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Abstract

There has been effort to investigate the spectrum of difference operators to paral-
lel that of differential operators. This has been done either through the subspace
theory or direct definition of the domain of the operator. Even though much has
been done to compare the spectral theory of differential and difference operators of
order two, few or limited comparative analysis exists beyond order two operators. In
particular, no comparative analysis has been done for order six operators on Hilbert
spaces and that of the fourth order has not been exhausted especially when the odd
order coefficients are unbounded. Of importance is to compare the results obtained
in differential operators to those of their discrete counterparts if the two operators
are of the same order under similar growth and decay conditions. The main aim of
this study was to conduct a comparative analysis of spectral theory of higher order
differential and difference operators on Hilbert spaces, when the odd order coeffi-
cients are unbounded. The specific objectives were; to evaluate and compare the
deficiency indices of the second order differential and difference operators with un-
bounded odd order coefficients, discuss the spectrum of the fourth order differential
and difference operators and finally apply asymptotic integration and summation to
analyze the spectral properties of sixth order differential and difference operators on
Hilbert spaces, with the third order coefficient unbounded. The comparative anal-
ysis was carried out by means of asymptotic integration and summation based on
Levinson’s and Levinson-Benzaid-Lutz theorems. For order two differential opera-
tor with unbounded odd order coefficients, the absolutely continuous spectrum was
the whole of the real line with spectral multiplicity as one. On the other hand, the
spectrum of their discrete counterparts only consisted of eigenvalues under similar
growth conditions. Similarly, order four differential operator resulted into absolutely
continuous spectrum with spectral multiplicity one whenever the third order coef-
ficient is unbounded while the spectrum of fourth order difference operator under
similar conditions is pure discrete. Finally, the absolutely continuous spectrum was
found to be the whole real line in the case of order six differential operator with sixth
order difference operator giving discrete spectrum when the third order coefficient
is unbounded. Since spectral theory have wide applications in other fields like quan-
tum mechanics, stability analysis of market prices as well as in epidemiology, the
results obtained in this research are applicable in stability analysis of market prices
because asymptotic integration and summation are perturbation processes. Due to
complexity in computations and analysis of the roots of degree six polynomials, only
three term sixth order operators were analyzed. In future, one can investigate the
spectral properties of order six operators with all the coefficients taken as non-zero.
This can be generalized to higher orders more than six.
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Notations and Terminologies

LBL: Levinson Benzaid Lutz

USI: Uniformly Square Integrable

τ : symmetric differential expression

L: symmetric difference expression

T : minimal differential operator

T ∗: maximal differential operator

L∗: maximal difference operator

L: minimal difference operator

O(.), o(.):Landau Symbols (the ’big-O’and ’little-o’)
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Chapter 1

Introduction
This chapter presents a background of the study, definitions of terms used in this

study, statement of the problem, study objectives and significance of the study.

1.1 Background of the Study

There has been a number of papers investigating the spectrum of difference opera-

tors to parallel that of differential operators. Attempts have been made to compare

the spectral theory of differential and difference operators but only for second order

and to some extent fourth order operators (Nyamwala, 2010; Behncke & Nyamwala,

2013). Thus for higher orders, that is, of orders more than four, this is lacking

completely. We point out here that due to limiting techniques in constructing sym-

metric difference equations of odd orders, the analysis concentrated only on even

order operators.

We are considering even order differential and difference operators particularly, sec-

ond, fourth and sixth order generated by equations (1.1) and (1.2) respectively.

Let

τy(x) = w−1(x){
3∑

k=0

(−1)k(pk(x)y(k)(x))(k) (1.1)

− i
3∑
j=1

(−1)(j)(qj(x)y(j)(x))(j−1) + (qj(x)y(j−1)(x))(j)}

be a 6th order symmetric differential equation defined on L2([0,∞)) where pk(x), qj(x),

k=0,1,2,3 and j=1,2,3 are real-valued functions with p3(x), w(x) > 0, w(x) is a

weighted function and i =
√
−1. Here, y(k)(x) is the kth derivative of y(x) with

respect to x. In the case of 2nd and 4th orders, we will assume that p1(x) > 0 and

p2(x) > 0 respectively. The other coefficients of higher order will be taken as zero.
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Then τy(x) in (1.1) generates a differential operator on L2([0,∞)). Similarly, let

Ly(t) = w−1(t){
3∑

k=0

(−1)k∆k[pk(t)∆
ky(t− k) (1.2)

− i

3∑
j=1

(−1)(j)[∆j−1(qj(t)∆
jy(t− j)) + ∆j(qj(t)∆

j−1y(t− j + 1))]}

be a 6th order symmetric difference equation defined on `2(N) where w(t) > 0 and

p3(t) > 0, pk(t), qj(t), k=0,1,2,3, j=1,2,3 are real valued functions with ∆ a forward

difference operator defined by ∆f(t) = f(t + 1) − f(t). Then Ly(t) generates a

difference operator on `2(N).

The interest of this study was in obtaining the deficiency indices of minimal op-

erators generated by (1.1) and (1.2) and the spectrum of self-adjoint extension of

these minimal operators. The two, that is, deficiency indices and the spectrum of

self-adjoint extensions, constitute the spectral theory of the operators generated by

(1.1) and (1.2) respectively.

1.2 Definition of Terms

In this section, we define the basic concepts in spectral theory that are commonly

used and are fundamental in comparative analysis of spectral theory of the differ-

ential and difference operators on Hilbert spaces.

Let T be an operator defined on the Hilbert space H. The symbol D(T ) will be

used to denote the domain of T .

Definition 1.2.1

Spectrum of T denoted by σ(T ) is defined as the set of all complex numbers λ,

such that (T − λI)−1 does not exist. Mathematically, one writes σ(T ) = {λ ∈

C; (T − λI)−1 does not exist}. The spectrum has various components, namely;

essential spectrum, residual spectrum, absolutely continuous spectrum, point spec-

trum and singular continuous spectrum.

The set of all complex numbers λ, such that (T −λI)−1 does not have a dense range
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in H is known as continuous spectrum of T and is denoted by σc(T ). In symbols,

one writes σc(T ) = {λ ∈ C; (T − λI)−1 does not have a dense range} (Kreyszig,

1989).

The set of all complex numbers λ, such that (T −λI)−1 does not exist since T is not

injective is known as point spectrum of T and is denoted by σp(T ). Symbolically,

one writes σp(T ) = {λ ∈ C; (T − λI)−1 does not exist since T is not injective}.

Residual spectrum is the set of all complex numbers λ, such that (T − λI)−1 does

not exist since T is not bounded away from zero and is denoted by σr(T ). Math-

ematically, one writes σr(T ) = {λ ∈ C; (T − λI)−1 does not exist since T is not

bounded away from zero}.

The set of all complex numbers λ, such that (T − λI)−1 does not exist since T is

not a semi-fredholm operator (an operator whose range is closed and is finite dimen-

sional) is known as essential spectrum of T and is denoted by σess(T ). In symbols,

one writes σess(T ) = {λ ∈ C; (T−λI)−1 does not exist since T is not a semi-fredholm

operator}.

Definition 1.2.2

An operator T is said to be densely defined if D(T ) is dense in H, that is, D(T ) = H

, where, H is a Hilbert space.

Definition 1.2.3

An operator T defined on a Hilbert space H is said to be symmetric if T is densely

defined and T ⊂ T ∗, D(T ) ⊂ D(T ∗), that is, < Tu, v >=< u, T ∗v >=< u, Tv > for

all u, v ∈ D(T ).

Definition 1.2.4

The maximal operator T ∗ is defined on the largest possible domain in L2((0,∞), w)

which is mapped onto L2([0,∞), w).

The domain of the maximal operator T ∗ generated by τ is given by;

D(T ∗) = {y ∈ L2(0,∞ : w) : y[0], y[1], y[2], y[3], y[4], y[5] are absolutely continuous in

(0, ∞), τy ∈ L2((0,∞ : w), T ∗y = τy for all y ∈ D(T ∗)}.

Definition 1.2.5
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An operator defined by restraining within bounds the domain of the maximal op-

erator only to those functions y with compact support is known as pre-minimal

operator. It is denoted by T1 and its domain is defined by

D(T1) = {y ∈ D(T ∗); y has compact support in (0,∞)}.

T1y = T ∗y = τy for all y ∈ D(T1). For unbounded domains, T1 is not necessarily

closed but is densely defined. The closure of the preminimal operator T1, T 1, is the

minimal operator spawned by (1.1) and (1.2) and is denoted by T .

Definition 1.2.6

In Eastham (1989), the deficiency index, defT , is defined as the pair

defT = (dimNT ∗+i, dimNT ∗−i).

NT ∗+i is the nullspace of T ∗ + iI and NT ∗−i is the nullspace of T ∗ − iI. Thus NT ∗−i

is the set of all elements such that Ty = iy. If one uses a nonreal complex spectral

parameter z, then for Imz > 0, one has dimNT ∗−i = dimNT ∗−z and dimNT ∗+i =

dimNT ∗−z̄ with N+ = dimNT ∗−z and N− = dimNT ∗−z̄. Although the definition of

the deficiency indices depend on z, the dimension of the nullspaces are independent

of z provided that z remains in either of the half-planes. For Imz > 0, N+ and N−

may be finite or infinite. Thus defT = (N+, N−).

Definition 1.2.7

An operator T has self-adjoint extensions if both its deficiency indices are equal,

that is, defT = (r, r) and r is not equal to zero. Otherwise, for r = 0, the operator

is self-adjoint. Here, 3 ≤ r ≤ 6 as per the results proved by Naimark (1967), is the

range for order six.

Definition 1.2.8

The M-matrix generalises the m-function of the Weyl Titchmarsh and thus relates

the asymptotics of the eigenfunction of higher order differential operators to the

spectrum of their self-adjoint realisation. Given the Hamiltonian system of the form

Jy′(x) = [zA(x) +B(x)]y(x), (1.3)
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where

J =

 0n −In

In 0n

 , A =

 A1 0

0 0


and A = diag(w, 0, ...., 0) with the assumption that A(x), B(x) are locally integrable

in the underlying interval [a,∞) and B(x) = B∗(x), A(x) > 0, (in the positive

definite sense), almost everywhere. The nonzero matrix elements of A(x) are A11 =

w while

B =

 −C A∗

A B


with the nonzero matrix elements of A,B and C given by

Aj,j+1 = 1, An,n = i
qn
pn
, Bn,n = p−1

n

Cj,j = pj−1, Cj,j+1 = iqj = −Cj+1,j.

Let Yα(., z) = (Uα(., z), Vα(., z)) be a fundamental matrix with initial values

Yα(a, z) =

 α∗1 −α∗2

α∗2 α∗1


where α1, α2 are n by n complex-valued matrices described with rank(α1, α2) = n

and

α1α
∗
1 + α2α

∗
2 = In, α1α

∗
2 − α2α

∗
1 = 0n. (1.4)

The boundary conditions at the regular endpoint a are given by

(α1, α2)y(a) = 0. (1.5)

Uα, Vα are 2n by n complex-valued matrices whose every column solves τu = zu.

Note that the boundary condition at a are satisfied by Vα(., z) and α1, α2 satisfy

(1.4) and (1.5). Therefore, the columns of Yα generates the 2n-dimensional vector

space of solutions of (1.3).
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In the limit point case, self-adjoint extensions are realised by fixing the boundary

conditions at a. Now the boundary conditions to the right through α = (α1, α2)

are fixed and the techniques of Hinton and Shaw (1981) applied for Imz 6= 0, the

M-matrix, Mα(z) ∈ Cn×n is defined by;

χα(x, z) = Yα(x, z)

 In

Mα(z)

 ∈ L2[a,∞).

Mα(z) is analytic for Imz 6= 0 and ImMα(z) is positive definite in the upper half

plane. The columns of χα(x, z) form a basis for the square integrable solutions of

(1.3).

Similarly, for the difference case, in the limit point case with Imz > 0, one has a

matrix, M ∈ Cn×n such that;

χα(x, z) = Yα(x, z)

 In

M(z)

 = Uα(t, z) + Vα(t, z)M(z),

where χα(t, z) satisfies the boundary condition, (α1, α2)y(a) = 0. As before M(z) is

determined from the solutions that stay absolutely square summable as Imz ↘ 0,

it is unique, analytic in both half planes and satisfies M∗ ¯(z) = M(z). It has been

shown by Shi (2006), that if L is limit point at t = ∞, then one can construct the

M-matrix M(z) for the Hamiltonian restricted to [a,∞) with Dirichlet boundary

conditions. To do this, let  W1(a, z)

W2(a, z)


be a system of n square summable solutions for Imz > 0. Then from the theory

of Hinton and Shaw (1981) which was extended to discrete setting by Shi (2006),

it follows that these solutions arise from Y (t, z)

 In

M(z)

 where Yα(t, z) is the

fundamental solution of the system satisfying the appropriate boundary conditions

at a. If one compares both sets of solutions, it shows that there is an invertible n



7

by n matrix C such that

χ(a, z) =

 W1(a, z)

W2(a, z)

C = Y (t, z)

 In

M(z)

 .
This in turn implies M(z) = W2(a, z)W−1

1 (a, z). Now let Fα(., z) be n by 2n sys-

tem of square summable solutions of the Hamiltonian system satisfying boundary

conditions at a and infinity and z, z′ /∈ R, then for Fα(., z) − Fα(., z′) ∈ D(H) and

by results of Remling (1998), it follows that 〈Fα(., z), Fα(., z)〉 = (Imz)−1ImM(z) if

z′ = z. Therefore, if z = µ+ iε for some ε > 0, then one has for µ+ = limε→0+µ+ iε

ImM(µ+) = limε→0+ImM(µ+ iε) = limε→0+ε〈Fα(., µ+ + iε), Fα(., µ+ + iε)〉.

