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Abstract: In conducting studies on an exposure of interest, a systematic roadmap should be applied for
translating causal questions into statistical analyses and interpreting the results. In this paper we
describe an application of one such roadmap applied to estimating the joint effect of both time to
availability of a nurse-based triage system (low risk express care (LREC)) and individual enrollment in
the program among HIV patients in East Africa. Our study population is comprised of 16,513 subjects
found eligible for this task-shifting program within 15 clinics in Kenya between 2006 and 2009, with
each clinic starting the LREC program between 2007 and 2008. After discretizing follow-up into 90-day
time intervals, we targeted the population mean counterfactual outcome (i. e. counterfactual probability
of either dying or being lost to follow up) at up to 450 days after initial LREC eligibility under three
fixed treatment interventions. These were (i) under no program availability during the entire follow-up,
(ii) under immediate program availability at initial eligibility, but non-enrollment during the entire
follow-up, and (iii) under immediate program availability and enrollment at initial eligibility. We further
estimated the controlled direct effect of immediate program availability compared to no program
availability, under a hypothetical intervention to prevent individual enrollment in the program.
Targeted minimum loss-based estimation was used to estimate the mean outcome, while Super
Learning was implemented to estimate the required nuisance parameters. Analyses were conducted
with the ltmle R package; analysis code is available at an online repository as an R package. Results
showed that at 450 days, the probability of in-care survival for subjects with immediate availability and
enrollment was 0.93 (95% CI: 0.91, 0.95) and 0.87 (95% CI: 0.86, 0.87) for subjects with immediate
availability never enrolling. For subjects without LREC availability, it was 0.91 (95% CI: 0.90, 0.92).
Immediate program availability without individual enrollment, compared to no program availability,
was estimated to slightly albeit significantly decrease survival by 4% (95% CI 0.03,0.06, p < 0.01).
Immediately availability and enrollment resulted in a 7% higher in-care survival compared to immedi-
ate availability with non-enrollment after 450 days (95% CI –0.08,–0.05, p < 0.01). The results are
consistent with a fairly small impact of both availability and enrollment in the LREC program on in-
care survival.
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1 Introduction

van der Laan and Rose (2011), Petersen and van der Laan (2014), Pearl (2009) and others have advocated for
the use of a systematic road map for translating causal questions into statistical analyses and interpreting
the results. This road map requires the analyst to learn as much as possible about how the data were
generated, posit a realistic statistical model that encompasses these findings, and assign a corresponding
estimand that can answer the scientific question of interest. While in some cases this approach can be
straightforward, in practice it generally requires much consideration when implementing. This is especially
true in observational data, where a common objective is to estimate the joint effect of one or more
longitudinal exposures, or a series of sequential treatment decisions (e. g. Bodnar 2004; Bryan 2004;
Petersen et al. 2014). For example, one may be interested in contrasting immediate enrollment into a
particular program (a single treatment decision) with delayed enrollment (a series of treatment decisions, in
which enrollment is sequentially deferred at multiple time points at which it could have been initiated).

It is well recognized that the cumulative effect of such longitudinal exposures is often subject to time
dependent confounding (e. g. Robins et al. 2000a; Bodnar 2004). For example, the decision to continue to
defer enrollment at post-baseline time points may be affected by covariates that affect the outcome (and are
thus confounders), and that are themselves affected by the prior decision not to enroll. If not properly
accounted for, the resulting estimates may be biased for the parameter of interest.

Similar challenges arise in analyses aiming to estimate the effect of one longitudinal exposure while
holding a second longitudinal exposure constant. For example, how would patient outcomes have differed
under immediate versus deferred exposure to a clinic level intervention, if individual level enrollment were
prevented? Such a controlled direct effect of two longitudinal exposures can be used to investigate the
mechanisms by which an exposure is mediated by individual level uptake. In such scenarios, both long-
itudinal exposures may be subject to time dependent confounding.

Using the counterfactual framework, Robins (1986) and Robins et al. (1999) showed that both long-
itudinal effects and controlled direct effects can be identified in the presence of time dependent confound-
ing. A range of estimators of such effects (or more precisely, estimators of the statistical estimands to which
the counterfactual effects correspond under the sequential randomization assumption), have been devel-
oped, implemented, and applied (e. g. Robins 1987; Robins et al. 1999; Robins and Herná 2009; Hernán and
Robins 2006; Pearl 2009). Prominent examples include inverse probability weighted (IPW) (Horvitz and
Thompson 1952; Koul et al. 1981; Robins and Rotnitzky 1992; Satten and Datta 2001, 2004; Rotnitzky and
Robins 2005; Hernán and Robins 2006), parametric g-computation (Robins et al. 1999; Robins and Hernán
2009; Hernán and Robins 2006; Taubman et al. 2009), and double robust estimating equation-based
estimators (Robins et al. 2000b; van der Laan and Robins 2003; Bang and Robins 2005; Tsiatis 2006).
More recently, Bang and Robins (2005) also introduced iterated conditional expectation g-computation and
double robust substitution estimators, which van der Laan and Gruber (van der Laan and Gruber 2011)
placed within the general targeted minimum loss-based estimation (TMLE) framework (van der Laan and
Rubin 2006).

The TMLE (Bang and Robins 2005; van der Laan and Gruber 2011) offers a number of advantages, as
have been reviewed elsewhere (van der Laan and Gruber 2011; van der Laan and Rose 2011). In particular,
the TMLE does not suffer to the same extent from positivity violations (Hernán and Robins 2006; Westreich
and Cole 2010) as IPW (Petersen et al. 2012), and allows for full integration of machine learning while
retaining valid inference (van der Laan and Rose 2011; Brooks et al. 2013; Schnitzer et al. 2014 Decker et al.
2014). In this paper we describe an application of this methodology to estimate the joint effect of both time
to program availability and individual enrollment in a task shifting program among HIV patients in East
Africa. We provide a detailed description of this analysis, with an emphasis on several practical challenges
likely to arise in similar applications. In doing so, we perform a case study of the targeted learning road
map in the longitudinal setting (van der Laan and Rose 2011; Petersen and van der Laan 2014; Petersen
2014). In particular, we emphasize two primary issues. The first is the translation of the scientific questions
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into counterfactual causal parameters, including a total effect and controlled direct effect. The hypothetical
interventions for comparison are carefully defined to avoid known and potential positivity violations. The
second is the use of recently developed estimation methods, including a double robust and semiparametric
efficient targeted minimum loss-based estimator that integrates Super Learning for nuisance parameter
estimation (van der Laan et al. 2007), and the imposition of global restraints for conditional distributions
implied by our statistical model. We discuss several decisions and practical challenges that arise as a result,
and provide corresponding R code.

The paper is organized as follows. In Section 2, we provide brief background on the scientific question
of interest as well as review the targeted learning road map. In Section 3, we present the data as measured
and formalized into a statistical framework. Section 4 posits the causal model for the data, while Section 5
addresses the target parameter, positivity violations, and identifiability. Section 6 focuses on estimating
both the target and nuisance parameters. Section 7 presents the results of our approach, while Section 8
closes with a discussion and areas of future research.

