. The 

data used was an arrival rate of five patients per hour, service rate of one patient per two 

hours per server and the average costs of Ksh. 400 service cost and Ksh. 450 waiting 

cost. Analysis of these data was done using M/M/s queuing model with an excel 

calculator in five scenarios starting from 11, 12, 13, 14 and 15 beds. Calculations of 

these data with 6, 7, 8, 9 and 10 beds was not possible with this model because the 

arrival rates of patients for the scenarios were more than the service rates. 

5.1.1 Average Time of a Patient in the System and the Percentage of Server 

Utilization 

The behaviour of average waiting time per patient in the queue for five scenarios was 

6.821 hours with 11 beds, 2.247 hours with 12 beds, 0.951 hours with 13 beds, 0.435 

hours with 14 beds and 0.024 hours with 15 beds. On the other hand, the average time a 

patient spends in the whole system was 16.82 hours with 11 beds, 12.247 hours with 12 

beds, 10.951 hours with 13 beds, 10.435 hours with 14 beds and 10.204 hours with 15 

beds. The average server utilization is 91% with 11 beds in scenario one, 84% with 12 

beds in scenario two, 77% with13 beds in scenario three, 72% with 14 beds in scenario 

four and 67% with 15 beds in scenario five.  
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5.1.2 Equilibrium between Waiting Cost, Service Cost and Total Costs 

The results of costs associated with patient waiting time in the system from the model 

for the five scenarios were, Ksh. 7569.53 with 11 beds, Ksh. 5511.12 with 12 beds,  

Ksh. 4927.91 with 13  beds, Ksh. 4695.90 with 14  beds and Ksh. 4591.84 with 15 beds. 

While the results associated service cost obtained from the model were Ksh. 4400 with 

11 beds, Ksh. 4800 with 12 beds, Ksh. 5200 with 13 beds, Ksh. 5600 with 14 beds and 

Ksh. 6000 with 15 beds. 

Again, the overall system total cost for the five scenarios generated by the model were 

Ksh. 11969.53 with 11 beds, Ksh. 10311.12 with 12  beds,  Ksh. 10127.91 with 13  

beds, Ksh. 10295.90  with 14  beds and Ksh. 10591.84 with 15 beds. Therefore, the 

optimum number of beds required to minimize overall cost is 13 beds. 

5.1.3 Stability of the System with Improved Taguchi Loss Function Limits 

Lastly, the total costs used with Improved Taguchi Loss Function shows that the target 

value of optimum performance is an expected rejection value of Ksh 0.00 using the 

tolerance value of the facility and the patient in terms of loss due to waiting time and 

idle time limit of Ksh 300. These Lower Specification Limit and Upper Specification 

Limit gave us the number of beds required for the system to be stable. And the results 

showed that the numbers of beds that fall within the limits are between 12 and 14. 

Therefore the system is stable if the bed allocation at MTRH is between 12 and 14. 

5.2 Conclusion 

The study has established that at the Intensive Care Unit department at Moi Teaching 

and Referral Hospital, the current situation of six ICU beds is inadequate and is even 

dangerous to the patients because some of them may never get the service in that the 

arrival rate of patients is greater than the service rate.  
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5.2.1 Average Time of a Patient in the System and the Percentage of Server 

Utilization 

From the findings, the average waiting time of a patient per hour and the overall time 

spent in the system reduce as you increase the number of beds. This impacts positively 

to the patient and increases his survival rate because the faster you receive the service 

the less the risk of worsening condition. 

It was also established that the server utilization remains good in the five scenarios 

analysed and this factor enables the hospital utilize the facility well to avoid incurring 

idle server costs. 

5.2.2 System Costs and Optimum Number of Beds 

Analysis of the costs in the system show that the cost incurred by a patient as he waits 

for service reduce as you increase the number of beds. This means the more the beds the 

better for the patient. But the cost of offering service by the facility increases as the 

number of beds is increased. Any extra cost with no extra income is not good for any 

service provider but increasing costs to offer better service will have commensurate 

returns, therefore the decision maker‟s trade-off is good. 