1.3 Statement of the Problem

It is well known that Sturm-Liouville equations and their discrete counterparts, Ja-

cobi matrices, can be analysed by closely related methods. Thus, many Schrödinger-

type results have their discrete counterparts and often a result in the discrete or

continuous sector leads to a result in the other area. A comparative analysis of the

spectral theory for fourth order operators has not been exhausted especially when

the odd order coefficients are unbounded while that of sixth order differential and

difference operators on L2[0,∞) and `2(N) is lacking completely.

1.4 Objectives of the Study

In this section, we have given both the main and specific objectives of this research.

1.4.1 Main Objective

The main objective of this study was to conduct a comparative analysis of spectral

theory of higher order differential and difference operators on Hilbert spaces, when

the odd order coefficients are unbounded.
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1.4.2 Specific Objectives

The specific objectives of this study were to:-

(i) Evaluate and compare the deficiency indices of second order differential and

difference operators on Hilbert spaces with unbounded odd order coefficient.

(ii) Discuss the spectrum of fourth order differential and difference operators on

Hilbert spaces when the third order coefficient is unbounded.

(iii) Apply the asymptotic integration and summation to investigate the spectral

theory of sixth order differential and difference operators when the third order

coefficient is unbounded.

The results obtained are explained in the following subsections: Objective (i) is

achieved in sections 4.2 and 4.3, objective (ii) is achieved in sections 4.4 and 4.5

while those of the third objective are in sections 4.6 and 4.7.

1.5 Justification of the Study

In this study, we have conducted a clear and refined comparative analysis of the

spectral theory of the second and fourth order differential and difference operators

especially when the odd order coefficients are unbounded and gone ahead to do

the analysis of the sixth order differential and difference operators which is lacking

completely. This has been done for the completeness of the analysis.

1.6 Significance of the Study

The Differential operators have many applications in real life situation for example

in quantum mechanics where it is used to represent momentum in the field of ob-

servable. Here, ψ represents a state with variables as q, that is, ψ = ψ(q). Thus

for the momentum we have the operator D defined by Dψ(q) = h/2Πi = dψ(q)/dq

which represents 1-dimensional Schrödinger equation in modern physics (second or-

der differential operator).

Symmetric and Hermitian matrices or operators are applicable in mathematical



9

modelling since any system of differential equations explaining this model results

into first order system (Hamiltonian system) with symmetric matrices whose eigen-

values are real and have physical meaning.

The results obtained in this research are also applicable in stability analysis of market

prices because asymptotic integration and summation are perturbation processes.

This thesis is divided into five chapters, namely; 1. Introduction, where the

background of the study, definition of the terms used in the study, objectives and

significance of the study have been outlined. 2.Literature Review, which examines

and acknowledges the contribution of other scholars and researchers 3. Methodology,

here, asymptotic integration and summation procedures are outlined. 4. Results and

Discussions, which extends the situation studied in (Agure, Ambogo, & Nyamwala,

2013; Behncke & Nyamwala, 2012) to the sixth order case and 5. Conclusion, which

is a summary of the main findings based on the research objectives and conclusions

drawn out of the results.
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Chapter 2

Literature Review

2.1 Introduction

This chapter examines and acknowledges the contributions of other researchers and

scholars on spectral theory which has been done through review of books, journals

and research work. A lot of research on spectrum of differential and difference oper-

ators on Hilbert spaces have been conducted (Hinton & Schneider, 1993; Nyamwala,

2010; Behncke, Hinton, & Remling, 2001; Remling, 1999; Nyamwala, 2015). The

focus here, is on literature on the spectrum and deficiency indices of differential and

difference operators of order two and four.

2.2 Spectral theory of difference and differential operators

A study on deficiency indices and spectrum of fourth order difference equations

with unbounded coefficients was carried out by Agure et al. (2013). The study

used subspace theory together with appropriate smoothness and decay conditions

to calculate the deficiency indices of fourth order difference equations and absolutely

continuous spectrum with unbounded coefficients. The results showed that if the

coefficients pk, qj, k = 0, 1, 2, j = 1, 2, are allowed to be unbounded and satisfy

appropriate smoothness and decay conditions, and the Hamiltonian satisfies the

definiteness and regular conditions, the deficiency indices of the minimal subspace

will be (n, n), where 2 ≤ n ≤ 4 and the absolutely continuous spectrum of the

selfadjoint extension subspace is the whole of R and has spectral multiplicity one.

An investigation on higher even order linear differential operators with unbounded

coefficients had been conducted in (Behncke & Nyamwala, 2012) For these oper-

ators, the eigenvalues of the characteristic polynomials fall into distinct classes or

clusters. In such a case, the spectral properties, deficiency indices and spectra, of
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the underlying differential operators are superpositions of the contributions from

the individual clusters. The results were based on a quantitative improvement of

Levinson’s Theorem. The investigation concludes that the method used can also be

applicable to other classes of linear differential operators.

In (Nyamwala, 2015), it was shown that the absolutely continuous spectrum exists

outside a certain bounded interval in a research on absolutely continuous spectrum of

fourth order difference equation with bounded coefficients. In addition, the spectral

multiplicity as well as the location of absolutely continuous spectrum of selfadjoint

subspace extension under certain asymptotic conditions were computed.

In a study on spectrum and deficiency indices of four term differential operator where

strengthening dichotomy condition and weakening decay conditions was applied, it

has been proved by Nyamwala (2010) that a four term 2n-th order differential oper-

ator with unbounded coefficients on half line is a nonlimit-point operator. It is also

proved that the deficiency index of this operator is determined by the behaviour of

the coefficients themselves and that the absolutely continuous spectrum had multi-

plicity of two.

Suppose that a difference operator has almost constant coefficients, it has been

proved by Behncke and Nyamwala (2011), that the operators whose coefficients are

approximately constant in a general sense have an absolutely continuous spectrum

which is equal to that of the corresponding constant coefficient operator or given by

that of the limiting constant coefficient operator. For such operators, the absolutely

continuous spectrum can be read off from the associated characteristic polynomial.

The approach is based on an analysis of the associated difference equation with the

help of uniform asymptotic summation techniques.

Levinson’s theorem in asymptotic integration of linear differential systems is strength-

ened in a quantitative way by Behncke (2010a). The results showed that any decay

in excess of absolute integration appears with a remainder.

The survey in the spectral theory of certain one-dimensional differential and finite

difference operators : Jacobi matrices, Krein systems and Schrodinger operators was



12

carried out by Killip and Simon (2003) and the connection for these results is the

use of sum rules relating the coefficients and spectral data.

The asymptotic behaviour of large eigenvalues for a class of finite difference self-

adjoint operators with compact resolvents in `2(N) was investigated by Anne Boutet

De Monvel (2012). This was done by obtaining the simplest remainder estimates

and then computing further terms of the asymptotics with smaller remainder under

stronger conditions of smoothness imposed on the entries.

The relationship between the asymptotic behaviour of solutions of singular Sturm-

Liouville equation and spectral properties of the corresponding self-adjoint operators

is shown by Daphne (2005). The link between the number of points of the spec-

trum below an eigenvalue and the number of zeros in the associated eigenfunction

was noted. The extension of the theory to the related differential and difference

operators was also shown and the applications discussed in conjuction with other

asympotic methods.

A study on spectral analysis of higher order differential operators was carried out

by (Remling, 1998). The study interpreted the m-function in terms of Hilbert space

notions and showed that the classical m-function could be recovered as a part of the

more complicated one. Application of this led to results on spectral multiplicity and

stability process of the spectrum.

A discussion on spectral properties of higher order ordinary differential operators

was carried out by (Behncke et al., 2001). If the coefficients differed from constants

by small perturbations, then the spectral properties were preserved. The results

showed that the perturbed operators had the same spectral properties as the un-

perturbed one except that there may be additional point spectrum. Location and

multiplicity of the spectrum was also determined.

A study on deficiency index problem in which, as part of the spectral theory of self-

adjoint differential operators, the problem was to determine the number of linearly

independent solutions of the associated differential equation on a Hilbert space was

carried out in (Eastham, 1989). Applications of spectral theory were also carried out
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and the location of eigenvalues embedded in the continuous spectrum determined.

In (Weidmann, 1980), classes of linear operators were studied. The spectral the-

ory of self-adjoint operators (first for compact operators and then for the general

case) as well as some important consequences and a detailed characterisation of the

spectral properties was analysed. Von Neumann’s extension theory for symmetric

operators was developed and the results of perturbation theory for self-adjoint oper-

ators were found. Lastly, applications of partial differential operators, in particular

to Schrodinger and Dirac operators were shown.

The absolutely continuous spectrum of the constant coefficient operator and its

multiplicity was read off from the range of the characteristic polynomial on the unit

circle by Nyamwala (2010). It is also proved that the absence of singular continu-

ous spectrum under suitable smoothness assumptions for the coefficients is clearly

a perturbation result. This perturbation is not in the operator sense but rather

a perturbation of the M-function. These results may be extended to operators on

L2(R) and `2(Z) by using the decomposition method.

The spectral theory of higher order difference operators had been conducted by

means of asymptotic summation, thereby extending many results of differential op-

erators to discrete settings. The spectra of degenerate fourth-order operators was

also investigated by Behncke and Nyamwala (2013) and the results then compared

with those of corresponding differential operators. Even though there had been

many similarities between both classes of operators, the spectral results may be

quite distinct. The comparative analysis of spectral theory of the operators is not

exhausted for order four operators and is missing completely for operators of order

more than four.

This study has conducted a comparative analysis of spectral theory of order two,

four and six for differential and difference operators. The deficiency indices and the

spectral multiplicity have also been evaluated on the Hilbert space. The comparative

analysis has been carried out by means of asymptotic integration and summation

based on Levinson’s and Levinson-Benzaid-Lutz theorems.
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Chapter 3

Methodology

3.1 Introduction

In this chapter, we outline the methods that will be used to meet objectives of

the study. It outlines the procedure used to evaluate the deficiency indices of the

difference and the differential operator, prove the dichotomy condition and finally

investigate the spectral properties of the sixth order differential and difference op-

erators. The main procedure in solving symmetric differential equations of higher

order has been asymptotic integration. The theorem states that, the solutions of a

system

u′(x) = {∧(x) +R(x)}u(x), ∧(x) = diag(λk(x))

looks like the solutions of the unperturbed system u′ = ∧u if R(x) is sufficiently

small and ∧(x) = diag(λk(x)) satisfies a dichotomy condition (Eastham, 1989), here,

sufficiently small means absolutely integrable. The dichotomy condition amounts to;

for every unequal pair k, j, a ≤ t ≤ x <∞, Re{λk(x, z)−λj(x, z)} has constant

sign modulo L1([a,∞) for all z ∈ Ω. Moreover, assuming that ‖ R(x) ‖≤ ρ(x) with

ρ(x) ∈ L1([a,∞). Then

Y ′(x, z) = [∧(x, z) +R(x, z)]Y (x, z)

has solutions yk(x, z), 1 ≤ k ≤ 2n with asymptotic form

Yk(x, z) = (ek + rk(x, z)). exp(

∫ x

a

λk(t, z)dt),

where ek denotes the kth unit vector and rk(x, z) depends analytically on z ∈ Ω and

tends to 0 z-uniformly as x −→∞.
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For the difference operator, asymptotic summation which is based on the famous

Levinson-Benzaid-Lutz’s theorem has been used where the asymptotics of the eigen-

functions of the operators have been determined (Benzaid & Lutz, 1987). The di-

chotomy condition amounts to; for any pairs of indices k and j, such that k 6= j,

assume there exists δ with 0 < δ < 1 such that |λk(t, z)| ≥ δ for all t ≥ a. Then

either |λk(t,z)
λj(t,z)

| ≥ 1 + δ or |λk(t,z)
λj(t,z)

| ≤ 1− δ for a large t. Here, the form of the solution

is given by;

Y (t, z) = [ek + rkk]Π
t−1
t=a(∧(l, z)),

where rkk(t, z) = o(1).

3.2 System formulation

The first objective was achieved by system formulation of order two difference and

differential operators, converted them into first order by computing their quasidiffer-

ences and quasiderivatives respectively, then their characteristic polynomial. Since

the characteristic polynomials of order two operators were quadratic expressions,

the zeros were computed explicitly. Order four operators without odd order terms

resulted into biquadratic characteristic polynomials whose roots were similarly com-

puted explicitly. The deficiency indices were then read off from the asymptotics

of the eigenfunctions. Asymptotic integration was used in solving symmetric dif-

ferential equations of higher order while asymptotic summation was used for the

symmetric difference equations.

For the second objective, we begun by obtaining the first objective before determin-

ing the spectrum from analysis of the solutions. The z-uniformly square integrable

or summable eigenfunctions contributed to discrete spectrum. The eigenfunctions

that lost their square integrability as Imz −→ 0 contributed to absolutely contin-

uous spectrum with the multiplicity of the absolutely continuous spectrum equal

to the number of such eigenfunctions. The behaviour of the correction term deter-

mined the range of the spectral parameter which was used to locate the absolutely

continuous spectrum. The method of asymptotic integration excludes coefficients
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whose derivatives decay too slowly, hence no singular continuous spectrum. The last

objective was a combination of the first and second objective.