2 Background

The majority of individuals with HIV live in settings, such as East Africa, where noticeable resource and
infrastructure constraints place a limitation on the care these patients can receive (Stringer et al. 2006;
World Health Organization 2013a). Antiretroviral therapy (ART) medication has been shown to reduce both
viral loads and mortality in these patients (Gulick et al. 1997; Palella et al. 1998; Zwahlen et al. 2009;
Dieffenbach and Fauci 2011; Danel et al. 2015; Lundgren et al. 2015), as well as reduce rates of transmission
to persons uninfected (Quinn et al. 2000; Attia et al. 2009; Das et al. 2010; Cohen et al. 2011). However, the
shortage of resources and health care professionals limit the number of patients who can be placed on ART
(Van Damme et al. 2006; Koole and Colebunders 2010; World Health Organization 2013b; UNAIDS 2013).

Due to these limitations, various approaches have been undertaken in an effort to ensure that the
maximal number of patients who need care can receive it. One such approach shifts care provision tasks for
patients considered to be at low risk from physicians and clinical officers to other care professionals, such
as nurses. Consequently, the workload for the physicians and clinical officers is reduced, theoretically
increasing the attention that higher risk patients can receive for HIV or other conditions (World Health
Organization 2013a).

One such program was implemented between 2007 and 2009 among clinics around eastern Africa.
These clinics were followed as part of the Academic Model Providing Access to Healthcare (AMPATH)
program, and contributed data to the International epidemiologic Databases to Evaluate AIDS, East Africa
region (IeDEA-EA). The purpose of this Low Risk Express Care (LREC) program is to shift care tasks for
patients considered to be at low risk from physician-centered care models to those utilizing non-physician
health workers trained in simplified and standardized approaches to care. Patients were considered to be at
low risk if they met the following set of criteria.
1. They were older than 18 years of age.
2. They were stable on ART for at least 6-months.
3. They had no AIDS-defining or AIDS-associated events within the past 180-days.
4. During past 6 months, they reported no missed pills when asked about the 7 days prior to each visit.
5. They were not pregnant within the past 30 days.
6. Their most recent CD4 count > 200 cells/μL within 274 days prior to the current visit.

Once eligible, at each clinical visit, the clinician decided whether or not to enroll the patient into the
LREC program. Patients enrolled had part of their care, such as identifying and managing ART side effects
and opportunistic infections, shifted to nurses. Table 1 shows the differences between the standard of care
and the LREC model.
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In implementing this task-shifting program, a primary question of interest among health care providers is
whether (i) clinic level exposure to and (ii) individual level enrollment in the program results in either better
or worse clinical outcomes. For example, it could be that enrollment in the program increases loss to follow
up and mortality because care is received from individuals who have a lower level of qualification/
certification. Alternatively, enrollment in the program might decrease mortality and loss to follow-up due
to more attentive and personal care given to enrolled patients. It could also be that an equivalent level of
care is provided and thus, no impact is observed. Furthermore, receiving care at a clinic that has already
implemented the LREC program might itself have a direct beneficial or detrimental effect on patient
outcomes, in addition to an indirect effect mediated by patient enrollment in the program. Such an effect
could result, for example, from changes in clinic practices made possible by shifts in workload.

2.1 Causal inference road map

We follow the targeted learning road map as presented by van der Laan and Rose (2011) and Petersen and
van der Laan (2014). We briefly summarize the road map for longitudinal static interventions and corre-
sponding notation below, and refer readers interested in further details to the cited articles.

Any causal scientific question must first be framed as a statistical question that can be answered with
the observed data. Defining a statistical question includes properly defining the data, statistical model,
and estimand or statistical parameter of interest. Here we consider data that consist of n independent and
identically distributed observations of a random (vector) variable O with some underlying probability
distribution P0. The statistical model m should be chosen to ensure that it contains the true distribution
P0, and thus any model assumptions should be based only on real knowledge about the process that
generated the data. In practice this generally implies a semiparametric or nonparametric statistical
model.

Translating causal questions into such a statistical estimation problem requires translating the scien-
tific question into a formal causal query. This is typically defined as a parameter of the counterfactual
distribution. We consider counterfactual experiments indexed by static interventions to set a vector �A of
treatment or exposure variables equal to a set value �a, and denote the resulting counterfactual distribution
P0
�a . The statistical model m can then be modified to incorporate non-testable causal assumptions about the

data generating process. These causal assumptions are representable using structural causal diagrams or
structural equation models (Pearl 2009). The resulting causal model mf is a model on P0

�a under each �a of
interest.

One must determine what additional causal assumptions (if any) are needed in order to identify the
target causal parameter from the distribution of the observed data. In this paper, we focus on the estimand
provided by Bang and Robins (2005) through the iterated conditional expectation representation of the
longitudinal g-formula. This parameter identifies the causal effects of longitudinal interventions under the
sequential randomization and positivity assumptions.

Table 1: Proportion of visits responsibility assigned between the (a) standard and (b) LREC models of care provision.

Clinical monitoring Standard model LREC model

P/CO Nurse P/CO Nurse

Request CD/viral load measures All None All None
Monitor/support ART adherence All All / All
Determine functional status All None / /
Identify/manage ART side effects All None / /
Identify/manage opportunistic infections All None / /

Notes: P, Physician; CO, Clinical Officer.
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Once identifiability has been established, the statistical model m and target parameter of the observed
data distribution P0 to the real line are used to select a corresponding estimator Ψ̂ which is a function of the
empirical distribution of the observed data Pn. This process may additionally require nuisance parameter
estimation. Here, we describe implementation of a double robust efficient targeted maximum likelihood
estimator (Bang and Robins 2005). The resulting Ψ̂ is used in calculating the parameter estimate Ψ̂ðPnÞ= ψ̂n.
Corresponding standard errors for the estimates are calculated based on the estimated influence curve and
results are then interpreted. In the following sections we illustrate each of these steps in greater detail using
the LREC analysis as a case study.

3 Data

Our study population is comprised of subjects found eligible for the LREC program within each of 15 clinics
in Kenya between 2006 and 2009, with each clinic starting the LREC program between 2007 and 2008.
Table 2 shows the characteristics of the 15 clinics.

In an effort to ensure that other unmeasured (or unmeasurable) aspects of care remained roughly constant,
the first point of patient eligibility was truncated at 1-year prior to LREC program initiation at each clinic.
Our target population is therefore comprised of patients found eligible for LREC within 1-year before the
clinic’s start date up to the administrative censoring date (5 March 2009). Our baseline timepoint (t=0) was
defined to be the first date at which a patient was eligible for the program within this window. Figure 1
shows the distribution of the time from baseline to start of the LREC program. Subjects becoming eligible
post LREC program initiation were assigned a time of 0. A small number of subjects had more than one year
of follow up from baseline to LREC program initiation as a result of transferring to a new clinic with a later
LREC start date. As patients generally visited clinics every three months, we discretized follow-up into time
intervals of 90 days.

