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Abstract

Response surface methodology (RSM) often deals with a natural and desirable property
rotatability, which requires that, the variance of the predicted response at a point remains constant
at all such points that are equidistant from the design center. To achieve stability in prediction
variance, this important property of rotatability was developed. Analogous to rotatability, the
concept of slope-rotatability has been progressed. The idea of slope - rotatability is an important
design criterion for response surface design. Recently, in the design of experiments for response
surface analysis, attention has been focused on the estimation of differences in response rather
than absolute value of the response mean itself. The slope-rotatable design is that of which
the variance of partial derivative is only a functions of ρ: distance from the design center. If
circumstances are such that exact slope rotatability is unattainable because of more cost and
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time, and more important restrictions such as orthogonal blocking it is still a good idea to
make the design as slope rotatable as possible. Thus, it is important to measure the extent of
deviation from slope rotatability. In this study, a new measure of the degree of slope-rotatability
for three level second-order slope rotatable designs using a pair of a partially balanced incomplete
block design is suggested that enables us to assess the degree of slope-rotatability for a given
response surface design. This determines the degree slope rotatability for the design when
subjected to existing conditions of measure. The measure takes the value zero when the design is
exact slope-rotatable, and becomes larger as the design deviates from being slope-rotatable design.

Keywords: Slope- rotatability; second order slope rotatable designs (SOSRD); measure; partially
balanced incomplete block designs (PBIBD).

2010 Mathematics Subject Classification: 53C25; 83C05; 57N16

1 Introduction

Response surface methodology (RSM) is used in a situation where the form of the relationship
between the response and independent variables is unknown. Therefore, the first step in RSM is
to find a suitable approximation for the true functional relationship between the response variable
and the set of independent variables. The technique to be used is to fit a low order polynomial to
the response and if it is inadequate, then we graduate it to higher order polynomial. If the response
is well demonstrated by a linear function of the independent variables, then the approximating
function is the first order model. We use a second-order model when the portion of the response
surface that we are describing has curvature. Response surface methodology is a gathering of
mathematical and statistical techniques that are suitable for the demonstrating and analysis of
problems in which a response of interest is impacted by several variables and the objective is
to optimize this reaction. The study of rotatable designs mainly emphasized the estimation of
absolute responses. The property of rotatability as a desirable quality of an experimental design
was first advanced by [1]. A design is assumed to be rotatable if the variance of the response
estimate is a function only of the distance of the point from the design center. In many applications
of Response Surface Methodology, noble estimation of the derivatives of the response function
may be as significant as or possibly more significant than the estimation of mean response [2].
Certainly, the computation of a stationary point in a second-order analysis or the use of gradient
methods, for example, steepest ascent or ridge analysis depends heavily on the partial derivatives
of the estimated response function with respect to the design variables. Since designs that achieve
certain properties in Y (estimated response) do not delight in the same properties for the estimated
derivatives (slopes), it is vital for the user to ponder experimental designs that are constructed with
the derivatives in mind. The study of slope rotatable designs is mainly stressed on the estimation of
differences of yields and their precision. Estimation of variances in responses at two different points
in the factor space will often be of great importance. If variances in responses at two points close
together are of interest then estimation of local slope (rate of change) of the response is essential.
Several studies have been done on this aspect pertaining to the development of experimental designs.
[2] presented slope rotatability for central composite designs. For the central composite designs,
they altered [1] rotatability to slope rotatability essentially by altering the axial point distance
(a), so that the variance of the assessed unadulterated quadratic coefficients is one-fourth the
variance of the assessed mixed second order coefficients. [3] examined in detail the conditions to be
satisfied by a common second-order slope rotatable designs (SOSRD) and developed SOSRD using
balanced incomplete block designs (BIBD). [3] constructed SOSRD through a pair of incomplete
block designs. The slope-rotatable design is that of which the variance of partial derivative is
only a functions of ρ: distance from the design center. If circumstances are such that exact slope
rotatability is unattainable because of more cost and time, and more important restrictions such as
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orthogonal blocking it is still a good idea to make the design as slope rotatable as possible. Thus, it
is important to measure the extent of deviation from slope rotatability. [4], [5] proposed a measure
of slope rotatability for second-order response experimental designs. [6] recommended a measure
and graphical method for assessing slope rotatability in response surface designs. [7] examined a
measure of SOSRD utilizing BIBD. [8] examined a measure of SOSRD utilizing pairwise balanced
designs, [9] studied a measure of SOSRD utilizing symmetrical unequal block arrangements with
two unequal block sizes. [10] examined the degree of SOSRD utilizing partially balanced incomplete
block designs. [11] examined a measure of SOSRD utilizing a pair of balanced incomplete block
design. These measures are valuable to empower us to survey the degree of slope rotatability for a
given second-order response surface designs. In this study, we propose a method of construction of
second-order slope rotatable designs using a pair of partially balanced incomplete block design and
their measure which leads to designs with a lesser number of design points than what is available
in the existing designs.