The M-matrix M(z) was constructed for the Hamiltonian restricted to [a,∞) with

Dirichlet boundary conditions as outlined in Chapter One. This was done by letting

 W1(a, z)

W2(a, z)


be a system of 2n × n square summable solutions for Imz > 0. Then from the

theory of Hinton and Shaw (1981), it followed that these solutions arose from

Y (t, z)

 In

M(z)

 where Yα(t, z) was the fundamental solution of the system satisfy-

ing the appropriate boundary conditions at a. In this case, these are Yα(a, z) = I2n.

A comparison was made for both sets of solutions and was shown that there was an

invertible n by n matrix C such that

χ(a, z) =

 W1(a, z)

W2(a, z)

C = Y (t, z)

 In

M(z)

 .
This in turn implied M(z) = W2(a, z)W−1

1 (a, z). Letting Fα(., z) be n by 2n sys-

tem of square summable solutions of the Hamiltonian system satisfying boundary

conditions at a and infinity and z, z′ /∈ R, then

Fα(., z)− Fα(., z′) ∈ D(H)

and by results of Remling (1998), it followed that

〈Fα(., z), Fα(., z)〉 = (Imz)−1ImM(z) if z′ = z.

Therefore, if z = µ+ iε for some ε > 0, then one has for µ+ = limε→0+µ+ iε

ImM(µ+) = limε→0+ImM(µ+ iε) = limε→0+ε〈Fα(., µ+ + iε), Fα(., µ+ + iε)〉.
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Chapter 4

Results and Discussions

4.1 Introduction

In this chapter, we present the main results and discussions of this research in

terms of lemmas and theorems. The results are grouped according to the research

objectives.

The main results and discussions are organized as follows:

Section 4.2 and 4.3: Evaluating and comparing the deficiency indices of second order

differential and difference operators with unbounded odd order coefficient.

Section 4.4 and 4.5: Discussing the spectrum of fourth order differential and differ-

ence operators when the third order coefficient is unbounded.

Section 4.6 and 4.7: Application of asymptotic integration and summation to in-

vestigate the spectral theory of the sixth order differential and difference operators

when the third order coefficient is unbounded.

4.2 Order Two Differential Operator

In this section, we consider (1.1) with p3 = q3 = q2 = p2 = 0, p1, q1, p0 6= 0 so

that we have order two differential equation generating a second order differential

operator. Thus, we consider the symmetric differential equation of the form

τy(x) = −(p1(x)y′(x))′ + i[q1(x)y′(x) + (q1(x)y(x))′] + p0(x)y(x). (4.1)

The growth conditions are assumed to be;

|q1(x)| ↗ ∞, p0, p1 = o(q1), ∀x ∈ [0,∞). (4.2)
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Further, we assume that the coefficients obey the following regularity and decay

conditions.

f ′

f
∈ L2,

f ′′

f
,

(
f ′

f

)2

∈ L1, f = p0, p1, q1, f = f(x). (4.3)

4.2.1 System formulation

We study the spectral theory of differential operators generated by (4.1) on L2(0,∞)

by means of asymptotic integration. Note that y′, y′′ will denote the first and sec-

ond derivatives of y while y[1], y[2] will denote the quasiderivatives of y in line with

Walker’s definition, see (Walker, 1974). L2(0,∞) will denote the underlying Hilbert

space of square integrable functions defined on [0,∞).

The coefficients p1, p0 and q1 will satisfy conditions (4.2) and (4.3).

In (4.2), for f = o(q1), we mean that |f(x)| � |q1(x)| for all x ∈ [0,∞) and

f = O(g) means that there exists k > 0 such that k−1|f(x)| ≈ |g(x)| ≈ k|f(x)| for

all x ∈ [0,∞).

Our starting point is the differential equation τy(x) = zy(x), that is,

τy(x) = −(p1(x)y′(x))′ + i[q1(x)y′(x) + (q1(x)y(x))′] + p0(x)y(x) = zy(x) (4.4)

on [0,∞), where z is the spectral parameter. The coefficients p1, p0 and q1 are

assumed to be real-valued.

By application of quasiderivatives as defined in Walker (1974), we can convert (4.4)

into its first order system. These are given by;

y[0] = y, y[0]′ = y′ = i
q1

p1

y1 +
1

p1

y2

y[1] = p1y
′ − iq1y, y[1]′ = (p1y

′)′ − (iq1y)′ = (p0 −
q2

1

p1

)y[0] +
iq1

p1

y[1].

Here, y = y(x), pk = pk(x) and qj = qj(x).

One can define the maximal and minimal operator T ∗ and T respectively, corre-
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sponding to τ as done in Chapter One.

In order to apply asymptotic integration method, it is convenient to write (4.4)

as a first order system. The solutions of (4.4) via asymptotic integration is based

on the famous Levinson’s theorem which has undergone various modifications ei-

ther through strengthening the dichotomy or decay conditions. In our case, the

generalized version which has a spectral parameter z, suffices and is stated below.

4.2.2 Asymptotic Integration

One of the most significant results in asymptotic integration theory which is cru-

cial in solving the first order system of a higher order differential equation is the

Levinson’s Theorem. The theorem states that, the solutions of a system

U ′(x) = {Λ(x) +R(x)}U(x), ∧(x) = diag(λi(x)) i = 1, 2, . . . , 2n

looks like the solutions of the unperturbed system u′ = ∧u if R(x) is sufficiently

small and Λ(x) = diag(λi(x)) satisfies a dichotomy condition. For more details, see

the book of Eastham (1989). In spectral theory, the matrix elements of λi(x) will

generally depend also on the spectral parameter z. Thus, one writes λi = λi(x, z)

for this. In this case, it will be important to state Levinson’s Theorem uniformly

in z in order to control the z-dependence of the solution. The following z-uniform

version will suffice and is stated for a 2nth order system. Its proof can be found in

the paper of Behncke et al. (2001).

Theorem 4.2.1. Let Λ(x, z) = diag(λ1(x, z), . . . , λ2n(x, z)) and R(x) be 2n×2n ma-

trices which for all x, are analytic functions of z ∈ Ω ⊂ C. For any unequal pair of

indices i and j, i, j ∈ [1, . . . , 2n], assume that Λ = diag(λ1(x, z), . . . , λ2n(x, z)) sat-

isfy the dichotomy condition uniformly in z, that is, for every unequal pair i, j, a ≤

t ≤ x < ∞, Re{λi(x, z) − λj(x, z)} has constant sign modulo L1([a,∞) for all

z ∈ Ω. Moreover, assume that ‖ R(x) ‖≤ ρ(x) with ρ(x) ∈ L1([a,∞). Then

Y ′(x, z) = [Λ(x, z) +R(x, z)]Y (x, z) (4.5)
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has solutions yk(x, z), 1 ≤ k ≤ 2n, with asymptotic form

Yk(x, z) = (ek + rk(x, z)). exp(

∫ x

a

λk(t, z)dt), (4.6)

where ek denotes the kth unit vector and rk(x, z) depends analytically on z ∈ Ω and

tends to 0 z-uniformly as x −→∞.

Levinson’s theorem thus requires that (4.4) be converted into first order system

as well as in the form of (4.5). We need to compute the characteristic polynomial of

the first order associated with (4.4), the eigenvalues, prove the dichotomy conditions

and finally perform the diagonalisations. In order to apply asymptotic methods, it

is convinient to write (4.4) as a first order system and we will assume that f = f(x),

where f = p0, p1, q1 and y = y(x).

Y ′ = AY,

Y =

 y[0]

y[1]

 and A =

 iq1
p1

1
p1

p0 − q21
p1

iq1
p1


Here, z has been absorbed into p0, that is, p0 can be read as p0 − z.

We will now proceed and diagonalise the system. This requires the eigenvalues

of A which are the roots of the characteristic polynomial P(A), that is, P(A) =

det(A− λI2). This results into;

P(λ, x, z) = λ2 − 2iq1

p1

λ− p0

p1

. (4.7)

Multiplying althrough by p1 and substituting λ by −iν we obtain a Fourier polyno-

mial denoted by PF (ν, x, z) and is given by,

p1PF (ν, x, z) = −p1ν
2 − 2q1ν − p0.
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Multiplying the resultant polynomial by -1 and equating it to zero we obtain,

−p1PF (ν, x, z) = p1ν
2 + 2q1ν + p0 = 0. (4.8)

This is a polynomial with real coefficients if z is real, reflecting the symmetry of τ .

Remark 4.2.2 below explains how one avoids degeneracy cases, that is, double or

multiple roots that may lead to complications in diagonalisations.

Remark 4.2.2. Like in the paper of Behncke and Nyamwala (2012), it can be shown

that there exist finitely many spectral values z for which the roots of PF (λ, x, z) are

not distinct. Let w1 < w2 < . . . < wk denote all of the real spectral values z leading

to multiple roots. Following (Behncke & Nyamwala, 2012), the analysis will be

restricted to small complex neighborhoods of z0 ∈ (wi, wi+1), i = 0, . . . , k, where,

w0 = −∞ and wk+1 =∞. For a given z0 ∈ (wi, wi+1), now choose a > 0 and ε > 0

so that PF (λ, x, z) = 0 has no multiple roots for any

z ∈ Kε(z0) = {z||z − z0| ≤ ε, Imz ≥ 0} = K.

This is possible because the roots of PF depends analytically on the coefficients.

Throughout the proof of some results, it may be necessary to adjust ε repeatedly.

The zeros of equation (4.8) will be of the form,

ν1/2 =
−2q1 ±

√
4q2

1 − 4p1p0

2p1

=
−q1

p1

± q1

p1

{
1− p0p1

2q2
1

} 1
2

≈ −q1

p1

± q1

p1

∓ p0

2q1

+ . . .+O(q−2
1 )

ν1 ≈ −2
q1

p1

+
p0 − z

2q1

+O(q−2
1 ) and ν2 ≈ −

(p0 − z)

2q1

+O(q−2
1 ) (4.9)

Thus the eigenvalues, λk = λk(x, z), k = 1, 2 are analytic functions of x and z

and can be approximated from ν1 and ν2 above for any z = z0 + iη where z0 will be
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absorbed in p0 and Imz = η such that 0 < η < ε as

λ1 =
2iq1

p1

− (p0 − z0)i

2q1

− η

2q1

λ2 =
(p0 − z0)i

2q1

+
η

2q1

.

The proof of dichotomy condition is simplified by Lemma 4.2.3 below and it implies

that the condition is proved only for real ν-roots since the ν-roots which are in the

complex conjugate pairs with non-zero imaginary parts will lead to equal number

of square and non-square integrable solutions irrespective of the uniform dichotomy

conditions. We, therefore, state the following Lemma whose proof can be found in

(Behncke, 2010a).

Lemma 4.2.3. Consider the system u′ = (Λ +R)u and assume

λi(x) = λi0 + λi1(x) + λi2(x)

with λi1 = o(1) and λi2(x) conditionally integrable, i = 1, . . . , 2n. Sort the eigenval-

ues into classes C1, . . . , Ck so that

(i) λi ∈ C1 then Reλi0 = α1, where α1 is a constant.

(ii) λi ∈ Cl, λj ∈ Cm, l 6= m then |Re(λi0 − λj0)| ≥ δ > 0, l,m = l, ..., k.

Now let m± = maxλi∈Cl(Re(λi1(x))± and |C1| denote the number of elements

in Cl. Then the system has |C1| independent solutions u associated to C1

satisfying K1 exp (α1x−
∫ x
a
ml−(t)dt) ≤‖ u(x) ‖≤ K2 exp (α1x+

∫ x
a
ml+(t)dt),

where K1 and K2 are constants.

The transformation

exp

(∫ x

0

Λi2(t)dt

)
,

eliminates the conditionally integrable terms λi2(x) while preserving the L1 nature

of the off-diagonal terms. Let α1 ± iβ1, . . . , αk ± iβk, γ2k+1, . . . , γ2n be the roots of

the Fourier polynomial P(λ, x, z), where αj, βj, γl are functions of x and z, with
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αj(x, z), βj(x, z), γl(x, z) ∈ R, then this lemma implies that the non-real eigen-

values lead to k square integrable solutions, which decay exponentially and a cor-

responding sets of exponentially increasing solutions in terms of magnitude. This

holds regardless of the dichotomy conditions. For real eigenvalues, one has by the

implicit function theorem

γl(x, z) = γl(x, z0) + (∂λP(γl, x, z))−1(z − z0)

for small |z − z0|. Thus, the dichotomy condition holds if

(∂λP(γl)) 6= (∂λP(γm)), l 6= m,

because (∂λP(λ)) is real, 0 < η < ε. γl = γl(x, z0) will then contribute to the

deficiency index if (∂λP(γl)) < 0, because the corresponding exponent is −iγl(x, z0+

iη) ≈ −iγl(x, z0)+η(∂λP(γl(x, z0)))−1. The associated eigenfunctions, however, will

lose their square integrability as η → 0+ if the coefficients are bounded. Since

the signs of (∂λP(γl)) are evenly distributed, half of the γ’s will lead to square

integrable solutions for η = Imz > 0 and complementary γ’s will lead to square

integrable solutions on the lower half plane. This shows that, with an even number of

eigenvalues say 2n for bounded coefficients, T is limit point and defT = (n, n). Some

of the γ-eigenfunctions may stay square integrable as Imz ↘ 0 if the coefficients

are unbounded and T may be non-limit point. It suffices to check the dichotomy

condition only for the real roots of PF (x, ν, z) in all cases.

Theorem 4.2.4. Let T be the minimal differential operator generated by (4.1) and

assume that condition (4.2) is satisfied, then for z ∈ K, the eigenvalues of the

associated characteristic polynomial of τ satisfies the dichotomy condition. Here,

K = {z||z − z0| < ε}.

