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Abstract

The numerical range of a bounded linear operator on a Hilbert space H, is the
range of the restriction to the unit sphere of the quadratic form associated with
the operator. An elementary operator is a bounded linear mapping on the set
of bounded linear operators acting on an infinite dimensional complex Hilbert
space. Properties of elementary operators have been investigated during the past
three decades under a variety of aspects such as their spectra, compactness, norm
properties, numerical range among others. However, through all these studies it
emerges that, for a general elementary operator, a precise description of its prop-
erties has not been explored exhaustively. Thus a generalized description of these
properties on the various generalizations of numerical ranges of an elementary op-
erator is missing and hence have been studied in this research work. The general
objective was to establish the relations that exists between the numerical range of
the elementary operator and that of the implementing operators as the operator
acts on the various algebras. Specifically, the objectives were: to establish some of
the properties of the numerical range that hold for an elementary operator acting
the algebra L(H) and to determine the relationship that exists between the ele-
mentary operators and numerical ranges of their implementing operators both in
a normed ideal and in a Hilbert space considered as a C ∗−algebra. In particular,
the convexity of the algebra numerical range was shown as well as its equality to
the algebra numerical range of the left and right multiplication operators. The
algebra numerical range of a generalized derivation restricted to a norm ideal was
established to be equal to the set difference of the algebra numerical ranges of the
implementing operators. Finally, the closed convex hull of the maximal numerical
range of the implementing operators was shown to be contained in the algebraic
maximal numerical range of an elementary operator restricted to an operator al-
gebra. Working from the known to the unknown, we have borrowed from the
already established relationships between the spectrum of an elementary operator
and the joint spectrum of two commuting n-tuples and obtained relations in terms
of the numerical ranges. Another approach utilized was algebraically constructive
in nature. From the theory of Banach spaces, we have for instance, the famous
Hahn Banach theorem that allows us to algebraically construct functionals in a
subspace and we are guaranteed of an extension in the whole space under consider-
ation. With regards to the application of our findings, the numerical range is often
used to locate the spectrum of an operator. Certain problems in quantum me-
chanics, for instance, approximation by commutators, the Heisenberg uncertainly
principle, among others correspond to elementary operators and the findings ob-
tained from our research will contribute to the theoretical knowledge that such
physicists and applied mathematicians need.
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Notations

R- The fied of real numbers
C- The field of complex numbers
‖.‖ - The norm function
〈.〉- Inner product function
H- An infinite dimensional complex Hilbert space
L(H) -The algebra of bounded linear operators acting on H
K(H)- The set of compact operators
W (A)- Numerical range of an operator A ∈ L(H)
w(A)- Numerical radius of an operator A ∈ L(H)
σ(A)- The spectrum of the operator A
W◦(A) -The maximal numerical range
A - A complex algebra
V (a; A )- The algebraic numerical range
We(T ) - The essential numerical range
V◦(a,A ) -The algebraic maximal numerical range
essW◦(A) -The essential maximal numerical range
S(A )- The set of all states
RA,B - The elementary operator associated with operators A and B.
For subsets σ, τ ⊂ Cn, σ◦τ = {α ◦ β ≡ ∑αiβi : α = (α1, ..., αn) ∈ σ, β = (β1, ..., βn) ∈ τ}
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Chapter 1

INTRODUCTION

1.1 Background Information

In the theory of matrices, the concept of a quadratic form associated with a ma-

trix and its applications is quite well known. A natural extension of these ideas

in finite and infinite dimensional spaces leads to the concept of numerical range

and most quadratic questions about an operator revolves around this range. The

numerical range of an operator when considered on finite dimensional spaces is

sometimes referred to as field of values, a term commonly used in matrix theory.

Other terms that have been used in place of numerical range include Wertovor-

rat, Hausdorff domain, range of values among others. However, the first two have

outlived the rest but the advantage goes decisively to the first, that is, numerical

range and its mostly preferred by operator theorists. The core of numerical range

theory lies on the Hilbert space setting. In fact, in the early studies of Hilbert

space by researchers such as Hilbert, Hellinger, Toeplitz, and others, the objects of

chief interest were quadratic forms. For a bounded linear operator T on a Hilbert

space H, we may associate to it a sesquilinear form

ϕT given byϕT (x, y) = 〈Tx, y〉 , x, y ∈ H

and the corresponding quadratic form

ϕ̂T (x) = ϕT (x, x) = 〈Tx, x〉 , x ∈ H.
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With this in mind, the numerical range as defined below is simply the range of

the restriction of ϕ̂T to the unit sphere. Formally we define the numerical range

implemented by the operator T by

W (T ) = {〈Tx, x〉 : ‖x‖ = 1}.

Originally, the concept of numerical range was initiated by Toeplitz and Haus-

dorff in 1918 for matrices, that is, in finite dimensional spaces, but this definition

equally applied well to operators on infinite dimensional Hilbert spaces. Toeplitz

and Hausdorff proved the most crucial property of the numerical range, that is,

its convexity. Other fundamental properties include its non-emptiness, inclusion

of the spectrum of T within its closure and also that it lies in the closed disc

of radius ‖T‖ centered at the origin. Ever since, motivated by theoretical study

and applications, studies of the numerical range have constituted a very wide and

active field of research in matrix analysis and operator theory. Indeed there is a

vast, dynamic current research on these concepts and their generalizations that

have been documented. In particular, this is because they are very useful in study-

ing and understanding the role of matrices and operators in applications such as

numerical analysis and differential equations. One of the beauties of the numerical

range is that its properties and use extends over three areas in mathematics, these

being matrix analysis, operator theory and differential equations. Generalizations

of the numerical range in the finite and infinite dimension cases, in Banach spaces

and Banach algebras are fully explored in Bonsall and Duncan (1973); Gustafson

and Rao (1997); Horn and Johnson (2012) in detail. From the matrix analysis

viewpoint, a number of variations on the numerical range have been and are cur-

rently being studied including the k− numerical range; the C− numerical range;

the M− numerical ranges and their generalizations. From the operator theory

viewpoint, generalizations here have largely been the extension to Banach spaces

based upon the Hahn-Banach theorem and the notion of a semi-inner product.

On the other hand, the study of elementary operators emanated from the the-

ory of matrix equations originally done by Sylvester (1884). In a series of notes,
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Sylvester obtained the eigenvalues of the matrix operators corresponding to the

elementary operator on the square matrices. The term elementary operator was

initially adopted by Lumer and Rosenblum in the late 1950′s as documented in

Lumer and Rosenblum (1959). The two made emphasis on the spectral properties

of these operators and their applications to systems of operator equations. Studies

on properties of these operators have since been of great concern to many operator

theory mathematicians. Among these properties include their numerical ranges,

spectrum, compactness. The literature pertaining to elementary operators is by

now readily available, and there are many profound survey results and expositions

on certain aspects of these operators and in particular, on their spectral and struc-

tural properties. However, though much has been done, there are still many open

problems particularly because their properties are often directly connected to the

structure of the underlying space the operator is acting on. We note here that

the inner and the generalized derivation have enjoyed a lot of attention ever since

the study of elementary operators began. Their norms have been computed, their

spectral properties have been characterized and even their numerical ranges es-

tablished in various spaces. However, for the general elementary operator, explicit

formula for their norms, spectra and numerical range has been a challenge. In

terms of the space settings, for example, whether the operator is acting on a Ba-

nach space, a Banach algebra or a C* -algebra, the classical numerical range for an

elementary operator in these settings has sufficiently been explored by researchers

and so majority of the work currently being carried out is geared towards those

generalizations of the numerical range that still remain partially explored. The

maximal numerical range is such a generalization. It is Stampfli who introduced

this concept and used it as the key tool to determine the norm of derivations.
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1.2 Statement of the problem

Since their initiation, for the elementary operator

RA,B(X) = A1XB1 + A2XB2 + · · · + AnXBn,∀X ∈ L(H) associated with the

n−tuples A and B on L(H) into itself, many facts about the relationship between

the spectrum of the elementary operator and the spectrum of the implementing

operators have been established. This is not the case in relation to how the nu-

merical range of an elementary operator is related to the numerical range of the

implementing operators, that is,W (RA,B),W (A) andW (B). Apparently, the only

elementary operators for which the various numerical ranges have been computed

are the inner and the generalized derivations. Kyle (1978), for example, examines

the relationship between the numerical range of an inner derivation, and that of

its implementing element. Magajna (1987) gives the essential numerical range of

the the generalized derivation defined on the Hilbert-Schmidt class in terms of the

numerical and the essential numerical ranges of the implementing operators. Shaw

(1984) in particular, established that the algebra numerical range of a generalized

derivation restricted to a norm ideal J is equal to the difference of the algebra

numerical ranges of the implementing operators provided that J contains all finite

rank operators and is suitably normed.

Most often, the properties of an operator are derived from its domain and range.

For the elementary operators, though much has been done, there is still much

lacking with regards to the relations that exist between the various generaliza-

tions of numerical ranges of an elementary operator and that of the implementing

operators in diverse algebras.

1.3 Justification

Despite the conceptual simplicity of the definition of numerical range as the im-

age of the unit sphere of H under a continuous map x −→ 〈Ax, x〉, there are
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many unanswered questions and key issues surrounding it that still remain non

explored. Some are curiosity driven and some are application driven. In fact, very

little about the numerical range is obvious and more so in infinite dimensional

spaces.