Patients were followed from the baseline time point defined above until one of four possible end points:
1. Death
2. Loss to follow-up (LTFU), defined here to be 198 days with no clinical visits
3. Database closure, occurring on 5 March 2009
4. Transfer to a clinic with no LREC program

For the present study, we were interested in the effect of LREC exposure and enrollment on the
probability of remaining alive and in clinical care. In settings such as these, no standard national death

Table 2: LREC program clinic characteristics (n= 15).

Area No.(%)
Urban  (.)
Rural  (.)

Clinic Type No.(%)
Referral hospital  (.)
(Sub) district hospital  (.)
Rural health center  (.)

Patients No.(%)
≤ 500  (.)
501− 1, 000  (.)
1, 001− 1, 500  (.)
> 1, 500  (.)
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registry exists. Consequently, relying solely on observed mortality would undercount the risk of death in
our study population. Further, past research in this setting has found that a major reason (although
certainly not the only reason) for apparent LTFU is unreported death (Geng et al. 2015, 2016). For example,
a recent study by Geng et al. (2016) found that over 30% of subjects classified lost to follow up were
unreported deaths. Without supplemental data, such unreported deaths preclude identification of causal
parameters that treat death as the outcome and censor at LTFU, as well as parameters that treat LTFU as the
outcome and censor at death (Geng et al. 2012). Furthermore, patients who do not return for continuing HIV
care are subject to higher risk of complications and health decline (Kissinger et al. 1995; Samet et al. 2003;
Giordano et al. 2005, 2007; Horstmann et al. 2010), placing them at unnecessarily higher mortality rates. We
therefore define our outcome of interest as a composite of either the occurrence of death or LTFU. Patients
were followed until this “failure” or until censoring due to either end of study or transfer. We aimed to
evaluate the impact of (a) implementation of the LREC program at the clinic, and (b) enrollment into the
LREC program after implementation on both retention “in-care” and survival.

3.1 Observed data

For notational convenience, we defined variables after the occurrence of any of these end points as equal to
their last observed value. Following discretization of the data, we have a longitudinal data set with time-
varying covariates, where the time points t correspond to 90-day intervals (e. g. 0, 90, 180,... days). Let W
be the observed baseline time-independent covariates observed at the date the patient was first eligible for
LREC (age at eligibility, CD4 count at start of ART, gender, indicator that ART regimen is protease-inhibitor
based at eligibility, treated for tuberculosis at start of ART, indicator at urban clinic at eligibility, and WHO
immunologic stage at both the start of ART and maximum stage prior to start). Let the time-varying
variables from the observed data for each time point t be:

OðtÞ= L1ðtÞ,YðtÞ,A1ðtÞ,A2ðtÞ,C1ðtÞ,C2ðtÞð Þ : t =0, 1, . . . ,K, [1]

where

0
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Figure 1: Histogram of time from eligibility to LREC program initiation.
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– L1ðtÞ consists of the most recent measures of time-varying covariate values at the start of interval t,
inclusive of covariates measured at the clinic level (i. e. calendar date, most recent, nadir, and zenith
CD4 count, days since enrolling into the AMPATH program, an indicator of remaining on ART,
pregnancy status, indicator in WHO stage III or IV, indicator of being treated for tuberculosis, clinic
type (rural or urban), and an indicator of having at least one clinic visit in the previous interval).

– YðtÞ is an indicator that the patient is either (a) no longer in care (not seen in the clinic for 198 days) or
(b) has died by the end of interval t. It jumps to and remains at 1 if either event occurs.

– A1ðtÞ is an indicator of the LREC program availability by the end of interval t. It jumps to and remains
at 1 once the program has started.

– A2ðtÞ is an indicator of enrollment into the LREC program by the end of the interval. It jumps to and
remains at 1 at time of enrollment and remains at 0 if A1ðtÞ=0.

– C1ðtÞ is an indicator that the patient transfers by the end of interval t to a clinic other than one of the 15
clinics that initiate the LREC program. It also jumps to and remains at 1 once the patient transfers.

– C2ðtÞ is an indicator of data base closure by the end of interval t. It jumps to and remains at 1 at the
end of the study. Note that although database closure occurs at a fixed calender date, censoring
time due to database closure remains a random variable due to variability in time of eligibility for
LREC.

We refer to the covariate and outcome nodes collectively as LðtÞ= ðL1ðtÞ,YðtÞÞ and the treatment and
censoring processes together as AðtÞ= ðA1ðtÞ,A2ðtÞ,C1ðtÞ,C2ðtÞÞ. Our observable data for each subject i can
therefore be expressed as

Oi = Lið0Þ,Aið0Þ, Lið1Þ,Aið1Þ, . . . , LiðK + 1Þð Þ [2]

where Lð0Þ include our baseline variables W and K + 1 is our final time point of interest, here equal to 4. We
assume the observed data over all subjects consists of n copies of Oi ⁓

iid P0, where P0 is the true underlying
distribution.

4 Causal model

A causal model allows us to represent additional knowledge and assumptions associated with our scientific
question that cannot be represented statistically. We present our causal model mf by making use of
structural equation models to formally present how we assume each variable to be generated. We use a
causal model that treats the 15 clinics as fixed, rather than sampled, and which describes an experiment in
which individual subjects become eligible for LREC at random times. Specifically, we define the following
non-parametric structural equation model (NPSEM) (Pearl 2009) to represent our knowledge about the
causal process that generated the observed data.

L1ðtÞ= fL1ðtÞð�Lðt − Þ, �Aðt − Þ,UL1ðtÞÞ
YðtÞ= fYðtÞð�Lðt − Þ, �Aðt − Þ,UYðtÞÞ

for t =0, 1, . . . ,K,K + 1

A1ðtÞ= fA1ðtÞð�LðtÞ, �Aðt − Þ,UA1ðtÞÞ
A2ðtÞ= fA2ðtÞð�LðtÞ, �Aðt − Þ, �A1ðtÞ,UA2ðtÞÞ
C1ðtÞ= fC1ðtÞð�LðtÞ,Yðt − Þ, �Aðt − Þ,A1ðtÞ,A2ðtÞ,UC1ðtÞÞ
C2ðtÞ= fC2ðtÞðLð0Þ,Yðt − Þ, �Cðt − Þ,C1ðtÞ,UC2ðtÞÞ

for t =0, 1, . . . ,K

[3]
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where U ≡ ðUL1ðtÞ,UYðtÞ,UA1ðtÞ,UA2ðtÞ,UC1ðtÞ,UC2ðtÞÞ are unmeasured exogenous variables from some under-
lying probability distribution PU (assumed to satisfy the back door criterion (Pearl 2009) as detailed in
Section 5.1.1) and Lð− 1Þ=Að − 1Þ=˘. For notational convenience, we define t − = t − 1 and define
�XðtÞ= ðXð0Þ,Xð1Þ, . . . ,XðtÞÞ to denote the history of variable X up to time t.