Proof. The proof will be offered in two different ways. Since the roots of PF as given

in (4.9) are real, we prove the dichotomy condition off the real axis. Let z = z0 + iη
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where z0, η ∈ R, η > 0 and relatively small, {0 < η < ε}.

ν1 = −2
q1

p1

+
p0 − (z0 + iη)

2q1

+O(q−2
1 )

ν2 = −(p0 − (z0 + iη))

2q1

+O(q−2
1 ).

This implies that

λ1(x, z) = −i
{
−2

q1

p1

+
p0 − (z0 + iη)

2q1

+O(q−2
1 )

}

=
2iq1

p1

− (p0 − z0)i

2q1

− η

2q1

+O(q−2
1 )

and

Reλ1(x, z) =
−η
2q1

+O(q−2
1 )

Imλ1(x, z) = −
{
−2q1

p1

+
p0 − z0

2q1

+O(q−2
1 )

}
.

Similarly, we have

λ2(x, z) = −i
{
−p0 − (z0 + iη)

2q1

+O(q−2
1 )

}

and

Reλ2(x, z) =
η

2q1

+O(q−2
1 )

Imλ2(x, z) =
p0 − z0

2q1

+O(q−2
1 ).

Even if q1(x) < 0 or q1(x) > 0, then either Reλ1(x, z) > 0 or Reλ1(x, z) < 0

respectively. A similar analysis is true for Reλ2(x, z). This implies that in each case

of the sign of q1(x), one eigensolution will be bounded while the other is unbounded.

This is the required dichotomy condition. A similar proof can be obtained if we apply

the results of Lemma 4.2.3 directly. The correction term is given by ∂
∂ν
PF (ν, x, z) ≈

2p1ν+2q1, by application of implicit function theorem. Now substituting the values

of ν1 and ν2, we obtain ∂
∂ν1
PF (ν1, x, z) ≈ −2q1 + O(q−2

1 ) and ∂
∂ν2
PF (ν2, x, z) ≈
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2q1 +O(q−2
1 ). Since ∂

∂ν1
PF (ν1, x, z) 6= ∂

∂ν2
PF (ν2, x, z) and they are of different signs,

this suffices for the z-uniform dichotomy condition between ν1 and ν2.

4.2.3 Diagonalisation

In order to diagonalise the first order system, we require the corresponding eigenvec-

tors. These are obtained by solving the equation Av = λv, where A is a 2×2 matrix,

v is the eigenvector, while λ is the eigenvalue. Normalising the first component of

v, leads to the equation,

 iq1
p1

1
p1

p0 − q21
p1

i q1
p1


 1

µ

 = λ1

 1

µ


iq1

p1

+
1

p1

µ = λ1

p0 −
q2

1

p1

+ i
q1

p1

µ = λ1µ.

Collecting like terms together we get

µ =
p0p1 − q2

1

p1λ1 − iq1

.

The corresponding eigenvectors are

v1 =

 1

p0p1−q21
p1λ1−iq1


and

v2 =

 1

p0p1−q21
p1λ2+iq1

 .

Note: The eigenvectors will be approximated using the leading terms only for sim-
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plicity in computation. Thus we have,

p0p1 − q2
1

−iq1

=
−i(p0p1 − q2

1)

q1

= q−1
1 {iq2

1 − ip0p1} ≈ iq1 +O(q−1
1 )

v1 ≈

 1

iq1


Similarly, for v2 we have,

v2 ≈

 1

−iq1

 .
So that

M =

 1 1

iq1 −iq1

 .
Here, det M(x, z) = O(q1) and

M−1 =

 1
2

1
2iq1

1
2
− 1

2iq1

 .
Using this matrix, M(x, z) to diagonalise the system by making a transformation of

the form Y (x, z) = M(x, z)V (x, z), we have

V ′(x, z) = [Λ(x, z) +R(x, z)]V (x, z)

Λ(x, z) = diag(λ1(x, z) + r11(x, z), λ2(x, z) + r22(x, z)).

Here, r11(x, z) = O(q−1
1 ), r22(x, z) = O(q−2

1 ) are correction terms added to the di-

agonals as a result of diagonalisation. The remainder matrix R(x, z) has Rjj(x, z) =

0, j = 1, 2 while Rjl = O(f 1.q−1
1 ), j, l = 1, 2, j 6= l. These terms are both L2

and L1 terms.

A second diagonalisation can be carried out just like the first one. This is possible

since the coefficients were assumed to be twice differentiable. This can be done by
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normalising the first component of Λ1(v) as shown in (Behncke, 2010b).

If T is in limit point at infinity, that is, defT = (n, n), then the self-adjoint exten-

sions H are defined by boundary conditions at a parametised by n× n matrices α1

and α2 with

α1α
∗
1 + α2α

∗
2 = In, α1α

∗
2 = α2α

∗
1.

Then Hy = T ∗y for all u ∈ D(H), where

D(H) = {y ∈ D(T ∗)|(α1, α2)y(0) = 0}.

If T is non-limit-point, then additional boundary conditions at infinity are needed.

These are given as,

limx−→∞v
∗
kJy(x) = 0.

The functions v1, . . . , vr are linearly independent modulo D(T ) at infinity and may

be choosen as eigenfunctions of T ∗vj = zvj, z ∈ R. They also satisfy

limx−→∞v
∗
k(x)Jvj(x) = 0

for j, k = 1, . . . , n (Hinton & Schneider, 1993).

Theorem 4.2.5. Let T be the minimal differential operator generated by (4.1) on

L2[0,∞) and assume that conditions (4.2) and (4.3) are satisfied. Then

(i) If |q1|−1 is integrable, then defT = (2, 2) and σ(H) is discrete.

(ii) If |q1|−1 is not integrable, then defT = (1, 1). Suppose q1 > 0 then σac(H) ⊂

[p̄0,∞) and if q1 < 0 then σac(H) = R with spectral multiplicity 1. Here p̄0 =

lim sup p0(x).

Proof. (i) The proof follows from the following steps; system formulation, di-

agonalisation, dichotomy condition and the M-matrix. One thus writes the

differential equation (4.1) into first order by using quasiderivatives. One then

applies two diagonalisations in order to bring the first order system into Levin-
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son’s form since the smooth part of the coefficients are twice differentiable.

The deficiency indices can be read off from the asymptotics of the eigenvalue

solution as Imz ↘ 0. The form of the solution is given by

y1/2(x, z) = (e1 + r1/2(x, z)).exp

(∫ x

a

∓η
|2q1(t)|

dt

)
dx.

Thus assume |q1|−1 is integrable, then both the solutions are square integrable

in the upper and lower half planes and hence results into defT = (2, 2). All

the solutions are z-uniformly square integrable and hence discrete spectrum.

(ii) If |q1|−1 is not integrable, then y1(x) is square integrable in the upper half

plane if q1(x) > 0 and fails to be square integrable in the lower half plane. The

eigensolution y2(x) is square integrable in the lower half plane if q1(x) > 0 but

fails in the upper half plane. The situation is reversed if q1(x) < 0. In each

half plane with the appropriate sign of q1(x), defT = (1, 1). If |q1|−1 is not

integrable, then the correction term is given by ∓η
2|q1(x)| for y1/2(x) solutions.

Thus y1(x) is square integrable since Reλ1(x, z) = −η
2|q1(x)| , η > 0 but loses

its square integrability as η −→ 0+. Thus for q1(x) < 0, it implies that

−∞ < z < ∞, hence σac(H) = R with spectral multiplicity 1. On the other

hand, y2(x) is not integrable since Reλ2(x, z) = η
2|q1(x)| , η > 0 . Thus for

q1(x) > 0, it implies that p̄0 < z <∞, hence σac(H) ⊂ [p̄0,∞).

4.2.4 Power Coefficients

Example 4.2.6. Let p1(x) = xα, q1(x) = cxβ, p0(x) = xγ such that the following

conditions are satisfied,

α, γ < 0 and β > 0 so that q1(x)→∞ as x→∞. (4.10)
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Thus, we obtain the equation

τy(x) = −(xαy′(x))′ + i[cxβy′(x) + (cxβy(x))′] + xγy(x) (4.11)

Here, we solve the equation τy(x) = zy(x) through asymptotic integration and in

line with the results of Theorem 4.2.5. The appropriate Fourier polynomial is given

by

PF (ν, x, z) = xαν2 + 2cxβν + xγ − z (4.12)

Equating (4.12) to zero and solving its roots gives,

ν1/2(x, z) = −cxβ−α ± x−α{c2x2β − xα(xγ − z)}
1
2

Approximating to O(x−3β) we have,

ν1(x, z) = − 1

2c
x−β(xγ − z) +O(cx−3β)

ν2(x, z) = −2cxβ−α +
1

2c
x−β(xγ − z) +O(cx−3β)

Since λ = −iν, then

Reλ1(x, z) =
1

2cx
x−βη +O(cx−3β)

Imλ1(x, z) =
1

2c
x−β(xγ − z0) +O(cx−3β)

Similarly, we have

Reλ2(x, z) = − 1

2cx
x−βη +O(cx−3β)

Imλ2(x, z) = 2cxβ−α − 1

2c
x−β(xγ − z0) +O(cx−3β)

Given T , the minimal differential operator generated by (4.11) on [0,∞) and assume

that conditions (4.10) are satisfied, with β > 1, then x−β is integrable, defT = (2, 2)
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and σ(H) is discrete. On the other hand, if 0 < β ≤ 1, it implies that x−β slowly

decays, defT = (1, 1) and the spectrum is absolutely continuous.

4.3 Order Two Difference Operator

In this section, we consider (1.2) when p3(t) = q3(t) = q2(t) = p2(t) = 0,

p1(t), q1(t), p0(t) 6= 0 so that we have second order difference equation of the form;

Ly(t) = −∆[(p1(t)∆y(t− 1)] + i[q1(t)∆y(t− 1) + ∆(q1(t)y(t))] + p0(t)y(t). (4.13)

We assume the following decay conditions,

∆2f

f
,

(
∆f

f

)2

∈ `1,
∆f

f
∈ `2, f = p0, p1, q1 (4.14)

and growth conditions similar to (4.2). Generally, (4.14) are discrete counterparts

of (4.3).

4.3.1 System formulation

Our starting point is the difference equation (4.13) defined on `2[0,∞). We will solve

the equation Ly(t) = zy(t), where z is considered as the spectral parameter. Here,

just like in Section (4.2), we are fixing the left regular point off the zero element so

that the operator is well defined for all t ≥ a > 0. The result can be extrapolated to

[0,∞) because deficiency indices do not depend on left regular endpoint (Remling,

1999; Shi, 2006).

In order to define the discrete Hamiltonian system for (4.13), one introduces quasi-

differences (Shi, 2006), for the equation (L − z)y(t) = 0. These are given by;

u(t) = p1(t)(∆y(t− 1))− iq1(t)y(t)

x(t) = y(t− 1).

Taking the quasidifference elements as vectors, we also have, Y (t) = {x(t), u(t)}tr

and the partial shift operator RY (t) defined by RY (t) = {x(t+ 1), u(t)}tr where tr
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denotes the vector transpose. Therefore, after absorbing z into p0, we have

∆u(t) = [p0 −
q2

1

p1

]y(t) +
iq1

p1

u(t)

= [p0 −
q2

1

p1

]x(t+ 1) +
iq1

p1

u(t)

since x(t+ 1) = y(t).

∆x(t) =
iq1

p1

x(t+ 1) +
1

p1

u(t) (4.15)

which results to the first order of the form,

∆

 x(t)

u(t)

 =

 iq1
p1

1
p1

p0 − q21
p1

iq1
p1


 x(t+ 1)

u(t)

 (4.16)

The above is one of the many ways of writing (4.13) into its first order. The form

that is easily convertible to Levinson-Benzaid-Lutz form is given by,

∆Y (t) = S(t, z)RY (t)

which is equivalent to,

 x(t+ 1)

u(t+ 1)

 =

[
S(t, z)

] x(t)

u(t)


Here, S(t, z) is a 2× 2 matrix whose entries can be computed as follows;

In (4.16) above, taking

∆x(t) =
iq1(t)

p1(t)
x(t+ 1) +

1

p1(t)
u(t),

this implies that,

x(t+ 1)− x(t) =
iq1(t)

p1(t)
x(t+ 1) +

1

p1(t)
u(t).
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Hence,

x(t+ 1) =
p1(t)

p1(t)− iq1(t)
x(t) +

1

p1(t)− iq1(t)
u(t).

On the other hand,

∆u(t) = [p0(t)− q2
1(t)

p1(t)
]x(t+ 1) +

iq1(t)

p1(t)
u(t) (4.17)

and

∆u(t) = u(t+ 1)− u(t). (4.18)

Rewriting u(t+ 1) using (4.17) and (4.18) we obtain,

u(t+ 1) = (p0 −
q2

1

p1

)x(t+ 1) + (1 +
iq1

p1

)u(t)

Hence, the first order is given by Y (t+ 1) = S(t, z)Y (t) where

S(t, z) =

 p1
p1−iq1

1
p1−iq1

p0 − q21
p1

1 + iq1
p1


and the corresponding characteristic polynomial, det (S(t, z)− λI2) = P(t, λ, z) re-

sults into,

P(t, λ, z) = λ2 − λ
{

1 +
iq1

p1

+
p1

p1 − iq1

}
− p0 − q2

1

p1 − iq1

(4.19)

The zeros of equation (4.19) will be approximated as follows:

λ1/2(t, z) =
1

2


(

1 +
iq1

p1

+
p1

p1 − iq1

)
±

{(
1 +

iq1

p1

+
p1

p1 − iq1

)2

+
4(p0 − q2

1)

p1 − iq1

} 1
2


λ1/2(t, z) =

1

2

{(
1 +

iq1

p1

+
p1

p1 − iq1

)
± iq1

p1

+O(q−2
1 )

}

λ1(t, z) ≈ iq1

p1

+
1

2
+O(q−1

1 ), λ2(t, z) ≈ 1

2
+
ip1

2q1

+O(q−2
1 ) (4.20)

This implies that as t −→ ∞, then |λ1(t, z)| −→ | q1(t)
p1(t)
| and |λ2(t, z)| −→ 1

2
because

q1(t) is dominant.
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To apply asymptotic summation method, it is convenient to write (4.13) as a first

order system. The solutions of (4.13) via asymptotic summation is based on the

famous Levinson-Benzaid-Lutz’s theorem, (Benzaid & Lutz, 1987) which has under-

gone various modifications either to strengthen the dichotomy condition or decay

conditions. In our case, we will state a generalized version which has a spectral

parameter z.

