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In order to examine the reliability and applicability of Tropical Rainfall Measuring
Mission (TRMM) and Other Satellites Precipitation Product (3B42) Version 6
(TRMM-3B42) at basin scales, satellite rainfall estimates were compared with geo-
statistically interpolated reference data from 12 rain gauge stations for three con-
secutive years: 2005, 2006 and 2007. Gauge–TRMM-3B42 statistical properties for
daily, decadal and monthly multitemporal precipitations were compared using the
following cross-validation continuous statistical measures: mean bias error (MBE),
root mean square difference (RMSD), mean absolute difference (MAD) and coeffi-
cient of determination (r2) metrics. The averaged spatial–temporal comparisons
showed that the TRMM-3B42 rainfall estimates were much closer to the geostatis-
tically interpolated gauge data, with minimal biases of −0.40 mm day−1, −1.78 mm
decad−1 and −6.72 mm month−1 being observed in 2006. In the same year, the
gauge and TRMM-3B42 rainfall estimates marginally correlated better than in
2005 and 2007, with the daily, decadal and monthly coefficients of determination
being 82.2%, 93.9% and 96.5%, respectively. The results showed that the cor-
relations between the gauge-derived precipitation and the TRMM-3B42-derived
precipitation increased with increasing temporal intervals for all three consid-
ered years. Quantitatively, the TRMM-3B42 observations slightly overestimated
the precipitations during the wet seasons and underestimated the observed rain-
fall during the dry seasons. The results of the study show that the estimates
from TRMM-3B42 precipitation retrievals can effectively be applied in the inter-
polation of missing gauge data, and in the verification of precipitation uncer-
tainties at the basin scales with minor adjustments, depending on the timescales
considered.

1. Introduction

Information on precipitation rates, amounts and distribution is indispensable for
a wide range of applications, including agronomy, hydrology, meteorology and cli-
matology. A thorough understanding of the spatial and temporal distribution of
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precipitation is critical to water resource management, where the sizes of basins con-
sidered range from 100 to 100 000 km2 and the temporal integration of rainfall inputs
ranges from hours to days. It therefore follows that sustainable decisions regard-
ing water resource management require accurate information on water availability,
which comprises continuous quantification of the spatial and temporal distribution of
rainfall at different functional hydrologic scales such as river basins.

In most countries, rain gauges are the main source of rainfall measurements.
However, the reliability of rain gauge data is limited by their lack of adequate spatial
coverage. This is further complicated by areas with varied climatology and topograph-
ical characteristics. Furthermore, rain gauge networks are limited to over the land only
and remain sparse over most of the globe, while radar networks are limited to only a
few countries (Kummerow et al. 1998, Pardo-Iguzqiza 1998, Hong et al. 2006).

In poorly gauged regions, rainfall availability and analysis are hampered by the
fact that only minimal hydrometeorological information is available. As such, only
discrete rain and stream gauge data are available; however, these may be unsuitable
for answering specific questions in water resource demands such as in operational
irrigation water supply, running hydropower stations and/or flood forecasting for
disaster management (Li et al. 2009). This implies that other data sources for deriv-
ing hydrometeorological information, such as satellite-based precipitation retrievals,
are significant for land surface hydrological research and applications, especially for
regional or watershed-scale studies. (Tian et al. 2007, Li et al. 2009, Wagner et al.
2009).

Recent advances in the field of remote sensing have led to an increase in available
rainfall data at regional and global scales (Adler et al. 2003, Hong et al. 2004). Such
precipitation data sources include, among others: the Tropical Rainfall Measuring
Mission (TRMM), Earth Observing System (EOS) Aqua satellite, National Oceanic
and Atmospheric Administration (NOAA)/Climate Prediction Center morphing
technique (CMORPH), and Global Satellite Mapping of Precipitation (GSMaP),
which provide the hydrologic community with an abundance of new precipitation data.
While satellite data have the advantage of regional coverage as compared with rain
gauge data, they are also subject to uncertainties due to the indirect nature of measure-
ments (Greene and Morrissey 2000, Hong et al. 2004). This implies that the reliability
of satellite-based precipitation estimates needs to be evaluated and inter-compared for
a specific study area and temporal interval.

Satellite-estimated rainfall uncertainties arise from various factors such as cloud-
top reflectance, thermal radiance, retrieval algorithm and infrequent satellite over-
passes (Petty and Krajewski 1996, Hossain et al. 2006). The contribution of each
error in the overall uncertainty depends on the retrieval algorithm and the considered
spatial–temporal scale (Yan and Gebremichael 2009). Therefore, the quantification
of precipitation estimation error is essential as it propagates in hydrologic processes,
resulting in significant error in hydrologic predictions (Tetzlaff and Uhlenbrook 2005,
Hong et al. 2006, Schuurmans and Bierkens 2007, Khan et al. 2011). Due to the poten-
tial significance of satellite-estimated rainfall data in hydrologic applications, efforts
are required to assess the uncertainty of these data for localized applications (Hong
et al. 2004, Ebert et al. 2007, Tian et al. 2007, Li et al. 2009).