This causal model specifies how we believe each of the variables in our data are deterministically
generated, with randomness coming only from the unmeasured exogenous variables U. It tells us, for
example, that individual enrollment immediately following LREC eligibility A2ð0Þ is generated as a determi-
nistic function fA2ð0Þ of Lð0Þ, program availability A1ð0Þ, and an error term UA2ð0Þ drawn from some under-

lying population. Additionally, while not explicitly stated in eq. [3], we note that the deterministic function

for enrollment fA2ðtÞ sets A2ðtÞ=0 with probability 1 if �A1ðtÞ = 1, i. e. if the program is not yet available.
Note that censoring due to end of study C2ðtÞ is not a function of time updated covariates �LðtÞ beyond

baseline covariates Lð0Þ. This is because, while the values of Lð0Þ may vary due to the calender date at
which a subject’s baseline eligibility occurs, once this date is set for a given subject, the censoring process
due to database closure is deterministic.

Our outcome YðtÞ is assumed to be a function of treatment and censoring AðtÞ only up to the previous
time point, t − 1. This restriction is imposed in order to preserve causal ordering, since death/LTFU (YðtÞ) in
an interval t clearly affects enrollment (AðtÞ) in the same interval. Consequently, the effects of availability
and enrollment within an interval on the composite outcome are only captured beginning in the following
interval.

5 Target parameter

In this framework, t = 1 is the first time point at which treatment assignment aðtÞ could affect survival. As
the purpose of this study is to analyze the impact of different levels of treatment on the outcome, we
conditioned on survival past t =0. Thus, we had that Yð0Þ=0 for all subjects included in the study. That is,
all subjects in the study survived past the first 90 days.

Conceptualizing an ideal hypothetical experiment can help in defining the target counterfactual
parameter of interest. In order to evaluate the effect of exposure to and enrollment in the LREC program,
we can conceive of an experiment in which we compare survival over time under alternative interventions
to set time to program availability, time to enrollment following availability, and under an additional
intervention to prevent censoring. As represented above in the causal model, these counterfactual outcome
distributions are defined in terms of an intervention on the data-generating mechanism for
AðtÞ : t =0, 1, . . . ,K. In other words, we intervene to set values of program availability, enrollment, and
censoring to some fixed values of interest at all time points.

Recall that our interest is evaluating both the total effect of exposure to the LREC program, and the

direct effect of this exposure not mediated by individual level enrollment. Let �Y�aðt*Þ denote the counter-

factual outcome process up to time t* under an intervention to set both time of program availability (�a1) and
time of individual enrollment (�a2). Our target parameter for a given intervention of interest is

EY�aðt*Þ : t* = 1, . . . , 4, where EY�aðt*Þ is the cumulative counterfactual probability of failure by time t*

under intervention �a. As we have conditioned on surviving past t =0 (the first 90-days of follow-up), our
range represents the cumulative probability of failure between 91 and 450 days post-eligibility.

When contrasting counterfactual failure probabilities under distinct interventions, we focused on
estimating the absolute risk difference (or average treatment effect). Specifically, we contrasted these
counterfactual survival probabilities under the three following interventions: Our first intervention assigns
all patients to have no program availability at all time points (set A1ðtÞ=A2ðtÞ=0 : t = 1, 2, . . . ,K), and
forces patients to remain uncensored (set C1ðtÞ=C2ðtÞ=0 : t = 1, 2, . . . ,K). The corresponding 4 counter-
factual survival probabilities EY�a=0, 0ðt*Þ : t* = 1, . . . , 4 give us an understanding of survival patterns with-
out the LREC program.
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The second intervention of interest is to assign all patients to have immediate program availability (set
A1ðtÞ = 1 : t = 1, 2, . . . ,K), but not allow any subjects to enroll into the program (set A2ðtÞ=0 : t = 1, 2, . . . ,K).
Patients would again be forced to remain uncensored and the counterfactual survival probability at each time

point EY�a= 1, 0ðt*Þ : t* = 1, . . . , 4 would be calculated. By evaluating Ψ1, 0ðP0Þ=EY�a= 1, 0ðt*Þ−EY�a=0, 0ðt*Þ :
t* = 1, ..., 4, we target the controlled direct effect of exposure to the program if enrollment were prevented.

The third intervention is to assign all patients to have both immediate availability and enrollment
(set A1ðtÞ=A2ðtÞ= 1 : t = 1, 2, . . . ,K). Again, censoring would be prevented and the counterfactual survival
probability at each time point EY�a= 1, 1ðt*Þ : t* = 1, . . . , 4 would be calculated. Evaluating Ψ1, 1ðP0Þ=EY�a= 1, 1

ðt*Þ−EY�a= 1, 0ðt*Þ : t* = 1, . . . , 4 allows us to target the total effect of enrollment in a scenario where all
subjects experienced immediate availability.

5.1 Identifiability

5.1.1 Sequential randomization

To establish identifiability of our causal parameter, we first make the assumption of sequential randomiza-
tion. That is, we assume that

�Y�aðt*Þ ??AðtÞj�Lðt − Þ, �Aðt − Þ= �aðt − Þ : t* = 1, ..., 4; t =0, ..., t* − 1. [4]

Informally, we assume that the measured covariates are sufficient to control for confounding of our
treatment effect. Consequently, at any time point t the observed treatment is independent of the full data
given the data observed up to time point t. This assumption is met when the exogenous variables U are
drawn from PU such that the back door criterion is satisfied (Pearl 2009). Assuming that U are independent
of each other and across time, for example, would satisfy the criterion. In this context, the major concern
for violation of this assumption is that among patients classified as clinically stable, some patients are
healthier or at lower risk of loss than others in ways not captured by the measured covariates, and these
patients are differentially enrolled into the program.

5.1.2 Positivity

In addition, we assume that a subject had a positive probability of following each regime of interest (no
availability, immediate availability and no enrollment, and immediate availability and enrollment) at each
time point, regardless of their observed past:

PðAðtÞ= aðtÞj �Lðt − Þ, �Aðt − Þ= �aðt − ÞÞ > 0a.e.
for t =0, ..., t* − 1, �a 2 f0, 0 1, 0 1, 1g. [5]

Patients losing their eligibility for the LREC program posed a particular threat to this assumption. Our study
population is comprised of patients initially deemed eligible for the LREC program due to their low risk.
However, a noticeable proportion of the study population (32%) lost their eligibility at some point during
follow-up. Once these patients were ineligible, they had a near 0 probability of subsequent program
enrollment. To circumvent this potential positivity violation, we considered only treatment interventions
which avoided enrollment at these time points. For example, consideration of patients who enroll imme-
diately into the program would not encounter this issue, as all patients are eligible at the start of follow-up.
Consideration of patients never enrolling into the program is also valid, as patients who are not eligible do
not enroll. We further note that patients who lost their eligibility after enrollment into the LREC program
were still considered to be enrolled. Similarly, patients who transferred to a new clinic without availability
after receiving care at a clinic where LREC was available were considered exposed to the LREC program (in
other words, we conducted an intent to treat type analysis of the effect of both availability and enrollment).
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Under the assumptions of positivity and sequential randomization, the g-formula (Robins 1986, 1987)
identifies the distribution that the observed data would have had under a counterfactual treatment, even
when time-dependent confounders are present and are affected by prior components of the specified
treatment. For our parameter, the standard g-computation representation for our target parameter is