4.3.2 Asymptotic Summation

Levinson-Benzaid-Lutz Theorem states that, the solutions of a system

Y (t+ 1) = {Λ(t) +R(t)}Y (t), (4.21)

where Λ(t) is diagonal and invertible, looks like the solutions of the unperturbed

system Y (t+ 1) = Λ(t)Y (t) if R(t) is sufficiently small and Λ = diag(λi(t)) satisfies

a dichotomy condition. In Benzaid-Lutz results, small means absolutely summable,

that is, for all i = 1, . . . , 2n, λ−1
i R(t) ∈ `1. As in the continuous case, in the spec-

tral theory of difference operators, the matrix elements λi(t) will generally depend

on the spectral parameter z. Thus, one writes λi = λi(t, z) for this. In this case,

it will be important to prove LBL-Theorem uniformly in z in order to control the

z-dependence of the solution. The following z-uniform version will suffice for the

application of asymptotic summation in our case.

Theorem 4.3.1. Let Λ(t, z) = diag(λ1(t, z), . . . , λ2n(t, z)) for t ≥ a and where

z ∈ K. Moreover, assume that the following conditions hold uniformly for all z ∈ K,

(i) λi(t, z) 6= 0 for all 1 ≤ i ≤ 2n

(ii) R(t) be a 2n× 2n matrix defined for all t ≥ a, satisfying

∞∑
t=a

∣∣∣∣ 1

λi(t, z)

∣∣∣∣ ‖ R(t, z) ‖<∞,

for all i = 1, 2, . . . , 2n
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(iii) Λ(t, z) satisfies the following uniform dichotomy condition. For any pairs of

indices i and j, such that i 6= j, assume there exists δ with 0 < δ < 1 such

that |λi(t, z)| ≥ δ for all t ≥ a. Then either | λi(t,z)
λj(t,z)

| ≥ 1 or | λi(t,z)
λj(t,z)

| ≤ 1 for a

large t.

Then the linear system has a fundamental matrix satisfying, as t −→∞,

Y (t, z) = [ek + rkk]Π
t−1
l=a(Λ(l, z)). (4.22)

where rkk(t, z) = o(1).

Lemma 4.3.2 below greatly simplifies the proof of the dichotomy condition to

only those eigenvalues with magnitude 1. The Lemma is the discrete version of

Lemma 4.2.3. and its proof can be found in (Behncke, 2010).

Lemma 4.3.2. Let

U(t+ 1, z) = [Λ(t, z) +R(t, z)]U(t, z), t ≥ a, (4.23)

Λ(t, z) = diag(λ1(t, z), . . . , λ2n(t, z))

be asymptotically constant difference equation such that

t−1∑
t=a

‖ R(t, z) ‖ |λ−1
i (t, z)| <∞.

Assume the eigenvalues λi(t, z) for i = 1, . . . , 2n satisfy λi(t, z) = λi,0 + λi,1 + λi,2,

with λi,0 constant, λi,1(t, z) → 0 as t → ∞, λi,2 is conditionally summable and λi0

distinct. Let h(t) > 0 be a nonsummable, monotonic function in N and assume the

eigenvalues can be sorted into classes C1, . . . , Cn so that if λi(t, z), λj(t, z) ∈ Ck, then

( |λi(t,z)||λj(t,z)| − 1) = o(h(t)); if λi(t, z) ∈ Ck, λj(t, z) ∈ Cl, k 6= l then ( |λi(t,z)||λj(t,z)|) ≤ 1− h(t)

or ( |λi(t,z)||λj(t,z)|) ≥ 1 + h(t). For each λ(t, z) now write |λ(t, z)| = 1 + µ(t, z) with

µ+ = max(0, µ) and µ− = min(0, µ) and for each class k, define,

αk(t, z) = maxµ(t, z)+ and αk(t, z) = maxµ(t, z)−.
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The above conditions are assumed to hold uniformly for all z ∈ K. Then associated

to each Ck there are |Ck|(|Ck| is the number of elements in the kth class) solutions

satisfying

K1Πt−1
s=a(1− bk(s, z)) ≤‖ u(t, z) ‖≤ K2Πt−1

s=a(1 + αk(s, z))

for all t ≥ a.

The conditionally summable terms can be removed by a simple transformation

Πt−1
a Λi2(s, z).

When λ is a root of a polynomial P(t, λ, z), then λ̄−1 is also a root. Thus let

λ1, λ̄1
−1
, . . . , λn, λ̄n

−1
be roots of the polynomial P(t, λ, z) which for t −→ ∞ con-

verge to the appropriate limits. One can arrange these roots into two groups, that

is, λ1, λ
−1
1 , . . . , λm, λ

−1
m and λ2m+1, . . . , λ2n such that |λl| > 1, |λ−1

l | < 1, l =

1, . . . ,m and |λj| = 1, j = 2m + 1, . . . , 2n. This lemma implies that the first

2m λ-roots lead to m square summable solution and m non-square summable

solution. This holds regardless of the uniform dichotomy condition. The other

2(n−m) λ-roots with magnitude 1 can be written with their first order correction

terms as

λj(z) = λj(z0) + (∂λP(t, λj, z))
−1(z − z0)

for small |z − z0|. Thus the dichotomy condition holds if

∂λP(t, λj, z) 6= ∂λP(t, λi, z), i 6= j.

It thus suffices to check the uniform dichotomy condition only for the λ-roots of

P(t, λ, z) with |λ|=1 .

Lemma 4.3.3. Assume that (4.2) is satisfied, then the eigenvalues of the operator

generated by (4.13) satisfy the z-uniform dichotomy condition.

Proof. Since |λ1(t, z)| ≈ | q1(t)
p1(t)
| ↗ ∞ as t −→ ∞ while |λ2(t, z)| ≈ 1

2
as t −→ ∞, by

the results of Lemma 4.3.2, the z-uniform dichotomy condition is satisfied because
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|λ1(t, z)| > 1 and |λ2(t, z)| < 1.

4.3.3 Diagonalisation

In order to diagonalise the first order system, we require the corresponding eigenvec-

tors. These are obtained by solving the equation S(t, z)v = λv, where S is the 2× 2

matrix, v is the eigenvector, while λ is the eigenvalue. This leads to the following

expression if we normalise the first component of the vector,

 p1
p1−iq1

1
p1−iq1

p0p1−q21
p1

p1+iq1
p1


 1

µ

 = λ1

 1

µ


p1

p1 − iq1

+
1

p1 − iq1

µ = λ1

p0p1 − q2
1

p1

+
p1 + iq1

p1

µ = λ1µ.

Collecting like terms together we get

µ =
p0p1 − q2

1

p1λ1 − p1 − iq1

.

The corresponding eigenvectors are

v1 =

 1

p0p1−q21
p1λ1−p1−iq1


and

v2 =

 1

p0p1−q21
p1λ2−p1−iq1

 .

Just like in the differential case and for simplicity in computations, the eigenvec-

tors will be approximated using the leading terms only. The above vectors can be
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simplified as;

v1 =

 1

q21
p1

 .
Similarly, the second component gives us,

v2 =

 1

−iq1


so that

M(t, z) =

 1 1

q21
p1
−iq1


and

M−1(t, z) =

 p1
p1−iq1

p1
iq1(p1−iq1)

−iq1
p1−iq1

p1
−iq1(p1−iq1)

 ≈
 i

q1

p1
q21

1 −p1
q21

 .
Even though the diagonalising matrix is unbounded, its inverse is bounded. Here,

the (detM(t, z))−1 = O(p1q
−2
1 ). The system is then transformed using

 x(t)

u(t)

 = M(t, z)V (t, z).

After diagonalisation, we have a first order system of the form

V (t+ 1, z) = [Λ1(t, z) +R1(t, z)]V (t, z)

Λ1(t, z) = diag(λ1(t, z) + %1(t, z), λ2(t, z) + %2(t, z)). The %k(t, z) terms, k = 1, 2,

are obtained as a result of diagonalisations and are basically bounded and summable.

The remainder matrix after first diagonalisation, R1(t, z) has zeros in its main di-

agonal and the off-diagonal terms are given by (R1)jl(t, z) = O(q−1
1 .∆f), l, j =

1, 2, l 6= j. These are `2 and `1 terms by assumptions. We can also construct

a matrix ˜S(t, z) consisting of Λ1(t, z) and `2-terms from R1(t, z), then a second

diagonalisation is possible using the eigenvectors of ˜S(t, z). For more details, see
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(Behncke, 2010b).

Theorem 4.3.4. Let L be the minimal difference operator generated by (4.13) on

`2[0,∞) and assume that conditions (4.2) and (4.14) are satisfied, then the defL =

(1, 1) and the spectrum is discrete.

Proof. The strategy of proof follows the outlay of Theorem 4.3.1. .The difference

equation (4.13) is converted to the first order system by use of quasi-differences

given on pages 30-32. Once the first order has been obtained, det(S(t, z)−λI) gives

the characteristic polynomial whose zeros are the eigenvalues of S(t, z) and likewise

those of L.

By application of Levinson’s-Benzaid-Lutz theorem (Theorem 4.3.1), we need to

establish the z-uniform dichotomy condition which is immediate from Lemma 4.3.3.

The system Y (t + 1, z) = S(t, z)Y (t, z) can be converted into LBL-form through

diagonalisations. These have been outlined in section 4.3.2. Application of Theorem

4.3.1 now shows that the eigenvalue solutions are of the form;

yk(t, z) = [ek(t, z) + rkk(t, z)]Π
l=t−1
l=0 (λk(l, z)); k = 1, 2.

The asymptotics of yk(t, z) depends on |λk(l, z)| as shown by Behncke and Nyamwala,

(Behncke & Nyamwala, 2013) and also (Shi, 2006). Here, if |λk(l, z)| > 1, then

|yk(t, z)|2 −→∞ as t −→∞ and for |λk(l, z)| < 1, then |yk(t, z)|2 −→ 0 as t −→∞.

A decay or bounded solution implies that the solution is square summable and hence

contribute to deficiency indices of L as shown by (Shi, 2006). Therefore, λ1(t, z) will

lead to non-square summable solution and λ2(t, z) will lead to square summable

solution irrespective of the spectral parameter z, defL = (1, 1) and the spectrum

of self-adjoint operator extension will consist of only eigenvalues.



39

4.3.4 Power Coefficients

Example 4.3.5. Let p1(t) = tα, q1(t) = ctβ, p0(t) = tγ such that the following

conditions are satisfied

α, γ < 0 and β > 0 so that q1(t)→∞ as t→∞. (4.24)

Thus we obtain the equation

Ly(t) = −∆[tα∆y(t− 1)] + i[ctβ∆y(t− 1) + ∆(ctβy(t)] + tγy(t). (4.25)

Solving the equation Ly(t) = zy(t) leads to the Fourier polynomial of the form

P(t, λ, z) = λ2 − λ
{

1 +
ictβ

tα
+

tα

tα − ictβ

}
− tγ − ct2β

tα − ictβ
. (4.26)

Approximating the roots of (4.26) to O(t−2β) leads to,

λ1(t, z) ≈ ictβ−α +
1

2
+O(t−β), λ2(t, z) ≈ 1

2
+

tα

2(tα − ictβ)
+O(t−2β). (4.27)

The magnitude of λ1(t, z) is greater than 1 while the magnitude of λ2(t, z) is less than

1 as t → ∞. Thus defL = (1, 1) and since the two lead to one eigensolution which

is z-uniformly square summable and the other z-uniformly non-square summable,

the spectrum is discrete at most.

4.4 Order Four Differential Operator

In this section, we consider the fourth order version of (1.1), that is, p3(x) = q3(x) =

0, p2(x) 6= 0 so that we have order four differential operator.

τy(x) = (p2(x)y′′(x))′′ − (p1(x)y′(x))′ + p0(x)y(x) (4.28)

− i[(q2(x)y′′(x))′ + (q2(x)y′(x))′′ − q1(x)y′(x)− (q1(x)y(x))′].
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The case where |p1(x)| −→ ∞ had been considered by Remling (1999). So in our

case, we will assume the following,

|q2(x)| ↗ ∞, p0, p1, p2, q0, q1 = o(q2), ∀x ∈ [0,∞). (4.29)

Further, assume that the coefficients obey the following growth conditions

|p0|
2
5 |p1| = o(q

2
3
2 ) and |p0|

1
3 |q1| = o(q

1
3
2 ). (4.30)

4.4.1 System formulation

We study the spectral theory of differential operators generated by (4.28) on L2(0,∞)

by means of asymptotic integration.