In an effort to quantify satellite precipitation estimation errors, Hong et al.
(2006) proposed a model in which satellite precipitation error was described as a
non-linear function of rainfall space–time integration scale, rain intensity and sam-
pling frequency. Using Monte Carlo simulations, Hong et al. (2006) generated an
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ensemble of rainfall estimates to evaluate the influence of satellite error propagation
into hydrological modelling. Hossain and Anagnostou (2004) introduced a probabilis-
tic approach to describe the uncertainty of the passive microwave (PM)- and infrared
(IR)-based satellite rainfall data for hydrologic applications. Bellerby and Sun (2005)
developed a methodology to represent the uncertainty in satellite rainfall retrievals
based on the covariance structure of the rainfall field and the conditional distribu-
tion functions of precipitation on the pixel scale. Most of the satellite error assessment
studies are usually limited to investigations at regional space scales of the monthly
or longer temporal intervals (Chiu et al. 2005, Li et al. 2009). For hydrological or
agricultural applications, shorter submonthly period rain rates such as daily, five-day
(pentad), ten-day (decad) or monthly rain rates are more appropriate.

For localized accuracy and reliability assessments, satellite rainfall estimates should
be calibrated and validated using rain gauge networks. While rain gauges measure
rain accurately and continuously at a point, they offer little information on the rain-
fall data between gauges. Rain gauges themselves may not be fully accurate and may
be influenced by factors such as the calibration accuracy, wind effects and sampling
uncertainty, which subsequently limit the accuracy for sampling intervals smaller than
10 min (Pardo-Iguzqiza 1998, Bowman 2005, van de Beek et al. 2011).

Satellites and gauges, respectively, determine and measure precipitation in very dif-
ferent ways. The TRMM instruments, for example, make remote, volume-averaged
measurements of hydrometeors in the atmosphere, from which the area-averaged sur-
face rain rate over the catchment is inferred. By scanning across the orbit track,
TRMM provides a snapshot of the rain rate over an extended region. The satellite
measurements are area-averaged instantaneous observations with relatively poor time
sampling as compared with the gauges, which provide good time sampling but poor
spatial distribution in terms of area coverage (Bowman 2005).

Despite their differences, comparing gauge with satellite estimates remains an essen-
tial tool in the validation of satellite products. Some disagreement between averages of
satellite data and rain-gauge data is, however, expected because of the very different
sampling patterns of the two systems – the satellite provides only occasional snapshots
of large areas, whereas rain gauges provide continuous measurements over very small
areas. A quantitative estimate of the expected level of disagreement due to the differ-
ences in sampling is needed in order for comparisons of the two kinds of averages to
be informative.

Measurements of precipitation from space can complement ground-based observa-
tions towards the provision of a more complete picture of rain structures at any given
temporal or spatial scale. Satellite precipitation measurements provide the impetus for
rain algorithm development and improvement. In this study, a validation approach is
proposed for the TRMM and Other Satellites (3B42) Version 6 products (TRMM-
3B42) against the ground-based rain gauge measurements within the Nzoia River
Basin in Kenya at daily, decadal and monthly temporal scales, for three concurrent
years: 2005, 2006 and 2007.

The proposed validation approach is designed to capture random error sources and
not physical biases and vagueness of remotely sensed precipitation estimates, using the
following continuous cross-validation statistical metrics: (i) mean bias error (MBE),
(ii) root mean square difference (RMSD) and (iii) mean absolute difference (MAD).
The coefficient of determination was used to compare the statistical fit of the TRMM-
3B42 with the surface gauge data. This analytical approach is expected to predict
how the spatial rainfall distributions are affected by the sampling resolution in space



TRMM-3B42 precipitation validation using rain gauge data 7665

(basin) and time (daily, decadal and monthly). In comparing the two data sources,
there is expected random error bands associated with each of the data.

In this study, these errors are dependent on the rainfall amounts and timescales,
and while they may influence pixel-based analyses, they are considered negligible over
large study areas. The study is carried out within the framework of the Kenya Water
Resources Management Authority’s (WARMA) strategic water resources manage-
ment plan for basin water information and management system (b-WIMS).

2. Study area and data

2.1 Study area: the Nzoia River Basin

The Nzoia River Basin is located in the western part of Kenya and lies between lat-
itudes 0◦ N–1.5◦ N and longitudes 34◦ E–36◦ E. The basin covers a geographical
area of approximately 12 709 km2 with a topographical elevation ranging between
1300 and 3000 m above mean sea level (figure 1, adapted from Khan et al. (2011)).
The mean annual rainfall varies from a maximum of 1100–2700 mm to a minimum of
600–1100 mm. There are two rainy seasons and two dry seasons, with the short rains
running from October to December and the long rains running from March to May.
The dry seasons occur in the months of January–February and June–September. Due
to the variable local relief and proximity to Lake Victoria, the climatic patterns within
the basin are not usually regular. Characteristically, the low-altitude areas of the basin
are prone to flooding. Figure 1(b) shows the mean monthly rainfall for three selected
stations (Chorlim, Kakamega and Uholo), representing the upper, middle plateau and
lower elevation regions of the basin.

The basin is traversed by the River Nzoia, which drains into Lake Victoria and the
Nile River Basin. The Nzoia River Basin is densely populated and agriculturally pro-
ductive with rapidly growing commercial and industrial activities in Eldoret, Kitale,
Kakamega, Mumias and Nzoia towns.

2.2 Data

The satellite and gauge rainfall data sets were considered for three years: 2005,
2006 and 2007. The year 2006 was used as a benchmark because of the availability
of continuous and reliable (calibrated) gauge data. The years 2005 and 2007 were cho-
sen since they represented data before and after the reference year. Twelve collocated
rain gauge stations (figure 1(a)) were used as reference data. The identifications and
locations of the 12 stations are presented in table 1. The 12 stations are the World
Meteorological Organization (WMO) coded and recognized stations within the basin.