EY�aðt*Þ=
P

�lðt* − 1Þ
EðYðt*Þ j�Lðt* − 1Þ=�lðt* − 1Þ, �Aðt* − 1Þ= �aðt* − 1ÞÞ�

Qt* − 1

j=0
PðLðjÞ= lðjÞj�Lðj− Þ=�lðj− Þ, �Aðj− Þ= �aðj− ÞÞ

[6]

where the right hand side is a parameter of the observed data distribution P0. The g-computation recursive
algorithm for estimating the cumulative probability of failure, introduced by Robins (2000) and expanded
in Bang and Robins (2005), calls upon the tower rule of conditional expectations for this identity, suggest-
ing an iterative conditional expectation (ICE) approach to estimating our parameters. Using their results,
our parameter can therefore instead be expressed as

EY�aðt*Þ=E½E½� � �E½E½Yðt*Þj�L�aðt* − 1Þ�j�L�aðt* − 2Þ� � � � j�L�að0Þ�� [7]

where L�aðtÞ is the variable LðtÞ from the post intervention distribution resulting from setting �Aðt − Þ= �aðt − Þ
and the expectations are taken with respect to this distribution. Thus, given �L�aðtÞ is equivalent to
conditioning on �LðtÞ, �AðtÞ= �aðtÞ.

6 Estimation

The ICE approach has a number of advantages compared to the more simple standard g-computation
procedure. The most noticeable among them is that we are only required to estimate the iteratively defined
conditional expectations as opposed to the entire conditional densities of the covariate process LðtÞ. We
therefore use the ICE approach here. A small disadvantage is that these set of regressions must be run
separately for each desired treatment rule, �a, whereas the classical parametric g computation approach only
has to estimate the conditional densities once. We note however that this is a very small price to pay when
compared against the substantial gain achieved by not having to estimate the entire joint density, especially
when dealing with high dimensional data.

While the ICE approach already provides a considerable advantage towards our estimation goals, using
targeted minimum loss-based estimation (van der Laan and Gruber 2011; Bang and Robins 2005) provides a
further gain. This approach provides a substitution estimator that solves the estimating equation correspond-
ing to the efficient influence function DðPÞ for our estimand. This removes the bias associated with the
untargeted minimization of a global loss function for the density of the data. It is also known to be double
robust, in that consistent estimation of the target parameter is obtained if either of the treatment mechanism
or the iterated conditional expectations are estimated consistently. This approach is guaranteed to respect
the parameter constraints implied by our statistical model. An R package titled ltmle has been developed
which implements this estimator (Lendle et al. 2016; Petersen et al. 2013). This package takes longitudinal
data supplied in wide format and estimates our target parameter for each specified treatment rule �a.

A number of options are available to users of the ltmle R package. For example, the probabilities of
treatment and censoring AðtÞ at each time point (for the specified treatment rule �a) can be separately
estimated and subsequently fed into the estimation procedure, rather then being fit within. This allows the
analyst the option of pooling the observations over all time points and estimating probabilities within this
pooled sample, as opposed to fitting separate models for each time point. Doing so provides a lower
variance in estimates of the treatment mechanisms at the cost of potentially higher bias.

An additional advantage of pooling over all observations in estimating our treatment and censoring
mechanisms is that we can use additional data that is not included in modeling the ICEs. That is, data
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observed beyond the final time point t* can be used to aid in estimating the probabilities of treatment for
AðtÞ : t =0, 1, . . . , t* − 1. This can be advantageous and promotes stability in the estimates by borrowing
information across all time points. Specifically, it helped in the present study in estimating our censoring
from transfer mechanism, due to the extremely small number of transfers observed. For this study, we
choose to pool across observations to fit the treatment mechanisms, though note that the decision between
the two did not significantly affect the parameter estimates.

An additional package option is the ability to pool over all subjects when estimating the ICEs
irrespective of observed treatment, as opposed to stratifying the data and using only subjects following
the treatment rule specified. This choice implies an analogous bias-variance trade off. Pooling over subjects
regardless of treatment history potentially allows for more stable estimates of the ICEs due to the lower
variance. This option is helpful when the number of time points is large and the number of persons
following a particular treatment regime over all time points is small.

Use of the ltmle R package requires that the data be provided in a wide format and with a time-ordering
of the covariates. In doing so, two options are available for the LðtÞ node at each time point t, i. e. L1ðtÞ,YðtÞ
or YðtÞ, L1ðtÞ. In our causal model in Section 4, the LðtÞ node is not affected by the specified order.
Therefore, use of either ordering will suffice in our study. We additionally note that even if the time-

ordering did matter and our outcome of interest Yðt*Þ were, say, dependent upon the covariates L1ðt*Þ, there
is still no need to condition on L1ðK + 1Þ for the sake of estimating our target parameter as the efficient
influence function DðPÞ for our parameter based on the full data O is the same as the efficient influence
function based on reduced data Or =O=L1ðK + 1Þ. We provide a short proof for this in the Appendix.

6.1 Super learning the nuisance parameters

Consistent, asymptotically linear, and efficient estimation of our target parameter requires that the treat-
ment and censoring AðtÞ mechanisms as well as ICEs be estimated in a consistent manner and at a fast
enough rate (van der Laan and Rose 2011). Using parametric models to do this requires correct specification
of the functional form for the treatment mechanism and iterated conditional expectations. Given that we do
not know a priori the form of the true probability distribution P0 and the extreme unlikeliness that a simple
parametric specification will result in a correctly specified model, use of these models will most likely result
in overly biased estimates which will approach statistical significance with probability 1 as sample size
increases regardless of whether a treatment effect exists. In other words, the use of misspecified parametric
models elevates the risk of obtaining significant findings even if no true treatment effect is present.