1.1 Conditions for second order slope rotatable designs

This section presents briefly the conditions for slope rotatability to be satisfied by a symmetric
second-order response surface design by [2] and Victorbabu [12]. Suppose there are v factors denoted
by (x1, x2, ..., xv) and the design point (xu1, xu2, ..., xuv), 1 ≤ u ≤ N yields a response yu on the
study variable y. Assuming that the response surface is of second- order, we adopt the model

yu = b0 +

v∑
i=1

bixiu +

v∑
i=1

biix
2
iu +

∑∑
i̸=j

bijxiuxiu + eu, (1.1)

where xiu denotes the level of the ith factor (i = 1, 2, ..., v) in the uth run (u = 1, 2, ..., N) of the
experiment, where eu

′s are uncorrelated random errors with same mean zero and variance σ2. The
parameters of the model b0, bi, bii and bij are estimated by the least squares estimation to provide
b̂0, b̂i, b̂ii and b̂ij . The design is said to be SOSRD if the variance of the estimate of first order partial
derivative of yu with respect to each of independent variables (xi) is only a function of the distance
d2 =

∑
x2
i of the point (x1, x2, ..., xv) from the origin (center) of the design. Such a spherical

variance function for estimation of slopes in the Second Order Response Surface is achieved if the
design points satisfy the following conditions [2]:

A. Σxiu = 0, Σxiuxju = 0, Σx3
iu = 0, Σxiuxjuxku = 0,

Σx2
iuxjuxku = 0, Σx3

iuxju = 0 Σxiuxjuxkuxlu = 0; for i ̸= j ̸= k ̸= l ;

B. (i)Σx2
iu = constant = Nλ2

(ii) Σx4
iu = constant = cNλ2 for all i

C. Σx2
iux

2
ju = constant = Nλ4 for i ̸= j (1.2)

D.
λ4

λ2
2

>
v

(c+ v − 1)

E. λ4[v(5− c)− (c− 3)2] + λ2
2[v(c− 5) + 4] = 0
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where c, λ2, λ4 are constants and v denotes the number of factors. Using these symmetry conditions,
we can obtained the following estimates of the parameters as [13]

b̂0 =
λ4(c+ v − 1)Σy − λ2Σ(Σx

2
i y)

N [λ4(c+ v − 1)− vλ2
2]

b̂i =
Σxiy

Nλ2

b̂ij =
Σxixjy

Nλ4

b̂ii =
Σxixjy

(c− 1)Nλ4
− λ2λ4(c− 1)Σy − Σ(Σx2

i y)(λ
2
2 − λ4)

(c− 1)Nλ4[λ4(c+ v − 1)− vλ2
2]

The variances and covariances of the evaluated parameters are [13]:

V (b̂0) =
λ4(c+ v − 1)σ2

N [λ4(c+ v − 1)− vλ2
2]

V (b̂i) =
σ2

Nλ2

V (b̂ij) =
σ2

Nλ4

V (b̂ii) =
σ2

(c− 1)Nλ4

(
λ4(c+ v − 2)− (v − 1)λ2

2

λ4(c+ v − 1)− vλ2
2

)

Cov(b̂0, b̂ii) =
−λ2σ2

N [λ4(c+ v − 1)− vλ2
2]

Cov(b̂ii, b̂jj) =
(λ2

2 − λ4)σ2

(c− 1)Nλ4[λ4(c+ v − 1)− vλ2
2]

(1.3)

and other covariances are zero. A necessary condition for the existence of a second order design
is

λ4

λ2
2

>
v

(c+ v − 1)
(1.4)

(non -singularity condition) From equation (1.1), we have:

∂ŷ

∂xi
= b̂i + 2b̂iixi +

∑
b̂ijxj

V

(
∂ŷ

∂xi

)
= V (b̂i) + 4x2

iV (b̂ii) +
∑

x2
jV (b̂ij) (1.5)

For slope rotatability (1.5) has to be function of d2 =
∑

x2
i . This leads to the condition that

4V (b̂ii) = (1/4)V (b̂ij) (1.6)

Simplifying equation (1.6) becomes:

λ4[v(5− c)− (c− 3)2] + λ2
2[v(c− 5) + 4] = 0 (1.7)

(slope rotatability condition)
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2 Second Order Slope Rotatable Designs Using a Pair
of PBIBDs

Let D1 =(v, b1, r1, k1, λ11 ̸= 0, λ12=0 ) and D2= (v, b2, r2, k2 = 2, λ21 = 0, λ22 = 1) are two PBIBDs.
[a-(v, b1, r1, k1, λ11 ̸= 0, λ12=0)] denote the design points generated from the transpose of the incidence
matrix of the design D1.
[a−(v, b1, r1, k1, λ11, λ12 = 0)]2t(k1) are the 2t(k1) design points generated from D1 by multiplication
(see[14]).[a − (v, b2, r2, k2 = 2, λ21 = 0, λ22 = 1)]22 are the b22

2 design points generated from D2

by multiplication.The set of b22
2 design points was repeated m2 times. Let n0 be the number of

central points.

Result:

The design points,
[a − (v, b1, r1, k1, λ11, λ12 = 0]2t(k1) ∪ [a − (v, b2, r2, k2 = 2, λ21 = 0, λ22 = 1)]22 ∪ n0 give a

v-dimensional three level SOSRD in N = b12
t(k1) +m2b22

2 + n0 design points where m2 is

m2 =

{
(r1 − cλ11)2

t(k1)−2

(cλ21 − r2)

}1/4

. (2.1)

2.1 Conditions of measure of second order slope rotatable designs

Using the equation below

∂ŷ

∂xi
= b̂i + 2b̂iixi +

v∑
j=1,j ̸=i

b̂ijxj ,

the variance of this derivative is written as

var[
∂ŷ

∂xv
] = var(bi) + 4x2

i var(bii) +

v∑
j=1,j ̸=i

x2
jvar(bij)

+ 4xicov(bii, bij) + 2

v∑
j=1,j ̸=i

xjcov(bi, bij)

+ 4xi

v∑
j=1,j ̸=i

xjcov(bi, bij) + 2
∑ v∑

j<1j,l̸=i

xjxicov(bij , bi)

(2.2)

Following [2],[3], [5], equations (2−3) give the necessary and sufficient conditions for a measure
of slope rotatability for any general second order response surface designs. Further, from the above
equation (2.2), it can be seen that the necessary and sufficient conditions are:

• var(bi) are equal for i

• var(bii) are equal for i

• 4var(bii) = var(bij) are equal for i, j where i ̸= j

• cov(bi, bii) = cov(bi, bij) = cov(bii, bij) = cov(bij , bil) = 0 for all i ̸= j ̸= l,

[5] proposed that, if the following conditions below are met, that is

i. All odd-order moments up-to order 4 are zero,

ii. 1
N

N∑
u=1

x2
iu are equal for all i,
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iii. 1
N

N∑
u=1

x4
iu are equal for all i,

iv.

N∑
u=1

x2
iux

2
ju are equal for all i ̸= j,

Then the following measure assesses the degree of slope-rotatability for a design D with v
independent variables.

Qv(D) =
1

2(v − 1)σ4

{
(v + 2)(v + 4)

v∑
i=1

[
(var(bi)− ṽ) +

ai − ã

v + 2

]2

+
4

v(v + 2)

v∑
i=1

(ai − ã)2 + 2

v∑
i=1

[
(4var(bii)−

ai

v
)2 +

v∑
j=l,j ̸=i

var(bij)−
ai

v
)2
]

+ 4(v + 4)

[
4cov(bi, bii)

2 +
v∑

j=l,j ̸=i

cov(bi, bij)
2

]
+ 4

v∑
i=1

[ v∑
j=l,j ̸=i

cov(bii, bij)
2

+

v∑ v∑
j<l,j,l̸=i

cov(bij , bil)
2

]}
(2.3)

where

ṽ = 1
v

v∑
i=1

var(bi)

ai = 4var(bii) +

v∑
j=l,j ̸=i

var(bij) (i = 1, 2, 3, ...v)

ã = 1
v

v∑
i=1

ai.

where Qv(D) is the proposed measure of slope rotatability. Further [5] went ahead and simplified
the above equation (2.3) to

Qv(D) =
1

σ4

[
4V (bii)− V (bij)

]2

(2.4)

Qv(D) becomes zero if and only if the necessary and sufficient conditions hold. If the measure is
zero, the design is slope-rotatable. If it becomes larger, it deviates from being slope-rotatable.

