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ABSTRACT 

Optimal rotatable designs are experimental designs that are applicable in agricultural, 

industrial and pharmaceutical processes to provide optimum responses subject to 

various input variables. Most researchers in these fields seek alternative experimental 

measures to improve productivity by optimizing the scarce resources available in 

order to cut on the cost of experimentation. The purpose of the study was to construct 

optimal modified Second Order Rotatable Designs (SORD) with reduced number of 

designs points from the existing SORD. The objectives were: Construction of SORD 

with reduced number of designs points from existing SORD; construction of Modified 

Second Order Slope Rotatable Designs (MSOSRD) with reduced designs points from 

existing modified slope rotatable designs, evaluation of Average (A-), Determinant 

(D-), Eigenvalue (E-) and Trace (T-) optimality criteria and illustrate the application 

of the constructed reduced designs points with hypothetical example. Construction of 

reduced SORD was done by taking a fraction of a suitable set of points for existing 

design points while keeping the other set of points constant and subjecting them to 

rotatability conditions. The MSOSRD with reduced designs points were obtained by 

taking fractions of suitable factorial combination obtained from       fractional 

factorial designs. The parameter system of interest considered linear, pure and mixed 

quadratic factors to determine the moment matrix used for the evaluation of the 

alphabetic optimality criteria (A-, D-, E- and T-). A practical hypothetical example of 

sixteen design points was used in the analysis of response surface design using 

Mintab version 17.All the SORD and MSOSRD considered in this study were 

reducible and rotatable. From the evaluation of optimality criteria in three dimensions; 

the design with fourteen (14) points was E- optimal design with an eigenvalue of 

0.004492. In four dimensions, the design with twenty four (  ) design points was A- 

optimal with an optimal trace value of 0.001437 while in five dimensions, the forty 

two (42) design points was also A- optimal with an optimal trace value of 0.000357. 

Designs in three, four and five dimensions with reduced number of design points were 

constructed and their optimality criteria evaluated. The reduced number of designs 

points imply fewer experimental runs therefore minimizes the cost of 

experimentation. The study recommends utilization of optimal reduced designs for 

cost effectiveness in designing of experiments for production processes in various 

sectors of the economy. Further study can be done in higher order rotatable designs if 

the second order is established to be inadequate.   
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CHAPTER ONE 

 INTRODUCTION 

1.1 Introduction 

This chapter covers the background of the study, the statement of the problem, 

objectives of the study and the significance of the study. 

1.2 Background of the study 

Experimentation plays an important role in any scientific research. It involves the 

allocation of treatments to experimental units, and then estimation of one or more 

responses. A well planned and designed experiment is an efficient method of 

exploring practical problems about the world. It is part of scientific method which 

requires observing and gathering information about how processes and systems work. 

In an experiment, some input transform into an output that has one or more 

observable response. Therefore, useful results and conclusions can be drawn from 

experiments. In many applications of Response Surface Methodology (RSM) such as 

in agriculture, industry and pharmacy most of the responses or yields about products 

and processes are majorly derived from experiments. In these economic hard times, 

the world is facing scarcity of resources which has prompted researchers to come up 

with robust methods on the utilization of scarce resources available for optimal 

production. Therefore it is important for researchers to carefully plan and design 

experiments before conducting the actual experiment. Among the basic few 

considerations in planning and designing of experiments are; the assessment of the 

resources available, time and cost of conducting experiments and the prior knowledge 

of the experimental procedures. Box and Hunter (1957) referred these types of 

experimental designs as rotatable designs and suggested that they can be utilized in 

experimentations. In such designs, the experimenters can use the optimality criteria to 

determine the adequacy of a proposed experimental design prior to running it. If 

several alternative designs are proposed, the optimality properties can be compared to 
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aid in the choice of the best design. The most common empirical model used for 

approximation of the true model over the experimental region is a polynomial. 

 In some applications of response surface methodology, according to Box and Draper 

(1959), experimenters are usually interested at estimating either the absolute response 

or the parameters of a model providing the relationship between the response and the 

factors.Researchers may also need to determine rates of change in the yield or a 

response for a given unit change in input variables .In such cases, slope rotatable 

designs are of great interest. In most frequent cases, estimation of slope occurs in 

practical situations. For example, there are circumstances in which the experimenter 

wants to estimate the rate of reaction in a chemical experiment or the rate of change in 

the yield of a crop for various fertilizer doses, Victorbabu (2005). 

Different authors have greatly contributed in the construction of many second; third, 

fourth and fifth order rotatable designs where by some designs have been applied in 

experimentation. This study considered second order rotatable designs. Draper and 

Herzberg (1968) reveals that some of these design points are of theoretical interests 

and the chance of them being utilized in an experimental investigation is currently 

small due to the number of points and levels involved. Therefore, reduction of these 

design points are needed to optimize some experimental constraints such as scarcity 

of inputs, cost of production and the little time available to carry out experiments. 

Therefore, further advancement is required in developing experimental designs with 

fewer experimental runs especially in developing countries where the cost of 

production and living is high. The aim of this study was to construct optimal modified 

second order rotatable designs by utilizing the existing second order rotatable designs 

constructed by Draper (1960b) and Victorbabu (2005). 
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1.3 Basic definitions 

1.3.1 Second Order Design 

A Second order design also referred to as a polynomial of degree two  is a design for 

fitting a second-degree model used to approximate the response surface with a 

parabolic curvature that comprises the linear, quadratic and cross product (interaction) 

terms. 

1.3.2 Rotatable Design 

A design is said to be rotatable if the variance of the response estimate is a function 

only of the distance of the points from the design center or is a design whose 

prediction variance is constant at all points that are equidistant from the design center. 

1.3.3 Optimal Design 

An optimal design is a class of experimental design that is optimal with respect to a 

certain optimality criterion. In the design of experiments for estimating statistical 

models, optimal designs allow parameters to be estimated without bias and with 

minimum variance. 

1.4 Statement of the Problem 

 In any experimental setting, the primary objective of the application of optimal 

rotatable designs is to optimally combine the available inputs to obtain maximum 

yields. However, some of the available rotatable designs in literature generally have a 

substantially large number of design points. These design points may not be desirable 

to experimenters who are constrained by resources, time and the cost involved in 

carrying out the experiment. This study therefore considered existing rotatable 

designs with the aim of reducing the number of design points in order to minimize the 

cost of experimentation when carrying out the actual experiment.  

. 
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1.5 Objectives of the study  

1.5.1 General Objective 

The general objective for this study was to construct optimal modified second order 

rotatable designs.  

1.5.2 Specific Objectives 

In this study the specific objectives were to; 

1. Construct second order rotatable designs with reduced number of points from 

existing second order rotatable designs in k-dimensions. 

2. Construct modified slope rotatable central composite designs with reduced 

number of designs points from existing second order slope rotatable central 

composite designs. 

3. Evaluate A-, D-, E-, and T- optimality criteria for the reduced rotatable 

designs constructed. 

4. Illustrate the application of the constructed reduced designs points with 

hypothetical example. 

1.6 Significance of the study 

The utilization of these reduced designs can be used in order to optimize production in 

agriculture and industrial processes .Since the reduced experimental runs could 

require fewer resources and little time to conduct and obtain optimal responses, 

proper utilization of such experimental designs would enable developing countries 

realize sustainable development goals. 
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CHAPTER TWO 

LITERATURE REVIEW 

2.1 Introduction 

In this section the study traces the streams of thought that led to this study in response 

surface methodology. 