As noted earlier, the concept of numerical range has been generalized in different

directions. One such direction, is the maximal numerical range introduced by

Stampfli (1970) to derive an identity for the norm of a derivation on L(H). Unlike

the other generalizations, the maximal numerical range has not been largely ex-

plored by researchers as many only refer to it in their quest to determine the norm

of operators. Furthermore, many facts about the relation between the spectrum of

elementary operators and the spectrum of the implementing coefficients operators

are already known. This is not the case for the relationships that exist between

the various numerical ranges of the elementary operator and the numerical ranges

of the implementing operators. We seek to establish these relations, for example,

how the algebraic maximal numerical range of elementary operators is related to

the closed convex hull of the maximal numerical range of the implementing oper-

ators A = (A1, A2, ..., An), B = (B1, B2, ..., Bn), on the algebra of bounded linear

operators on a Hilbert space H .

1.4 Objectives

The general objective of the study was to establish the relationship between the

numerical range of an elementary operator and that of the implementing elements.

Specific Objectives

The study aimed to:

i) Establish the properties of the numerical range that hold when we consider an

elementary operator acting on the algebra L(H) .
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ii) Examine the relationship between the numerical range of the restriction of

a generalized derivation to a norm ideal J and that of its implementing

operators.

iii) Determine how the algebraic maximal numerical range of elementary opera-

tors is related to the closed convex hull of the maximal numerical range of

the implementing operators on the algebra of bounded linear operators on a

Hilbert space H considered as a C ∗ − algebra.

1.5 Significance

The numerical range of an operator A contains crucial information on the prop-

erties of the operator. Even when the operator is not explicitly known, it allows

one to deduce many properties of the operator. For instance, the numerical range

is often used to locate the spectrum of an operator since the spectrum is known

to be contained within the numerical range of the operator. Given the numerical

range of an operator, one is also capable of making deductions on the properties

of the operator both algebraic and analytic . The upper and lower norm bounds,

dilations with simple structure, among others can also be obtained given the nu-

merical range. Furthermore, the geometric properties of the numerical range are

used to classify special types of operators, for example, the self adjoint, normal,

unitary among others.

It is clear from the definition of the numerical range and numerical radius that

these two are intimately related. The numerical radius of A and the distance of

W (A) to the origin are used in studying perturbation, stability, convergence and

approximation problems. In particular, as an example, very often, the numerical

radius has been used as a reliable indicator for rate of convergence of iterative

methods. It also plays a crucial role in the stability analysis of finite difference

approximations of solutions to hyperbolic initial value problems. Furthermore,

numerical radius has recently been associated with stability issues of Hermitian
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generalized eigen-problems and of higher order dynamical systems. In engineering,

the numerical range is used as a rough estimate of eigenvalues of an operator.

One of the most important operator equation in terms of application is of the form

AX −XB = Y and hence corresponds to an elementary operator.

There are problems in quantum mechanics, for example, approximation using the

commutators AX−XA or by AX−XB that have also aroused much curiosity for

researchers in pure mathematics, and specifically in matrix and operator theory.

Formulated mathematically, the Heisenberg uncertainly principle corresponds to

saying that there exists a pair (A,X) of linear transformations and a non-zero

scalar α for which AX −XA = αI. Clearly, these correspond to elementary oper-

ators of length two and the findings obtained from our research will contribute to

the theoretical knowledge that such physicists and applied mathematicians need.
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Chapter 2

THEORY

The numerical range of an operator greatly depends on the underlying space the

operator is acting on. The many generalizations that have been studied mostly

differ depending on whether, for example, the set under consideration is finite or

infinite dimension, a Banach space, Hilbert space, Banach algebra or a C*-algebra.

In this chapter, the necessary theoretical background material from the theories of

normed spaces, Banach algebras and C*-algebras are given that are of relevance

in the study.

2.1 Banach Algebras

Definition 2.1. An algebra is a vector space A equipped with a bilinear product.

A sub-algebra of A is a vector subspace B that is closed under multiplication,

that is, b, b′ ∈ B ⇒ bb′ ∈ B.

A norm function ‖.‖ defined on A is said to be sub-multiplicative if

‖ab‖ ≤ ‖a‖ ‖b‖ for all a, b ∈ A . A normed algebra is an algebra with a sub-

multiplicative norm defined on it. If a normed algebra A possesses a unit element,

say e such that ae = ea = a, for all a ∈ A , then A is referred to as a unital normed

algebra. A complete normed algebra is called a Banach algebra and a complete

unital normed algebra is a unital Banach algebra.

If a normed or a Banach algebra has no unit element, we can adjoin a unit to it.
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The unitization of a normed algebra A over a field F , denoted by A + F, is the

normed algebra consisting of the set A × F with addition, scalar multiplication

and product defined by:

(a, α) + (b, β) = (a+ b, α + β)

λ(a, α) = (λa, λα),

(a, α)(b, β) = (ab+ αb+ βa, αβ) , for all a, b ∈ A , α, β ∈ F

The unit element in A + F is (0,1). A + F is a normed algebra with the norm

defined by ‖(a, α)‖ = ‖a‖+ |α|

Some important examples of normed and Banach algebras are give here below:

Example 2.1. LetX be a normed linear space. Then L(X), the set of all bounded

linear operators on X, with the point-wise defined operations for addition and

scalar multiplication, composition for the product and the operator norm is a

normed algebra. If X is a Banach space, then L(X) is complete and is thus a

Banach algebra. The identity operator I is the unit element of L(X). Composition

of maps is a non-commutative operation and so L(X) is an example of a non-

abelian Banach algebra.

Example 2.2. The scalar field C of complex numbers, with the usual multiplica-

tion and the absolute value function as the norm is a Banach algebra.

Example 2.3. If S is a set, the set of all bounded complex valued functions

on S, denoted by `∞(S), is a unital Banach algebra with the point-wise defined

operations for addition, scalar multiplication and product of functions. The norm

here is the sup-norm.

Example 2.4. Let X be a topological space and Cb(X) the collection of all

bounded continuous functions onX. Then Cb(X) is a closed sub-algebra of `∞(X).

Hence, Cb(X) is a unital Banach algebra.

If X is a compact topological space, C(X), the set of all continuous functions from

X to C, is equal to Cb(X) since any continuous function on X is bounded.

A continuous function f on a locally compact Hausdorff space X is said to vanish
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at infinity if the set {x ∈ X : |f(x)| ≥ ε} is compact for all ε > 0. The collection

of all such functions is denoted by C0(X). It is a closed sub-algebra of CbX and

hence a Banach algebra. C0(X) is unital if and only if X is compact and C0(X)

coincides with C(X).

For f ∈ C(X), the support of f , denoted by suppf , is the closure of the set:

{x ∈ X : f(x) 6= 0}.

From the definition, we deduce that the support of a function is always a closed

set. If this set is compact, then we say that f has compact support. Denote

by Cc(X), the collection of all compactly supported continuous functions on X.

Then, Cc(X) is a dense sub-algebra of C0(X).

The Banach algebra C0(X) is one of the most significant examples of abelian

Banach algebra.

A left ideal in an algebra A is a non empty vector subspace J of A such

that for all a ∈ A , b ∈ J, ab ∈ J . Similarly, for a right ideal, ba ∈ J for every

a ∈ A , b ∈ J . A vector subspace J ⊆ A that is both a left and a right ideal in

A is called a two sided ideal or simply an ideal.

Example 2.5. Suppose A is a normed algebra, J a two sided closed ideal in A .

Then we can form A /J , the quotient algebra with addition, multiplication and

scalar operations defined as follows: ∀ a+ J, b+ J ∈ A /J, λ ∈ C, then

(a+ J) + (b+ J) = (a+ b) + J ,

(a+ J)(b+ J) = ab+ J and

λ(a+ J) = λa+ J respectively.

A /J is a normed algebra when we endow it with the quotient norm:

‖a‖ = ‖a+ J‖ = inf {‖a+ k‖ : k ∈ J} .

If A is complete in the norm, then so is A /J .
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2.2 C*- Algebras

Definition 2.2. Let A be a complex algebra. A conjugate linear map ∗ : A → A

is called an involution on the algebra A if it satisfies the axioms below:

(i) (a∗)∗ = a for all a ∈ A .

(ii) (ab)∗ = b∗a∗ for all a, b ∈ A .

(iii) (αa+ βb)∗ = αa∗ + βb∗.

for all a and b in A and α , β in C.

The pair (A , ∗) is called an involution algebra, or a ∗-algebra.

An element a ∈ A is self-adjoint or hermitian if a = a∗. If S is a sub-algebra of

A , then S∗ = {a∗ : a ∈ S} and if S∗ = S, then S is self adjoint. Furthermore,

a ∈ A is said to be normal if it commutes with its adjoint, that is, a∗a = aa∗ and

it is unitary if a∗a = aa∗ = e

A Banach ∗-algebra is an involution algebra A endowed with a complete sub-

multiplicative norm such that ‖a∗‖ = ‖a‖ for all a ∈ A .

Moreover, if A possesses a unit element e such that ‖e‖ = 1, we call A a unital

Banach ∗-algebra. A norm which is such that ‖a∗a‖ = ‖a‖2 for all a ∈ A is

referred to as a C∗− norm. A C∗−algebra is a Banach ∗-algebra that is complete

in the C∗− norm. A C∗−algebra A is deemed to be unital or to have a unit e

if it has an element, denoted by e, satisfying ea = ae = a for all a in A . For a

nontrivial unital C∗−algebra with unit e, then automatically e∗ = e and ‖e‖ = 1.

If a C∗−algebra is non unital, it can always be unitized by adjoining a unit to it.

A subset S of a C∗−algebra is called C∗−sub-algebra if it is a C∗−algebra with

the inherited operations, involution and norm.