Like in the case of order two, the coefficients are measurable, real-valued and satisfy

conditions (4.29) and (4.30).

To begin, we consider the differential equation τy = zy, that is,

τy(x) = (p2(x)y′′(x))′′ − (p1(x)y′(x))′ + p0(x)y(x) (4.31)

− i[(q2(x)y′′(x))′ + (q2(x)y′(x))′′ − q1(x)y′(x)− (q1(x)y(x))′] = zy(x)

on (0,∞) where z is considered as the spectral parameter.

4.4.2 Asymptotic Integration

In order to apply asymptotic integration methods (Eastham, 1989), it is more con-

venient to rewrite equation (4.28) as a first order system.

We introduce the quasiderivatives

y[0] = y, y[1] = y′, y[2] = p2y
′′ − iq2y

′,

y[3] = −(p2y
′′)′ + p1y

′ + iq2y
′′ + i(q2y

′)′ − iq1y

(y[1])′ =
iq2

p2

y[1] +
1

p2

y[2]
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(y[2])′ = −iq1y
[0] + (p1 −

q2
2

p2

)y[1] +
iq2

p2

y[2] − y[3]

(y[3])′ = p0y
[0] + iq1y

[1]

to obtain;

u′(x) = C(x, z)u(x); u = (y, y[1], y[3], y[2], )t (4.32)

where

C =

 A B

C −A∗

 , A =

 0 1

0 iq2
p2

 , B =

 0 0

0 1
p2

 , C =

 p0 iq1

−iq1 p1 − q22
p2

 .
(4.32) explicitly becomes,



y[0]

y[1]

y[3]

y[2]



′

=



0 1 0 0

0 iq2
p2

0 1
p2

p0 iq1 0 0

−iq1 p1 − q22
p2
−1 iq2

p2





y[0]

y[1]

y[3]

y[2]


,

where

C(x, z) =



0 1 0 0

0 iq2
p2

0 1
p2

p0 iq1 0 0

−iq1 p1 − q22
p2
−1 iq2

p2


.

Computing the characteristic polynomial of the matrix C by solving det(C −λI4) =

P(λ, x, z), gives;

P(λ, x, z) = λ4 − 2iq2

p2

λ3 − p1

p2

λ2 +
2iq1

p2

λ+
p0

p2

.

Multiplying all through by p2 we obtain,

p2P(λ, x, z) = p2λ
4 − 2iq2λ

3 − p1λ
2 + 2iq1λ+ p0.
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The occurrence of the complex terms −2iq2 and 2iq1 makes it desirable to use the

Fourier polynomial PF instead. One thus obtains this by replacing λ by −iν.

PF (ν, x, z) = p2ν
4 + 2q2ν

3 + p1ν
2 + 2q1ν + p0. (4.33)

Because of the assumptions in (4.29) and (4.30), we can apply the techniques of

Eastham, (Eastham, 1989), which have been used by Behncke and Nyamwala in

their work, see (Behncke & Nyamwala, 2012) for more details. Therefore, the roots

of PF (ν, x, z) can be approximated from the following polynomials

PF1 ≈ p2ν+2q2+p1ν
−1+2q1ν

−2+p0ν
−3, PF2 ≈ 2q2ν

3+p0+p2ν
4+p1ν

2+q1ν. (4.34)

The magnitudes of these ν-roots are approximately |ν1| ≈ 2| q2
p2
| and |ν2,3,4| ≈ | p02q2

| 13

as the following results suggest.

Theorem 4.4.1. Assume (4.29) and (4.30) are satisfied. Then;

(i) The roots of PF (ν, x, z) can be approximated from PF1 and PF2 in (4.34).

(ii) |ν1| ≈ 2| q2
p2
| and |ν2,3,4| ≈ | p02q2

| 13 .

(iii) If the ν̃-root of PFj is real or complex with non-imaginary part, then the

corresponding ν-root of PF (ν, x, z) is real or complex with non-zero imaginary

part.

Proof. (i) It suffices to show that p1ν
−1, 2q1ν

−2 and p0ν
−3 are o(1) in PF1 . Note

here that

|p1ν
−1| ≈ |p1||

q2

p2

|−1 = |p1||
p2

q2

| = o(1)

since |p2| � |q2| and p1 = o(q2).

|2q1ν
−2| ≈ 2|q1||

p2

q2

|2 = o(1)



43

again since |p2| � |q2| and |q1| is bounded. Similarly,

|p0ν
−3| ≈ |p0||

p2

q2

|3 = o(1)

because of (4.29).

In the case of PF2 , we show that |p2ν
4|, |p1ν

2| and |p0ν| are o(1).

|p2ν
4| ≈ |p2||

p0

q2

|
4
3 ≈ |p2||

p0

q2

|
1
3 |q1||q1|−1|p0

q2

|3 = o(1)

because of (4.30).

(ii) This is immediate from (i) above since PF1 ≈ p2ν + 2q2 + o(1) and PF2 ≈

2q2ν
3 + o(1) + p0.

(iii) This is proved by application of Banach fixed point theorem. Assume that

the root of PFj is w̃j, with the corresponding root of PF being wj. Then for

some constant cj > 0, cj <
1
8
, we have |wj − w̃j| ≤ cj through iteration and

application of Banach fixed point theorem, {w̃j}∞j=1 converges to wj uniquely.

Here, 1
8

has been picked for faster convergence of the iterates though other

constants of absolute value less than 1 may be preferred but at the expense of

compromising convergence rate. The ν-roots can be approximated as follows;

ν1 ≈
−2q2

p2

ν2,3,4 ≈
(
−(p0 − z)

2q2

) 1
3

≈
∣∣∣∣p0 − z

2q2

∣∣∣∣ 13 {cos(θ + 2πm

3

)
+ isin

(
θ + 2πm

3

)}
m = 0, 1, 2 and θ is the argand of −(p0−z)

2q2
. By application of fundamental

theorem of algebra, two of the ν2,3,4 roots will be complex conjugate pair of

the other while one root will be real. Thus if w̃j has non-zero imaginary part,

then wj also has non-zero imaginary part.
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Theorem 4.4.2. Assume (4.29) and (4.30) are satisfied, then the eigenvalues of

the operator generated by (4.28) satisfy the dichotomy condition.

Proof. By application of implicit function theorem, the correction term is given by

∂νPF (x, ν, z) ≈ 4p2ν
3 + 6q2ν

2 + 2p1ν + 2q1.

Now substituting the values of ν1 and ν2,3,4, we obtain

|∂ν1PF | ≈ |q2(
q2

p2

)2| ≈ |p2|−2|q2|3.

This implies that |∂ν1PF |−1 ≈ |p2|2|q2|−3. Similarly,

|∂ν2,3,4PF | ≈ |q2(
p0

q2

)
2
3 | ≈ |q2|

1
3 |p0|−

2
3 .

So that |∂ν2,3,4PF |−1 ≈ |q2|−
1
3 |p0|

2
3 .

Since |∂ν1PF |−1 6= |∂ν2,3,4PF |−1 this suffices for the uniform dichotomy condition

between ν1 and ν2,3,4. Here, if z = z0 + iη, η > 0, then the eigenvalues λk(x, z) will

be expressed as λk(x, z) = λk0(x, z)+i( η
∂νkPF (x,z)

) where λk0(x, z) is the approximated

root while i( η
∂νkPF (x,z)

) is the correction term. Because of Lemma 4.2.3, this only

affects the pure real ν-roots. Explicitly, we have Re(λ1(x, z)− λ2,3,4(x, z)) 6= 0.

4.4.3 Diagonalisation

In order to diagonalise the first order system, we require the corresponding eigen-

vectors. These are obtained by solving the equation Cv = λv, where C is a 4 × 4

matrix, v is the eigenvector, while λ is the eigenvalue. This leads to the expression



0 1 0 0

0 iq2
p2

0 1
p2

p0 iq1 0 0

−iq1 p1 − q22
p2
−1 iq2

p2





1

µ1

µ2

µ3


= λk



1

µ1

µ2

µ3
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Collecting like terms together and solving for µi, i = 1, 2, 3, we get

µ1 = λk, µ2 = −iq1 + p1λk + 2iq2λ
2
k − p2λ

3
k, µ3 = p2λ

2
k − iq2λk

The corresponding eigenvectors are

v1 =



1

O(q2)

O(q−1
2 )

O(q2
2)


, v2 =



1

O(q
− 1

3
2 )

O(q
1
3
2 ) +O(q1)

O(q
2
3
2 )−O(q

− 2
3

2 )



v3 =



1

O(q
− 1

3
2 )

O(q
1
3
2 )−O(q1)

O(q
2
3
2 ) +O(q

− 2
3

2 )


, v4 =



1

O(q
− 1

3
2 )

O(q
1
3
2 )

O(q
2
3
2 )


.

The eigenvectors can then be approximated from the above expressions. Hence, the

diagonalising matrix is given by

M(x, z) = [v1(x, z), v2(x, z), v3(x, z), v4(x, z)].

Theorem 4.4.3. Let T be the minimal differential operator generated by (4.31) on

L2[0,∞) and assume that conditions (4.29) and (4.30) are satisfied. Then

(i) Suppose that |q2|−
1
3 is integrable, then defT = (3, 3) and σ(H) is discrete.

(ii) Suppose that |q2|−3 is integrable but |q2|−
1
3 is not integrable, then defT will

either be (3,2) or (2,3) depending on the sign of q2 . Hence no self-adjoint

extension.

(iii) Suppose that |q2|−
1
3 is not integrable, then defT = (2, 2) and σac(H) = R

Proof. (i) Here, the eigensolution associated to λ1(x, z) will be square integrable

both in the upper and lower half plane since |q2|−
1
3 is integrable. On the other
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hand, two of the roots from the set λ2,3,4(x, z) will be in complex conjugate

pair leading to one square integrable and one non-square integrable solution

in the complex plane. The other real root from the set λ2,3,4(x, z), will also

lead to a solution that is square integrable both in the upper and lower half

plane. Thus we have defT = (3, 3) and hence the spectrum is pure discrete.

(ii) In this case, λ1(x, z) will be pure imaginary and since |q2|−3 is integrable, it

implies that the associated eigensolution will be square integrable both in the

upper and lower half planes. Similarly, two of the roots from the set λ2,3,4(x, z)

will be in complex conjugate pair thus contributing to one square integrable

and one non-square integrable solution in the complex plane. The remaining

real root from the set λ2,3,4(x, z) will lead to a solution that is either square

integrable in the upper complex plane but not in the lower complex plane and

vice versa depending on the sign of q2(x). Thus we have either defT = (3, 2)

or (2, 3) depending on the sign of q2(x). By Von Neumann theorem and since

defT 6= (r, r), T has no self-adjoint extension.

(iii) If |q2|−
1
3 is not integrable, then the eigensolution associated to λ1(x, z) will ei-

ther be square integrable in the lower half plane but not in the upper half plane

and conversely. On the other hand, two of the roots from the set λ2,3,4(x, z)

will be in complex conjugate pair leading to one square integrable and one non-

square integrable solution in the complex plane. The eigensolution associated

to the remaining real root from the set λ2,3,4(x, z) will either be integrable in

the upper complex plane but not in the lower complex plane and in reverse

depending on the sign of q2(x). Thus we have defT = (2, 2) with discrete

spectrum. By application of implicit function theorem and the sign of q2(x),

there is no way the eigensolutions associated to λ1(x, z) and the real root

from the set λ2,3,4(x, z) can both be square integrable in the same plane or

non-square integrable in the same plane. This rules out the possibility of hav-

ing defT = (1, 3) or (3, 1). Suppose that |q2|−
1
3 is not integrable, then the

eigensolution associated to λ1(x, z) will lose its square integrability as η −→ 0
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and hence will contribute to absolutely continuous spectrum of multiplicity

one.

4.5 Order Four Difference Operator

In this section, we consider the fourth order version of (1.2), that is, p3(t) = q3(t) =

0, p2(t) 6= 0 so that we have order four symmetric difference equation

Ly(t) = ∆2[p2(t)∆2y(t− 2)]−∆[p1(t)∆y(t− 1)] + p0(t)y(t) (4.35)

− i∆
(
q2(t)∆2y(t− 2)

)
− i∆2 (q2(t)∆y(t− 1)) + i∆ (q1(t)y(t))

+ iq1(t)∆y(t− 1).

The growth conditions in (4.29) and (4.30) will be assumed but with the indepen-

dent variable taken as t. In order to apply asymptotic summation, the following

smoothness and decay assumptions are necessary;

∆2f

f
,

(
∆f

f

)2

∈ `1,
∆f

f
∈ `2, f = p0, p2, q1, q2. (4.36)

4.5.1 System formulation

We study the spectral theory of the difference equation (4.35) defined on `2[0,∞).

In this case, we solve the equation Ly = zy. Here z is a spectral parameter.

4.5.2 Asymptotic Summation

In order to write the Hamiltonian system of (4.35) one introduces quasi-differences,

x1(t) = y(t− 1), ∆x1(t) = ∆y(t− 1), x1(t+ 1) = y(t)

x2(t) = ∆y(t− 2), ∆x2(t) = ∆2y(t− 2), x2(t+ 1) = ∆y(t− 1).
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This implies that, ∆x1(t) = ∆y(t− 1) = x2(t+ 1).