2.2 Response Surface Methodology and Construction of Second Order Rotatable 

Designs 

Response Surface Methodology (RSM) is a collection of mathematical and statistical 

techniques useful for analyzing experiments where the yield is believed to be 

influenced by one or more controllable factors. Experimenters are required to make 

choices of the experimental designs before the actual experiments to avoid incurring 

more experimental costs. Therefore, an experimental design must be selected prior to 

experimentation. Box and Hunter (1957) suggested that these types of experimental 

designs are suitable for such experimentations and called them rotatable designs. In 

accordance with Montgomery et al., (2009), there are several experimental designs 

some of which can be applied in food or chemical companies to test ingredients, 

prepare and reformulate a new food product or even to optimize the conditions 

leading to an optimal process and perhaps more important in estimating rate of change 

of a given response.   Designs for fitting first-degree models are called first-order 

designs and those for fitting second-degree models are referred to as second-order 

designs. Some of these designs are; full factorial design, fractional factorial designs, 

saturated designs; central composite designs, slope rotatable designs etc, Myers et al., 

(2009). 

 In this context, Box and Hunter (1957) introduced rotatable designs in order to 

explore the response surfaces. They developed second order rotatable design through 
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geometrical configurations. This was closely followed by the work of Carter (1957) 

who constructed some second order rotatable designs in two dimensions. 

Bose and Draper (1959) gave a method of constructing second order rotatable designs 

in three dimensions. There was  need to have a general method for construction of  

second order rotatable designs in four or more dimensions and Draper (1960a) 

provided the method, where he constructed second order rotatable designs in three 

dimensions and gave the conditions for existence of second order rotatable designs in 

k-dimensions. Herzberg (1967) came up with an alternative method of constructing 

second order rotatable designs in k-dimensions. When comparing her method with 

Draper’s method, Herzberg’s method gave designs with very large number of points 

but there were no conditions to be satisfied like the case in Draper’s method. 

 Gardiner et al., (1959) gave both the moments and the non-singularity conditions for 

third order rotatability. Their work was followed by Patel and Arap Koske (1985) who 

also gave the moments and the non-singularity conditions for fourth order rotatability. 

Njui and Patel (1988) gave the moments and non-singularity conditions for fifth order 

rotatability. 

Since then, different authors have constructed several second, third and fourth order 

rotatable designs in different dimensions. Draper (1960b) constructed some third 

order rotatable designs in three dimensions. Huda (1982a, 1982b) gave an alternative 

method of constructing some third order rotatable designs. Arap koske and Patel 

(1986) constructed a fourth order rotatable design in three dimensions and thereafter 

Arap Koske (1987) used some hints from Draper and Herzberg (1985) to construct a 

fourth order rotatable design in four dimensions. Mutiso (1998) constructed specific 

and sequential optimal rotatable designs in three, four and five dimensions. Mutai 

(2012) used the method of Huda (1982b) to construct third order rotatable designs in 

k-dimensions under balanced incomplete block designs. Kosgei (2013) constructed a 



7 
 

  

five level modified third order rotatable design using balanced incomplete block 

design. Otieno et al., (2016) gave cost effectiveness analysis of optimal malaria 

control strategies in Kenya. Draper and Herzberg (1968) in their paper on further 

research on second order rotatablility suggested that an experimenter can take 

fractions of the existing points set and carefully combine them with other point sets to 

form reduced second order rotatable designs. 

 There was need to estimate the slope of the response where in many applications of 

response surface methodology estimation of rate of change was of great interest. This 

was made possible by Atkinson (1970) who used the least squares estimation of the 

coefficients in a first order polynomial model to estimate the slope of a response 

surface. Das et al., (1999) pioneered the construction of modified rotatable designs. 

Hader and Park (1978) introduced slope rotatability for central composite designs on 

analogous lines to Box and Hunter (1957) central composite rotatable designs. 

Victorbabu (2002a, 2002b) studied second order slope rotatable designs (SOSRD) and 

constructed SOSRD using different methods. Victorbabu (2005) introduced and 

constructed modified slope rotatable central composite designs for 2 ≤ v ≤17 number 

of factors. Victorbabu (2006) constructed modified SORD using BIBD. Victorbabu 

(2007) suggested a review on SOSRD. It is evident that a lot of work has been done in 

construction of second, third and fourth order designs. However, these designs have 

relatively large number of points and may not be desirable to experimenters with 

scarce resources such as experimental materials, money and little time required to 

carry out the experiment. Therefore, experimenters and researches who are interested 

in carrying out cost effective experimental tests would prefer to choose designs with 

minimal points in their experimental investigations. The current study therefore 

focused on construction of optimal modified second order rotatable designs with 



8 
 

  

reduced design points from the existing second order rotatable designs constructed by 

Draper (1960b) and Victorbabu (2005). 

 2.3 Optimality Criteria 

In many experimental investigations, accordance to Montgomery (2009) and Myers et 

al., (2009) there are several experimental designs that can be applied in food or 

chemical companies to test ingredients and/or to prepare or reformulate a new food 

product or even to optimize the conditions leading to an optimal process. In such 

designs, one may need experiments with optimal settings on the design of interest. 

Finding an optimal experimental design is considered one of the most important 

aspects in the context of the experimental design. Before experimentation, the 

experimenter needs to decide on which design is suitable for his or her experiment. 

This is achieved by analyzing the optimality criteria of the designs. An optimality 

criterion is a criterion which summarizes how good a design is, and it is maximized or 

minimized by an optimal design. There are several alphabetic optimality criteria that 

are used to evaluate optimality of designs. These criteria are classified into three 

categories i.e. parameter estimation criteria, model discrimination criteria and others. 

Those for parameter estimation include; Determinant, D- Criterion, Average variance, 

A- Criterion and Eigen value, E- Criterion. Those for model discrimination include 

the C- Criterion and Trace, T- Criterion. In the analysis of the designs, all the criteria 

are evaluated with respect to   a particular design and the one with the least value is 

taken as the optimality criterion of that design, Kosgei (2002). 

Optimal designs are experimental designs that are generated based on a particular 

optimality criterion and are generally optimal only for a specific statistical model. The 

work of optimal experimental designs extends back to Smith (1918) who was one of 

the first authors to state a criterion and obtain optimal designs for regression 

problems. Many years later, Kiefer (1959) developed useful computational procedures 
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for finding optimum designs in regression problems of statistical inference. There are 

many optimality criteria, these criteria are sometimes called alphabetical optimality 

criteria. In this study, alphabetic optimality criteria (A-, D-, E- and T-) were 

considered. 

The D- optimality, considered as the most important and popular design criterion in 

experimental applications, was introduced by Wald (1943) who put the emphasis on 

the quality of the parameter estimates. The D- optimality criterion also known as the 

determinant criterion is essentially a parameter estimation criterion. This was called 

later, D- optimality by Kiefer and Wolfowitz (1959). The D- optimality is the most 

studied criterion which is widely seen in the literature by Kiefer (1959), Fedorov 

(1972), Silvey (1980), Pázman (1986), Pukelsheim (1993) and Mandal (2000). 

Mandal (2000) considered the construction of D- optimal designs in a variety of 

examples which is used in maximizing the determinant of the moment matrix, or 

equivalently, minimizing the determinant of the inverse of the moment matrix. 

The A- optimality criterion was introduced by Chernoff (1953) which involves the use 

of Fisher's information matrix. An algebraic approach for constructing A- optimal 

design under generalized linear models was presented by Yang (2008).The A- 

optimality is used in minimizing the average variance of the parameter estimates. 

The E- optimality was introduced by Ehrenfeld (1955), but the Computations of E- 

optimal polynomial regression design was introduced by Heiligers (1996). A method 

for computing E- optimal designs for a broad class of two parameter models was 

presented by Dette and Haines (1994). The procedure that was employed here builds 

on finding the design which maximizes the minimum eigenvalue of the moment 

matrix or equivalently minimize the maximum eigenvalue of the moment matrix. E-

optimality minimizes the maximum variance of all possible normalized linear 

combinations of parameter estimates. 
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The T- optimal design is an optimality criterion used in discriminating between two or 

more models. Atkinson and Fedorov (1975a, 1975b) introduced experimental designs 

for discriminating between two models and also between several models. There are 

two choices for defining T–optimality criterion according to the number of models 

under discrimination. One of the choices is by discriminating between two models 

and discriminating between several models. 