2.2.1 In situ rainfall measurements: surface rain gauge data. Typically, rainfall data
collected from rain gauge stations are likely to contain errors due to missing data
entries, data recording and data formatting. In rainfall data analysis, incompleteness
reduces the length and information content of the rainfall record. Consistency check
analysis was carried out on the gauge observed data to determine any missing gaps in
the recorded rainfall data using the double-mass curve (DMC) method. Details on the
DMC concept and application are presented in §3.

To compare the continuous satellite data and the discrete gauge data, spatial inter-
polation as a means of creating surface data from sample points is mandatory. The
data used to perform the spatial interpolation of the gauge data were mean monthly
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Figure 1. (a) Location map of Nzoia River Basin showing the distribution and locations of the
12 rain gauge stations within the watershed (adapted from Khan et al. (2011)). (b) Three years’
(2005, 2006 and 2007) mean monthly rainfall observations for selected (Chorlim, Kakamega
and Uholo) rainfall stations. The three stations, respectively, represent the upper, middle plateau
and lower elevation regions of the basin.

rainfall measurements from 12 stations in the Nzoia River Basin over a 3 year period,
2005–2007. This implies that there were 36 gauge station samples (12 monthly samples
for each of the three years).

2.2.2 Sensor rainfall data – TRMM-3B42. TRMM estimates tropical precipita-
tion from space sensors using a suite of rain retrieval algorithms. Products from
the TRMM multisatellite precipitation analysis algorithm include the ‘TRMM and
Other Satellites’ (3B42) and the ‘TRMM and Other Sources’ (3B43). The 3B42 esti-
mates are produced 3-hourly at a spatial resolution of 0.25◦. The major inputs into
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Table 1. Geographic location of the World Meteorological Organization (WMO) recognized
rain gauge stations for areal rainfall measurements within the Nzoia River Basin.

Station # Gauge station name
Gauge WMO

code
Latitude

(◦N)
Longitude

(◦E)

1 CHEBIEMIT AGRIC. OFFICE 8935104 0.8670 35.5000
2 CHORLIM ADC FARM 8834013 1.0330 34.8000
3 ELDORET MET 8935181 0.5330 35.2830
4 KAIMOSI FTC 8934078 0.2170 34.9500
5 KAKAMEGA MET 8934096 0.2670 34.7500
6 KITALE MET 8834028 1.0000 34.9830
7 LUGARI FOREST STN 8934016 0.6670 34.9000
8 MUMIAS SUGAR 8934133 0.3670 34.5000
9 NZOIA SUGAR 8934183 0.5670 34.6500

10 BUTERE HEALTH CENTRE 8934040 0.2140 34.4990
11 PORT VICTORIA FOR STN. 8934191 0.1463 34.0113
12 UHOLO CHIEF’S CAMP 8934059 0.2023 34.3652

Note: The corresponding coordinates of the stations are depicted in figure 1.

the 3B42 algorithm are IR data from geostationary satellites and PM data from
the TRMM microwave imager (TMI), special sensor microwave imager (SSM/I),
Advanced Microwave Sounding Unit (AMSU) and Advanced Microwave Sounding
Radiometer-Earth Observing System (AMSR-E).

The 3B42 estimates are produced in four stages: (a) the PM estimates are calibrated
and combined; (b) the IR precipitation estimates are created using the PM estimates
for calibration; (c) PM and IR estimates are combined; and (d) the data are rescaled
to monthly totals, whereby gauge observations are also used indirectly. The TRMM-
3B42 product is available for a few days after the end of each month as monthly data
(http://trmm.gsfc.nasa.gov/3b42.html), in addition to the 3-hourly data. There is a
near-real-time version, 3B42-real-time (3B42RT), that is available with a time lag of
about 6 h. This version is a product at the third step (c) and does not include gauge
information. 3B42 estimates are considered to supersede the 3B42RT estimates as
each month of 3B42 is computed during the following month. The 3B42 processing is
designed to maximize data quality, so 3B42 is strongly recommended for any research
work not specifically focused on real-time applications. 3B42 estimates are accumu-
lated and merged with gauge data to produce the monthly product (3B43) at 0.25◦
spatial resolution. The TRMM-3B42 precipitation (in mm h−1) products are avail-
able with a spatial resolution of 0.25◦ × 0.25◦ grid and a temporal resolution of 3 h
within 50◦ N –50◦ S global latitude (Huffman et al. 2005, 2007). The TRMM data
were downloaded from the NASA/Goddard Space Flight Center (GSFC)/Data and
Information Services Center (DISC).

3. Methods

3.1 Consistency analysis and spatial interpolation of in situ gauge data to areal data

In this study, data verification was carried out on the rain gauge data for consistency
analysis before interpolation and comparison with the satellite data. The objective of
consistency analysis is to verify and validate the in situ measured gauge data.

http://trmm.gsfc.nasa.gov/3b42.html
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3.1.1 Gauge data consistency analysis. Before carrying out the areal data estima-
tion from discrete data, it is necessary to perform gauge data consistency checks and
apply adjustments if necessary. This process ensures that the trends detected are due
to meteorological causes and not attributed to changes in gauge location, exposure
and/or observational methods. If the anomalies are not attributed to meteorologi-
cal causes, adjustments are made using the coefficients determined from the DMC
method (McCuen 1989).