Example 2.6. The scalar field C of complex numbers is a unital C∗-algebra with

complex conjugation λ 7→ λ as the involution map.
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Example 2.7. Let S be a set and `∞(S) the set of all bounded complex valued

functions on S, then `∞(S) is a C∗−algebra with involution given by f 7→ f .

Example 2.8. Let Ω be a locally compact Hausdorff space. Then C0(Ω) is a

C∗−algebra with involution f 7→ f . Also, the set C0(Ω,A ) , of all continu-

ous functions f : Ω −→ A vanishing at infinity is a non-unital commutative

C∗−algebra.

Next we recall some few key results on positive elements in a C∗−algebra.

Let A be a C*-algebra. An element a ∈ A is said to be positive if a is hermitian

and σ(a) ⊆ R+, σ(a) the spectrum of a. Equivalently, a ∈ A is positive if a = b2

for some self-adjoint b ∈ A or a = c∗c for some c ∈ A . The positive elements of

A form a cone A + in that, if a, b are positive elements, then their sum a+ b and

the scalar multiple λa are positive also, for all λ ∈ R+.

A linear map f : A → B between two C*-algebras is said to be positive if f maps

positive elements in A to positive elements in B, that is, f(A +) ⊂ B+.

For example, every ∗-homomorphism φ : A → B is a positive map.

If the co-domain B is the scalar field C, then such a positive linear map f : A → C

is called a positive linear functional. If, in addition, f is bounded and of unit norm

with f(e) = 1, e the identity element, then f is called a state. The term "state"

is borrowed from mathematical physics. The observables of a physical system

correspond to the self-adjoint elements of a C∗− algebra and the value ω(a) is

supposed to be the expected value of the observable a in the "state" ω. To know

the expected values of the observables of the system is to know the "state" of the

system.

Example 2.9. Let Ω be a compact Hausdorff space and µ the probability measure

on Ω. Define ψ : C(Ω) −→ C by

ψ(f) =
∫
Ω f(x) dµ(x) for all f ∈ C(Ω).

ψ as defined is a state.

Example 2.10. Let A be a C∗−algebra and π : A −→ B(H) be a ∗homomor-

phism. For all x ∈ H, define ψx : A ←→ C by
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ψx(a) = 〈π(a)x, x〉 for all a ∈ A .

ψx is a positive linear functional of norm one and hence a state.

The set of all states is referred to as the state space, usually denoted by S(A ).

S(A ) is a closed subset of the unit ball of the dual S(A )∗ in the weak-∗ topology,

hence compact by the Banach-Alaoglu Theorem. S(A ) is non-void since by the

Hahn-Banach theorem, there exists f ∈ A
∗ such that f(e) = 1 = ‖f‖. It is also

a convex set.

A representation of a C∗− algebra A is a pair (π,H) where H is a Hilbert space

and π : A −→ L(H) is a ∗-homomorphism. A representation is called faithful if

π is injective.

Theorem 2.1. (Gelfand-Naimark-Segal Theorem, Murphy (2014))

If A is any C∗− algebra, then there exists a Hilbert space H and a faithful

representation π : A −→ L(H).

The proof of this theorem can be found in Murphy (2014). C*-algebras are

closely connected to operators on a Hilbert space in such a way that if H is a

Hilbert space, L(H) the set of all bounded linear operators on H, is a C*-algebra

with its usual operator norm and the adjoint operation as the involution. By the

above celebrated Gelfand-Naimark-Segal theorem, every abstract C*-algebra can

be thought of as a C*-sub-algebra of L(H) for some Hilbert space H. Defining

abstract C*-algebras this way is convenient since it allows many operations like

quotients, direct sum, products and tensor products. The interconnection is also

very fundamental as it is partly due to this concrete realization of the C*-algebras

that their theory is easily accessible in comparison with more general Banach

algebras. Just like it is easy to work with Hilbert spaces in contrast to general

Banach spaces, the same is true of C*-algebras compared with general Banach

algebras.
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2.3 Compact Operators and the Calkin Algebra

A subset X of a Hilbert space H is called compact if every sequence {fn} from X

has a subsequence which converges in X. A subset X of H is called pre-compact

if the closure of X is compact.

A bounded operator K ∈ L(H) is said to be compact if K maps bounded subsets

of H into pre-compact subsets of H. Equivalently, K ∈ L(H) is compact if it maps

every bounded sequence {xn} of vectors in H onto the sequence {Kxn} which has

a convergent subsequence. The class of all compact operators is often denoted

by K(H) . For example, every operator of finite rank is compact since all balls

are pre-compact in a finite dimensional space. The set of compact operators is

a norm-closed , two sided, ∗−ideal in L(H). If H is an infinite - dimensional

complex separable Hilbert space, K(H) the ideal of all compact operators acting

on the Hilbert space H, then L(H)/K(H) is a quotient algebra usually referred

to as the Calkin algebra. For T ∈ L(H) we define the essential norm by

‖T‖e = ‖T + K (H)‖ = inf {‖T +K‖ : K ∈ K(H)} .

For a positive bounded self-adjoint operator A on a Hilbert space H, the trace of

A is defined by

trA =
∑
j

〈ej, Aej〉,

where ej form an orthonormal basis .

A bounded linear operator K : H → H is called a Hilbert-Schmidt operator if

trace(K∗K) is finite.

The Hilbert - Schmidt norm is normally defined by:

‖K‖2 =
√
tr(K∗K) =

√∑
j

‖Kej‖2.
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This definition does not depend on the choice of the basis. The Hilbert-Schmidt

norm is also called the Frobenius norm. The class of all Hilbert-Schmidt opera-

tors from a Hilbert space H1 to a Hilbert space H2 is denoted by C 2(H1, H2) and

C 2(H) = C 2(H,H) in case H1 = H2. A Hilbert-Schmidt operator is a compact

operator and hence every operator of finite rank is a Hilbert-Schmidt operator.

We note here that set K(H) is dense in C 2(H).

(C 2(H), ‖.‖2) is a separable Hilbert space with inner product

〈A,B〉2 =
∑
j

〈Aej, Bej〉 ,

where ej is an orthonormal basis on H.

C 2(H) is also an operator ideal in L(H), that is L(H)C 2(H)L(H) ⊆ C 2(H).

Generally, if H1 and H2 are separable Hilbert Spaces and T ∈ L(H1, H2), for

p ∈ [1,∞), we define the Schatten p-norm of T as:

‖T‖p =
∑
n≤1

Spn (T )


1
p

=
tr(T ∗T )

p

2


1
p

for S1(T ) ≥ S2(T ) ≥ ... ≥ Sn(T ) ≥ ... ≥ 0, the singular values of T .

We observe that:

• ‖T‖pp = tr(|T |p).

• ‖T‖1 corresponds to the trace class norm.

• ‖T‖2 corresponds to the Hilbert -Schmidt norm.

• ‖T‖∞ is the operator norm.

For any particular operator which possesses these norms, the norms are equivalent.

An operator which has a finite p− th Schatten norm is a p− Schatten operator.
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2.4 Generalizations of the Numerical Range

The concept of numerical range has been generalized in different directions. The

following are some of the generalizations relevant to this study.

Definition 2.3. Let H be a complex separable Hilbert space, and let L(H) be

the set of all bounded linear operators on H into itself. The numerical range of

an operator A ∈ L(H) is the subset of complex numbers, given by

W (A) = {〈Ax, x〉 : x ∈ H, ‖x‖ = 1}.

The numerical radius w(A) of A ∈ L(H) is defined by

w(A) = sup {|z| , z ∈ W (A)} .

Definition 2.4. Let K(H) be the set of all compact operators on a Hilbert space

H. The essential numerical range of T ∈ L(H) is defined by

We(T ) = ∩
{
W (T +K) : K ∈ K(H)

}
.

Definition 2.5. Let A = (A1, A2, ..., An) be an n-tuple with Ai ∈ L(H) for

1 ≤ i ≤ n. The joint numerical range of A ∈ L(H) is given by

W (A) = {(〈A1x, x〉 , 〈A2x, x〉, ..., 〈Anx, x〉) : x ∈ H, ‖x‖ = 1}

Definition 2.6. Let L(X) be the Banach algebra of all bounded linear operators

acting on a complex Banach space. For A ∈ L(X), the spatial numerical range

is defined by:

W (A) = {〈Ax, x∗〉 : x ∈ X, x∗ ∈ X∗, ‖x‖ = ‖x∗‖ = 1 = 〈x, x∗〉}.

Definition 2.7. The maximal numerical range of A ∈ L(H), denoted by

W◦(A) is the set

W◦(A) = {λ : 〈Axn, xn〉 → λ, ‖xn‖ = 1, ‖Axn‖ → ‖A‖} .
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Definition 2.8. The Joint maximal numerical range of A = (A1, A2, ..., An) ∈

L(H) is given by

W◦(A) = {{λi} ∈ Cn : 〈Aixn, xn〉 → λi, ‖xn‖ = 1, ‖Aixn‖ → ‖Ai‖} , for 1 ≤ i ≤ n.

Definition 2.9. If A is a C*-algebra with identity e , a ∈ A and S(A ) =

{f ∈ A ∗ : f(e) = 1 = ‖f‖}, the set of states on A .Then:

(i)The algebraic numerical range of an element a ∈ A is the set:

V (a; A ) = {f(a) : f ∈ S(A )} .

(ii)For a = (a1, ...an) ∈ A n, the joint algebraic numerical range is defined

by:

V (a; A ) = {f(a1), ..., f(an) : f ∈ S(A )} .