According to Pukelsheim (2006), real optimality criteria are functions with properties 

that measure largeness of information matrices. These properties includes; positive 

homogeneity, superadditive, non-negative, non-constant and upper semicontinuity. 

Such criteria are called information functions. The most prominent information 

functions are matrix means;  , ;1p P   . The matrix means comprise the classical 

optimality D-, A-, E- and T-  .Mutiso (1998) constructed designs of order two but the 

optimality criteria for the constructions were not evaluated. Kosgei (2002) gave the 

optimality criteria for the specific second order rotatable designs in three dimensions 

constructed by Mutiso (1998). Kosgei et al., (2006) gave optimality of second order 

rotatable designs in three dimensions. Rambaei (2014) considered second order 

rotatability and developed general formulae for their optimality criteria. Mutai et al. 

(2012) gave optimal designs for mixture of experiments and their applications in 

agricultural research. Koech (2013) gave E- optimal designs for second degree 

kronecker model mixture experiments .Kiplagat et al., (2015) gave designs with 

optimal values for second degree kronecker model mixture of experiments with four 

or more ingredients. Otieno et al., (2016) carried out all possible combinations of 

cost-effectiveness analysis of optimal malaria control strategies in Kenya. 

Rajyalakshmi and Victorbabu (2016) suggested an empirical study of second order 

rotatable designs under tri-diagonal correlated structure of errors using incomplete 

block designs. From the existing literature, more optimal designs with reduced 
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number of design points are needed for experimenters who would prefer designs with 

fewer experimental runs for their investigation. This study therefore focused on the 

construction of modified optimal second order rotatable designs with reduced number 

of designs points. 
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CHAPTER THREE 

METHODOLOGY 

3.1 Introduction 

In this chapter, the methods of construction of optimal second order rotatable designs 

with reduced designs points and for evaluation of their optimality criteria were 

presented. 

3.2 Method of Construction of SORDs with reduced number of design points in 

k- dimensions 

3.2.1 Second order model 

The second order model for fitting a response surface design in k- dimensions is given 

by; 

      ∑       ∑       
  ∑ ∑             

 
   

 
   

 
   

 
                               (3.1)  

Where     denotes the level of the     factor                in the     run    

           of the experiment,   
    are uncorrelated random errors with mean zero 

and variance   . 

3.2.2 Transformation group in three dimensions and its generated points sets 

Let         be a general point in three dimensions, according to Bose and Draper 

(1959), applying a transformation group to the point gave a set of 24 elements with 

coordinates            ,            and            denoted by          

which consists of eight points. In other cases, some special choices of          may 

coincide in pairs or in triplets or in quadruplets for example,         which consists 

of twelve points presented in coordinate form as;          ,           and 

          or           as                     and           which consists six 

points .Let the excess of these sets of points be denoted by     such that 

            ∑    
  

   -3∑    
  

      
 . The twelve point set may be denoted by 

           with an excess of               =                  
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3.2.3 Conditions for second order rotatable designs 

A second-order response surface design is said to be a second order rotatable design if 

the design points satisfy the following rotatable arrangement given by Box and Hunter 

(1957); 

a) Moment conditions 

i. ∑    
  

   =    ,           ,                                                                  

ii. ∑    
  

   =             i = 1,2,…,k,                                                                 (3.2)           

iii. ∑    
  

      
 =     , i≠  j= 1,2,…,k. 

For all i          and all other sums and products and powers up to and including 

order four are zero. The excess is given as; 

∑    
  

   = 3∑    
  

      
 , i ≠ j= 1, 2… k.                                                                 (3.3) 

b) Non-singularity conditions 

  

  
 >

 

   
 .                                                                                                                     (3.4) 

Consider the existing design points for designs constructed by Draper (1960). Let 

     denote existing designs points where,         is the number of dimensions and 

        is the set points in the     dimension such that in the following designs are 

given as; 

(i) Three Dimensions 

   =         +s (  , 0, 0) + s (  , 0, 0) (twenty points);                                

   = s(  ,  ,  ) + s (  ,  ,  ) + s (c, 0 ,0); (twenty two points);                          (3.5) 

   = s(f, f, 0) + s(  , 0, 0) + s(  , 0, 0) (twenty four)  

The construction of reduced second order rotatable designs in three dimensions based 

on Draper and Herzberg (1968) suggested method was done by taking half  fraction of 

         factorial points in      while keeping the other axial points set constant i.e. 
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        ) and           respectively.     was reduced by taking half fraction of; 

            and             factorial points set respectively while keeping          

axial points constant.     was reduced by taking half fraction of the          

experimental runs while keeping the other axial runs of         ) and         ) 

constant.  

(ii) Four dimensions 

   =           +s (  , 0, 0,0) + s (  , 0, 0,0) (thirty two points);                         (3.6) 

   = s(  ,  ,     ) + s (  ,  ,     ) + s (c, 0,0,0) (forty points).         

The reduced design points were obtained by taking half fraction of            

factorial points in     while keeping the other axial points set constant i.e.           ) 

and            .     was also reduced by taking half fraction of;                and 

               factorial point’s sets respectively while keeping            axial 

points constant.           

(iii) Five dimensions 

   =             +s (  , 0, 0,0,0) + s (  , 0, 0,0,0) (fifty two points);                 (3.7) 

   = s(  ,  ,         ) + s (  ,  ,     ,   )) + s (c, 0,0,0,0) (seventy four points).           

    was reduced by taking half fraction of              factorial points while 

keeping the other axial points set constant i.e.             ) and              . 

    was also reduced by taking half fraction of;                   and 

                  factorial points sets respectively while keeping              axial 

points set constant. 

The reduced points sets from (3.5), (3.6) and (3.7) in three, four and five dimensions 

respectively were subjected to the rotatability conditions given in (3.2) and (3.3) to 

test if they were rotatable.                  
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3.3 Method of Construction of modified slope rotatable designs from existing 

designs 

Consider the two existing modified slope rotatable central composite designs points 

constructed by Victorbabu (2005) in four and five factors given as; 

i. Four factors 

                                   ,                              (3.8) 

ii. Five factors 

                                   . 

The reduced modified designs were obtained   by taking half fraction of       factorial 

combinations of the existing modified slope rotatable central composite design 

presented as;                           …,            ) while keeping the axial 

and the central points constant given in the form;                                 , 

             and             respectively. The combination of the reduced 

(       ) factorial points together with the axial and central points were then subjected 

to modified slope rotatability conditions to test if they were rotatable. 

3.3.1 Conditions for Modified slope Rotatable Designs. 

Victorbabu (2005, 2006) gave the conditions for modified slope second order 

rotatability as;   

a) Moment conditions 

i. ∑    
                

    =    ,                                                  

ii. ∑    
                

         ,                (3.9) 

iii. ∑    
    

          
        .  

iv.                   

Where    , and N is the total number of design points.                                 
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The application of some restriction that indicate some relationship among ∑    
  

   ,  

∑    
  

    and ∑    
    

  
    solves the unknown levels in equations (3.9). Precisely, 

∑    
  

    equated to  ∑    
    

  
    solves the unknown values of    and     . 

b) Non-singularity conditions 

             
 ,                                                                                (3.10) 

                    
             .                               

Where c,    and    are constants. 

c) Modified condition 

Is given as; 

  
  =   .                                      (3.11) 

 The utilization of the modified condition in (3.11) gives the unknown values of N 

and   .  

d) The variances and covariances 

 The variances and covariances of the estimated parameters for the reduced designs 

points were given as; 

   ̂   = 
           

               
  

, 

   ̂   = 
  

 √  
 ,                                                                                              

   ̂    = 
  

   
 ,                                                                                                          (3.12) 

   ̂    = 
  

          
* 

                 

             
  

+,                                                          

     ̂   ̂    = 
     

               
  

, 

     ̂    ̂    = 
   

       

                       
  

  and other covariances are zero.  
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According to Victorbabu (2007), for a second order model, the partial derivative of 

the response with respect to the independent variables is given by; 

  ̂

   
  ̂    ̂      ∑           . 