Adjusting for gauge consistency is an estimation problem of an effect to mini-
mize the impact on the ‘accuracy’ of the rain gauge data. In the DMC adjustment
method, the variable (rainfall) accumulation at a given station is plotted against the
average accumulation for a group of surrounded stations that are having good (high)
correlation. In this study, DMC analysis was used to check for inconsistency in the
gauge record (Pr). Adjustments for inconsistencies were carried out according to the
following equation:

Pa = tan α′
tan α

Pr = δa

δr
Pr, (1)

where Pr is the recorded or observed precipitation in millimetres; Pa is the adjusted
precipitation in millimetres; tan α (= δr) is the original DMC slope or slope of the
graph at the time Pr is observed; and tan α′ (= δa) is the slope of the deviated (incon-
sistent) section of the DMC or slope of the graph to which the recordings are adjusted
(McCuen 1989).

3.1.2 Spatial interpolation of discrete data. Rain gauges provide an estimate of rain-
fall at a point. Through spatial interpolation, with a suitable geostatistical method, the
discrete point data are interpolated to represent continuous surface data (Holawe and
Dutter 1999, Grimes and Pardo-Iguzquira 2010). Typically, a network of rain gauges
is used to determine rainfall patterns and distributions over a target area. However, a
network of rain gauges can only resolve features of the rainfall surface larger than the
characteristic distance between gauges in the network. The success of the interpolation
process depends on how consistently rain gauge observations represent rain falling in
the area of interest.

Mathematically, nearly all spatial interpolation techniques can be represented as
weighted averages of sampled data. Spatial interpolators share the same general
estimation formulation (equation (2)):

ẑ (uo) =
n∑

i=1

λiz (ui), (2)

where ẑ is the estimated value of an attribute (primary variable) at the point of interest
defined by the vector uo; z is the observed value at the sampled point ui; λi is the weight
assigned to the sampled point; and n represents the number of sampled points used
for the estimation (Laslett et al. 1987, Webster and Oliver 2001).

The spatial interpolation techniques used in this study are those that are commonly
used in hydrological sciences and geosciences and are classified as either determinis-
tic or stochastic (geostatistical). Deterministic interpolation techniques create surfaces
from measured points, based on either the extent of similarity or the degree of smooth-
ing. These techniques do not use a model of random spatial processes. Deterministic
interpolation techniques can be divided into two groups, global and local. Global
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techniques calculate predictions using the entire data set. Local techniques calcu-
late predictions from the measured points within neighbourhoods, which are smaller
spatial areas within the larger study area.

Geostatistics assumes that at least some of the spatial variations of natural phe-
nomena can be modelled by random processes with spatial autocorrelation. Stochastic
or geostatistical methods incorporate the concept of randomness, whereby the inter-
polated surface is conceptualized as one of many that might have been observed,
all of which could produce the known data points. Stochastic methods incorpo-
rate the concept of randomness and provide both estimations (deterministic) and
geostatistical-associated errors (stochastic – uncertainties represented as estimated
variances).

In this study, the following deterministic methods were analysed for the rain gauge
data interpolation: (a) Thiessen polygons and (b) inverse distance weighting (IDW)
(Legates and Willmont 1990, Stallings et al. 1992, Collins and Bolstad 1996). The fol-
lowing geostatistical techniques were analysed and compared with the deterministic
methods: (a) ordinary Kriging, (b) simple Kriging and (c) universal Kriging (Krige
1951, Matheron 1970, Goovaerts 1997). Kriging methods belong to the linear least-
squares estimation algorithms that are based on the Gauss–Markov theorem (Chiles
and Delfiner 1999). The Kriging process is divided into two distinct tasks: quantifying
the spatial structure of the data and producing a prediction. Quantifying the struc-
ture, known as variography is where a spatial dependence model is fitted to the data.
To make a prediction for an unknown value for a specific location, Kriging uses the
fitted model from variography, the spatial data configuration and the values of the
measured sample points around the prediction location. The geostatistical analysis
provides many tools to help determine which parameters to use and also provides
reliable defaults that can be used to make a surface quickly.

3.2 Inter-comparison and validation of spatial–temporal precipitation observations

Statistical comparisons of model estimates or predictions with thought-to-be reliable
and pair-wise matched observations remain among the most basic means of assess-
ing model performance in the climatic and environmental sciences. To validate the
daily, decadal and monthly TRMM-3B42 data sets against the rain gauge data, the
following continuous verification statistical measures were used for the inter-data com-
parison: (i) MBE – for overall reliability measures, (ii) RMSD and (iii) MAD, where
RMSD and MAD are considered as appropriate measures for comparison and overall
accuracy (Willmott and Matsuura 2005).

The MBE, also called additive bias, indicates the average direction of the deviation
from observed values. MBE, defined by equation (3), measures the average error of
a number of observations found by taking the mean value of the positive and nega-
tive errors, without regard to sign. A positive bias indicates that the estimated value
exceeds the observed value on average, while a negative bias corresponds to underes-
timation of the observed value on average. The normalized bias (MBE)normis given in
equation (4). Both the MBE and MBEnorm indices depict the same statistical inference:

MBE = n−1
∑

i

(xi − Gi), (3)

MBEnorm = G−1
i

∑
i

(xi − Gi). (4)
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The RMSD (equation (5)) is a quadratic scoring rule, which measures the average
magnitude of the error. Since the errors are squared before they are averaged, the
RMSD gives a relatively high weight to large errors. This implies that RMSD is most
useful when large errors are particularly undesirable:

RMSD =
[

n−1
∑

i

(xi − Gi)
2

] 1
2

. (5)

RMSD has been used as a reliable criterion for comparative studies related to spa-
tial interpolation of rainfall such as high-resolution studies of rainfall; assessing the
effect of integrating elevation data into the estimation of monthly precipitation; and
comparison of interpolation methods for mapping climatic and bioclimatic variables
at regional scales and in spatial distribution of rainfall (Ly et al. 2011).