Definition 2.10. S◦(a,A ) =
{
f : f(e) = 1 = ‖f‖ , f(a∗a) = ‖a‖2

}
, will be the

set of maximal states on A . The algebraic maximal numerical range, denoted

by V◦(a,A ) is the set

{f(a) : f ∈ S◦(a,A )} .

Definition 2.11. Let A ∈ L(H) and a be the image of A in the Calkin alge-

bra L(H)/K(H). The essential maximal numerical range of A, denoted by

essW◦(A), is defined to be the set:

{λ : 〈Axn, xn〉 −→ λ where ‖xn‖ = 1, xn −→ 0 weakly and ‖Axn‖ −→ ‖a‖}.

Definition 2.12. Let L(X) be the complex Banach algebra of all bounded linear

operators on a complex Banach space X. For A ∈ L(X), we define the spatial

algebra numerical range of A by:

V(A) = {f(Ax) : (x, f) ∈ ∏} where∏ = {(x, f) ∈ X ×X∗ : ‖x‖ = ‖f‖ = f(x) = 1}.
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2.5 Definition of an Elementary Operator

Definition 2.13. Let A = (A1, A2, ..., An) , B = (B1, B2, ..., Bn) be two n-tuples

with Ai, Bi ∈ L(H) for 1 ≤ i ≤ n. The elementary operator RA,B associated

with A and B is the operator on L(H) into itself defined by

RA,B(X) = A1XB1 + A2XB2 + · · ·+ AnXBn,∀X ∈ L(H).

For T1 and T2 in L(H) we have the following examples of elementary operators:

i) the left multiplication operator LT1 defined by LT1(X) = T1X, ∀X ∈ L(H).

ii) the right multiplication operator RT2 defined by RT2(X) = XT2,∀X ∈ L(H).

iii) the elementary multiplication operator MT1,T2 = LT1RT2 defined by

MT1,T2(X) = T1XT2,∀X ∈ L(H), that is, the elementary operator of length

one.

iv) the inner derivation ∆T1 defined by ∆T1(X) = T1X −XT1,∀X ∈ L(H).

v) the generalized derivation ∆T1,T2 defined by ∆T1,T2(X) = T1X − XT2, ∀X ∈

L(H).

vi) the Jordan elementary operator, UT1,T2(X) = T1XT2 + T2XT1,∀X ∈ L(H) .

2.6 Other Important Definitions and Theorems

Theorem 2.2 (Banach-Alaoglu Theorem). The closed unit ball B∗ in X∗ is com-

pact with respect to the weak*topology.

The proof of the theorem can be found in Rudin (1991).

Definition 2.14. The spectrum of A ∈ L(H), denoted by σ(A), is defined by

σ(A) = {λ ∈ C : A− λI is not invertible}.
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Definition 2.15. An operator A ∈ L(H) is said to be a finite rank operator if

its range is finite dimensional. For vectors x and y in a Hilbert space H, we define

a finite rank operator by (x⊗ y)z = 〈z, y〉x, ∀z ∈ H.

Definition 2.16. A set S is said to be convex if the line segment between any two

points in S lies in S, that is, if x, y ∈ S, then λx+ (1−λ)y ∈ S,∀ λ ∈ [0, 1].Then,

given any nonempty set S, there is the smallest convex set containing S denoted by

con(S) and is referred to as the convex hull of S. Equivalently, it is the intersection

of all convex sets containing S.

Definition 2.17. A subsetM of the Euclidean space is said to be compact if it is

closed and bounded. By the Bolzano- Weierstrass theorem, this implies that any

infinite sequence from the set contains a subsequence that converges to a point in

the set.
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Chapter 3

LITERATURE REVIEW

The concept of the classical numerical range of an operator A on a Hilbert space H

was introduced by Toeplitz around 1918. The numerical range W (A), also known

as the field of values, as defined by Gustafson and Rao (1997), is the collection

of all complex numbers of the form 〈Ax, x〉, where x is a unit vector in H. The

numerical radius w(A) of A is the radius of the smallest circle centered at the

origin containing W (A). The most important property of W (A) is given by the

classical Toeplitz-Hausdorff Theorem which asserts that the numerical range is a

convex set, that is, if x, y are in W (A), then z = tx + (1 − t)y is also in W (A)

for every real number t such that 0 ≤ t ≤ 1. The following are some other basic

properties of the numerical range:

i) W (A∗) = W (A).

ii) W (A) contains the spectrum of A.

iii) If α, β ∈ C, then W (αA+ βIH) = αW (A) + β.

iv) W (U∗AU) = W (A) for all unitary operators ( that is, U∗U = UU∗ = I ).

v) W (A+B) ⊆ W (A) +W (B).

A more detailed account of the subject may be found in Bonsall and Duncan

(1973, 1971); Gustafson and Rao (1997); Horn and Johnson (2012) among others.



21

Bonsall and Duncan devoted a lot of attention in their research work to the study

of Banach algebras. Motivated by the application of the numerical range concept

to the study of Banach algebras, their book Bonsall and Duncan (1973), conve-

niently presents detailed generalizations of the numerical range for Banach space

and Banach algebra settings. If A is a complex unital Banach algebra and a ∈ A ,

the algebra numerical range of a is the set; V (a,A ) = {f(a) : f ∈ P(A )}, where

P(A ) is the set of all states on A . It is known that V (a,A ) is a non empty,

convex and compact set. This result follows at once from the corresponding prop-

erties of the states space being convex and weak* compact in A ∗. Since the map

f −→ f(x) is weak * continuous on A ∗, it follows that the range is compact and

convex. It is already known that the algebraic numerical range is equal to the

closure of the classical numerical range of A. This can be found in Stampfli and

Williams (1968), that is, if A = L(H), then V (A,L(H)) = W (A) .

For a ∈ A , the spectrum of a, σ(a) = {λ ∈ C : (a− λe) is not invertible}

and σ(a) ⊂ V (a). The generalization of numerical range in a Banach space

to the spatial numerical range was introduced by Lumer (1961). In the Ba-

nach space setting, if X is a Banach space, X may be regarded as a semi-

inner-product space by choosing a function x −→ x∗ from X into X∗ with

the properties ‖x∗‖ = ‖x‖ , 〈x, x∗〉 = ‖x‖2 for x ∈ X. For a bounded lin-

ear operator A on X, the (spatial) numerical range of A is the set W (A) =

{〈Ax, x∗〉 : x ∈ X, x∗ ∈ X∗, ‖x‖ = ‖x∗‖ = 1 = 〈x, x∗〉}. Stampfli andWilliams (1968)

and Lumer (1961) have showed that the closure of the convex hull of this set

is equal to the algebra numerical range. In particular, when X is the Hilbert

space ,‖x‖ = ‖x∗‖ = 1 = 〈x, x∗〉 if and only if x∗ is the function given by

x∗y = 〈y, x〉 , y ∈ X. Thus W (A) in this case coincides with the classical nu-

merical range.

Since everyA in L(H) admits a decomposition A = A1 + iA2 for self adjoint

A1, A2 ∈ L(H),W (A) can be identified with the set {(〈A1x, x〉 , 〈A2x, x〉) : x ∈ H, ‖x‖ = 1} ⊆

R2. This leads to the notion of joint numerical range introduced by Dekker (1969)
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for an n-tuple A = (A1, A2, ..., An) of commuting operators on H. The joint nu-

merical range is essential in the study of the joint behavior of a set of operators.

It is the joint numerical range that actually provides us a platform from where

we study the relationship that exists between the elementary operators and its

implementing operators. Unlike the usual numerical range, the joint numerical

range is generally not convex for an arbitrary n-tuple of operators, however there

may exist cases in which it is, for example when n = 1. Refer to Dash (1972) and

Dekker (1969) for further details on joint numerical range. The maximal numer-

ical range, W◦(A) of an operator A on a Hilbert space H as defined by Stampfli

(1970), is the set of all complex numbers λ for which there exists a sequence {xn}

of unit vectors in H such that 〈Axn, xn〉 −→ λ and ‖Axn‖ −→ ‖A‖ as n→∞.

In the case of finite dimensional spaces, this numerical range is produced by

the maximal vectors of A (an element x in H is a maximal vector for A if

‖Ax‖ = ‖A‖ ‖x‖).

The set W◦(A) has been established by Stampfli (1970) to be non-empty, closed

and a convex subset of the closure of the classical numerical range W (A). Un-

like W (A), the maximal numerical range is extremely unstable under transla-

tion as shown by Stampfli (1970). It also does not satisfy the power inequal-

ity as does W (A). Stampfli (1970) used the maximal numerical range to de-

rive the norm of the inner and generalized derivations. It was showed that

‖∆A‖ = 2 inf {‖A− λ‖ : λ ∈ C}, and ‖∆A‖ = 2 ‖A‖ if and only if 0 ∈ W◦(A).

Later, Fong (1979), considered the analogous concept for an element in the Calkin

algebra L(H)/K(H) and in a C∗− algebra A . Here, he analogously uses the

essential maximal numerical range to determine the norm of an inner deriva-

tion on the Calkin algebra. He also defined the maximal numerical range of an

element in a C∗− algebra A , that is, the algebraic maximal numerical range,

V◦(a,A ) = {f(a) : f ∈ S◦(a,A )}, where f ∈ S◦(a,A ) is the set of maximal

states. V◦(a,A is a non-empty, convex compact subset of V (a,A ), the algebra

numerical range. He also gave the following key result.
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Theorem 3.1. [Fong, 1979]

If A is an operator on a Hilbert space H, then W◦(A) = V◦(A,L(H)).