An alternative approach is to use data-adaptive non-parametric methods which reside in a much larger
statistical model or set of distributions. Examples include gradient boosting machines (Friedman 2001,
2002), neural networks (Mc-Culloch and Pitts 1943), and k-nearest neighbors (Altman 1992). In deciding
which method to use, we recommend using the ensemble machine learning approach Super Learner, which
is based on V-fold cross validation and implemented in the R package titled SuperLearner (Polley and van
der Laan 2014). This algorithm takes a user-supplied loss function (chosen to measure performance) and a
library of algorithms, which can include parametric models as well as non-parametric or machine learning
algorithms such as those listed above. It uses V-fold cross validation to chose the convex combination of
these algorithms that performs best on independent data (derived from internal data splits). If, as is likely,
none of the algorithms in the library achieves the rate of convergence one would have with a correctly
specified parametric model, the Super Learner will still perform asymptotically at least as well as the best
algorithm in the library. Otherwise, it achieves an (almost) parametric rate of convergence. Furthermore, the
derived oracle inequality showing the asymptotic performance also shows that the number of candidate
algorithms considered in the cross-validation procedure can be polynomial in size proportional to the
number of observations (van der Laan and Dudoit 2003; van der Vaart et al. 2006; van der Laan et al. 2007).
Therefore, a large number of algorithms can be considered, which can grow with the number of observa-
tions, without fear of hampering the Super Learner’s performance.
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To use Super Learning, a loss function must be chosen and a user-specified library provided. We
chose the non-negative log loss function for its desired steeper risk surface, as this function penalizes
incorrect probabilities more severely than the more commonly used squared error loss. A number of
default candidates are included in the SuperLearner package that were used here. These include the
overall mean, main terms logistic model, step-wise regression with AIC (Hoerl and Kennard 1970),
generalized additive model (Hastie and Tibshirani 1986), Bayesian generalized linear model (Gelman
et al. 2008), k-nearest neighbors (Altman 1992), LASSO (Tibshirani 1996), ridge regression (Hoerl and
Kennard 1970), neural net (McCulloch and Pitts 1943), multivariate adaptive polynomial spline (Friedman
1991), generalized boosted regression model (Friedman 2001, 2002), and support vector machine (Boser
et al. 1992; Cortes and Vapnik 1995). Additionally, most of the algorithms have tuning parameters
which can result in better candidate performance. To ensure that we were achieving satisfactory perfor-
mance, we used different tuning parameters as additional candidates in the ensemble for the generalized
additive models, k-nearest neighbors, neural nets, and generalized boosted regression models. We
additionally used 4 user-specific parametric models as candidates in the library. The Super Learner fits
were constructed using all potential confounders, listed above in Section 3.1 as W and L1ðtÞ for each time
point t.

Of particular concern to the analyst when deciding on which candidates to include in the Super Learner
library is the explicit condition that the candidates not be too data adaptive. This is because the empirical
process conditions for the asymptotic linearity of our estimator require that we work within a Donsker class
of estimators (van der Laan et al. 2009). Indeed, we have seen that algorithms that tend to overfit the
empirical data, such as the machine learning algorithm random forest, will negatively impact our estima-
tors. We therefore excluded these algorithms from our library, though note that such algorithms could still
be used in a cross-validated parameter estimation approach such as cross-validated targeted minimum loss-
based estimation (Zheng and van der Laan 2010).

Regarding the pooling of observations across time for the treatment mechanism, one further possible
option is to use a Super Learner library that is doubled by including estimates from both the time stratified
and pooled approach. Ensemble weights could then be calculated based on the best performing candidate
in this larger library and subsequently fed into the ltmle package. Consequently, we continue benefiting
from the borrowed information at different time points and simultaneously protect ourselves from the
asymptotic bias of the previous approach. We opted not to additionally use the stratified approach, due to
the computational intensity required of the approach.

6.1.1 Initial ICE fits

In using non-parametric estimators for the estimation of the ICEs, we may potentially disregard the global
constraints implied by our statistical model. While all the estimators considered here are expected to work
well at time t = t* where the outcome being modelled is binary, their use at t < t* where the outcome being
modelled is known to fall within the interval ½0, 1� can present issues. For example, continuing to treat the
outcome being modelled as binary may result in programmatic errors since many of the algorithms, such as
Support Vector Machines or k-nearest neighbors, require that the outcome be supplied in classes or as
factors. Alternatively, modelling the outcome continuously may result in extrapolations with estimates
greater than 1 or less than 0. As our expectation is known to fall within ½0, 1�, this would result in violations
of the constraints of the outcome being modelled.

For each of the algorithms facing this potential issue, we implemented three approaches aimed at
ensuring that estimates remained within the constraints. All three were used in the Super Learner library,
allowing us to objectively compare the performance of each approach. We define each of the conditional

expectations from eq. [7] to be �Q0, LðtÞ such that, for example, �Q0, Lðt*Þ ≡E½Yðt*Þj�L�aðt* − 1Þ� and
�Q0, Lðt* − 1Þ ≡E½�Q0, Lðt*Þj�L�aðt* − 2Þ�. Let each estimator of the conditional expectation within the Super Learner
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library at time t be denoted as �Qj
n, LðtÞ for j 2 1, 2, . . . , J where J is the total number of candidates in the Super

Learner library. We considered
1. Simply truncating �Qj

n, LðtÞ at both 0 and 1.
2. Taking the logit transformation of the outcome being modelled and truncating at a fixed threshold τ

(set here to be 0.0001). We then modelled the transformed outcome on a continuous scale and took the
inverse logit transformation on the fitted values.

3. Stratifying the observations by whether they were within the ð0, 1Þ open interval or within f0, 1g, i. e.
whether they were continuous within the ð0, 1Þ interval or dichotomous with only values of 0 or 1. The
former were fit on a continuous scale after taking the logit transformation, while the latter were
modelled as a binary outcome.

We emphasize that use of Super Learner for estimation of the treatment mechanisms and ICEs
provides two important primary benefits. Firstly, its use helps ensure the conditions for the asymptotic
linearity of our estimator and the corresponding statistical inference are met by ensuring the consistent
estimation of both the intervention mechanism and the iteratively defined conditional expectations. This
allows us to establish robust confidence intervals for our estimator. Secondly, we gain efficiency in that
we get an asymptotically efficient estimator if both the treatment mechanisms and ICEs are estimated
consistently at fast enough rate. Thus, as long as at least one of the library candidates for each of the
nuisance parameters achieve this optimal rate, our approach will have the lowest variance among all
regular asymptotically linear estimators. Further, even if we fall short of this goal, the improved
estimation of both nuisance parameters offered by Super Learner will generally improve finite sample
efficiency.

7 Results

Among the 15 clinics implementing the LREC program, a total of 16,513 subjects (31% male) were found to
be eligible for the program, of which 16,479 survived past t =0. As we only modelled survival up to 450
days, we report figures with follow-up truncated at that point. After discretizing the data, these patients
contributed a total of 17,668 person-years of follow-up to the analyses. From these subjects 1,206 failure
events were observed, of which 1,102 were losses to follow-up and 104 were deaths. All failure events
observed at t = 1 were deaths, since our definition of loss to follow-up required at least 198 days to pass
before a subject could be lost to follow-up. A small number of subjects (n=128) were censored due to
transfers to non-LREC clinics, while 3,889 subjects reached the end of study prior to t =4 and prior to
experiencing a failure event and were administratively censored. Table 3 shows the characteristics of the
patients conditioning on survival past t =0.

A small proportion of subjects died (42), were lost to follow-up (286), or were censored (60) before the
LREC program became available. Of the 16,050 subjects who were at some point exposed to the program,
most (15,294) experienced it by 1-year from baseline. Almost half of the study population began follow-up
after the LREC program had already initiated, as indicated by the large spike in the cumulative incidence at
time 0 (Figure 2). A noticeable spike was also seen at 1-year after baseline, representing the patients who
had their first eligibility truncated at 1-year as stated in Section 3.