The MAD metric measures the average magnitude of the errors in a set of esti-
mated values, without considering direction and quantifies the accuracy of continuous
variables. MAD (equation (6)) is a linear score, implying that all of the individual
differences are weighted equally in the averaging process:

MAD = n−1
∑

i

|xi − Gi| . (6)

Compared with MAD, RMSD gives greater weight to large errors than to small errors
in the average. In equations (3)–(6), n is the total number of gauge stations, i = 1,
2, 3, . . . , 12; xi is the algorithm rain rate; and Gi is the gauge measured (spatially
interpolated) rainfall data.

RMSD and MAD are among the optimal measures of performance, because
they summarize the mean difference in the units of observed and predicted values.
Comparatively, the bias calculation assesses the average difference between satellite
and gauge values, while the RMSD measures the average magnitude of the errors with
a focus on extreme values.

To determine the disparity in the compared data sets, the coefficient of determina-
tion, which is the square of the correlation coefficient (r) of the best fit linear regression
line was used. The correlation between the observed values and predicted values,
defined by the coefficient of determination or Pearson’s product-moment correlation
coefficient, is a performance measurement indicator or a phase error determinant.
The coefficient of determination (equation (7)) addresses the question of how well the
satellite precipitation retrievals correspond to the measured ground-based gauge val-
ues, and is a measure of the degree of linear association between the estimated and
observed values of rainfall estimates:

r2 =
⎡
⎣ n

∑
xiGi − (∑

xi
) (∑

Gi
)

√
n
(∑

x2
i

) − (∑
xi

)2
√

n
(∑

G2
i

) − (∑
Gi

)2

⎤
⎦

2

=
[

cov (xi, Gi)

σxiσGi

]2

, (7)

where σx and σG are the standard deviations of x and G, respectively, and cov (xi, Gi)

is the covariance between the satellite and gauge measurements.
The coefficient of determination (r2) is significant as it gives the proportion of the

variance (fluctuation) of one variable that is predictable from the other variable. It is
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Figure 2. Schematic framework for the spatial–temporal inter-data comparison of TRMM-
3B42 precipitation retrievals and rain gauge data.

the ratio of the explained variation to the total variation and measures how well
the regression line represents the data. The coefficient of determination is such that[
0 ≤ r2 ≤ 1

]
and denotes the strength of the linear association between satellite rain

rates (x) and rain gauge data (G).
To implement the above outlined steps, a schematic conceptual approach, rep-

resented in figure 2, was adopted for the inter-comparative evaluation of TRMM
precipitation data and ground-based rain gauge data for the study area.

4. Results and discussion

4.1 Gauge data consistency results and analysis

The results of the DMC analysis showed very high consistencies for the following sta-
tions: Mumias Sugar, Eldoret Metrological, Uhoho Chief’s Camp and Nzoia Sugar.
Data collected from the consistent stations were used in the determination of consis-
tencies of the remaining network stations. Consistency adjustments based on equation
(1) were applied to Chebeimit, Port Victoria, Kakamega, Kaimosi, Chorlim, Kitale,
Lugari and Butere stations. The results for the 2005, 2006 and 2007 gauge measured
rainfall generally showed high consistencies with minimum and maximum r2 values
of 98.7% and 99.7% being observed in 2006. Therefore, only representative results of
2006 are presented in figure 3. The results in figure 3 show that only less than 2% of
the total variation in between gauge and TRMM-3B42 data remains unexplained.
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Figure 3. Double-mass curves (DMCs) for rainfall gauging stations: (a)–(d) represent DMCs
for the consistent gauging stations data and (e)–(h) represent DMCs for the corrected gauging
stations data. (The x-axis is magnified by ten for better visualization of the correlation lines.).



TRMM-3B42 precipitation validation using rain gauge data 7673

The results in figure 3 depict over 99% agreement for all of the stations. This implies
that the observed marginal differences in the gauge data were not as a result of mete-
orological influences. Therefore, only very negligible adjustments were applied to the
candidate eight gauge stations for the three years.

4.2 Spatial interpolation of in situ gauge data

To compare and analyse the spatially interpolated data
(
ẑ (u)

)
with the measured

gauge data (z (u)), the differences between the average monthly predicted (interpo-
lated) rainfall and the measured values were determined as the error (e(u)). e(u)
was used as a parametric accuracy measure, and the results are presented in table 2
for the three years: 2005, 2006 and 2007. The interpolation results in table 2 show
that the magnitudes of the observed errors (e(u)i) were slightly higher in 2005 but
lower in 2007. This could be attributed to the reliability of the gauge observations in
2006.

The results indicate that the deterministic Thiessen polygon method is the most
inferior with a mean error of +29.3 mm in 2005, while the stochastic-based Kriging
(ordinary spherical) presented a mean marginal error of +2.4 mm in 2006. In the
3-year mean monthly observations, all of the deterministic spatial interpolators overes-
timated the mean monthly rainfall as compared with the Kriging methods. The results
showed that Kriging-based interpolation methods describe the best linear unbiased
estimator in the sense of least variance. Using deterministic techniques, the weight
depends solely on the distance from the measured point to the predicted location,
while with the stochastic interpolation techniques, the weights are based not only on
the distance between the measured point and the prediction location but also on the
overall spatial arrangement of the measured points.