One of the basic properties of the numerical range is that its closure contains

the spectrum of the operator. For a long time it remained a considerable challenge

to compute the spectrum of a general elementary operator. Elementary operators

in a more general Banach algebra context were introduced by Lumer and Rosen-

blum (1959), who computed the spectra of such operators and gave their applica-

tions to systems of operator equations. Apostol (1986) and Fialkow (1980, 1983,

1992) have a detailed account on the spectral and structural properties of these

operators. Many other authors have subsequently studied the spectral properties

of the elementary operator, with particular attention devoted to the inner and the

generalized derivations. For example, in Rosenblum (1956), the spectrum of a gen-

eralized derivation was determined to be σ(∆A,B) = {α− β : α ∈ σ(A), β ∈ σ(B)}

. In 1959, Lumer and Rosenblum (1959) succeeded in extending these findings to

the case of analytic elementary operators where they completely determined their

spectrum in terms of the spectra of the generating operators. These results among

others show that the spectral properties of the elementary operator reflect the joint

spectral properties of the implementing operators.

Let A = (A1, ..., An) be a commuting n-tuple of operators in H. The Taylor spec-

trum of A is given by σT (A,H) = {λ ∈ Cn : A− λe is not invertible}, see

Taylor (1970). The relationship between the spectrum of an elementary operator

and the joint spectrum (spectrum in the sense of Taylor ) of two commuting n-

tuples A and B has been used by researchers as a stepping stone to study other

relations. It is Curto (1983) who first obtained a satisfactory formula express-

ing the spectrum of a general elementary operator in terms of the Taylor joint

spectrum for Hilbert spaces. Here, Curto proved that, if A and B are n-tuples of

commuting operators on H then:

σ (RA,B) = {∑n
i=1 λiβi}, where (λ1, λ2, ..., λn) ∈ σT (A), (β1, β2, ..., βn) ∈ σT (B)

where σT is the joint spectrum. This result was later substantially improved by
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Curto and Fialkow (1987) again for Hilbert spaces.

Seddik (2002) builds on these findings to give similar results with the numerical

range and the joint numerical range without the assumption of the commutativity.

In particular, it was established that :

co{∑n
i=1 λiβi} ⊂ V (RA,B), where (λ1, λ2, ..., λn) ∈ W (A), (β1, β2, ..., βn) ∈ W (B)

, W (A),W (B) the joint numerical range and V (RA,B) the algebraic numerical

range of the elementary operator. Seddik also showed this inclusion becomes an

equality when V (RA,B) is taken to be a generalized derivation, and it is strict

when V (RA,B) is taken to be an elementary multiplication operator induced by

non scalar self-adjoint operators. The proof to these findings is based on the con-

struction of a special state using the trace functional on L(L(H)). Seddik also

showed that for the generalized derivation ∆A,B, the algebraic numerical range

V (∆A,B) = V (A)− V (B). This was a generalization of a result earlier proved by

Anderson and Foias (1975) that V (LA) = V (RA) = V (A) for any A ∈ L(H) .

Barraa (2014) expressed the numerical range of the elementary operator in

terms of the spatial numerical range of the implementing operators.

Kyle (1978) examines the relationship between the numerical range of an inner

derivation, and that of its implementing operators on a complex unital Banach al-

gebra. From the already known results on the spectra of the inner derivation, Kyle

obtained the corresponding results for numerical ranges. In particular, he proved

that the algebra numerical range of an inner derivation is equal to the theoretical

set difference in the algebra numerical ranges of the implementing operators.

Elementary operators also induce bounded operators between operator ideals, as

well as between quotient algebras such as the Calkin algebra . Over the past

decades, numerous studies have been done on restrictions of elementary operators

to norm ideals. Their norm properties, numerical ranges, spectra and essential

spectra have been characterized. Shaw (1984) determined the numerical range

of a generalized derivation on an invariant subspace δ of L(Y,X) of all bounded

linear operators from normed linear spaces Y and X. Shaw established that the
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algebra numerical range of the generalized derivation restricted to δ is equal to

the difference of the algebra numerical ranges of the implementing operators, that

is, V (∆A,B, L(δ)) = V (A,L(X))− V (B,L(Y )).

Seddik (2001, 2004) considers the relationship that exists when the elementary

operator acts on the Banach space of the p-Schatten class operators on H and

when restricted to a norm ideal J of a complex Banach space X. The results

obtained in both cases were similar. For A and B n-tuple operators on X , it was

proved that :

co{∑n
i=1 λiβi} ⊂ V (RA,B | J), where (λ1, λ2, ..., λn) ∈ V(A), (β1, β2, ..., βn) ∈

V(B), V(A),V(B), the joint spatial algebra numerical ranges of A and B, and

V (RA,B | J) the algebraic numerical range of RA,B in a norm ideal J of L(X).

As a consequence of these findings, for the particular left and right multiplica-

tion operators, Seddik obtained their algebra numerical range in the norm ideal

to be equal to the algebra numerical range of the implementing operator, that is,

V (LA | J) = V (RA | J) = V (A) for any A ∈ L(H) or A ∈ L(X). Furthermore,

he showed that for the generalized derivation, V (∆A,B | J) = V (∆A,B). In both

cases, a constructive approach is used in the proofs by using the trace function to

construct a special state in the norm ideal whose extension is guaranteed by the

Hahn Banach Theorem.

Elementary operators on the Calkin algebra have exhaustively been explored by

Mathieu (2001). In this paper, Mathieu gives the spectral, compactness, norm

and positivity properties of these operators. Magajna (1987) on the other hand

has computed the essential numerical range of the restriction of a generalized

derivation to the class of Hilbert-Schmidt. Here it is showed that Ve(∆A,B) =

co [(Ve(A)− V (B)) ∪ (V (A)− Ve(B))]. Algebraic tensor products have extensively

been employed in their work. Barraa (2005), also gave results on the essential nu-

merical range of the restriction of an elementary operator to the class of Hilbert-

Schmidt operators, from a Hilbert space H to a Hilbert space K. More precisely,

for the elementary operator R2,A,B | C2(H,K), it was showed that
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co [(We(A) ◦W (B)) ∪ (W (A) ◦We(B))] ⊆ Ve(R2,A,B), where Ve(.) is the essential

numerical range, W (.) the joint numerical range, We(.) the joint essential numer-

ical range and R2,A,B the restriction of RA,B to C2(H,K).
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Chapter 4

METHODOLODY

4.1 Convexity

There are different ways to prove that a set C is convex. Some of the most common

ones include:

• Using the definition of a convex set.

• Writing C as the convex hull of a set of points , or the intersection of a set

of halfspaces.

• Building it up from convex sets using convexity preserving operations.

In this study, the third approach has been employed. The state space is known

to be convex and weak∗− compact in the dual space. The map f → f(a) is weak

∗ continuous on the dual space , and it follows that the range of this map, which

the algebra numerical range, is convex.

4.2 Equality of sets

Numerical range is a set and set equality is a bi-conditional statement whose proof

is done by showing set inclusion in both directions.
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4.3 Algebraic Construction

The spectral properties of elementary operators have comprehensively been stud-

ied by many researchers.From the already established relationships between the

spectrum of an elementary operator and the joint spectrum in the sense of Taylor

of two commuting n-tuples A and B, it was possible to establish the obtained

relations in terms of the numerical ranges. This approach has been adopted by

researchers such as Seddik (2001, 2002, 2004); Kyle (1978); Shaw (1984) just to

mention but a few. This is made possible by the fact that the spectrum of an

operator is included in the closure of the numerical range and it would be natural

to investigate if known facts pertaining the spectrum translate correspondingly to

numerical ranges.

Also, from the theory of Banach spaces , the famous Hahn Banach theorems that

allow us to algebraically construct functionals in a subspace and we are guaranteed

of an extension in the whole space under consideration. Mathematical tools such

as the finite rank operators have also been used in the construction.
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Chapter 5

RESULTS AND DISCUSSION

5.1 Properties of the Numerical Range

In this chapter we give results on some properties of the numerical range. In partic-

ular, we establish the relationship between the numerical range of the generalized

derivation restricted to a norm ideal J and that of its implementing elements. We

extend these results to the concept of algebraic maximal numerical range as fol-

lows.

Given a Banach algebra A , A ∗ the dual of A , S(A ) = {x ∈ A : ‖x‖ = 1}, the

unit sphere, and x ∈ S(A ), let D(x,A ) = {f ∈ A ∗ : f(x) = 1 = ‖f‖}.

The Hahn-Banach theorem guarantees that D(x,A ) is non empty for each

x ∈ S(A ). The elements of D(I,A ), I, the identity in A , are called normalized

states or simply states. For a ∈ A , and x ∈ S(A ), we define V (x, a,A ) =

{f(ax) : f ∈ D(x,A )} .

The numerical range of a is the set V (a,A ) = ⋃ {V (x, a,A ) : x ∈ S(A )}.

Given a Banach space H , we may consider the Banach algebra A = L(H ) and

define the algebraic spatial numerical range of A by:

W (A;L(H )) = {f(Ax) : f ∈H ∗, x ∈H , and ‖f‖ = ‖x‖ = 1 = f(x)}.

We first give some basic properties of the numerical range .

Bonsall (1969), has shown that V (a,A ) = V (I, a,A ) , and for each a ∈ A , V (a,A )
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is a compact convex subset of C. We give a simple proof of the following proposi-

tion.

Proposition 5.1. V (x, a,A ) = {f(ax) : f ∈ D(x,A )} is convex.

Proof. Let λ1, λ2 ∈ V (x, a,A ). Then there exist support functionals f1, f2 ∈

D(x,A ) such that λ1 = f1(ax) ,λ2 = f2(ax) .