∆x2(t) = ∆2y(t− 2) =
1

p2

u2(t) +
iq2

p2

x2(t+ 1)

u1(t) = −∆
(
p2(t)∆2y(t− 2)

)
+ p1(t)∆y(t− 1)

+ i{∆ (q2(t)∆y(t− 1)) + q2(t)∆2y(t− 2)} − iq1(t)y(t)

u2(t) = p2(t)∆2y(t− 2)− i(q2(t)∆y(t− 1))

∆u1(t) = (p0 − z)(t)x1(t+ 1) + iq1(t)x2(t+ 1)

∆u2(t) = (p1 −
q2

2

p2

)x2(t+ 1)− iq1(t)x1(t+ 1) +
iq2

p2

u2(t)− u1(t).

One can easily obtain the following relation

∆x2(t) =
1

p2

u2(t) +
iq2

p2

∆y(t− 1) =
1

p2

u2(t) +
iq2

p2

x2(t+ 1).

In order to determine the number of solutions that are square summable, we use

asymptotic summation that requires (4.35) to be converted into first order system.

The first order system of (4.35) is therefore given by

∆Y (t, z) = G(t, z)RY (t, z)

where

Y (t, z) = [x1(t), x2(t), u1(t), u2(t)]tr.

R is the partial shift operator such that

R(Y (t)) = [x1(t+ 1), x2(t+ 1), u1(t), u2(t)]tr,
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here tr is the usual transpose of a vector or matrix.

G(t, z) is given below

G(t, z) =



0 1 0 0

0 iq2
p2

0 1
p2

p0 iq1 0 0

−iq1 p1 − q22
p2
−1 iq2

p2


.

We now write matrix G(t, z) in block form as follows;

G(t, z) =

 A B

C −A∗


where

A =

 0 1

0 iq2
p2

 , B =

 0 0

0 1
p2

 , C =

 p0 − z iq1

−iq1 p1 − q22
p2

 .
We can now apply the approach of Shi (Shi, 2006) so as to obtain the first order

system in the form Y (t+ 1, z) = S(t, z)Y (t, z) where

Y (t, z) = [x1(t, z), x2(t, z), u1(t, z), u2(t, z)]tr.

Thus we obtain

Y (t+ 1, z) =

 E EB

CE I − A∗ + CEB

Y (t, z)

where E = (In − A)−1.

Explicitly this gives,

S(t, z) =

 E EB

CE I − A∗ + CEB
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S(t, z) =



1 1

1− iq2
p2

0 1
p2
. 1

1− iq2
p2

0 1

1− iq2
p2

0 1
p2
. 1

1− iq2
p2

p0 − z p0−z+iq1
1− iq2

p2

1 1
p2
.p0−z+iq1

1− iq2
p2

−iq1
p1−iq1−q22

1− iq2
p2

−1 1 + iq2
p2

+
p1−iq1−

q22
p2

1− iq2
p2


.

We thus compute the characteristic polynomial of matrix S(t, z) using the formula

P(t, λ, z) = det(S(t, z)− λI4). Multiplying the resultant polynomial by p2− iq2 and

dividing with λ2 we obtain a polynomial of the form

F(t, λ, z) =
p2 − iq2

λ2
P(t, λ, z) = p2(1− λ)2(1− λ−1)2 + p1(1− λ)(1− λ−1)

+ p0 + q2(1− λ)(1− λ−1)(iλ+ (iλ)−1) + q1(iλ+ (iλ)−1).

This leads to λ-roots such that λ−1 are also roots. If we suppose that γ = (1 −

λ)(1− λ−1) = 2− λ− λ2, then |λ| = 1 can only be obtained if and only if γ ∈ [0, 4].

In order to eliminate the imaginary coefficients in the polynomial, we make unitary

transformations by letting

λ =
(is+ 1)

(is− 1)

and then multiplying the resulting polynomial by (s2 + 1)2 we obtain

Q(t, s, z) = (s2 + 1)2F
(
is+ 1

is− 1
, t, z

)

so that

Q(t, s, z) = (16p2 + 4p1 + p0) + (16q2 + 4q1)s+ (4p1 + 2p0)s2 + 4q1s
3 + p0s

4 (4.37)

Note that p0 = p0 − z.

We can now apply conditions (4.29) and (4.36) to obtain the s-roots and then make

backward substitution to get λ-roots. The s-roots of this polynomial can then be
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approximated as,

s1 ≈
−(16p2 + 4p1 + p0)

16q2 + 4q1

+ lower order terms.

s2,3,4 =

(
−16q2 + 4q1

p0

) 1
3

+ lower order terms

Here, lower order terms are those terms approximately O(q−2
2 ).

To obtain the λ-roots, we make the following substitution

s =
λ+ 1

iλ− i
=
iλ2 + 2iλ+ i

1− λ2
.

Theorem 4.5.1. Assume (4.29) and (4.36) are satisfied, then the eigenvalues of

the operator generated by (4.35) satisfy the dichotomy condition.

Proof. Since |λ1(t, z)| ≈ |16p2+4p1+p0)
16q2+4q1

| and |λ2,3,4(t, z)| ≈ |−16q2+4q1
p0

| as t → ∞, it

follows that |λ1(t, z)| < 1 and |λ2,3,4(t, z)| > 1. Irrespective of the uniform dichotomy

condition, λ1(t, z) will lead to z-uniformly summable solution while λ2,3,4(t, z) will

lead to non-square summable solution. This is the required dichotomy condition.

Theorem 4.5.2. Let L be the minimal difference operator generated by (4.35) on

`2[0,∞) and assume that condition (4.29) and (4.36) are satisfied. Then

(i) If |q2|−1 is summable, then defL = (3, 3) and σ(H) is discrete.

(ii) If |q2|−2 is not summable, then defL = (2, 2) with discrete spectrum.

Proof. (i) If |q2|−1 is summable, the eigenfunction associated to λ1(t, z) will be z-

uniformly square summable both in the upper and lower half plane. Similarly,

the eigensolution associated to the real root from the set λ2,3,4(t, z) will also

be z-uniformly square summable both in the upper and lower complex plane.

More so, two of the roots from the set λ2,3,4(t, z) are in complex conjugate

pair leading to one square summable and one non-square summable solution

in the complex plane. It follows that defL = (3, 3) and hence the spectrum is

discrete at most.
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(ii) If |q2|−2 is not summable, then the eigensolution associated to λ1(t, z) will either

be z-square summable in the lower half plane but not in the upper half plane

and vice versa. On the other hand, the complex conjugate pair from the

set λ2,3,4(t, z) will contribute to one z-square summable and one non-square

summable solution in the complex plane. The remaining real root from the

set λ2,3,4(t, z) will lead to a solution that is either z-square summable in the

upper complex plane but not in the lower complex plane and the other way

round . Thus we have defT = (2, 2) with discrete spectrum.

4.6 Order Six Differential Operator

In this section, we consider (1.1) with p3(x), p0(x), q2(x) 6= 0, p1(x) = p2(x) =

q1(x) = q3(x) = 0 and w(x) = 1, then (1.1) generates a sixth order symmetric

differential equation on L2[0,∞) of the form

τy(x) = −(p3(x)y′′′(x))′′′ − i[(q2(x)y′′(x))′ + (q2(x)y′(x))′′] + p0(x)y(x). (4.38)

The growth conditions will be as follows;

|q2(x)| ↗ ∞, p0, p3 = o(q2), p1(x) = p2(x) = q1(x) = q3(x) = 0 ∀x ∈ [0,∞)

(4.39)

|q2|−
4
3 |p3|

1
3 , |p0|−

1
3 |q2|−

2
3 = o(1) (4.40)

f ′

f
∈ L2,

f ′′

f
,

(
f ′

f

)2

∈ L1, f = p0, p3, q2. (4.41)

4.6.1 System formulation

We study the spectral theory of differential operators generated by (4.38) using

asymptotic integration. To begin, we consider the differential equation τy(x) =

zy(x), on (0,∞) where z is considered as the spectral parameter.
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4.6.2 Asymptotic Integration

To apply asymptotic integration methods, it is more convenient to rewrite equation

(4.38) as a first order system.

We introduce the quasiderivatives

y[0] = y, y[1] = y′

y[2] = y′′, y[3] = p3y
′′′

y[4] = −y(iv) − iq2y
′

y[5] = −y(v) + i {(q2y
′)′ + q2y

′′}

u′(x) = F (x, z)u(x); u = (y[0], y[1], y[2], y[5], y[4], y[3])tr. (4.42)

This has been formulated in line with the formulations of Walker (Walker, 1974).

Here,

F (x, z) =

 A B

C −A∗

 , A =


0 1 0

0 0 1

0 0 0

 , B =


0 0 0

0 0 0

0 0 1
p3



C =


p0 − z 0 0

0 0 iq2

0 −iq2 0

 .
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(4.42) explicitly becomes,



y[0]

y[1]

y[2]

y[5]

y[4]

y[3]



′

=



0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 0 0 1
p3

p0 − z 0 0 0 0 0

0 0 iq2 −1 0 0

0 −iq2 0 0 −1 0





y[0]

y[1]

y[2]

y[5]

y[4]

y[3]



so that the matrix F (x, z) is given by

F (x, z) =



0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 0 0 1
p3

p0 − z 0 0 0 0 0

0 0 iq2 −1 0 0

0 −iq2 0 0 −1 0


.

Solving det(F − λI6) = P(λ, x, z) we obtain,

P(λ, x, z) = −p3λ
6 − 2iq2λ

3 + p0 − z.

The occurrence of the complex term −2iq2 makes it desirable to use the Fourier

polynomial PF instead. One thus obtains this by replacing λ by −iν

PF (ν, x, z) = p3ν
6 + 2q2ν

3 + p0 − z. (4.43)

Therefore, the roots of PF (ν, x, z) can be approximated from the following polyno-

mials

PF1 ≈ p3ν
3 + 2q2 + p0ν

−3 (4.44)
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PF2 ≈ p0 + 2q2ν
3 + p3ν

6. (4.45)

The magnitudes of these ν-roots are approximately |ν1,2,3| ≈ |p0q2 |
1
3 and |ν4,5,6| ≈

| q2
p3
| 13 .

The roots of the polynomial in (4.43) can be approximated from (4.44) and (4.45)

and their existence are immediate from Theorem 4.4.1.

Theorem 4.6.1. Suppose (4.39), (4.40) and (4.41) are satisfied. Then |p3ν
6
1,2,3| =

o(1) and |p0ν
−3
4,5,6| = o(1) where |ν1,2,3| ≈ |p0q2 |

1
3 and |ν4,5,6| ≈ | q2p3 |

1
3 . Moreover, the

ν-root of PF (ν, x, z) can be approximated from (4.43) and (4.44).

Proof. It suffices to show that p0ν
−3 and p3ν

6 are o(1) in PF1 . Here,

|p0ν
−3| ≈ |p0||

q2

p3

|−1 ≈ |p0||
p3

q2

| ≈ |p0||p3||q2|−1 = o(1).

|p3ν
6| ≈ |p3||

p0

q2

|2 ≈ |p0||p3||q2|−2 = o(1)

since p0 = o(q2). The rest of the proof is immediate from the results of Theorem

4.4.1.

Lemma 4.6.2. Assume that condition (4.39), (4.40) and (4.41) are satisfied, then

the eigenvalues of the operator generated by (4.38) satisfies the z-uniform dichotomy

condition.

Proof. The correction term as a result of the spectral parameter z is approximately

(∂νP(ν, x, z))−1(Behncke & Nyamwala, 2012). Hence for the ν1, ν2 and ν3, we have

|∂νPF(ν, x, z)|−1 ≈ |p3|
1
3 |q2|−

4
3 while for ν4, ν5 and ν6 we have |∂νPF(ν, x, z)|−1 ≈

|p0|−
1
3 |q2|−

2
3 . Since |∂ν1,2,3PF |−1 6= |∂ν4,5,6PF |−1 this suffices for the uniform dichotomy

condition between ν1,2,3 and ν4,5,6. To prove the dichotomy condition within the

clusters, it suffices to analyze Im(λk(x, z) − λj(x, z)) for k > j. Since one of the

λ1,2,3(x, z) roots is real, assuming it is λ1(x, z) then it suffices to check the dichotomy

between λ2(x, z) verses λ3(x, z). But λ = −iν, then from the Implicit function

theorem, Imλ2(x, z) 6= Imλ3(x, z) and have different signs. Similarly, if λ6(x, z) is
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real, then Imλ4(x, z) 6= Imλ5(x, z) and their signs are different, this suffices for the

uniform dichotomy condition.

Theorem 4.6.3. Let T be the minimal differential operator generated by (4.38) on

L2[0,∞) and assume that condition (4.39), (4.40) and (4.41) are satisfied. Then

(i) Suppose that |p3|
1
3 |q2|−

4
3 and |p0|−

1
3 |q2|−

2
3 are integrable, then defT = (4, 4)

and σ(H)=discrete.

(ii) Suppose that either |p3|
1
3 |q2|−

4
3 is integrable but |p0|−

1
3 |q2|−

2
3 is not or |p3|

1
3 |q2|−

4
3

is not integrable while |p0|−
1
3 |q2|−

2
3 is integrable, then either defT = (3, 4) or

(4, 3) depending on the sign of q2(x),∀x ⊂ [0,∞). Then T has no selfadjoint

extension.

(iii) If |p3|
1
3 |q2|−

4
3 and |p0|−

1
3 |q2|−

2
3 are not integrable, then defT = (3, 3) and

σacH ⊂ [p̄0,∞) if q2 > 0 while σac(H) = R if q2 < 0 with spectral multi-

plicity 1.

Proof. (i) By Theorem 4.2.1 (Levinson’s Theorem), the differential equation (4.38)

is converted into first order system by use of quasiderivatives. We then com-

pute the characteristic polynomial of the matrix in the first order system whose

zeros can be obtained from the roots of P(ν, x, z), then we show the z-uniform

dichotomy condition by application of Lemma 4.2.3. Theorem 4.2.1 now shows

that the solutions are of the form;

yk(x, z) = (ek + rkk(x, z)).exp

(∫ x

0

λk(l, z)

)
dx k = 1, 2, 3, 4, 5, 6.