4.2.1 Spatial interpolation of in situ gauge data. Comparing Kriging methods with
the deterministic interpolators, the major differences are that the former provides

Table 2. The results of compared spatial interpolation methods applied to the mean monthly
rainfall recorded from the ith year, where i = 2005, 2006, 2007 and

[
e (u)i = ẑ (u)i − z (u)i

]
.

Interpolation technique Interpolation method e(u)2005 e(u)2006 e(u)2007

Deterministic-based
models

IDW-Variable search
radius

+25.7 +22.2 +21.3

IDW-Fixed search radius +22.2 +20.6 +21.9
Thiessen polygons +29.3 +26.9 +27.1

Stochastic (Kriging)-based
methods

Ordinary spherical +4.1 +2.4 +3.5
Ordinary circular −8.9 −5.0 −6.8
Ordinary exponential +10.0 +9.3 +9.4
Ordinary Gaussian +15.7 +11.0 +3.6
Simple spherical −20.5 −14.2 −15.7
Simple circular −19.4 −21.9 −20.5
Simple exponential −21.6 −17.9 −19.9
Simple Gaussian −6.3 −3.2 −8.5
Universal circular −10.9 −10.1 −11.2
Universal spherical −14.2 −13.4 −15.0
Universal exponential −7.3 −8.8 −8.2
Universal Gaussian −11.4 −9.5 −10.1
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uncertainty assessment, anisotropy detection or methodology assumptions (Negreiros
et al. 2010). Kriging describes the best linear unbiased estimator in the sense of least
variance, and is the Best Linear Unbiased Estimator (BLUE) and Best Unbiased
Estimator (BUE) if data respects the bell curve (Griffith 1993, Negreiros et al. 2010).

In the implementation of the Kriging interpolation methods, sample variograms
(inverse function of the spatial and temporal covariance) were calculated for all direc-
tions (omnidirectional variogram). The best-fitting model was identified by adjusting
the nugget, range, sill and anisotropy factor. Model variogram was used to develop
Kriged surface to predict spatial continuity. For the 36 samples, spherical, circular,
exponential and Gaussina variogram models were generated.

It was observed that the semivariance increased according to the separation dis-
tance, explaining that two rainfall data close to each other were more similar, and
hence their squared difference was less significant, than those that are farther apart.
As shown in table 2, the ordinary spherical model was the most suitable for 2006 and
2007, while for 2005, the simple Gaussian yielded the best results. Comparing the
magnitudes, the 2006 results were lower than both the 2005 and 2007 results.

Mathematically, Kriging-based methods can be defined as estimators of the variants
of the basic linear regression estimator z∗(u) as follows:

z∗ (u) − m (u) =
n(u)∑
α=1

λα [z (uα) − m (uα)], (8)

where u, uα are the location vectors for the estimation point and one of the neigh-
bouring data points, indexed by α; n(u) is the number of data points in the local
neighbourhood used for estimation of z∗(u); m(u), m(uα) are expected values (means)
of z(u) and z(uα); and λα(u) is the Kriging weight assigned to datum z(uα) for estima-
tion location u; the same datum will receive a different weight for a different estimation
location.

z(u) is treated as a random field with a trend component, m(u), and a residual
component, R(u) = z(u) – m(u). Kriging estimates residual at u as the weighted sum
of residuals at surrounding data points. Kriging weights, λα(u), are derived from
the covariance function or semivariogram, which should characterize the residual
component. Distinction between trend and residual arbitrarily varies with scale.

For ordinary Kriging, rather than assuming that the mean is constant over the entire
domain, the mean is assumed to be constant in the local neighbourhood of each esti-
mation point, that is, m(uα) = m(u) for each nearby data value z(uα), which is used to
estimate z(u). Subsequently, the ordinary Kriging estimator can be expressed as

z∗ (u) = m (u) +
n(u)∑
α=1

λα (u) [z (uα) − m (u)],

=
n(u)∑
α=1

λα (u)z (uα) +
[

1 −
n(u)∑
α=1

λα (u)

]
m (u) .

(9)

From equation (9), the interpolation advantages of the ordinary Kriging method
include (i) the ability to compensate for the effects of data clustering, assigning indi-
vidual points within a cluster less weight than isolated data points or treating clusters
more like single points; (ii) giving estimates of the estimation error (Kriging variance)



TRMM-3B42 precipitation validation using rain gauge data 7675

along with the estimate of the variable, z; and (iii) the availability of estimation error
providing the basis for stochastic simulation of possible realizations of z(u).

Comparatively, the stochastic-based interpolation techniques are based on the
assumption that the parameter being interpolated can be treated as a regionalized
variable. A regionalized variable is intermediate between a truly random variable and
a completely deterministic variable in that it varies in a continuous manner from
one location to the next and therefore points that are near each other have a cer-
tain degree of spatial correlation, but points that are widely separated are statistically
independent.

4.3 Retrieved TRMM-3B42 precipitation data

To convert the satellite rainfall rates to total daily rainfall, each 3-hourly rainfall rate
was multiplied by 3 h to get the total rainfall for each 3 h period. Then, for the desired
24 h-day begin and end times, the sum of all the 3-hourly total rainfalls in the defined
24 h period is obtained to get the total daily rainfall (NASA GES-DISC Interactive
Online Visualization and Analysis Infrastructure (GIOVANNI) User Manual).

The adjusted gauge data sets were then computed into a 3-year daily areal rainfall
data. Figure 4 shows the mean daily gauge data plotted as scatter plots against the
daily TRMM-3B42 rainfall retrievals. The mean daily precipitations depict a regular
pattern in the wet and dry seasons, with the TRMM marginally overestimating the
mean observed rainfall during the wet seasons and slightly underestimating the rain-
fall amounts during the dry seasons as compared with the gauge recordings. Overall,
negligible adjustments were applied.