Define f on D(x,A ) by f(ax) = tf1(ax) + (1 − t)f2(ax), t ∈ (0, 1). We need to

show that f ∈ D(I,A ). Clearly f is linear and

|f(ax)| = |tf1(ax) + (1− t)f2(ax)|
≤ t |f1(ax)|+ (1− t) |f2(ax)|
≤ t ‖f1‖ ‖ax‖+ (1− t) ‖f2‖ ‖ax‖
= ‖ax‖

⇒ ‖f‖ ≤ 1.

Also, f(x) = tf1(x) + (1− t)f2(x) = 1

⇒ ‖f‖ ≥ 1.

Thus f ∈ D(I,A ) and hence V (x, a,A ) is convex.

For a ∈ A , we define the left multiplication operator La : A → A by

La(x) = ax,∀x ∈ A . ‖La‖ = sup {‖ax‖ : x ∈ A , ‖x‖ ≤ 1}.

La is a linear operator in A and also a bounded operator since

‖La‖ = sup {‖ax‖ : x ∈ A , ‖x‖ ≤ 1} ≤ ‖a‖.

Similarly, the right multiplication operator for b ∈ A is defined by ;

Rb : A → A , x→ xb.

We note that for all x ∈ A and fixed a, b ∈ A , ∆a,b(x) = La(x)−Rb(x) = ax−xb,

is the generalized derivation induced by a, b ∈ A .

La(A ) will denote the set of all left multiplication operators on the algebra A as

a ranges on A . This set, endowed with the sup norm, is a normed algebra .

Proposition 5.2. La(A ) is a unital normed algebra

Proof. La(A ) is clearly a subspace of L(A ) (the set of bounded linear operators

on A ) when we define addition and scalar multiplication point-wise by:
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(La + Lb)(x) = La(x) + Lb(x),

(λLa)(x) = λLa(x),∀ x ∈ A , a ∈ A fixed, λ ∈ C.

Moreover, multiplication can also be defined point-wise by:

(LaLb)(x) = La(x)Lb(x) = (ax)(xb), ∀ x ∈ A , a, b fixed. Also the operator norm

is sub-multiplicative in that:

‖LaLb‖ = sup {‖(LaLb)(x)‖ : x ∈ A , ‖x‖ = 1}

= sup {‖La(x)Lb(x)‖ : x ∈ A , ‖x‖ = 1}

≤ sup {‖La(x)‖} sup {‖Lb(x)‖}

= ‖La‖ ‖Lb‖ .

A is unital and so there exists a unit e such that ex = xe = x, ∀x ∈ A . The

operator Le ∈ La(A ) such thatLe(x) = ex = x is an identity left multiplication

operator on La(A ) and is of norm one. Thus, equipped with the operator norm

and the above defined operations, La(A ) is a unital normed algebra.

Remark. A is a unital normed algebra and if it is not, then it can be unitized

by adjoining a unit to it as outlined in chapter 1.

A similar argument shows that Ra(A ), set of all right multiplication operators

on the algebra A as a ranges on A is also a normed algebra.

The algebraic numerical range of La ∈ La(A ) is the non-empty set:

V (La;La(A )) = {f(La); f ∈ La(A )∗, f(Le) = 1 = ‖f‖}. In Bonsall and Duncan

(1971), it is shown that for any Banach algebra A , ‖La‖ = ‖a‖ = ‖Ra‖ and that

V (a; A ) = V (La;L(A )) = V (Ra;L(A )), L(A ) the algebra of all bounded linear

operators on A .

Lemma 5.1. For a ∈ A , La ∈ La(A ), ‖La‖ = ‖a‖ = ‖Ra‖
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Proof.

‖La‖ = sup {‖La(x)‖ : ‖x‖ = 1}

= sup {‖ax‖ : ‖x‖ = 1}

≤ ‖a‖ ‖x‖

⇒ ‖La‖ ≤ ‖a‖ . (5.1)

If A has unit e, we have La(e) = ae = a which implies

‖a‖ = ‖La(e)‖ ≤ ‖La‖ ‖e‖ = ‖La‖ ⇒ ‖La‖ ≥ ‖a‖ . (5.2)

From (5.1) and (5.2) equality follows.

Similarly we obtain ‖Ra‖ = ‖a‖.

Lemma 5.2. For a ∈ A , V (a; A ) = V (La;L(A )) = V (Ra;L(A ))

Proof. Let λ ∈ V (a : A ), Then there exists f ∈ S(A ) such that f(a) = λ.

Now define F on L(A ) by

F (La) = f(ax), for all La ∈ L(A ).

Clearly F is linear since

F (αLa + βLb) =f (αax+ βbx)

=f(αax) + f(βbx)

=αf(ax) + βf(bx)

=αF (La) + βF (Lb), a, b ∈ A , α, β ∈ C.

F is also bounded since

‖F (La)‖ = sup {‖f(ax)‖} ≤ ‖f‖ ‖ax‖ = c ‖La‖.

Also F (Le) = f(ex) = f(x) = 1 and ‖F‖ = 1 .

So F as defined is a positive linear functional on A .

Remark. A linear functional F is positive if and only if F is bounded and ‖F‖ =
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F (e). Refer to Sakai (2012) and Murphy (2014).

Take a finite rank operator b ∈ L(A ) defined by

bx = g(x)a, for all x ∈ A , g ∈ S(A ). Clearly ‖b‖ = 1 and F (b) = f(bx) =

f(g(x)a) = g(x)f(a) = λ. Hence V (a; A ) ⊆ V (La;L(A ).

Conversely we show that V (La;L(A )) ⊆ V (a; A ).

Let λ ∈ V (La;L(A )). Then there exists a state f ∈ L(A )∗ such that f(La) = λ.

Define a functional h ∈ A ∗ by h(a) = f(La).

Then

h (αa+ βb) =f (αLa + βLb)

=f(αLa) + f(βLb)

=αf(La) + βf(Lb)

=αh(a) + βh(b).

⇒ h is linear and bounded. h ∈ A ∗ is also positive since h(a∗a) = f(L∗aLa) ≥ 0.

Furthermore h is of norm 1 since h(e) = f(Le) = 1 and

1 = |h(e)| ≤ ‖h‖ ‖e‖ ⇒ ‖h‖ ≥ 1. We also have

‖h‖ = sup {|h(a)| : ‖a‖ = 1}

= sup {|f(La)| : ‖La| = 1}

≤ ‖f‖

= 1.

Thus h is a state on A ∗ and so V (La;L(A )) ⊆ V (a; A ).

5.2 Norms of R
A
and R

B
in Ideals

Let X and Y be Banach algebras. L(X) and L(Y ), the algebra of all bounded

linear operators onX and Y respectively. Let (J, ‖.‖J) be a norm ideal on L(Y,X),
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the algebra of all bounded linear operators from Y to X such that:

i) (J, ‖.‖J) is a Banach space

ii) If A ∈ L(X), T ∈ J,B ∈ L(Y ) then ATB ∈ J ,and ‖ATB‖J ≤ ‖A‖ ‖T‖J ‖B‖

iii) ‖T‖ ≤ ‖T‖J , T ∈ J and

iv) ‖T‖J = ‖T‖ , for T a rank- one operator.

If A ∈ L(X), B ∈ L(Y ) and T ∈ J , then the operators LA, RB and LA − RB are

all bounded and linear on L(J), the space of all bounded linear operators from J

to J, where:

LAT = AT , the left multiplication operator,

RBT = TB, the right multiplication operator and

(LA −RB)T = AT − TB, the generalized derivation.The following result holds.

Theorem 5.1. V (A : L(X)) = V (LA : L(J)).

Proof. Let λ ∈ V (A : L(X)). Then there exist f ∈ L(X)∗ such that

λ = f(A), and, f(IL(X)) = 1 = ‖f‖.

Let A0 = {LA : A ∈ L(X), LA(T ) = AT, T ∈ J} ⊆ L(J).

A0 is a linear subspace of L (L(X)) .

On A ∗
0 , define a linear functional g such that g(LA) = f(A). Clearly g as defined

is a state and the Hahn-Banach theorem guarantees the existence of its extension

on L(J). Hence, V (A : L(X)) ⊆ V (LA : L(J)).

Conversely, suppose λ ∈ V (LA : L(J). Then there exists f ∈ L(J)∗ such that

f(LA) = λ and f(IL(J)) = 1 = ‖f‖.

Define a linear operator h on L(X)∗ by h(A) = f(LA). Then h(I) = f(IL(J)) = 1.

h is thus a state on L(X)∗ and V (LA : L(J)) ⊆ V (A : L(X)).

Theorem 5.2. ‖LA‖J = ‖A‖.

Proof. From the definition of a norm ideal, we infer that LA and RB are bounded
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linear operators on (J. ‖.‖J) and

‖LA‖J = Sup {‖AX‖ : ‖X‖J = 1, X ∈ J}

≤ ‖A‖ ‖X‖J

= ‖A‖ .

Also, from the definition of a norm ideal, we know that ‖LA‖J ≥ ‖A‖.

It therefore follows that ‖LA‖J = ‖A‖.

Similarly ‖RB‖J = ‖B‖.

5.3 Numerical Range of the Generalized Deriva-

tion in a Norm Ideal

In the past, generalized derivations, their properties and restrictions to norm ide-

als have been investigated by many authors. For example, their spectra have been

characterized by Fialkow (1979, 1980). The famous results on the norms of inner

derivation and the generalized derivation as obtained by Stampfli (1970) using

maximal numerical range have since provided a crucial lead in defining norms

of elementary operators. We recall the works of Kyle (1978) who examines the

relationship between the numerical range of an inner derivation, and that of its im-

plementing element. Using the already established results involving the spectrum,

that is, for any Banach algebra σ(∆A) = σA−σA, Kyle obtained the correspond-

ing result for numerical ranges.