3 Construction of Measure of Slope Rotatability of Three
Level Second-order Response Surface Designs Using
a Pair of PBIBDs

The proposed measure of slope rotatability of three level second-order response surface designs
using a pair of PBIBDs is suggested in this section. Let D1 =(v, b1, r1, k1, λ11 ̸= 0, λ12=0) and D2=
(v, b2, r2, k2 = 2, λ21 = 0, λ22 = 1) are two PBIBDs. [a- (v, b1, r1, k1, λ11 ̸= 0, λ12=0)] denote the
design points generated from the transpose of the incidence matrix of the design D1.
[1−(v, b1, r1, k1, λ11, λ12 = 0)]2t(k1) are the 2t(k1) design points generated from D1 by multiplication
(see[14]). [a − (v, b2, r2, k2 = 2, λ21 = 0, λ22 = 1)]22 are the b22

2 design points generated from D2

by multiplication.The set of b22
2 design points was repeated m2 times. Let n0 be the number of

central points.Then with the above design points, we can obtain measure of slope rotatability for
second order slope rotatable designs as given in the theorem below.
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Result:

The design points,
[a − (v, b1, r1, k1, λ11, λ12 = 0]2t(k1) ∪ [a − (v, b2, r2, k2 = 2, λ21 = 0, λ22 = 1)]22 ∪ n0 give a v-
dimensional measure of slope rotatability of three level second order response surface designs using
a pair of PBIBDs in N = b12

t(k1) +m2b22
2 + n0 design points with ‘c′ pre-fixed, n0 chosen and

the design levels,suitably such that the design points satisfy the conditions of SOSRD that is

m2 =

{
(r1 − cλ11)2

t(k1)−2

(cλ21 − r2)

}1/4

, (3.1)

n0 =

[
[v(c− 5) + 4][r12

t(k1) +m2r22
2]2

[v(c− 5) + (c− 3)2][λ112t(k1) +m2λ2122]

]
− b12

t(k1) −m2b22
2 (3.2)

Proof

For the design points generated from a pair of PBIBDs, conditions (A) to (C) are true. Conditions
in (A) are true obviously. Conditions (B) to (C) of equation 1.2 are true as follows:

N∑
u=1

x2
iu = r12

t(k1)a2 +m2r22
2a2 = Nλ2 (3.3)

N∑
u=1

x4
iu = r12

t(k1)a4 +m2r22
2a4 = cNλ4 (3.4)

N∑
u=1

x2
iux

2
ju = λ112

t(k1)a4 +m2λ212
2a4 = Nλ4 (3.5)

From equation (3.4) and (3.5), we get m2,

m2 =

[
(r1 − cλ11)2

t(k1)−2

(cλ21 − r2)

]
,

The value of a can be obtained from equation (3.3) by taking the scaling condition,that is λ2 = 1.

a =

[
N

r12t(k1) +m2r222

] 1
2

(3.6)

Measure of slope rotatability of three level second order designs using a pair of PBIBDs can be
obtained by solving the given simplified equation by [5]

Qv(D) =
1

σ4

[
4V (bii)− V (bij)

]2

(3.7)

where V (b̂ii) =
σ2

(c−1)Nλ4

(
λ4(c+v−2)−(v−1)λ2

2

λ4(c+v−1)−vλ2
2

)
and V (b̂ij) =

σ2

Nλ4

Therefore

Qv(D) = 1
σ4

[
4σ2

(c−1)Nλ4

(
λ4(c+v−2)−(v−1)λ2

2

λ4(c+v−1)−vλ2
2

)
− σ2

Nλ4

]2

Qv(D) = 1
σ4

[
4σ2

(
λ4(c+v−2)−(v−1)λ2

2

)
−σ2

(
(c−1)(c+v−2)λ4−vλ2

2

)
N(c−1)λ4

[
(c+v−1)λ4−vλ2

2

] ]2
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Qv(D) = σ4

σ4

[
4

(
λ4(c+v−2)−(v−1)λ2

2

)
−
(
(c−1)(c+v−2)λ4−vλ2

2

)
N(c−1)λ4

[
(c+v−1)λ4−vλ2

2

] ]2

After simplification Qv(D) becomes:

Qv(D) =

[
λ4[v(5− c)− (c− 3)2] + λ2

2[v(c− 5) + 4]

N(c− 1)λ4

[
(c+ v − 1)λ4 − vλ2

2

] ]2

(3.8)

where λ4,λ2, a,m2 and N are as shown below

λ2 =

[
r12

t(k1)a2 +m2r22
2a2

N

]

λ4 =

[
λ112

t(k1)a4 +m2λ212
2a4

N

]

m2 =

[
(r1 − cλ11)2

t(k1)−2

(cλ21 − r2)

]
,

a =

[
N

r12t(k1) +m2r222

] 1
2

N = b12
t(k1) +m2b22

2 + n0

and

n0 =

[
[v(c− 5) + 4][r12

tk1 +m2r22
2a2]2

[v(c− 5) + (c− 3)2][λ112tk1 +m2λ2122a4]

]
− b12

k1 −m2b22
2

The computation of measure of slope rotatability Qv(D) of three level second order response surface
designs using various parametres of PBIBDs for varied values of c ranging from 3 to 16 and level a
are tabulated below in the appendix.

4 Conclusions

In this study, a measure of slope rotatability for second-order response surface designs using a
pair of PBIBDs is suggested which enables us to assess the degree of slope rotatability of a
given three level second-order response surface design. It can be verified that measure of slope
rotatability is zero if and only if a design D is a second order slope-rotatable design. Measure of
slope rotatability becomes larger as D deviates from a second order slope rotatable design. The
method can be used to compare the degree of slope rotatability of the same v. We may point
out here that the measure of slope rotatability for second order response surface designs using
a pair of PBIBDs with parameters D1 = (v = 16, b1 = 20, r1 = 5, k1 = 4, λ11 = 1, λ12 = 0),
D2 = (v = 16, b2 = 8, r2 = 1, k2 = 2, λ21 = 0, λ22 = 1) has only 400 design points for 16−
factors, whereas the corresponding measure of slope rotatability for second order response surface
designs using a pair of BIBDs with parameters D1 = (v = 16, b1 = 16, r1 = 6, k1 = 6, λ1 = 2),
D2 = (v = 16, b2 = 80, r2 = 15, k2 = 3, λ2 = 2) of [11] needs 1154 design points. Thus this new
method leads to 16-factor measure of SOSRD with less number of design points than the existing
measure of slope rotatable designs using a pair of BIBDs. When c = 5 the design is exact slope

8
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rotatability that is the measure of slope rotatability is zero.
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Appendices

Table 1: Measure of 9 factors three level SOSRD(PBIBD)

D1 = (v = 9, b1 = 9, r1 = 3, k1 = 3, λ11 = 1, λ12 = 0),
D2 = (v = 9, b2 = 9, r2 = 2, k2 = 2, λ21 = 0, λ22 = 1)