The 3-year mean monthly rainfall for Chorlim, Kakamega and Uholo representing
the upper, middle plateau and lower elevation regions are shown in figure 5. Besides
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representing the distinct climate ranges and the three elevation zones within the Nzoia
River Basin, the regions also capture the representative grids for the monthly TRMM-
3B42 precipitation estimates.

A comparison of the mean daily precipitation (figure 4) and mean monthly
(figure 5) precipitation patterns shows a similar pattern in two data sets, except for
minor irregularity towards the end of the year. The plot in figure 5 shows that com-
pared with gauge data, TRMM-3B42 overestimated the rainfall amounts during the
rainy seasons and underestimated the recorded rainfall during the dry seasons. This
observation can be attributed to the lower temperatures and more cloudy conditions
during the rainy season, being sensed as contributing to rainfall occurrence, as com-
pared with clear skies and sunny conditions during the dry seasons, being registered
as no rainfall occurrences.

4.4 Temporal analysis and comparison of TRMM-3B42 and rain gauge rainfall data

4.4.1 Daily TRMM-3B42 and gauged stations rainfall data comparison. The 3-year
mean daily rainfall observations are presented in figure 6. The gauge and TRMM-
3B42 mean daily rainfall plots show marginal variations.

A regression plot (figure 7) of the TRMM-3B42 versus gauge data for the three
consecutive years shows minimal annual disparities in the r2 factor, with the respective
daily coefficients of determination in 2005, 2006 and 2007 being 81.3%, 82.2% and
81.88%. These results show that more than 15% of the total variation between the
gauge and TRMM-3B42 mean daily data compared remains uncorrelated.
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Figure 7. Regression (r2) plot of TRMM_3B42.V6 versus gauged total daily rainfall in the
Nzoia River Basin for the three test years.

4.4.2 Decadal TRMM-3B42 and gauged stations precipitation data comparison. The
aggregated mean 10-day rainfall patterns (figure 8) depict dry spells at the onset and
high rainfall recordings between the 9th and the 17th decads, followed by a dry spell.
The dry period came to an abrupt end in the 26th decad, after which a short dry spell
was experienced, recording the lowest rainfall in the 29th decad; thereafter the second
high rainfall period was experienced in the month of November.

A decadal regression plot of the two data sets for the three years (figure 9)
shows that the coefficient of determination increased from 2005 (r2 = 0.907) to
2006 (r2 = 0.939) and slightly dropped in 2007 to (r2 = 0.915). Compared with the
mean daily regression for the same period, it was observed that the mean decadal
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Figure 9. Mean aggregated decadal correlation coefficient (r2) plots of TRMM_3B42.V6 ver-
sus gauge precipitation observations for the three study years.

rainfall correlations increased by more 10%, and only less than 10% of the gauge and
TRMM-3B42 datasets were uncorrelated.

4.4.3 Monthly TRMM-3B42 and gauged stations precipitation comparison.
Figure 10 shows the aggregated mean monthly precipitation over the Nzoia
River Basin for the gauging stations and TRMM-3B42 data sets. The monthly
averages were, respectively, observed as 128.4 mm month−1 and 131.6 mm month−1

for the gauged station and the satellite. The mean monthly difference is observed to
be marginal.

The mean monthly coefficients of determination between the two data sets
(figure 11) for the three years (2005, 2006 and 2007) were determined, respectively, to
be 0.916, 0.965 and 0.944. Compared with the mean daily and decadal observations,
the mean monthly rainfall for the three years were observed to be higher than mean
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Figure 11. Mean monthly regression (r2) plots of TRMM_3B42.V6 versus the gauge precipi-
tation averages for the three years.

daily correlations by more than 10% and marginally (<5%) higher than the decadal
correlation observations.

Statistical comparisons of the two data sets using the continuous verification mea-
sures, MBE, RMSD and MAD, are presented in table 3 for the three years. The results
in table 3 indicate that the mean daily, decadal and monthly rainfall observations were
overall lower in 2006. Due to the cumulative nature of the observed temporal data, the
magnitudes of the compared statistics increased with temporal scales.

When MBE is reported, it is usually intended to indicate average model ‘bias’; that
is, average overprediction or underprediction. MBE conveys useful information but
should be interpreted cautiously since it is inconsistently related to typical-error mag-
nitude, other than being an underestimate. The results in table 3 consistently show a
variation in the error magnitudes of the order: MBE ≤ MAD ≤ RSMD. From the
results, RSMD tends to become increasingly larger than MAD (but not necessarily in
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Table 3. Summary of the continuous verification statistical comparisons of the mean aggregated
daily, decadal and monthly precipitation observations for the TRMM_3B42.V6 and the gauged

precipitation data for the years: 2005, 2006 and 2007.

MBE (mm) RMSD (mm) MAD (mm)
Time
series 2005 2006 2007 2005 2006 2007 2005 2006 2007

Daily +1.29 −0.40 −0.66 +9.65 +6.89 +6.07 +2.87 +1.33 +1.79
Decadal −2.93 −1.78 −2.04 +9.02 +8.61 +8.29 +9.16 +6.12 +7.76
Monthly −7.81 −6.72 −7.01 +19.91 +16.22 +17.56 +13.09 +10.81 +11.33

a monotonic fashion) as the distribution of error magnitudes becomes more variable,
and it tends to grow larger than the MAD.