Magajna (1987) gave the essential numerical range of the generalized derivation

defined on the Hilbert-Schmidt class in terms of the numerical and the essential

numerical ranges of the implementing operators. Shaw (1984), in particular, es-

tablished that the algebra numerical range of a generalized derivation restricted

to a norm ideal J is equal to the difference of the algebra numerical ranges of

the implementing operators provided that J contains all finite rank operators and
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is suitably normed. With slight modification we obtain an alternative proof to

Shaw’s result.

Theorem 5.3. Let J be a normed ideal on the algebra L (Y,X). Then for A ∈

L(X), B ∈ L(Y ), V (∆A,B : L(J)) = V (A : L(X))− V (B : L(Y )).

Proof. Let λ ∈ V (∆A,B : L(J)). This implies there exists f ∈ L(J)∗ such that

f(∆A,B) = λ and f
(
IL(J)

)
= 1 = ‖f‖. Let A0 = {LA : A ∈ L(X), LA(T ) = AT, T ∈ J} ⊆

L(J) and

A1 = {RB : B ∈ L(Y ), RB(T ) = TB, T ∈ J} ⊆ L(J), that is, the set of the left

and right multiplication operators respectively in L(J). These are linear subspaces

of L(X) and L(Y ) respectively. Let also S(L(J)) =
{
f ∈ L(J)∗ : f

(
IL(J)

)
= 1 = ‖f‖

}
,

then

λ = f (∆A,B : L(J)) = {f (LA −RB : f ∈ S(L(J)))}

=
{
f(LA) : f ∈ L(X)∗, f(IL(X)) = 1 = ‖f‖

}
−
{
f(RB) : f ∈ L(Y )∗, f(IL(Y )) = 1 = ‖f‖

}
= V (LA : LA ∈ L (J))− V (RB : RB ∈ L (J)) .

This implies that λ ∈ V (A : L(X))− V (B : L(Y )) .

To prove the reverse inclusion, we make use of the spatial numerical range. Choose

λ in W (A : L(X)) and µ in W (B : L(Y )). Then we can find functionals f and g

in L(X)∗, L(Y )∗ such that

‖f‖ = ‖x‖ = f (x) = 1, with f(Ax) = λ and

‖g‖ = ‖y‖ = g(y) = 1, with g(By) = µ.

Let X be a rank one operator in J such that Xz = g(z)x, for all z ∈ Y .

Also define F in L(J)∗ by F (T ) = f(Ty), for all T ∈ L(J).

Then F (X) = f(Xy) = fg(y)x = g(y)f(x) = 1,

F (I) = f(Iy) = fg(y)x = g(y)f(x) = 1 and

|F (T )| ≤ ‖f‖ ‖T‖J ‖y‖ = ‖T‖J .

Clearly ‖F‖J = ‖X‖J = 1 and
(
IL(J), F

)
∈ L(J)× L(J)∗.
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Thus,

F (∆A,B(X)) = F (AX −XB)

= f (AX −XB) y

= f(AXy)− f(XBy)

= f(g(y)Ax)− f(g(By)x)

= f(Ax)g(y)− f(x)g(By)

= λ− µ

∈ {W (A : L(X))−W (B : L(Y ))} .

Now

V (∆A,B;L(J)) = coW (∆A,B;L(J))

⊇ co {W (A;L(X))−W (B;L(Y ))}

= co {W (A;L(X))} − co {W (B;L(Y ))}

= V (A;L(X))− V (B;L(Y )) .

Thus {V (A;L(X))− V (B;L(Y ))} ⊆ V (∆A,B;L(J)).

The next result gives the upper bound of the norm of LA −RB in (J, ‖.‖J).

Theorem 5.4. ‖LA −RB‖J ≤ ‖A− λ‖+ ‖B − λ‖.

Proof.

‖LA −RB‖J = ‖LA−λ −RB−λ‖J = ‖AX − λX −XB +Xλ‖J

= ‖(A− λ)X −X (B − λ)‖J

≤ (‖A− λ‖+ ‖B − λ‖) ‖X‖J

= ‖A− λ‖+ ‖B − λ‖ .
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5.4 Maximal Numerical Range of Elementary

Operators

If A and B are n-tuples of commuting operators on H,W (A),W (B) the usual

numerical ranges of A and B, V (RA,B) the algebraic numerical range of RA,B,

then:

(i) Seddik (2001) establishes that the numerical range of an elementary op-

erator acting on the Banach space of the p-Schatten class operators on

H,(Cp(H), ‖.‖p),for p ≥ 1, satisfies the relation co(W (A)◦W (B) ⊂ V (Rp(A,B)).

(ii) In Seddik (2002) it is proved that co(W (A) ◦W (B) ⊂ V (RA,B) without the

assumption of the commutativity.

Here we establish results using the maximal numerical range. For vectors x and y

in a Hilbert space H, define a finite rank operator by (x⊗y)z = 〈z, y〉x, ∀z ∈ H.

We take S ⊆ L(H) to be an operator algebra containing finite rank operators.

For a set M , we denote by M and coM the closure and the convex hull of M

respectively.

Theorem 5.5. Let A and B be two n-tuples of commuting operators on H, W◦(A)

and W◦(B), the maximal numerical ranges of A and B, and V◦(RA,B | S), the

algebraic maximal numerical range of the elementary operator restricted on S.

Then

co(W◦(A) ◦W◦(B)) ⊂ V◦(RA,B | S).

Proof. Let λ ∈ W◦(A), β ∈ W◦(B).

This implies there exists sequences {xn} , {yn} ∈ H such that ‖xn‖ = ‖yn‖ = 1,

lim
n→∞

{〈A1xn, xn〉 , ..., 〈Anxn, xn〉} = {λ1, ..., λn} = λ, ‖Aixn‖ → ‖Ai‖
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and

lim
n→∞

{〈B1xn, xn〉 , ..., 〈Bnxn, xn〉} = {β1, ..., βn} = β, ‖Bixn‖ → ‖Bi‖ , 1 ≤ i ≤ n.

Define f on L(S) by

f(Ω) = lim
n→∞

〈Ω(xn ⊗ y)zn, (xn ⊗ yn)zn〉 , ∀ Ω ∈ L(S).

Clearly ,

‖xn ⊗ yn‖ = sup {‖(xn ⊗ yn)zn‖ : zn ∈ H, ‖zn‖ = 1}

= ‖xn‖ ‖yn‖

= 1.

Also ,

|f(Ω)| = |〈Ω(xn ⊗ yn)zn, (xn ⊗ yn)zn〉|

= |〈zn, yn〉|2 |〈Ωxn, xn〉|

≤ ‖zn‖2 ‖yn‖2 ‖Ωxn‖ ‖xn‖

≤ ‖zn‖2 ‖yn‖2 ‖Ω‖ ‖xn‖2

= ‖Ω‖

=⇒ |f(Ω)| ≤ ‖Ω‖

and so f is bounded and ‖f‖ ≤ 1. Assume I ∈ S (S can be unitized in case its
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non-unital) then,

f(I) = lim 〈(xn ⊗ yn)zn, (xn ⊗ yn)zn〉

= lim 〈〈zn, yn〉xn, 〈zn, yn〉xn〉

= lim |〈zn, yn〉|2 ‖xn‖2

= ‖zn‖2 ‖yn‖2 ‖xn‖2

= 1.

f(I) = 1 so that ‖f(I)‖ = 1 ≤ ‖f‖ =⇒ ‖f‖ ≥ 1 Thus ‖f‖ = 1.

A linear functional f is said to be positive if f(ωω∗) ≥ 0 for all ω ∈ S . Taking a

sequence of unit vectors z in H we see that f is a positive linear functional since

f(ΩΩ∗) = 〈ΩΩ∗(xn ⊗ yn)zn, (xn ⊗ yn)zn〉

= 〈Ω∗(xn ⊗ yn)zn,Ω∗(xn ⊗ yn)zn〉

= ‖Ω∗(xn ⊗ yn)zn‖2 ≥ 0.

Since f is a positive linear functional of unit norm, it follows that f is a state on

L(S). Moreover, f is clearly a maximal state. Recall now that

RA,B(X) =
n∑
i=1

AiXBi = A1XB1 + A2XB2 + · · ·+ AnXBn, ∀ X ∈ L(H).
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Thus for X ∈ S we have,

f

(
n∑
i=1

AiXBi

)
= f

(
n∑
i=1

Ai(xn ⊗ yn)Bizn

)

= f

(
n∑
i=1

Aixn 〈Bizn, yn〉
)

=
n∑
i=1

(f(Aixn) 〈Bizn, yn〉)

=
n∑
i=1

f(Aixn)g(Biyn), ∀zn = yn

=
n∑
i=1

λiβi ∈ V◦(RA,B |S).

This shows that W◦(A) ◦W◦(B) ⊂ V◦(RA,B | S) and since the algebraic maximal

numerical range is compact and convex, we deduce:

co(W◦(A) ◦W◦(B)) ⊂ V◦(RA,B | S).

Corollary 5.1. Let A ∈ L(H). Then V◦(LA) = V◦(RA) = V◦(A).

Proof. If A is an operator on a Hilbert space H, Fong (1979) has showed that

V◦(A) = W◦(A). The inclusion V◦(A) ⊆ V◦(LA) follows from this and the above

theorem 5.5.