Patients who were not exposed to the LREC program could not enroll. Furthermore, once the LREC
program was available, decisions on whether to enroll subjects rested upon the treating clinicians or
clinical officers. Consequently, only 3,832 subjects were enrolled. As expected, subjects who were healthier
were more likely to enroll into the LREC program. For example, univariate analyses showed that subjects
who had higher CD4 counts, were receiving ARV, had a WHO stage I or II, were seen in clinics less often,
and were not being treated for tuberculosis had higher probabilities of enrolling. Additionally, subjects
from (sub) district hospitals and rural health centers (compared to referral hospitals), with fewer missed
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clinical visits, not on protease-inhibitor based regimen, and who were not pregnant also had higher
probabilities of enrolling. We note that despite listing non-pregnancy as a criteria for being at low risk, a
small number of subjects (18) enrolled while pregnant. Figure 2 shows the cumulative incidence of LREC
availability and enrollment. Cumulative incidence of enrollment by 90 and 360 days after baseline was 7%
(95% CI: 6.3%, 7.1%) and 19% (95% CI: 18.8%, 20.1%), respectively.
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Figure 2: Cumulative incidence of LREC availability and enrollment.

Table 3: Characteristics of 16,479 patients at LREC eligibility (conditioning on survival past t =0).

Count (%)

Age (years)
< 30 , (%)
– , (%)
≥40 , (%)
Sex
Female , (%)
Male , (%)

CD4 cell count (cells/μL) at ART start
< 200 , (%)
– , (%)
–  (%)
≥ 500  (%)
Unknown , (%)

CD4 cell count (cells/μL) at eligibility
< 200  (%)
– , (%)
– , (%)
≥ 500 , (%)
Unknown  (%)

PI-based ARV regimen
No , (%)
Yes  (%)

Max WHO stage prior to ARV start
I/II , (%)
III/IV , (%)
Unknown  (%)
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As stated in Section 3, all patients in our study started follow-up eligible for the LREC program, leading to
low or no variance in many of the confounders at early time points with a skewness towards the healthier
values. During follow-up, however, many subjects who did not enroll subsequently became less healthy
resulting in decreased probabilities of subsequent enrollment. Indeed, 3,920 subjects were found to have
lost their eligibility prior to enrollment and prior to 1-year, precluding interventions to evaluate a range of
different enrollment times, as discussed in Section 5.1.2.

Unadjusted analyses using the Kaplan-meier estimator showed overall high probabilities of in-care
survival among all subjects (Figure 3). Those with immediate LREC availability who never enrolled had
noticeably lower in-care survival than subjects never experiencing LREC availability. For example, at t =4
the proportion of subjects still alive and in care was 0.77 for those not enrolling into LREC, compared to
0.93 for the group of subjects never experiencing LREC availability and 0.94 for subjects enrolling into LREC
immediately. Conversely, those with immediate enrollment into the program had the highest survival
probabilities. Differences in survival probabilities between treatment groups increased with time, with the
largest differences seen between subjects with immediate enrollment and those with LREC availability never
enrolling.

The cross-validated risks (using the non-negative log likelihood loss) for the treatment and censoring
mechanisms are shown in Figure 4 under various models and algorithms. While observations at all time
points were used in the mechanism fits, our interest is only in treatment interventions at t ≤ 3. We
therefore only calculated the risks using those time points. As expected, the Super Learner fit out-
performed all of the candidate estimators in the supplied library, as well as the cross-validation selector
(i. e. discrete Super Learner, which is equivalent to choosing the single algorithm in the library with the
lowest cross validated risk). Compared to the mean model, which assumes no confounding and does not
control for any confounders, the Super Learner fits for the LREC availability and end of study mechan-
isms showed an immense decrease in cross-validated risk. This gain was also noticeable when compared
to the candidate model that only controls for time. The Super Learner fit for the enrollment mechanism
also outperformed the mean model, though to a smaller degree. No noticeable gain was seen in the
transfer mechanism, presumably due to the extremely low number of transfers observed (218). We did
not present the cross-validated risks for the ICE fits as they are too numerous to describe in detail,
though note that the gains from using Super Learner were similar to fits for the treatment and censoring
mechanisms.

Adjustment for potential confounders using the Super Learner fits resulted in relatively small updates
of the survival curves (Figure 5). Subjects enrolling immediately into the LREC program at eligibility
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Figure 3: Unadjusted Kaplan-Meier survival curves.
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continued to have the highest survival probabilities, while those with immediate availability not enrolling
had the lowest. Tables 4 and 5 show the calculated average treatment effects between the different
interventions. Confidence intervals and p-values were calculated based on influence functions. As implied
by the survival curves, immediate enrollment into the LREC program at eligibility had a beneficial effect

LREC Availability
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KNN #5
LASSO
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Neural net #2
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Figure 4: Cross-valided risk estimates (using non-negative log-likelihood loss) and 95% confidence interval for the treatment
and censoring mechanisms. A number of candidates had cross-validated risks too high to plot in the specified window and
consequently are not shown. Mean: marginal probability, Time: logistic regression with time variable only, GLM: logistic
regression with all confounders, AIC step: stepwise regression using the Akaike information criterion, GAM: generalized
additive model, KNN: k-nearest neighbors, LASSO: least absolute shrinkage and selection operator, MARS: multivariate
adaptive regression splines, GBM: generalized boosted regression models, SVM: support vector machines, Parametric: user
specified logistic models using a subset of the confounders.
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relative to never having LREC available, while having LREC immediately available and never enrolling was
adverse. For example, at t =4 the probability of survival for subjects with immediate enrollment was 0.93
(95% CI: 0.91, 0.95) and 0.87 (95% CI: 0.86, 0.87) for subjects with immediate availability never enrolling.
For subjects without LREC availability, it was 0.91 (95% CI: 0.90, 0.92). Similar to the unadjusted estimates,
the treatment effects increased with time. All estimates after t = 1 showed statistical significance.

It is possible that near positivity violations can have large effects on estimates of our parameter. To test
for this potential issue, we considered different truncation bounds for our treatment probabilities.
Specifically, we considered using a bound of 0.001 and using untruncated probabilities. No differences
were seen in the resulting mean outcome estimates.
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Figure 5: Survival curves adjusting for potential confounders.

Table 4: Unadjusted time-specific average treatment effects. (a) compares the intervention immediate LREC availability without
enrollment to never having LREC available; (b) compares the intervention immediate LREC availability and enrollment to
immediate LREC availability without enrollment.

(a) EY�a= 10ðt*Þ−EY�a=00ðt*Þ (b) EY�a= 11ðt*Þ−EY�a= 10ðt*Þ
Time (t*) Estimate (% CI) p-value Estimate (% CI) p-value

 . (.,.) . . (.,.) .
. (.,.) . –. (–.,–.) .
. (.,.) . –. (–.,–.) .
. (.,.) . –. (–.,–.) .

Table 5: Time-specific average treatment effects adjusted for measured potential confounders. (a) compares the intervention
immediate LREC availability without enrollment to never having LREC available; (b) compares the intervention immediate LREC
availability and enrollment to immediate LREC availability without enrollment.