c m1 a n0 N λ4 λ2 (λ2)
2 Qv(D) a2

3 0 1.5 -16 56 0.723 0.964 0.929 5.86E-08 2.3
3.5 0.5 1.6 -20 70 0.749 1.024 1.049 1.45E-07 2.5
4 1 1.6 -28 80 0.655 1.024 1.049 4.05E-10 2.5
4.5 1.5 1 -90 36 0.222 1 1 8.25E-12 1
5 2 2.2 56 200 0.937 0.968 0.937 0 5
5.5 2.5 2.1 29 191 0.815 1.016 1.032 8.01E-11 4.3
6 3 2.1 28 208 0.748 1.018 1.036 2.01E-11 4.3
6.5 3.5 2.1 32 230 0.676 0.997 0.994 2.69E-10 4.4
7 4 2.1 38 254 0.613 0.972 0.945 6.51E-09 4.5
7.5 4.5 2.2 45 279 0.672 1.041 1.084 6.18E-12 4.7
8 5 2.2 53 305 0.614 1.016 1.032 8.3E-09 4.8
8.5 5.5 2.2 62 332 0.564 0.991 0.982 2.68E-09 4.9
9 6 2.2 72 360 0.521 0.968 0.937 2.53E-09 5
9.5 6.5 2.3 82 388 0.577 1.036 1.073 4.36E-12 5.1
10 7 2.3 93 417 0.537 1.015 1.03 1E-10 5.2
10.5 7.5 2.3 104 446 0.502 0.996 0.992 3.61E-10 5.3
11 8 2.3 116 476 0.47 0.978 0.956 2.71E-10 5.4
11.5 8.5 2.3 128 506 0.442 0.962 0.925 9.25E-10 5.5
12 9 2.4 140 536 0.495 1.032 1.065 6.66E-09 5.6
12.5 9.5 2.4 153 567 0.468 1.016 1.032 1.74E-09 5.7
13 10 2.4 165 597 0.445 1.003 1.006 8.2E-09 5.7
13.5 10.5 2.4 178 628 0.423 0.991 0.982 4.28E-09 5.8
14 11 2.4 192 660 0.402 0.977 0.955 1.14E-09 5.9
14.5 11.5 2.4 205 691 0.384 0.967 0.935 6.81E-09 6
15 12 2.4 219 723 0.367 0.956 0.914 2.26E-09 6
15.5 12.5 2.5 233 755 0.414 1.026 1.053 6.21E-09 6.1
16 13 2.5 247 787 0.397 1.017 1.034 1.04E-08 6.1
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Table 2: Measure of 10 factors three level SOSRD(PBIBD)

D1 = (v = 10, b1 = 15, r1 = 6, k1 = 4, λ11 = 2, λ12 = 0),
D2 = (v = 10, b2 = 10, r2 = 2, k2 = 2, λ21 = 0, λ22 = 1)

c m1 a n0 N λ4 λ2 (λ2)
2 Qv(D) a2

3 0 1.5 -10 230 0.704 0.939 0.882 7.06E-08 2.4
3.5 2 1.6 -28 292 0.718 0.982 0.964 1.5E-09 2.6
4 4 1.6 -59 341 0.615 0.961 0.924 1.32E-10 2.7
4.5 6 1.3 -244 236 0.387 1.031 1.063 5.23E-13 1.6
5 8 2.2 240 800 0.937 0.968 0.937 0 5
5.5 10 2.1 134 774 0.804 1.003 1.006 4.04E-12 4.4
6 12 2.1 129 849 0.733 0.997 0.994 1.12E-11 4.4
6.5 14 2.1 143 943 0.66 0.973 0.947 9.46E-12 4.5
7 16 2.2 165 1045 0.717 1.037 1.075 1.37E-11 4.7
7.5 18 2.2 194 1154 0.65 1.007 1.014 5.19E-12 4.8
8 20 2.2 226 1266 0.592 0.979 0.958 2.23E-11 4.9
8.5 22 2.3 262 1382 0.648 1.041 1.084 3.19E-12 5.1
9 24 2.3 301 1501 0.597 1.015 1.03 2.65E-10 5.2
9.5 26 2.3 342 1622 0.552 0.991 0.982 2.18E-10 5.3
10 28 2.3 385 1745 0.513 0.97 0.941 9.89E-11 5.5
10.5 30 2.4 431 1871 0.567 1.034 1.069 4.4E-12 5.6
11 32 2.4 478 1998 0.531 1.015 1.03 5.01E-10 5.7
11.5 34 2.4 528 2128 0.499 0.996 0.992 1.33E-10 5.8
12 36 2.4 578 2258 0.47 0.98 0.96 4.93E-10 5.9
12.5 38 2.4 630 2390 0.444 0.964 0.929 4.1E-11 6
13 40 2.5 684 2524 0.495 1.03 1.061 3.27E-11 6.1
13.5 42 2.5 738 2658 0.47 1.016 1.032 4.09E-10 6.2
14 44 2.5 794 2794 0.447 1.002 1.004 2.27E-10 6.2
14.5 46 2.5 851 2931 0.426 0.989 0.978 1.2E-11 6.3
15 48 2.5 909 3069 0.407 0.978 0.956 1.02E-09 6.4
15.5 50 2.5 968 3208 0.39 0.966 0.933 2.18E-09 6.5
16 52 2.5 1027 3347 0.373 0.956 0.914 1.39E-09 6.5

Table 3: Measure of 12 factors three level SOSRD(PBIBD)