If |p3|
1
3 |q2|−

4
3 and |p0|−

1
3 |q2|−

2
3 are integrable, then λ1(x, z) will be pure imagi-

nary and since |p0|−
1
3 |q2|−

2
3 is integrable, then the associated eigensolution will

be square integrable both in the upper and lower half planes. Since λ2,3(x, z)

are in complex conjugate pair, they will contribute to one square integrable

and one non-square integrable solution in the complex plane. The eigenso-

lution associated to λ4(x, z) will be square integrable both in the upper and
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lower halfplane. The remaining complex conjugate pair λ5,6(x, z), will also be

contributing to one square integrable and one non-square integrable solutions

to the complex plane. This leads to defT = (4, 4) and the spectrum is discrete

at most.

(ii) If |p3|
1
3 |q2|−

4
3 is integrable but |p0|−

1
3 |q2|−

2
3 is not or |p3|

1
3 |q2|−

4
3 is not integrable

while |p0|−
1
3 |q2|−

2
3 is integrable, then the eigensolution associated to λ1(x, z)

will be square integrable both in the upper and lower half planes. Since

λ2,3(x, z) are in complex conjugate pair, they will contribute to one square

integrable and one non-square integrable solution in the complex plane. The

eigensolution associated to λ4(x, z) will either be square integrable in the up-

per half plane but not in the lower half plane and the other way round. The

remaining complex conjugate pair λ5,6(x, z), will also be contributing to one

square integrable and one non-square integrable solution to the complex plane.

This leads to defT = (4, 3) or (3, 4). Then T has no selfadjoint extension.

(iii) If |p3|
1
3 |q2|−

4
3 and |p0|−

1
3 |q2|−

2
3 are not integrable, then the eigensolution asso-

ciated to λ1(x, z) will either be square integrable in the upper complex plane

but not in the lower complex plane and conversely depending on the sign of

q2(x). Since λ2,3(x, z) are in complex conjugate pair, they will contribute to

one square integrable and one non-square integrable solution in the complex

plane. Similarly, the eigensolution associated to λ4(x, z) will either be square

integrable in the lower complex plane and not in the upper complex plane and

vice versa. The other complex conjugate pair λ5,6(x, z), will be contributing to

one square integrable and one non-square integrable solutions to the complex

plane. Due to the sign of q2(x), λ1,2,3(x, z) can either contribute (1,2) or (2,1)

to the deficiency indices and this will change if we consider the contribution

to the deficiency indices of λ4,5,6(x, z) under similar conditions, that is, (2,1)

or (1,2). This leads to defT = (3, 3) and hence discrete spectrum. If |q2|−
2
3

and |q2|−
4
3 are not integrable, then the eigenfunction associated with λ1(x, z)

loses its square integrability as η −→ 0+. Thus for q2(x) < 0, it implies that
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−∞ < z < ∞, hence σac(H) = R with spectral multiplicity 1. On the other

hand, for q2(x) > 0, it implies that p̄0 < z <∞, hence σac(H) ⊂ [p̄0,∞).

4.7 Order Six Difference Operator

In this section, we consider the sixth order version of (1.2), that is, p2(t) = q1(t) =

p1(t) = 0, p3(t), q2(t), p0(t) 6= 0 when n=3 so that we have order six symmetric

difference equation.

Ly(t) = −∆3[p3(t)∆3y(t− 3)]− i{∆
(
q2(t)∆2y(t− 2)

)
(4.46)

+ ∆2 (q2(t)∆y(t− 1))}+ p0(t)y(t).

The growth conditions in (4.39) will be assumed with the independent variable taken

as t.

The following smoothness and decay assumptions are necessary;

∆2f

f
,

(
∆f

f

)2

∈ `1,
∆f

f
∈ `2, f = p0, q2, p3. (4.47)

4.7.1 System formulation

We study the spectral theory of difference operators of the form (4.46) defined on

`2[0,∞). In this case, we solve the equation Ly(t) = zy(t).

4.7.2 Asymptotic Summation and Results

In order to write the Hamiltonian system of (4.46) one introduces quasi-differences,

x1(t) = y(t− 1), x2(t) = ∆y(t− 2), x3(t) = ∆2y(t− 3)

∆x1(t) = ∆y(t− 1) = x2(t+ 1).
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u1(t) = ∆2(p3(t)∆3y(t− 3)) + i{∆(q2(t)∆y(t− 1))

+ q2(t)∆2y(t− 2)}

u2(t) = −∆(p3(t)∆3y(t− 1))− i(q2(t)y(t− 1)

u3(t) = p3(t)∆3y(t− 3).

Now define the vector valued functions x(t), u(t) and Y (t) by

x(t) = (x1(t), x2(t), x3(t)), u(t) = (u1(t), u2(t), u3(t)), Y (t) = (x(t), u(t))tr

and the partial shift R(Y (t)) operator such that

R(Y (t)) = [x1(t+ 1), x2(t+ 1), x3(t+ 1), u1(t), u2(t), u3(t)]tr,

where tr means the transpose of a vector or matrix.

Then (4.46) can be written in its discrete linear Hamiltonian form

J∆Y (t) = [zW (t) + P (t)]RY (t)

where t ∈ I,W (t) and P (t) are 6× 6 complex Hermitian matrices ,

W (t) = diag (w(t), 0, 0, 0, 0, 0) , w(t) > 0 is the weighted function and will be as-

sumed to be w(t) = 1 and J is a canonical symplectic matrix, that is,

J =

 0 −I3

I3 0

 , P (t) =

 −C(t) A∗(t)

A(t) B(t)

 .
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The first order form of equation (4.46) leads to,

∆



x1(t)

x2(t)

x3(t)

u1(t)

u2(t)

u3(t)


=



0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 0 0 1
p3

p0 − z 0 0 0 0 0

0 0 iq2 −1 0 0

0 −iq2 0 0 −1 0





x1(t+ 1)

x2(t+ 1)

x3(t+ 1)

u1(t)

u2(t)

u3(t)

.


So that

H(t, z) =



0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 0 0 1
p3

p0 − z 0 0 0 0 0

0 0 iq2 −1 0 0

0 −iq2 0 0 −1 0


.

Writing matrix H(t, z) in block form gives,

H(t, z) =

 A B

C −A∗


where

A =


0 1 0

0 0 1

0 0 0

 , B =


0 0 0

0 0 0

0 0 1
p3

 , C =


p0 − z 0 0

0 0 iq2

0 −iq2 0

 .

By application of the approach of Shi, (Shi, 2006) we obtain the first order system

in the form Y (t+ 1, z) = S(t, z)Y (t, z) where,

Y (t, z) = (x1(t, z), x2(t, z), x3(t, z), u1(t, z), u2(t, z), u3(t, z))tr.
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Thus we obtain,

Y (t+ 1, z) =

 E EB

CE I − A∗ + CEB

Y (t, z)

where

E = (In − A)−1 and A∗ =


0 0 0

1 0 0

0 1 0


so that

S(t, z) =

 E EB

CE I − A∗ + CEB

 .

Y (t+ 1, z) =



1 1 1 0 0 1
p3

0 1 1 0 0 1
p3

0 0 1 0 0 1
p3

p0 p0 p0 1 0 p0
p3

0 0 iq2 −1 1 iq2
p3

0 −iq2 −iq2 0 −1 1− iq2
p3


Y (t, z)

and p0 = p0 − z.

One can now compute det(S(t, z)−λI6) = P(λ, t, z). Multiplying P(λ, t, z) by p3λ
−3

we obtain a polynomial of the form

F(λ, t, z) = p3(1− λ)3(1− λ−1)3 + q2(1− λ)(1− λ−1)(iλ+ (iλ)−1) + p0 − z.

Substituting

λ =
(is+ 1)

(is− 1)

and then multiplying the resulting polynomial by (s2 − 1)3 we obtain

Q(s, z) = p0s
6 + 3p0s

4 + 16q2s
3 + 3p0s

2 + 16q2s+ 64p3 + p0. (4.48)
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Note that p0 = p0 − z.

The s-roots of this polynomial can then be approximated as,

s1,2,3 ≈
(
−16q2

p0

) 1
3

+ lower order terms

s4,5 ≈
−3p0 ± (9p2

0 − 1024q2
2)

1
2

32q2

≈ ±i+ lower order terms

s6 ≈
−4p3

q2

− p0

16q2

+ lower order terms.

Here, lower order terms are terms of the size O(q−2
2 ) for s4,5,6 and O(q−1

2 ) for s1,2,3.

Lemma 4.7.1. Assume that condition (4.39) and (4.47) are satisfied, then the

eigenvalues of the operator generated by (4.46) satisfies the z-uniform dichotomy

condition.

Proof. In this case, the corresponding λ-roots are given by

λ1,2,3 =
(is1,2,3 + 1)

(is1,2,3 − 1)
≈
−16iq2

p0
+ 1

−16iq2
p0
− 1
≈ 1∓ ip0

q2

+ ....

λ1 ≈ 1, λ2,3 ≈ ∓
ip0

q2

.

Here, λ1(t, z) has magnitude approximately equal to one and so it remains to check

the uniform dichotomy for λ2(t, z) verses λ3(t, z). If |λ2(t, z)| < 1 and |λ3(t, z)| > 1,

this suffices for the z-uniform dichotomy condition between λ2(t, z) and λ3(t, z).

Moreover, s4(t, z) and s5(t, z) are purely imaginary so that if |λ4(t, z)| > 1 while

|λ5(t, z)| < 1 uniformly in t, then the dichotomy condition is satisfied. |λ6(t, z)| ≈ 1

as t −→∞ hence the desired dichotomy condition.

Theorem 4.7.2. Let L be the minimal difference operator generated by (4.46) on

`2[0,∞) and assume that condition (4.39) and (4.47) are satisfied. Then

(i) Suppose that |q2|−1 is summable, then defL = (4, 4) and σ(H) is discrete.
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(ii) Suppose that |q2|−2 is not summable, then defL = (3, 3) and σ(H) is discrete

at most.

Proof. (i) The difference equation (4.46) is first converted into first order by use of

quasi-differences. Theorem 4.3.1. now shows that the eigenvalue solution are

of the form;

yk(t, z) = (ek + rkk(x, z)).Π
l=t−1
l=0 λk(l, z) k = 1, 2, 3, 4, 5, 6.

If |q2|−1 is summable, then since one of the s1,2,3(t, z) roots is real, assuming it

is s1(t, z), then the solution y1(t, z) of the associated root is square summable

both in the upper and lower half planes. s2,3(t, z) are in complex conjugate

pair and hence their solution contributes to one square summable both in

the upper and lower half plane. Similarly, s4,5(t, z) are in complex conjugate

pair and therefore their solutions contribute to one square summable both

in the upper and lower half plane. The remaining solution y6(t, z) will also

contribute to one square summable in the lower and upper half plane which

leads to defL = (4, 4). These solutions will be uniformly square summable

irrespective of the nature of z. Hence discrete spectrum.

(ii) If |q2|−2 is not summable, then y1(t, z) will either be square summable in the

upper complex plane but not in the lower complex plane and vice versa de-

pending on the sign of q2(t). Since s2,3(t, z) are in complex conjugate pair,

their solutions, y2,3(t, z), will contribute to one square summable and one non-

square summable solution in the complex plane. In the same way, y4,5(t, z)

will be square summable both in the upper and lower complex plane since

s4,5(t, z) are in complex conjugate pair. The solution, y6(t, z), associated to

the root s6(t, z), will be contributing to either one square summable solution

in the lower and fails in the upper complex plane and conversely depending

on the sign of q2(t). This leads to defL = (3, 3) and hence discrete spectrum

at most.



64



65

Chapter 5

Conclusions and Recommendations

5.1 Conclusions

(i) For order two differential operator with unbounded odd order coefficients, the

absolutely continuous spectrum was the whole of the real line with spectral

multiplicity as one. On the other hand, the spectrum of their discrete coun-

terparts only consisted of eigenvalues under the similar growth conditions.

The deficiency indices for order two differential operator were (2, 2) whenever

|q1(x)|−1 was integrable and (1, 1) when |q1(x)|−1 was not integrable. How-

ever, the deficiency indices were (1, 1) for the order two difference operator

irrespective of the summability of |q1(t)|−1.

(ii) Order four differential operator with the third order coefficient unbounded re-

sulted to absolutely continuous spectrum which is the whole of the real line

with spectral multiplicity as one while the spectrum of order four difference

operator was pure discrete under similar growth and decay conditions. For

|q2(x)|− 1
3 integrable and |q2(t)|−1 summable, the deficiency indices in both

cases were (3, 3).

(iii) Under similar growth and decay conditions, order six differential operator with

unbounded third order coefficients had absolutely continuous spectrum which

was the whole of real line while the spectrum of their discrete counterparts was

point spectrum at most. The deficiency index was (4, 4) in both cases when

|p3(x)| 13 |q2(x)|− 4
3 and |p0(x)|− 1

3 |q2(x)|− 2
3 were integrable and when |q2(t)|−1 was

summable.
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5.2 Recommendations

In future, one can investigate the spectral properties of order six operators with all

the coefficients taken as non- zero. This can be generalized to higher orders more

than six. More so, when more than one coefficient is unbounded.

Different methods other than asymptotic integration and summation can be used,

that is, scattering methods in order to handle singular continuous spectrum.
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