(a) EY�a= 10ðt*Þ−EY�a=00ðt*Þ (b) EY�a= 11ðt*Þ−EY�a= 10ðt*Þ
Time (t*) Estimate (% CI) p-value Estimate (% CI) p-value

 . (.,.) . . (.,.) .
. (.,.) . –. (–.,–.) .
. (.,.) . –. (–.,–.) .
. (.,.) . –. (–.,–.) .
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8 Discussion

We have presented a comprehensive approach to applying longitudinal targeted minimum loss-based
estimation to evaluate the impact of the LREC program. Corresponding code for the analyses have been
uploaded to an online public repository as an R-package at www.github.com/tranlm/lrecImpact. The results
support a somewhat negligible impact of implementation and enrollment, with the lowest survival among
patients with immediate LREC availability never enrolling and similar survival among the other two
interventions (Figure 5). Subjects enrolling immediately into the LREC program have almost identical
survival to subjects never being exposed to the program. While the magnitude of difference in survival
increased with time, this difference is modest.

We chose 90-day intervals for our time points in the current study, due to the understanding that
patients would have visits approximately every 3-months. While smaller intervals could have been chosen,
doing so can reduce the probability of following a given regime of interest given observed covariates (i. e.
increase the extent of practical positivity violations), both by decreasing the probability of availability and
enrollment occurring in the first interval, and because the probability of never enrolling given observed
covariates involves taking a cumulative probability of not enrolling given the observed past over many
more time points. Furthermore, the use of smaller intervals results in more time points, leading to higher
computational costs. On the other hand, the use of larger intervals leads to discarding information in order
to preserve time ordering, which can result in a less complete control for confounding as well as failure to
capture the full causal effect of the intervention. In order to preserve time ordering, only covariate and
outcome values measured at the end of the prior interval are considered possible causes of enrollment and
availability in an interval. Longer intervals result in more problems with the assumption. We tested whether
there was an effect in our study by re-running the analyses using 30-day intervals. The resulting survival
estimates were similar to the ones reported here.

As with all studies, there are limitations that need to be considered. Firstly, it is possible that we did
not sufficiently adjust for all the potential confounders. For example, the majority of subjects who had
immediate availability and never enrolled had initial eligibility occur after the LREC program had already
started. These subjects experiencing incidental eligibility (as opposed to prevalent eligibility from those
eligible prior to the LREC program initiation) may have had factors placing them at higher risk. In
addition, in defining our composite outcome “dead or lost to follow up” we implicitly assumed that not
being seen in clinic for 198 days is an undesirable outcome reflecting out of care status. In practice, some
of these patients might represent unreported transfers to care in an alternative clinic. Lastly, our analysis
considered subjects from the same clinics to be causally independent of each other. In specifying our
causal model we made a key decision to use an individual level NPSEM despite our interest in both an
individual and a clinic level exposure variable. Such a formulation assumes that individuals within a given
clinic are causally independent, and in particular, that the exposure received by one patient does not
impact the outcome of another (the assumption of no causal interference) (Kline 2011; Tchetgen and
VanderWeele 2012). A different formulation is possible that uses a hierarchical or clinic level NPSEM and
corresponding hierarchical identification and analysis. We can think of the corresponding experiment as
randomizing entire clinics to start the LREC program and within clinics with LREC available, randomizing
patients to enroll. However, the sample size then becomes driven by the number of clinics and identifica-
tion would require adequate variability in the introduction of LREC across clinics (Tchetgen and
VanderWeele 2012). We therefore pursued an individual level formulation, while noting the limitations
of this approach. Future research into improved approaches to interference effects in this setting should be
undertaken.

We end by stating that, while not conducted here, this framework can be easily generalized to include
dynamic interventions that are dependent upon other covariates. For example, there could be interest in
intervening to enforce enrollment only on patients who retain eligibility during follow-up while exempting
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patients who do not. Another option to consider is the use of marginal structural models to smooth
treatment effects across time points, as well as availability and enrollment times (Robins 1999a, 1999b;
Robins et al. 2000a; Petersen et al. 2013) though care should be taken when implementing as the number of
regimes with available data would be limited. These models allow us to project the true underlying dose
response curve onto a working parametric model, allowing us to conduct inference on a smaller set of
parameters. The ltmle package includes a TMLE for causal parameters defined as the projection of the
survival or failure curve onto user-specified parametric models.

In summary we applied the targeted learning roadmap to longitudinal data with a multilevel long-
itudinal treatment of interest to analyze a nurse-based triage system among HIV patients in East Africa. This
included both definition and identification of our causal parameter. Issues with positivity were handled
with careful selection of our target causal parameter. Nuisance parameters were estimated using Super
Learner, a cross-validation ensemble algorithm using both parametric and machine learning algorithms.
Observations for the estimation of the treatment mechanisms were pooled across time points, which aided
us in estimating the censoring mechanism due to clinical transfers. Various approaches were implemented
aimed at ensuring the machine learning estimates of the ICEs would respect the underlying statistical
model. Estimates of survival at each time point were then contrasted by their differences and inference
derived using the empirical influence functions. The results show a somewhat negligible impact of both
availability and enrollment in the LREC program on in-care survival.

Appendix. Proof that O and Or have equivalent influence functions

We provide a proof here showing that the influence function for the full data O is equivalent to the
influence function we solve for in our analysis based on the reduced data Or =O=L1ðK + 1Þ.

Firstly, we know the efficient influence function DðPÞ for the reduced data Or. Our goal is to compute
the efficient influence function for the full data O for this same parameter (but now as a function on a
model on O instead of Or).

Recall that one can compute an efficient influence function D*ðPÞ by first deriving an influence function
of any estimator, and then projecting this influence function on the tangent space TðPÞ of the model. DðPÞ
is one such influence function since it is the influence function of the TMLE ignoring L1ðK + 1Þ. Thus,
the desired efficient influence function is D*ðPÞ=πðDðPÞjTðPÞÞ where π is the projection operator acting
onto TðPÞ.

Now, we note that the likelihood of O can be factorized as PðL1ðK + 1ÞjYðK + 1ÞÞPðOrÞ. Thus, the
tangent space is the orthogonal sum of the tangent space T1ðPÞ of the first factor PðL1ðK + 1ÞjYðK + 1ÞÞ
and the tangent space TrðPÞ of PðOrÞ. Consequently, πðDðPÞjTðPÞÞ= πðDðPÞjT1ðPÞÞ+πðDðPÞjTrðPÞÞ.
However, the target parameter is only a function of PðOrÞ, such that PðL1ðK + 1ÞjYðK + 1ÞÞ is actually a
nuisance parameter. Because the efficient influence function is always orthogonal to a nuisance tangent
space (i. e. the space of scores one gets by varying the nuisance parameters), it is also orthogonal to the
tangent space of PðL1ðK + 1ÞjYðK + 1ÞÞ. It follows that D*ðPÞ=πðDðPÞjTrðPÞÞ (i. e. the component in T1ðPÞ
is zero).

However, DðPÞ is the efficient influence function of the target parameter based on Or and is therefore an
element of the tangent space of PðOrÞ, so that DðPÞ is in TrðPÞ. This results in πðDðPÞjTrðPÞÞ=DðPÞ, which
completes the proof that D*ðPÞ =DðPÞ. That is, the efficient influence function of our parameter based on Or

is the same as the efficient influence function of our parameter based on O.
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