D1 = (v = 12, b1 = 9, r1 = 3, k1 = 4, λ11 = 1, λ12 = 0),
D2 = (v = 12, b2 = 12, r2 = 2, k2 = 2, λ21 = 0, λ22 = 1)

c m1 a n0 N λ4 λ2 (λ2)
2 Qv(D) a2

3 0 1.6 -24 120 0.874 1.024 1.049 2.93E-09 2.5
3.5 1 1.7 -37 155 0.862 1.044 1.09 4.36E-08 2.8
4 2 1.7 -54 186 0.718 0.994 0.988 1.9E-10 2.9
4.5 3 1.5 -115 173 0.468 0.936 0.876 1.06E-11 2.4
5 4 2.2 64 400 0.937 0.968 0.937 0 5
5.5 5 2.1 11 395 0.788 0.982 0.964 4.19E-11 4.5
6 6 2.1 7 439 0.709 0.964 0.929 3.15E-10 4.6
6.5 7 2.2 12 492 0.762 1.023 1.047 1.08E-10 4.7
7 8 2.2 21 549 0.683 0.987 0.974 1.24E-09 4.9
7.5 9 2.3 33 609 0.735 1.042 1.086 3.51E-11 5.1
8 10 2.3 47 671 0.667 1.009 1.018 5.31E-10 5.2
8.5 11 2.3 64 736 0.608 0.978 0.956 1.39E-09 5.4
9 12 2.4 82 802 0.662 1.034 1.069 1.31E-10 5.6
9.5 13 2.4 102 870 0.61 1.006 1.012 1.03E-10 5.7
10 14 2.4 123 939 0.565 0.981 0.962 1.23E-10 5.9
10.5 15 2.4 146 1010 0.526 0.958 0.918 8.65E-10 6
11 16 2.5 170 1082 0.578 1.017 1.034 1.55E-10 6.1
11.5 17 2.5 195 1155 0.541 0.996 0.992 1.11E-09 6.3
12 18 2.5 221 1229 0.509 0.976 0.953 4.21E-09 6.4
12.5 19 2.5 248 1304 0.479 0.959 0.92 8.13E-09 6.5
13 20 2.6 276 1380 0.53 1.019 1.038 1.19E-09 6.6
13.5 21 2.6 304 1456 0.502 1.003 1.006 1.74E-09 6.7
14 22 2.6 334 1534 0.477 0.987 0.974 4.14E-09 6.8
14.5 23 2.6 364 1612 0.454 0.973 0.947 5.99E-10 6.9
15 24 2.6 395 1691 0.432 0.959 0.92 2.66E-10 7
15.5 25 2.7 426 1770 0.48 1.021 1.042 5.65E-11 7.1
16 26 2.7 459 1851 0.459 1.008 1.016 4.4E-11 7.2

11



Ednah et al.; JAMCS, 30(6): 1-12, 2019; Article no.JAMCS.45812

Table 4: Measure of 14 factors three level SOSRD(PBIBD)

D1 = (v = 14, b1 = 28, r1 = 6, k1 = 3, λ11 = 1, λ12 = 0),
D2 = (v = 14, b2 = 7, r2 = 1, k2 = 2, λ21 = 0, λ22 = 1)