The study also established that the total expected cost in the system in the five scenarios 

is minimal with 13 beds. This indicates that optimum system performance will be 

achieved with 13 beds in order to address the queuing challenge by reducing waiting 

time and minimizing costs. Providing patients with timely access to appropriate medical 

care is an important element of healthcare delivery and increases patient survival. 

This study also establishes that patients are generally dissatisfied with long waiting 

times and experience negative effects as a result which is clearly depicted by the rate at 

which waiting time affect waiting costs. It is further established that queuing theory and 

modelling is an effective tool that can be used to make decisions on staffing needs for 
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optimal performance with regards to queuing challenges in hospitals as it was possible 

for us to obtain the optimum number of beds required in MTRH as 13. 

5.2.3 Stability of the System 

The Application of an Improved Taguchi Loss function enabled us to also conclude that 

the stability of the system is achieved when the bed allocation is between 12 and 14 

beds. The stability is an advantage to both the facility and the patients because the 

tolerance level of each was accommodated which directly affects service provision and 

survival rates of the patients. 

 This study should therefore be replicated in other hospitals in Kenya and other 

countries in order to inform hospital administrators more on the usefulness of the 

application of queuing theory and modelling as a tool for improved decision making 

with regards to the queuing challenges that are faced by hospitals. 

5.3Recommendations 

In the study, it is recommended that MTRH increases their beds from 6 to 13. This is as 

a result of the findings that indicate minimum total cost with 13 beds. By doing this, the 

facility will utilize the servers well and serve the customer satisfactorily due to reduced 

waiting cost and waiting length. It is also recommended that the government increases 

funding to the facility to facilitate the acquisition of the required number of beds. Other 

facilities offering the same service are recommended that they do qualitative analysis of 

their service provision and customer satisfaction to determine the optimum service level 

required. 
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5.4Suggestions for Further Research 

In this study, it is recommended that the other data necessary in an ICU be studied so 

that, apart from the bed, personnel working in the ICU can also be captured to 

determine the optimum number of doctors required and that, the same be extended to 

other facilities offering ICU service. To future researchers, queuing analysis is 

recommended as one of the most practical and effective tools for understanding and 

aiding decision-making in managing critical resources and should become as widely 

used in the healthcare community as it is in the other major service sectors. Lastly, 

another decision model capable of handling all situations in a service providing facility 

should be developed to avoid the limitation of M/M/s model that cannot work when the 

arrival rate is greater than the service rate. 
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APPENDIX I 

Queuing Analysis Excel Calculator 

 

 

 

 

 

 

 

        

        

Inputs 

   

working 

calculations, 

mainly for 

Po 

calculations       

Time unit hour   

 

        

Ariival Rate (lambda) 5 customers/hour 

 

lambda 10     

Service Rate per Server (mu) 0.5 customers/hour 

 

s! 39916800     

Number of Servers 11 servers 

 

        

      

 

n (λ/µ^n n! sum 

intermediate calculations     

 

0   1 1 

Average time btw arrivals 0.2 hour 

 

1 10 1 11 

average service time per server 2 hour 

 

2 100 2 61 

combined service rate (sXmu) 5.5 customers/hour 

 

3 1000 6 227.6667 

      

 

4 10000 24 644.3333 

perfomance measures     

 

5 100000 120 1477.667 

Rho (average server 

utilization) 0.9090909   

 

6 1000000 720 2866.556 

Po 9Probability the system is 

empty) 0.00002   

 

7 10000000 5040 4850.683 

L (average number in the 

system 16.821182 customers 

 

8 1E+08 40320 7330.841 

Lq (average number waiting in 

the queue) 6.821182 customers 

 

9 1E+09 362880 10086.57 

W (average time in the 

system) 3.3642364 hour 

 

10 1E+10 3628800 12842.31 

Wq (average time in the 

queue) 1.3642364 hour 

 

11 1E+11 39916800 15347.52 

      

 

12 1E+12 4.79E+08 17435.19 

Probability of specific nu. Of 

customers in the system     

 

13 1E+13 6.23E+09 19041.1 

Number     

 

14 1E+14 8.72E+10 20188.17 

probability 2.475E-05   

 

15 1E+15 1.31E+12 20952.89 