Now, let λ ∈ V◦(LA). Then there exists f in (L(LA))∗, the algebra of all bounded

operators on the set of left multiplication operators, such that

f(LA) = λ, f(I) = 1 = ‖f‖ and f(L∗ALA) = ‖LA‖2.

Define a functional g on L(H) by g(A) = f(LA). By simple computation, we see

that g is a maximal state on L(H) so that g(A) = f(LA) ∈ V◦(A). Therefore

V◦(LA) ⊆ V◦(A). By the same argument, we find also that V◦(RA) = V◦(A).

Corollary 5.2. For A,B ∈ L(H), V◦(A)− V◦(B) = V◦(∆A,B).

Proof. By theorem 5.5, we have W◦(A)−W◦(B) ⊆ V◦(∆A,B) and since V◦(∆A,B)

is closed, then we have

(W◦(A)−W◦(B)) = V◦(A)− V◦(B) ⊆ V◦(∆A,B).

For the reverse inclusion, we apply the properties of the numerical range as stated
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in chapter 3.

V◦ (∆A,B,A ) = {f (∆A,B) : f ∈ S◦ (L (A ))}

= {f (LA −RB) : f ∈ S◦ (L (A ))}

⊆ {f (LA) : f ∈ S◦ (L (A ))} − {f (RB) : f ∈ S◦ (L (A ))}

= V◦ (LA)− V◦ (RB)

= V◦(A)− V◦(B),

so that V◦ (∆A,B,A ) ⊆ V◦(A)− V◦(B).
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5.5 Derivation in the quotient Algebra

Let H be a separable infinite dimensional Hilbert space. L(H), the algebra of

bounded linear maps on H. L(H) is a C∗− algebra. The algebra K(H) of all

compact operators acting on the Hilbert space H is a norm closed sub-algebra of

L(H). K(H) is a two sided closed ideal of L(H) and closed under involutions;

hence it is also a C∗− algebra. Since K(H) is a closed ideal in L(H) we may form

the quotient Banach algebra L(H)
K(H) called the Calkin algebra. Actually it is also

a C∗− algebra and in particular a simple one. For [t] = T + K(H) ∈ L(H)
K(H) , we

define the essential norm by

‖T‖e = ‖T + K (H)‖ = inf {‖T +K‖ : K ∈ K(H)} .

The essential numerical range of an operator T ∈ L(H), denoted We(T ) was

defined by Stampfli and Williams (1968) as the numerical range of the coset [t] =

T + K(H) in the Calkin algebra.They proved the following equality and it has

been adopted as the definition of the essential numerical range:

We(T ) = ∩
{
W (T +K), K ∈ K(H)

}
.

Some of the basic properties of the essential numerical range include:

i) We(T ) is a non-void, compact and convex set.

ii) We(T ) ⊆ W (T )

iii) σe(T ) ⊂ We(T ), σe(T ) the essential spectrum of T .

iv) We(T ) = {0} iff T ∈ K(H)

The algebra essential numerical range is given by

Ve(T ) =
{
f(T +K) : f ∈

(
L(H)
K(H)

)∗
, f (I +K) = 1 = ‖f‖

}

= {f(T ) : f ∈ L(H)∗, f(I) = 1 = ‖f‖ , f (K(H)) = 0} .
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Now, for all [t] ∈ L(H)/K(H) , we define the following operators on L(H)
K(H) :

a) The left and right multiplication operators,

L[a] [t] = [a] [t] and R[a] [t] = [t] [a], [a] ∈ L(H)
K(H) fixed, respectively.

b) The inner derivation, ∆[a] [t] = [a] [t]− [t] [a] , [a] ∈ L(H)
K(H) fixed.

c) The outer derivation, ∆[a],[b] [t] = [a] [t]− [t] [b] , [b] ∈ L(H)
K(H) fixed.

Following the approach of the work done by Bonsall (1969), let

S

(
L(H)
K(H)

)
,
(
L(H)
K(H)

)∗
and L

(
L(H)
K(H)

)
denote respectively the unit sphere {[x] : ‖x‖e = 1}

of L(H)
K(H) , the dual space of L(H)

K(H) and the set of all linear mappings of L(H)
K(H)

into L(H)
K(H) . For each [x] ∈ S

(
L(H)
K(H)

)
and Γ ∈ L

(
L(H)
K(H)

)
, let

D([x] , L(H)
K(H)) =

{
f ∈

(
L(H)
K(H)

)∗
: ‖f‖ = f [x] = 1

}
and

V (Γ : [x]) =
{
f (Γ [x]) : f ∈ D([x] , L(H)

K(H))
}
.

The numerical range V (Γ) is defined by V (Γ) = ∪
{
V (Γ : [x]) : [x] ∈ S

(
L(H)
K(H)

)}
.

Using the above definition, the numerical range of the left multiplication operator

will be given by

V
(
L[a]

)
= ∪

{
V
(
L[a] : [x]

)
: [x] ∈ S (L(H)/K(H))

}
= ∪

{
f
(
L[a] [x]

)
: f ∈ D([x] , L(H)/K(H))

}
= ∪{f ([a] [x]) : f ∈ D([x] , L(H)/K(H))}

= ∪{f ([ax]) : f ∈ D([x] , L(H)/K(H))} .

Similarly, the numerical range of the right multiplication operator can be obtained.

Recall, the algebraic maximal numerical range of an element a in a C*-algebra A ,

denoted by Vo(a,A ) is defined to be the set:

{f(a) : f ∈ S0(a,A )},

where S0(a,A ) denotes the set of all maximal states of a.
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Consider the general operator Γ[a],[b]([x]) = [a] [x]+[x] [b] = L[a] +R[b],∀ [x] ∈ A =

L(H)/K(H).

Theorem 5.6. For [a] , [b] in the C*-algebra A = L(H)/K(H),we have

Vo(Γ[a],[b],A ) ⊆ Vo(Γ[a],A ) + Vo(Γ[b],A ).

Proof.

Vo(Γ[a],[b],A ) =
{
f(Γ[a],[b]) : f ∈ S0(Γ[a],[b],A )

}
=
{
f(L[a] + L[b]) : f ∈ S0(Γ[a],[b],A )

}
=
{
f(L[a]) + f(L[b]) : f ∈ S0(Γ[a],[b],A )

}
⊆
{
f
(
L[a]

)
: f ∈ S0(L[a],A )

}
+
{
f
(
R[b]

)
: f ∈ S0(R[b],A )

}
= Vo(Γ[a],A ) + Vo(Γ[b],A ).

Theorem 5.7. For the inner derivation ∆[t] [a] = [t] [a]− [a] [t] , ∀ [a] ∈ A ,

Vo([t] [a]− [a] [t] ,A ) ⊆ Vo([t] [a] ,A )− Vo([a] [t] ,A ).

Proof.

Vo([t] [a]− [a] [t] ,A ) = {f([t] [a]− [a] [t]) : f ∈ S0(L (A ))}

⊆ {f([t] [a]) : f ∈ S0(L (A ))} − {f([a] [t]) : f ∈ S0(L (A ))}

= Vo([t] [a] ,A )− Vo([a] [t] ,A ).

We now derive the upper bound for the norm of an inner derivation in the

quotient C* algebra.

Let π : L(H)→ L(H)/K(H) be the canonical homomorphism from L(H) such

that T → T +K. π is continuous. Let ∆T : L(H)→ L(H) be the inner derivation

map such that X → TX −XT, ∀X ∈ L(H). The map ∆T , is also continuous .
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The composite map π ◦∆T is continuous and induces the derivation map

∆̂[t] : L(H)/K(H)→ L(H)/K(H) such that [x]→ [t] [x]−[x] [t] ,∀ [x] ∈ L(H)/K(H).

Theorem 5.8. Let ∆̂[t] = [tx− xt], for all [t] , [x] ∈ L(H)/K(H). Then there

exists λ ∈ C such that
∥∥∥∆̂[t] [x]

∥∥∥ ≤ 2inf {‖[t− λ]‖ : λ ∈ C}/

Proof. Notice that ∆̂[t] = [tx− xt] = ∆T +K(H).

By definition,

∥∥∥∆̂[t]

∥∥∥ = sup {‖[t] [x]− [x] [t]‖ : [x] ∈ L(H)/K(H), ‖[x]‖ = 1} .

However, ∥∥∥∆̂[t] [x]
∥∥∥ = ‖[t] [x]− [x] [t]‖

= ‖[tx]− [xt]‖
= ‖[tx]− [λx] + [λx]− [xt]‖
= ‖[tx− λx]− [xt− λx]‖
= ‖[(t− λ)x]− [x (t− λ)]‖
= ‖[t− λ] [x]− [x] [t− λ]‖
≤ 2 ‖[t− λ]‖ ‖[x]‖ .

Taking the supremum over all [x] of norm one yields,

∥∥∥∆̂[t]

∥∥∥ ≤ 2inf {‖[t− λ]‖ : λ complex} .
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Chapter 6

CONCLUSION AND

RECOMMENDATIONS

6.1 Conclusion

In the study, the convexity of the algebra numerical range has been proved. The

algebra numerical range of a generalized derivation restricted to a norm ideal J

has been shown to be equal to the difference of the algebra numerical ranges

of the implementing operators provided that J contains all finite rank operators

and is suitably normed . Furthermore, the relationship that exists between the

algebraic maximal numerical range of an elementary operator and its implementing

operators has been established .

6.2 Recommendations

The inclusion co(W◦(A) ◦W◦(B)) ⊂ V◦(RA,B | S) has been shown in one direction

and it is natural to wonder if the reverse inequality or equality holds true.
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