The variance of the estimated response becomes; 

V 
  ̂

   
     ̂       

    ̂    ∑    
    ̂       . 

Upon simplification this gives 

 (
  ̂

   
)= [

√  

   
 

  

   
]   .                                                                                         (3.13) 

 The two examples used provided a basis for further generation of other reduced 

designs for 4 ≤ v ≤10 factors. Table 3.1 below shows the list of existing designs and 

their respective components that were considered in this study. 

Table 3.1 A list of Modified SRCCD for 4≤ v ≤10 

 

3.4 Method of Evaluation of Optimality Criteria for the Reduced Designs 

Illustration on method of evaluation of particular optimality criteria was presented. 

 

No. of 

Factors(v) 

t(v) 

 

   

 

   

 

   

 

             

 

   ̂   
   

 

 .
  ̂

   
/    

 

4 4 2 4 32 64 0.0313 0.0313+0.0625   

5 4 2 4 28 64 0.0313 0.0313+0.0625   

6 5 1 8 28 72 0.0208 0.0208+0.0313   

7 6 2 8 52 144 0.0104 0.0104+0.0156   

8 6 2 8 48 144 0.0104 0.0104+0.0156   

9 7 1 1 54 200 0.0063 0.0063+0.0078   

10 7 1 1 52 200 0.0063 0.0063+0.0078   
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3.4.1 Design Matrix 

A design matrix for second order rotatability is given by; 

  =

[
 
 
 
 
 
                

        
 

                
        

 

 
 
 

                
        

 ]
 
 
 
 
 

     

                                                                      (3.14) 

Then the transpose of   is    such that          is the moment matrix of N points in 

k-dimensions. 

3.4.2 The Moment Matrix for Second Order Rotatability 

The moment matrix for a second order model given in (3.1) is given by;  

  M =
 

 
     ,                                                                                                          (3.15) 

Where the design matrix   is given in (3.14) and N is the number of design points. 

Therefore, using (3.14) in (3.15), the following were obtained; 

  = [

       
        
       

]                                                                                                         (3.16) 

Where; 

    = 

[
 
 
 
 
 
 
                         

                       

                           

       
             

                        
                        ]

 
 
 
 
 
 

           

 ,                                                             (3.17)                                                                               

     = 

[
 
 
 
 
 
            
             

 
      

            
             ]

 
 
 
 
 

* 
 
+ * 

 
+

     ,                                                                                (3.18) 

and 
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   = 

[
 
 
 
 
 
 
           
           
           

 
   
     

           ]
 
 
 
 
 
 

* 
 
+ * 

 
+

      .                                                                                  (3.19)   

From (3.16); 

   = [

  
       

     
     

       
  

]                                                                                                    (3.20) 

Where, 

  
   = 

 

 

[
 
 
 
 
        
          
           

 
          ]

 
 
 
 

           

                                                                            (3.21) 

In which; a= 2(k+2)  
  , b= -2    , d=   

 -   and c = (k+1)  -(k-1)  
  ,  = 2[(k+2)  

  

- k  
   ] and k is the number of factors; 

  
   = 

 

  

[
 
 
 
 
 
 
          
          
          

 
   
     

          ]
 
 
 
 
 
 

* 
 
+ * 

 
+

  ,                                                                                   (3.22) 

and 

  
   = 

 

  

[
 
 
 
 
 
 
          
          
          

 
   
     

          ]
 
 
 
 
 
 

* 
 
+ * 

 
+

 .                                                                                    (3.23)            

Now let;                                                                      
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   = [

  
      

    
   

       
 
]                                                                                                      (3.24)      

Such that     
                           

Where;                                                                                                    

  
 =     

[
 
 
 
 
 
 

                                  

                               

                                     

                                                     
                                                        

                                                                  
                                      ]

 
 
 
 
 
 

           

 ,                               (3.25)          

  
  = 

[
 
 
 
 
 
                
                 

   
      

            
                  ]

 
 
 
 
 

* 
 
+ * 

 
+

,                                                                           (3.26) 

and 

  
  = 

[
 
 
 
 
 
                
                 

   
      

            
                  ]

 
 
 
 
 

* 
 
+ * 

 
+

.                                                                           (3.27) 

3.4.3 The Determinant Criterion, D-Criterion 

The D-Criterion is defined as; 

  (M) =       
 

   ,                                                                                                (3.28) 

Such that 

   *
    
     

+  and M is the moment matrix.                                                           (3.29) 

Where s is the number of coefficients of the model and k is the number of factors. The 

D-Criterion maximizes the determinant of the moment matrix. The determinant of the 

moment matrix obtained from (3.16) is given by; 
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| |=  |  |         
 

  .                                                                                         (3.30)    

Where,  

|  |=          
               

        
                                                       

|  |=   
   

    and  |  |=   
   

             (3.31) 

Therefore, substituting the variables in (3.31) to (3.30) gives D- Criterion as; 

  (M) ={       
              

        
     [  

   
]   

   
 }

 

 .                   (3.32)    

3.4.4 Average Variance Criterion, A-Criterion. 

The average variance is defined as:  

   (  ) = 
 

 
                                                                                                 (3.33) 

A- Criterion minimizes the sum or average of the variances of the parameter 

estimates. From (3.20), the trace of the sub-matrices of      was given by; 

       =     
         

         
                                                                 (3.34)                

Where; 

     
    = 

 

          
     

    
[2(k+2)  

 +k[(k+1)  -(k-1)  
    ,                                 (3.35) 

     
     =  

 

  
  and           

    = 
 

  
.                                                                      (3.36)                                                                                               

The equations ;(3.35) and (3.36) were used in (3.34) to obtain; 

   ( )=[
 

 
 

 

 [       
     

   ]
[        

                   
  ]  *

 

  
+  

*
 

  
+ ]

  

.                                                                                                                  (3.37) 

3.4.5 The Eigen value Criterion                 

E- Criterion refers to the Smallest Eigen value criterion and is defined by 

      =     [   ].                                                                                             (3.38) 
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E- Criterion reduces the variance of each individual parameter estimate. From (3.24), 

E- Criterion is given by; 

|  | = |  
 ||  

 ||  
 |.                                                                                               (3.39) 

Where; 

|  
 |=       [(k+2)       

              ,                                             

|  
 |=         and |  

 |=        .                                                                   (3.40)                         

Substituting (3.40 to (3.39) and equating to zero gave a characteristic polynomial 

given as; 

             [(k+2)       
                              = 0.   

                                                                                                                                (3.41)       

Solving the characteristic polynomial and taking the smallest value of   gave the E- 

Criterion. 

3.4.6 The Trace Criterion, T-Criterion 

The trace criterion is also known as the T- Criterion defined as; 

  (M) = 
 

 
 trace M                                                                                                   (3.42) 

T- Criterion is used for model discrimination and was obtained by adding the traces of 

the sub-matrices of the moment matrix given in (3.16), therefore, 

     ) = 
 

 
                                                                                    (3.43)                       

Where; 

     ) = k (3  ),                                                                                                     

      ) = (  ) k,                                                                                                      (3.44) 

and 

     ) = (  ) k. 
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Substituting (3.44) to (3.43) gave; 

  ( ) =
 

 
                      .                                                              (3.45) 

3.5 Application of the Constructed Reduced Designs Points with Hypothetical 

Example. 

Suppose an experimenter considers utilizing the existing second order rotatable design 

points given in (3.5) with twenty points to investigate the effects of three fertilizer 

ingredients on a new yield of hybrid maize` under field conditions. The fertilizers 

doses and the actual amount applied independently were Nitrogen (N), ranging from 

of 4.25mg/hole to 28.33 mg/hole; Phosphorus (  ranging from 2.66mg/hole to 

13.26mg/hole and Potassium (K) ranging from 2.78mg/hole to 18.99mg/hole. The 

response of interest was the average yield in mg per hole. The levels of Nitrogen, 

Phosphorus and Potassium were coded and the coded variables were defined as 

follows;  

   
         

    
,    

        

    
,    

         

    
.                                                         (3.46) 

The values of 16.29, 7.96 and 10.89 are the center values of Nitrogen, Phosphorus and 

Potassium respectively.  Suppose five levels of each of the variables were used in the 

design experiment. The coded and measured levels for the variables are listed in table 

3.2 below. 