4.5 Discussion

A comparative evaluation of the gridded averages showed that the gauge data observa-
tions were fairly close to the satellite rainfall retrievals in all of the three years. Optimal
results were observed in 2006 with a monthly bias of –6.7 mm month−1, decadal bias of
–1.8 mm decad−1 and daily bias of –0.4 mm day−1. The bias analysis results showed
that there was a decrease in precipitation errors with increasing temporal intervals.
Similar but not monotonic trends were observed for RMSD and MAD statistics.

While there is evidence of good correlation between the gauge and satellite precipi-
tation estimates, the marginally higher intercept for the monthly observations suggests
that there is a tendency for the lower observed rainfalls to be underestimated by
the satellite, whereas the gentle slope values suggest that higher rainfall values are
overestimated.

The observed increase in averaging times with resulting increase in the correlation
distance can be attributed to the fact that there is an increased preservation of the
statistical and structural characteristics of the observed rainfall field (Bell and Kundu
2003). The intermittence of rainfall in space and time introduces uncertainty to rainfall
estimates based on the limited observations in space and time. This is particularly true
for rainfall estimation from space with infrequent observations made at intervals of
several hours (Bell et al. 1990, Steiner 1996, Bell and Kundu 2000, Bell et al. 2001).

Arguably, difficulties for spaceborne precipitation estimates may arise from the geo-
graphic characteristics of the investigation area. Nzoia River Basin, as depicted in
figure 1, shows a varied topography ranging from the high, middle plateau to low
elevation regions. As a consequence, heavy rainfall events can occur in the highland
regions while the neighbouring lowland areas experience no rainfall at all, yet the
pixel grid representing such zones depicts uniform rainfall amounts. This calls for
an improvement in the precipitation retrieval algorithms that can take into consid-
eration the mixed-pixel problem by computing on finer grids or disaggregating the
grid through pixel unmixing to finer resolutions. This will also require denser rain
gauge networks for comparative studies. Further, in mountainous terrain there is a
strong effect of the relief itself on the IR signal, with varying cloud-cover conditions
depending on exposure and altitude.

From the foregoing observations and discussions, the anticipated sampling-related
uncertainty, say ( ), can be said to be a function of rainfall rate (R), domain size
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(L), time integration (T) and sampling time interval (�T) such that the uncertainty is
expected to reduce for higher rainfall rates, larger domain sizes and longer time inte-
gration. The uncertainty ( ) can be expressed as a function; thus, = f

( 1
R , 1

L , �T
T

)
.

This relationship implies that increasing the sampling time interval (i.e. reducing the
sampling frequency) will result in a larger uncertainty. Also important in the error
function is the averaging area sizes such that as the averaging area increases, the size
of the satellite swath sample increases and this subsequently reduces the sampling
error. This argument implies that investigations on the satellite-estimated rainfall error,
against gauge data, should be modelled on the basis of multiplicative and additive
random errors of the satellite precipitation estimates.

The results of the study show that the TRMM-3B42 precipitation estimates can
effectively be used in the interpolation of missing rain gauge data with minor adjust-
ments based on the coefficient of determination factor (r2). The proposed adjustment
largely depends on the temporal scales considered, the topographical variation and
rainfall season. Generally, the correction index will be higher for the observed daily
rainfall data as compared with the cumulative monthly rainfall data.

5. Summary and conclusions

This study presented a multitemporal comparative evaluation of precipitation
retrievals from the TRMM-3B42 data with interpolated in situ measurements using
12 rain gauge stations located within the Nzoia River Basin. The evaluation was based
on the examination of daily, decadal and monthly time series, using continuous verifi-
cation statistics and scatter plots, for the determination of the measures of agreement
and disagreement.

The results of the geostatistical interpolation of gauge data showed that stochastic
ordinary Kriging methods gave the best results. The study showed that the spatial
interpolation of the gauge data may not adequately and accurately reflect on the
spatial–temporal dynamics of rainfall over the Nzoia River Basin, due to the sparse
distribution of the gauge stations.

The mean aggregated spatial–temporal comparisons showed that the TRMM-
3B42 rainfall estimates were very close to the spatially interpolated rain gauge data,
especially at the daily temporal scales. For the three years, the rain gauge and the
TRMM-3B42 time-series rainfall correlated well, with the daily coefficient of deter-
mination being lowest at 0.813 in 2005 and a maximum mean monthly coefficient
of determination of 0.965 in 2006. The results depicted increased correlation with
increased temporal interval of precipitation observations. The satellite and surface rain
products showed that variances of diurnal cycle were less than 5% of intra-seasonal
variances at the basin scale. The results further showed that the satellite observations
slightly overestimated the precipitations during the wet seasons and underestimated
the observed precipitations in the dry seasons.

The potential outcome of this approach is that it allows for extrapolation of the
uncertainties to regions not covered by adequate validation data, but within the same
climatic zones. The results of this study point to the importance of using TRMM
3B42 Version 6 (3B42) for rainfall estimation in regions with sparse rain gauge
network distribution, especially at monthly temporal scales.

Finally, the quantification of the uncertainty of remotely sensed rainfall estimates is
essential in providing guidance for interpretation of rainfall estimates from satellites
for local, regional and global applications and in planning of future similar satellite
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missions. Further studies using categorical statistical verification of inter-sensor com-
parisons of TRMM products with other satellite missions such as PERSIANN-Cloud
Classification System (CCS) and CMORPH for the same study area and timescale are
recommended. For long-term satellite data validation, a number of years with contin-
uous and reliable gauge data need to be compared to further establish the reliability of
the results for applications.
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