c m1 a n0 N λ4 λ2 (λ2)
2 Qv(D) a2

3 -6 1.6 6 62 0.846 0.991 0.982 2.91E-05 2.6
3.5 -5 1.7 -4 80 0.835 1.012 1.024 7.68E-07 2.9
4 -4 1.8 -14 98 0.857 1.058 1.119 3.14E-08 3.1
4.5 -3 1.7 -38 102 0.655 1.02 1.04 1.46E-10 2.8
5 -2 2.2 32 200 0.937 0.968 0.937 0 5
5.5 -1 2.1 5 201 0.774 0.965 0.931 2.6E-10 4.6
6 0 2.2 1 225 0.833 1.033 1.067 3.18E-09 4.7
6.5 1 2.2 2 254 0.738 0.991 0.982 3.01E-10 4.9
7 2 2.3 5 285 0.786 1.039 1.08 8.86E-10 5.1
7.5 3 2.3 10 318 0.704 0.998 0.996 5.36E-09 5.3
8 4 2.3 16 352 0.636 0.962 0.925 9.5E-09 5.5
8.5 5 2.4 23 387 0.686 1.012 1.024 1.29E-08 5.7
9 6 2.4 31 423 0.627 0.98 0.96 1.25E-08 5.9
9.5 7 2.5 40 460 0.679 1.033 1.067 7.24E-10 6.1
10 8 2.5 49 497 0.629 1.006 1.012 1.93E-09 6.2
10.5 9 2.5 60 536 0.583 0.979 0.958 1.03E-08 6.4
11 10 2.5 72 576 0.543 0.955 0.912 1.71E-08 6.5
11.5 11 2.6 84 616 0.593 1.01 1.02 9.47E-09 6.7
12 12 2.6 96 656 0.557 0.989 0.978 3.2E-09 6.8
12.5 13 2.6 110 698 0.524 0.968 0.937 3.01E-08 7
13 14 2.7 124 740 0.575 1.025 1.051 1.76E-10 7.1
13.5 15 2.7 138 782 0.544 1.007 1.014 7.31E-11 7.2
14 16 2.7 153 825 0.515 0.99 0.98 3.64E-08 7.4
14.5 17 2.7 169 869 0.489 0.973 0.947 8.53E-10 7.5
15 18 2.8 185 913 0.539 1.03 1.061 3.17E-08 7.6
15.5 19 2.8 201 957 0.514 1.016 1.032 7.21E-10 7.7
16 20 2.8 218 1002 0.491 1.002 1.004 8.34E-10 7.8

Table 5: Measure of 16 factors three level SOSRD(PBIBD)

D1 = (v = 16, b1 = 20, r1 = 5, k1 = 4, λ11 = 1, λ12 = 0),
D2 = (v = 16, b2 = 8, r2 = 1, k2 = 2, λ21 = 0, λ22 = 1)

c m1 a n0 N λ4 λ2 (λ2)
2 Qv(D) a2

3 -8 1.6 62 126 0.832 0.9752 0.951 6.32E-09 2.63
3.5 -6 1.7 37 165 0.81 0.9808 0.962 3.38E-10 2.95
4 -4 1.8 13 205 0.819 1.0115 1.023 4.9E-10 3.2
4.5 -2 1.8 -31 225 0.746 1.0368 1.075 4.54E-11 3.13
5 0 2.2 80 400 0.937 0.968 0.937 0 5
5.5 2 2.2 24 408 0.919 1.0439 1.09 4.45E-11 4.64
6 4 2.2 13 461 0.813 1.0079 1.016 1.07E-11 4.8
6.5 6 2.2 10 522 0.718 0.9643 0.93 1.19E-10 5.02
7 8 2.3 12 588 0.761 1.0076 1.015 7.93E-11 5.25
7.5 10 2.3 17 657 0.682 0.9662 0.934 2.22E-11 5.48
8 12 2.4 25 729 0.728 1.0114 1.023 1.39E-09 5.7
8.5 14 2.4 36 804 0.66 0.9743 0.949 1.34E-10 5.91
9 16 2.5 49 881 0.709 1.0216 1.044 3.48E-09 6.12
9.5 18 2.5 65 961 0.65 0.9886 0.977 4.56E-11 6.32
10 20 2.6 82 1042 0.702 1.038 1.077 1.85E-09 6.51
10.5 22 2.6 101 1125 0.65 1.0095 1.019 5.93E-11 6.7
11 24 2.6 122 1210 0.604 0.9833 0.967 1.25E-09 6.88
11.5 26 2.7 145 1297 0.656 1.0342 1.07 6.47E-10 7.05
12 28 2.7 169 1385 0.614 1.0106 1.021 8.5E-10 7.21
12.5 30 2.7 194 1474 0.577 0.9891 0.978 3.87E-10 7.37
13 32 2.7 221 1565 0.543 0.9689 0.939 6.15E-09 7.52
13.5 34 2.8 250 1658 0.593 1.0214 1.043 5.73E-12 7.68
14 36 2.8 279 1751 0.562 1.0029 1.006 2.64E-10 7.82
14.5 38 2.8 310 1846 0.533 0.9853 0.971 1.38E-10 7.96
15 40 2.8 342 1942 0.506 0.9689 0.939 6.42E-09 8.09
15.5 42 2.9 375 2039 0.555 1.0229 1.046 2.21E-10 8.22
16 44 2.9 409 2137 0.53 1.0075 1.015 2.16E-09 8.35
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