Table 3.2: Coded values and corresponding actual values of yield of Hybrid 

maize 

 

Fertilizer                                                  Levels 

 Coded  values                -1.682      -1.000       0.000         +1.000      +1.682 

   N                                     4.25          9.13       16.29            23.45       28.33 

                                          2.66           4.81       7.96              11.11       13.26 

                                          2.78            6.07      10.89            15.71       18.99 
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The concept of generating experimental run by Parsad and Batra (2000) was used to 

generate experimental runs utilized for the analysis of response surface designs using 

Mintab version 17 in this study. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



25 
 

  

CHAPTER FOUR 

RESULTS AND DISCUSSIONS 

4.1 Introduction 

 This chapter presents the results on construction of optimal modified second order 

rotatable designs with reduced number of points in three, four and five dimension 

from existing second order rotatable designs and evaluation of alphabetic optimality 

criteria for the constructed designs.  

4.2. Construction of SORD with reduced number of points from existing SORD 

in k-dimensions  

This section presents results for reduced designs in three four and five dimensions. 

4.2.1 Construction of SORD with reduced number of designs points in three 

dimensions 

Consider the existing designs in (3.5) reduced to give new designs given in table 4.1 

below together with their respective excess functions. 

Table 4.1 Summary of reduced generated points sets in three dimensions 

 

4.2.1.1 Sixteen  points reduced SORD from twenty points SORD 

From table 4.1, the set of points denoted by      forms a second order rotatable 

arrangement in three dimensions if the moment conditions given in (3.2) hold as 

follows; 

(i) ∑    
   

     4  + 2  
  +2  

   = 16   ,                                                                       

Reference.             

Set composition of class   

 
          

+ s(        

+  (        

 

 
 s(        )  

+ 
 

 
 s(        ) 

+ (       

 

 
s(f,f,0)  

+ s(        

+    (        

Number of points 16 14 18 

∑    
  

     4  +2  
 +2  

  4  
 +4  

 +2  
  4  +2  

 +2  
  

        ∑    
  

   -

3∑    
  

      
    

2  
 +2  

 - 8   2  -8  
 - 8  

  2  
 +2  

 -2   
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(ii) ∑    
   

     4  + 2  
  +2  

  = 48   ,                                                              (4.1) 

(iii) ∑    
   

      
   4  = 16   .                                                                                              

From (3.3)  and table 4.1 the excess function for       denoted by Ex [   ] was given 

by; 

Ex, 
 

 
                                  - = 0 

Therefore, 

∑    
   

    3 ∑    
   

      
  =   

  +  
  – 4a

4
 = 0                                                           (4.2) 

Letting   
 =     and   

 =     in (4.2) yielded;                                                         (4.3)  

   +    - 4 = 0                                                                                            

     = √    ,                                                                                                       

   ≤  ≤    

 Let      then    √                                                            

The values of x and y are chosen such that they are real, positive and exist within the 

design existence interval. Substituting the values of   and   to (4.3) gave; 

      and                 if                                                                      (4.4) 

 Therefore, 

    = 
 

 
                                 .                            

The points set      forms a second order rotatable arrangement in three dimensions. 

Substituting the variables in (4.4) to the conditions for rotatability in (4.1) yielded; 

    =0.5915063   and    = 0.25  .                                                                         (4.5) 

 Substituting     and    in (4.5) to (3.4) gave as follows; 

  

  
  = 0.714531 >   

 

   
 = 0.6.                                                                                     (4.6)                                     
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This satisfies the non-singularity condition and therefore      formed a second order 

rotatable design in three factors. 

4.2.1.2 Fourteen points reduced SORD from twenty two points SORD 

From table 4.1 the set of points     forms a second order rotatable arrangement in 

three dimensions if the moment conditions hold as given in (3.2) as follows; 

(i) ∑    
   

      4  
 +4  

 +2   = 14  ,                                                                                   

(ii) ∑    
   

     4  
 +4  

 +2   = 42  ,                                                                      (4.7) 

(iii) ∑    
   

      
     

  + 4  
 = 14  . 

From table (4.1), the excess function for       is given by; 

∑    
   

    3 ∑    
   

      
    - 4  

 - 4  
  = 0                                                         (4.8) 

Let   
  =     and   

  =     in (4.8)                                                                           (4.9) 

 Substituting the variables in (4.9) to equation (4.8) gave; 

      -     = 0 

  y =√
 

 
   ,  

Where     ≤  ≤      

 Le        then        .                                                          

The value of x is chosen from the first quadrate of the ellipse such that it’s real, 

positive and exist within the design existence interval. Substituting the values of 

      and       to (4.9) gave; 

                 and               where                                            (4.10)   

 The Points set      forms a second order rotatable arrangement for the values given in 

(4.10) in three dimensions. 
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 The points set      forms a rotatable design if the conditions given in (4.7) are 

satisfied. Thus, substituting the variables in (4.10) to (4.7) gave; 

   = 0.342857    and               .                                                             (4.11)                          

Therefore, from (3.4);                                      

  

  
  = 0.607643 >  

 

   
 = 0.6                                                                                      (4.12)                                                                                     

From (4.12), the non-singularity condition was satisfied hence     formed a second 

order rotatable design in three dimensions. 

4.2.1.3 Eighteen points reduced SORD from twenty four  points SORD 

From table 4.1 above, the set of points     forms a second order rotatable arrangement 

in three dimensions if the moment conditions hold as given in (3.2) as follows; 

 (i) ∑    
    

   4  +2  
 +2  

 = 18  ,                                                                                 

(ii) ∑    
    

       +2  
 +2  

 =54  ,                                                                     (4.13) 

(iii) ∑    
    

    
   2  = 18  . 

From table 4.1 the excess function for      denoted by; 

Ex,
 

 
            

 

 
                        -    

Such that; 

∑    
   

    3 ∑    
   

      
     

 +  
 -  = 0                                                             (4.14) 

Let   
  =     and   

  =      in (4.14) so that to give;                                             (4.15) 

          = 0 

  y =√    ,  

Where, 
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   ≤  ≤   ,  

Let        then             .                                                          

The value of x is chosen such that it lies within the design existence interval. 

Substituting the values of                     to (4.15) gave;                                                                 

   =       and    =             where,    .                                                  (4.16)        

The Points set      forms a second order rotatable arrangement for the constant values 

given in (4.13) in three dimensions. The points set     forms a rotatable design if the 

conditions given in (4.13) are satisfied. Thus, substituting the variables in (4.16) to 

(4.13) gave;                                                                        

  = 0.325392    and   = 0.111111                                                                     (4.17)                           

Substituting (4.17) in (3.4) gave; 

  

  
  = 1 > 

 

   
 = 0.6.                                                                                                  (4.18)  

From (4.18), the non-singularity condition was satisfied therefore      formed a 

second order rotatable design in three dimensions. 

4.2.2 Construction SORD with reduced number of points in four dimensions 

Suppose an experimenter wanted to perform an experiment by starting with three 

factors. If after performing the experiment in three factors he/she feels that a fourth 

factor was needed, then a design in four dimensions becomes of great interest. For 

example, suppose the experimenter wanted to estimate the maximum yield of a crop 

to various fertilizer doses of potassium, calcium and sodium. After soil investigation, 

the experimenter discovers deficiency of phosphorus mineral element in the soil. This 

therefore necessitates the experimenter to append a fourth factor to the soil which is 

phosphorus fertilizer. 
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Consider the existing design in (3.6). The generated points set for the reduced designs 

given in table 4.2 below together with their designs points. 

Table 4.2 Summary of reduced generated points set in four dimensions 

 

 

 

 

 

 

 

 

 

 

 

4.2.2.1 Twenty four  points reduced SORD from thirty two points SORD  

The set of points       from table 4.2 form a second order rotatable arrangement in 

four dimensions if the moment conditions in (3.2) holds given as follows; 

(i) ∑    
    

   8  + 2  
  +2  

  = 24   ,                                                                             

(ii) ∑    
   

   = 8  + 2  
  +2  

  =72   ,                                                                   (4.19) 

(iii) ∑    
   

      
 = 8   = 24   . 

From table 4.2 the excess for       is given by; 

     
  +  

  – 8a
4
 = 0                                                                                                   (4.20) 

Letting    
  =     and   

  =       in (4.20) yielded                                                 (4.21) 

    +    - 8= 0 

Therefore, 

 y =√    ,  

Reference.         

Set composition of class   

 
             

+ s(          

+  (          

 

 
 s(           )  

+ 
 

 
 s(           ) 

+ (         

Number of points 24 24 

∑    
  

     8  +2  
 +2  

  8  
 +8  

 +2   

        ∑    
  

   - 3∑    
  

      
  2  

 +2  
 - 16   2  -16  

 - 16  
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Where     ≤  ≤       

The values of x and y are chosen such that they are real, positive and exist within the 

design existence interval.  

Let     ,       

Substituting the values of   and   to (4.21) gave; 

               and              ,where    =1.                                         (4.22)                                                    

Substituting (4.22) in (4.19), yielded; 

     = 0.666666   and   = 0.333333                                                                   (4.23) 

Substituting            in (4.23) to (3.4) gave; 

  

  
  = 0.75 > 

 

   
 =0.66666667.                                                                                (4.24)                     

Thus, from (4.24) the non-singularity condition was satisfied therefore      formed a 

second order rotatable design in four dimensions. 

4.2.2.2 Twenty four  points reduced SORD from forty points SORD  

The set of points     from table 4.2 above forms a second order rotatable arrangement 

in four dimensions if the moment conditions in (3.2) are satisfied given as follows; 

(i) ∑    
   

    8  
 + 8  

  +2  = 24  ,                                                               

(ii) ∑    
   

    8  
 + 8  

  +2  =    ,                                                        (4.25) 

(iii) ∑    
   

      
  8  

 + 8  
     = 24  . 

From table 4.2, the excess function for       is given by; 

  -8  
 -8  

 =0                                                                                                         (4.26) 

Letting   
 =   and   

  =     in (4.26) yielded;                                                     (4.27) 

      – 8y
2
 = 0 
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Implying that; 

  √          

Where,                       

Let                       .                                                                           (4.28) 

Substituting (4.28) to (4.27) gave; 

    0.547722c and               , where                                               (4.29) 

The Points set      forms a second order rotatable arrangement for the constant values 

given in (4.29) in four dimensions.                                                                                                           

Substituting (4.29) to (4.25) yielded; 

   = 0.245694   and    = 0.041667           (4.30) 

Substituting     and given    in (4.30) to (3.4) gave; 

   
  

  
   = 0.690245 >   

 

   
 = 0.666667.                                                                     (4.31)             

 From (4.31), the non-singularity condition was satisfied thus     formed a second 

order rotatable design in four factors. 

4.2.3 Construction of reduced SORD in five dimensions 

 Suppose again the experimenter realizes that after years of cultivation of the crop the 

soil has been ruined and a fifth mineral element is deficiency in the soil most probably 

Nitrogen. This necessitates the experimenter to append a fifth factor into the soil 

which compels an experimenter to consider a design in five dimensions. 

Consider the existing design in (3.7) with generated points set for the reduced designs 

given in table 4.3 below together with their designs points. 
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Table 4.3 Summary of reduced generated set of points in five dimensions 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.2.3.1 Thirty six points  reduced SORD from fifty two points SORD 

The set of thirty six points denoted by     from table 4.3 forms a second order  

rotatable arrangement in five dimensions if the moment conditions given in (3.2) 

holds as follows; 

(i) 16  + 2  
  +2  

  = 36   ,                                                                                  

(ii) 16  + 2  
  +2  

   =108   ,                                                                                 (4.32) 

(iii) 16   = 36   . 

For all i         and all other sums and products and powers up to and including 

order four are zero. 

From table 4.3, the excess of       is given by; 

  
 +  

 –16a
4
=0                                                                                                         (4.33) 

Letting   
 =     and   

  =     in (4.33) yielded;                                                    (4.34) 

   +    - 16= 0 

  y =√       

Reference.         

Set composition of class   

 
             

+ s(            

+  (            

 

 
 s(              )  

+ 
 

 
s(              ) 

+  (            

Number of points 36 42 

∑    
  

     16  +2  
 +2  

  16  
 +16  

 +2  
  

        ∑    
  

   - ∑    
  

      
   2  

 +2  
 - 32   2  -32  

 - 32  
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Where                                                                                                        

 The value of   is chosen such that it lies within the design existence interval.  

Let              .                                                                                      (4.35) 

Substituting the values of    and     to (4.34) gave; 

              and             , where                                   (4.36) 

 The Points set      forms a second order rotatable arrangement for the constant values 

given in (4.36) in five dimensions.                                                                                                           

Substituting (4.33) in (4.34) gave;                   

  =0.702541    and   = 0.444444                                                                      (4.37)     

Again, substituting   and    given in (4.37) to (3.4) gave; 

  

  
  = 0.900479 > 

 

   
 =0.714285.                                                                             (4.38) 

The non-singularity condition was satisfied therefore      formed a second order 

rotatable design in five dimensions. 

4.2.3.2 Forty two points  reduced SORD from seventy four points SORD 

The moment conditions given in (3.2) were used to test rotatability for the design 

points     given in table 4.3 as follows; 

(i) 16  
 + 16  

  +2  = 42  .                                                           

(ii) 16  
 + 16  

  +2  =     ,                                                                          (4.39) 

(iii)16  + 16  
   = 42  . 

For all i         and all other sums and products and powers up to and including 

order four are zero. 

From table 4.3 the excess of       was given by; 
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  -16  
 -16  

 =0                                                                                                     (4.40) 

Letting   
 =    and   

 =    in (4.40) gave;                                                           (4.41)                                     

       – 16y
2
 = 0 

  y =√          

Where                

Let       then                                                                                            (4.42) 

The value of   was chosen such that it’s real, positive and exist within the design 

existence interval.  Substituting the values of    and   in (4.42) to (4.41) gave;     

              and               where    .      (4.43) 

The Points set      forms a second order rotatable arrangement for the constant values 

given in (4.43) in five dimensions.                                                                       

 Substituting (4.43) in (4.39) gave; 

   = 0.180952    and   = 0.023809                                                               (4.44)                              

Substituting   and    given in (4.44) to (3.4) gave; 

  

  
  = 0.727134 >  

 

   
 = 0.71428571                                                                        (4.45)                        

Thus, from (4.45) the non-singularity condition was satisfied therefore     formed a 

second order rotatable design in five dimensions.  

4.3 Construction of modified second order slope rotatable central composite 

designs from existing modified slope central composite rotatable designs 

Here results on construction of reduced modified SOSCCRD for 4 and 5 factors from 

existing modified SOSRD designs constructed by Vicorbabu (2005) were presented. 
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4.3.1 Construction of thirty two points second order SRCCD from sixty four 

points in four dimensions 

Consider the existing design given in (3.8) (i).Using the rotatable conditions given by 

Victorbabu (2005) in (3.9) given as;  

i. ∑    
          

    =    ,                                                                  

ii. ∑    
          

        ,where c and N are given in (3.9) ;                                                                

iii. ∑    
    

    
         .                                                                         

Applying the condition for rotatability to (4.46), i.e.,  ∑    
  

   =   ∑    
    

  
    , 

resulted to;                                                    

       =                                                                                      

    =     , let                = 4                                                                       (4.47) 

The number of replications denoted by    was chosen such that ‘  ’ is an integer. 

Using the modified condition         and substituting the values of    and    

obtained in (4.47) to the relation in (i) and (iii) of (4.46) gave; 

  
  (

  

 
)
 

  and         
 

 
  ,                                                                                  (4.48)            

Therefore, using (4.48) in (3.11) resulted to, 

N = 32.                                                                                                                    (4.49) 

Next, using (4.49) in (4.48), the following were obtained as; 

   = 0.5   and    = 0.25                                                                                          (4.50)                 

The values of          given in                    respectively together with the 

values in (4.50) satisfied (3.10). Hence, the 32 points design satisfied the rotatablity 

conditions. 
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Further, the variances and covariances of the parameter estimates were obtained by 

using (4.49) and  (4.50) together with v= 4 and c=5 in(3.11) resulted in; 

   ̂   = 0.0625 

   ̂   = 0.0625 

   ̂    = 0.125                                                                                                          (4.51) 

   ̂    = 0.03125 

     ̂   ̂    =  - 0.015625 

     ̂    ̂     = 0 and other covariances are zero. 

Again using (4.49) and (4.50) in (3.13) gave the variance of the estimated response 

given as; 

 (
  ̂

   
)=                 ,(   ∑    

  
     .                                                   (4.52)                      

Where    is the function of the distance of points from the design center.  

4.3.2 Construction of thirty two points reduced SRCCD from sixty four points in 

five dimensions 

Consider the existing design given in (3.8) (ii).Using the rotatable conditions given by 

Victorbabu (2005) in (3.9) given as; 

i. ∑    
          

    =    ,                                                                             

ii. ∑    
          

        ,                                                                (4.53) 

iii. ∑    
    

    
        .                                                                                    

Applying the condition for rotatability to (4.56) i.e.  ∑    
  

   =   ∑    
    

  
    , gave;                                                                         

    =    

Let     , where   is chosen such that ‘  ’ is an integer.                                  (4.54) 
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    = 4 

Using (3.11) and (4.54) in (4.53) part (i) and (iii) resulted to; 

  
  (

  

 
)
 

 and     
 

 
                                                                                          (4.55) 

 Therefore; using (4.55) in (3.11) resulted in, 

N = 32.                                                                                                                    (4.56) 

Next, using (4.56) in (4.55), the following were obtained as; 

   = 0.5 and        = 0.25                                                                                        (4.57)                                                                                  

The values of          given in                     respectively together with the 

values in (4.56) satisfied (3.10). Hence, the 32 points design satisfied the rotatablity 

conditions 

Using (4.56) and (4.57) together with v=5 and c=5 in (3.12) resulted in; 

   ̂   = 0.0703 

   ̂   = 0.0625 

   ̂    = 0.125 

   ̂    = 0.03125                                                                                             (4.58) 

     ̂   ̂    = = - 0.015625 

     ̂    ̂    = 0 

Again Using (4.56) and (4.57)  in (3.13) gave the estimated variance of the response 

as; 

 (
  ̂

   
) = 0.0625+0.125  , (   ∑    

  
                                                              (4.59) 

 From the above two examples of construction of reduced modified second order 

slope rotatable designs using central composite designs, further construction of 
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reduced modified slope rotatable designs from the existing designs presented in table 

3.1 for 4≤v≤10 were done  to give new reduced designs given in table 4.4 below. 

Table 4.4 A list of reduced modified SOSRCCD for 4≤ v ≤10 

 

 From the existing designs of both second order rotatable designs (SORD) and 

modified second order rotatable designs (MSORD) utilized in this study, assuming the 

cost of experimentation at any point was constant, the percentage reduction of the 

existing design points considered ranged from 11% to 50% .This could potentially 

reduce the experimentation cost equivalent to the proportion of the reduced number of 

design points. 

4.4 Evaluation of optimality criteria for the reduced designs 

The results for optimality criteria for the constructed reduced designs in three, four 

and five dimensions are discussed. 

 4.4.1 Evaluation of optimality criteria for the reduced designs in three 

dimensions 

Optimality criteria for reduced design denoted by     ,      and     with 16, 14 and 18 

points respectively were evaluated. 

Consider the 16 points denoted by     . For          and           obtained 

from (4.5), where     and    represents the number of factors, number of the 

No. of 

Factors 

(v) 

t(v)-1   
     

   
  N    

(reduced)  .
  ̂

   
/   

 

 
% 

reduction 

4 3 1 4 16 64 32 0.0625+        50 

5 3 1 4 14 64 32 0.0625+        50 

6 4 2 4 24 72 64 0.0313+0.0625   11 

7 5 4 4 40 144 128 0.0156+0.0313   11 

8 5 4 4 32 144 128 0.0156+0.0313   11 

9 6 2 8 44 200 144 0.0139+0.0278   28 

10 6 2 8 40 200 144 0.0139+0.0278   28 
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coefficients of the model and the moments respectively. The alphabetic optimality 

criteria for       are considered independently. 

4.4.1.1 The Determinant Criterion 

The D- Criterion is obtained by evaluating the     root of the determinant of the 

moment matrix. Substituting for   and     to the formula given in (3.31) yielded the 

D-optimal value as; 

     = 0.417748. 

The D- optimal obtained maximizes the determinant of the moment matrix. 

4.4.1.2 The Average Variance Criterion  

The A- Optimality was obtained by determining the trace of the inverse of the 

moment matrix. Substituting for     and    to the Average Variance Criterion formula 

given in (3.37), yielded the A- optimal value as; 

      = 0.194949. 

The A- optimal obtained minimizes the sum or average of the variances of the 

parameter estimates. 

4.4.1.3 The Eigen value Criterion  

The Eigen value Optimality Criterion was determined by taking the smallest Eigen 

value of the moment matrix by substituting   and     to the E- Criterion formula given 

in (3.41)  and evaluating the characteristic polynomial yielded the smallest Eigenvalue 

as; 

       = 0.200159. 

The E- optimal seeks to maximize the minimum Eigenvalue of the moment matrix. 

4.4.1.4 The Trace Criterion  

The trace of the moment matrix was obtained by substituting     and     to the T-

Criterion formula given in (3.45) to yield; 

       = 0.577469. 
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The T- Optimal obtained maximizes the trace of the moment matrix.  

For the other remaining two design points in three dimensions (14 and 18) with their 

respective           obtained from (4.11) and (4.17), their optimality criteria were 

obtained using the same approach. Table 4.5 below presents summary of the 

evaluated optimality criteria for the three designs point in three dimensions.  

Table 4.5 Summary of optimality criteria in three dimensions 

 

 

 

 

From table 4.5, taking the least value of the optimality criteria among the three 

constructed reduced designs considered gave an optimal design. Therefore,     with 

14 points was E- optimal design with an optimal eigenvalue of 0.004492 when 

compared with other design points. The individual particular optimality criteria 

exhibit different properties. For example, in circumstances where the experimenter is 

only interested in a D- optimal design, then from table 4.5 among the three designs 

the design with 14 points with an optimal value of 0.129695 would be of great 

interest. Also with regard to A-, E- and T- optimality criteria, the design with 14 

points with respective optimal values of 0.005069, 0.004492 and 0.28857 respectively 

was optimal when selected independently across the three designs considered. 

Using the same approach used for evaluating optimality criteria in three dimension 

table 4.6 and 4.7 presents results for optimality criteria in four and five dimensions 

given below. 

 

 

 

Design Dimension Points D A E T 

1 3 16 0.36367 0.194949 0.200159 0.577469 

2 3 14 0.129695 0.005069 0.004492 0.288572 

3 3 18 0.236837 0.023801 0.111111 0.330951 
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4.4.2 Evaluation of optimality criteria for the reduced designs in four dimensions 

Results for optimality criteria for SORD denoted by     and     each with 24 points 

and a Modified SRCCD with 32 points respectively were presented and discussed in 

table 4.6 below. 

Table 4.6 Summary of optimality criteria in four dimensions 

 

 

 

 

 

From table 4.6 above, the determination of an optimal design was done by taking a 

design with least optimality criterion among the three designs considered. Therefore, 

    with 24 points was A- optimal with a trace of 0.001437. In situations where the 

experimenter wishes to choose a design from each particular optimality criterion 

independently since each optimality criterion has a specific goal that it achieves then a 

design with 24 points with optimal values of 0.13051, 0.001437, 0.008539 and  

0.176629 was  D-, A-, E- and T- optimal design when selected independently. 

4.4.3 Evaluation of optimality criteria for the reduced designs in five dimensions 

Results on evaluation optimality criteria for reduced design denoted by     and     

each with 36 and 42 and modified SRCCD with 32 points respectively were presented 

in table 4.7 below. 

 

 

 

 

 

 

 

 

Design Dimension Points D A E T 

4 4 24 0.558527 0.537633 0.222223 0.599999 

5 4 24 0.13051 0.001437 0.008539 0.176629 

6 4 32 0.477422 0.280374 0.25000 0.466667 
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Table 4.7 Summary of optimality criteria in five dimensions  

 

 From table 4.7 in five dimensions,     was A- optimal with 42 points having a least 

optimal value of 0.000357 when compared with other designs. The D, A, E and T 

with optimal values of 0.115975, 0.000357, 0.002945 and 0.113378 was optimal with 

42 points when chosen independently. 

 From the above evaluated alphabetic optimality criteria, it was noted that each of the 

optimality criteria evaluated exhibits unique properties and has an experimental goal 

associated with it that achieves a specific property for the final fitted model. For 

instance according to Atkinson et al., (2007), the D- Optimum designs minimize the 

content of the ellipsoidal confidence region for the parameters of the linear model. 

Eigen-values minimize the generalized variance of the parameter estimates. A-

optimality minimizes the sum or average of the variance of parameter estimates. 

4.5 Application of the Constructed Reduced Designs Points with Hypothetical 

Example. 

 

From table 4.1, utilizing the reduced design points denoted by     and using (3.46) 

and table 3.2 gave 16 experimental runs. Table 4.8 below gives the design settings 

of   ,    and     of the transformed coded variables and the natural variables or actual 

variables of N, P and K and the yield with 16 experimental runs.  

 

 

 

Design Dimension Points D A E T 

7 5 36 0.725727 1.583654 0.444444 0.638171 

8 5 42 0.115975 0.000357 0.002945 0.113378 

9 5 32 0.516779 0.353933 0.25000 0.404762 
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Table 4.8: Hybrid Maize experimental Data  

 

 

Let the letters N, P and K represent the different types of fertilizers used in this 

experiment. The data in table 4.7 was used in the analysis of a response surface design 

using Minitab version 17 and the outputs of the results were presented in tables; 4.9, 

4.10 and 4.11 below. 

4.5.1 Model fit for Hybrid maize 

Table 4.9 below gives the coefficients, standard errors, t-values and p-values of the 

Hybrid Maize model with natural values. 

Table 4.9: Model for Hybrid Maize  

Term Coeff. SE Coeff. T-Value P-Value 

Constant 19560 4984 3.92 0.006 

  -963 247 -3.90 0.006 

  -2252 574 -3.93 0.006 

  -1285 328 -3.91 0.006 

   29.53 7.57 3.90 0.006 

   152.8 39.0      3.92 0.006 

   65.2 16.7 3.91 0.006 

  Coded variables Natural variables   

Run 

               

 

 

                

             

 

          

                     

 

N                P                 K        Yield      

1 1 1 1 23.45 11.11 15.71 49.63 

2 -1 1 1 9.13 11.11 15.71 52.87 

3 1 -1 -1 23.45 4.81 6.07 37.96 

4 -1 -1 -1 9.13 4.81 6.07 50.76 

5 1.682 0 0 28.33 7.96 10.89 35.41 

6 -1.682 0 0 4.26 7.96 10.89 35.41 

7 0 1.682 0 16.29 13.26 10.89 49.77 

8 0 -1.682 0 16.29 2.66 10.89 54.36 

9 0 0 1.682 16.29 7.96 18.99 46.93 

10 0 0 -1.682 16.29 7.96 2.78 35.91 

11 1.682 0 0 28.33 7.96 10.89 35.41 

12 -1.682 0 0 4.26 7.96 10.89 35.41 

13 0 1.682 0 16.29 13.26 10.89 49.77 

14 0 -1.682 0 16.29 2.66 10.89 54.36 

15 0 0 1.682 16.29 7.96 18.99 46.93 

16 0 0 -1.682 16.29 7.96 2.78 35.91 
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   0.1060 0.0342      3.10 0.017 

PK -16.85 4.39 -3.83 0.006 

 

 

From table 4.9, at a level of 5% significance, the p-values reveals that the main effects 

(N, P and K), the pure quadratic (            ) and the interaction effects (NP and 

PK) were all significant. This implies that the independent variables contribute 

significantly to the yield of hybrid maize. The constant term coefficient reveals that 

even if all the independent variables were set to zero, the experimenter would still 

have a yield of 19560.The interaction effect of NK was not estimated because of lack 

of central points in the experimental runs. The fitted model therefore with significant 

factors is given as; 

 ̂                                                

                  

4.5.2 The Analysis of Variance for Hybrid Maize 

Table 4.11 below gives the output of analysis of variance. 

Table 4.10: Analysis of Variance for Hybrid Maize 

Source Df Adj. SS Adj. MSS F Value P Value 

Model 8 899.832 112.479 47.16     0.000 

     Linear 3 663.861 221.287 92.79 0.000 

     Pure Quadratic 3 605.323 201.774 84.60 0.000 

    Two way interactions 2 57.911 28.956 12.14 0.005 

Error 7 16.694 2.385   

Total 15 916.526    

 

From table 4.10, the F-statistic value was found to be 47.16 with (p=0.000). These 

small p-values indicate that the model was reliable and adequately represents the yield 

of Hybrid Maize. The small p-values for linear, pure quadratic and two way 

interactions also show that they have a significant effect on the response. 
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Table 4.12: Model summary for the yield of Hybrid Maize 

 

Model Summary   

 S R.sq R.sq (adj) 

1.54432        98.18%          96.10% 

 

From table 4.12, the adjusted     indicate that 96.10% of the variation in the response 

was explained by the model. This shows that the second order model adequately 

represent the yield of hybrid maize with a reliability of 96.10% and would provide 

useful information about hybrid maize yield.  
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CHAPTER FIVE 

CONCLUSIONS AND RECOMMENDATIONS 

5.1 Introduction 

This section gives conclusions and recommendations derived from the study findings. 

5.2 Conclusions 

The existing second order rotatable designs points considered in this study were all 

reducible and rotatable in three, four and five dimensions. 

The constructions of modified slope rotatable designs with reduced design points 

from existing modified designs were also all rotatable in four and five dimensions. 

The percentage reduction of these existing design points considered ranged from 11% 

to 50% .This potentially minimizes the experimentation cost equivalent to the 

proportion of the reduced number of design points. 

From the evaluation of optimality criteria in three dimensions,     with fourteen 

points was E- optimal when compared to other design points. In four dimensions,     

with twenty four points was A- and in five dimensions     was A- optimal with forty 

two points.  

5.3 Recommendations 

For cost effectiveness in designing of experiments for production processes in 

agricultural and industrial processes, the study recommends practical application of 

optimal modified second order rotatable designs constructed.  

It would be also important if combination of the optimality criteria is done to obtain 

compound optimality criteria for optimal modified designs for researchers who are 

interested in more than one optimal measure in a design to give balance when any two 

or more alphabetic optimality criteria are combined.  

The study recommends further construction of optimal modified rotatable designs in 

higher orders if the second order designs for some experiments are established to be 

inadequate.   
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