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Abstract  

In the design of experiments for estimating statistical 

models, optimal designs allow parameters to be estimated 

without bias and with minimum variance. A non-optimal 

design on the other hand requires a greater number of 

experimental runs to estimate the parameters with the 

same precision as an optimal design. Thus in practical 

terms, optimal experiments can reduce the costs of  

experimentation. We construct an optimal design  

among a family of designs, , with b=5 blocks of  
size k=5 and with t=5 treatments. We demonstrate that 

such a design is optimal under all the optimality criteria 

considered by Kiefer (1975). It is thus universally optimal. 
 
 
 
Introduction  
Many of the current statistical approaches to designed experiments 

originate from the work of R. A. Fisher in the early part of the 20th  
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century. Fisher demonstrated how taking the time to seriously 

consider the design and execution of an experiment before trying it 

helped avoid frequently encountered problems in analysis. Key 

concepts in creating a designed experiment include blocking, 

randomization and replication. In the design of experiments, optimal 

designs are a class of experimental designs that are optimal with 

respect to some statistical criterion. In the design of experiments for 

estimating statistical models, optimal designs allow parameters to be 

estimated without bias and with minimum variance. A non-optimal 

design on the other hand requires a greater number of experimental 

runs to estimate the parameters with the same precision as an 

optimal design. Thus in practical terms, optimal experiments can 

reduce the costs of experimentation. 

 
Since the optimality criterion of most optimal designs is based on 

some function of the information matrix, the 'optimality' of a given 

design is modeldependent. While an optimal design is best for that 

model, its performance may deteriorate on other models. On other 

models, an optimal design can be either better or worse than a non-

optimal design. Therefore, it is important to benchmark the 

performance of designs under alternative models.  
The choice of an appropriate optimality criterion requires some 

thought, and it is useful to benchmark the performance of designs 

with respect to several optimality criteria. Cornell writes that since 

the [traditional optimality] criteria are variance-minimizing criteria, a 

design that is optimal for a given model using one of the criteria is 

usually near-optimal for the same model with respect to the other 

criteria.  
Indeed, there are several classes of designs for which all the 

traditional optimality-criteria agree, according to the theory of 

"universal optimality" of kiefer (1975). The experience of 

practitioners like Cornell and the "universal optimality" theory of 

Kiefer suggest that robustness with respect to changes in the 
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optimality-criterion is much greater than is robustness with respect 

to changes in the model. 

 
The Model  
The concept of experimental designs may be applied to field trials 

and of major concern are parameter estimates of yield response 

models. A commonly estimated additive model is one that assumes 

the yield is explained by treatment, block effects and some error 

term. Optimal designs to estimate treatment and block effects can 

then be developed. Other than these three factors, plot yields can 

also be affected by interference effects. Interference arise when 

response to treatments in plots are influenced by treatment applied in 

neighboring plots (Oliver and Kempton, 1996). We assume an 

experiment with b blocks of size k and t treatments. A design for  
such an experiment is a mapping  

that  assigns 
 

treatment  to plot  of the field. The set of all possible 

designs  for such an experiment is denoted . We consider an  
interference model with different left and right neighbor effects, as 

in Kurnet and Martin (2000). We model the observed response  

at plot                             as; 
 
 
Where μ denotes istheeffectgeneralofthei-thblock,  mean, 

 
, the direct effect of the treatment applied to plot , 

and are the left and right neighbor effects, 
 

respectively and  is the random error. We postulate that there are 

no guard plots so that = =0 for all  1,2 , … b. 
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Classical optimality criteria 
 
A-optimality  
TheA-optimality ("average" or trace) is one criterion which seeks to 

minimize the trace of the inverse of the information matrix. This 

criterion results in minimizing the average variance of the estimates 

of the regression coefficients. If the coefficient matrix is partitioned 

into  columns, , then the inverse  can  
be represented as 

. 
 
This is the average of the standardized variances of the optimal 

estimators for the scalar parameter systems   
formed from the columns of L. We can pass back and forth between 

the information point of view and the dispersion point of view. 

Maximizing the average–variance criterion among information 

matrices is the same as minimizing the average of the variances 

given above, Pukelsheim, F. (2006). 

 
C-optimality  
The C-optimality is the other criterion which minimizes the variance 

of a best linear unbiased estimator of a predetermined linear 

combination of model parameters. 
 
 

 

D-optimality  

The determinant criterion   differs from the determinant  
(detC) by taking the s-th root whence both functions induce the same 

pre-ordering among information matrices. From a practical point of 

view one may therefore dispense with the s-th root and consider the 

determinant directly. However, the determinant is 
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positively homogeneous of degree s, rather than 1. For comparing 

different criteria, and for applying the theory of information 

functions,  the  version    is  appropriate.  
Maximizing the determinants of information matrices is the same as 

minimizing the determinants of dispersion matrices, because of the 

formula  Thus the D-optimality criterion  
seeks to minimize |(X'X)

−1
|, or equivalently maximize the 

determinant of the information matrix X'X of the design. This 

criterion results in maximizing the differential shannon information 

content of the parameter estimates, Pukelsheim, F. (2006). 

 
E-optimality  
The E-optimality (eigen-value) is a criterion which maximizes the 

minimum eigenvalue of the information matrix. It is the same as 

minimizing the largest eigen-value of the dispersion matrix, 
 
 
 
 

 
Minimizing this expression guards against the worst possible 

variance among all one-dimensional subsystem , with a  
vector z of norm 1. In terms of variance, it is a minimax approach, in 

terms of information a maximin approach. The E-optimality criterion 

need not be differentiable at every point. Such E-optimal designs can 

be computed using methods of convex minimization that use sub-

gradients rather than gradients at points of non-differentiability, 

Pukelsheim, F. (2006). 

 
T-optimality  

The other extreme member of the family is the trace criterion 

 . By itself the trace criterion is rather meaningless. A criterion 
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ought to be concave so that information cannot be increased by 

interpolation. The trace criterion is linear, and this is so weak that 

interpolation becomes legitimate. Yet trace optimality has its place in 

the theory, mostly accompanied by further conditions that prevent it 

from going astray. An example is the Kiefer optimality of Balanced 

Incomplete Block Designs. In general the T-optimality criterion 

maximizes the trace of the information matrix. 

 
Other optimality-criteria are concerned with the variance of 

predictions: 

 
G-optimality  
The G-optimality criterion seeks to minimize the maximum entry in 

the diagonal of the hat matrix X(X'X)
−1

X'. This has the effect of 

minimizing the maximum variance of the predicted values. 
 
I-optimality  
The I-optimality (integrated) is a second criterion on prediction 

variance, which seeks to minimize the average prediction variance 

over the design space. 

 
V-optimality  
The V-optimality (variance) is a criterion, which seeks to minimize 

the average prediction variance over a set of m specific points. 

 
Treatment sequences for a universally optimal design 
 
Denote the set of all sequences of treatments applied to k plots in a 

block  
by 
 
 
. We refer to two treatment sequences  and 
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as equivalent if one sequence can be transformed into the other by 

relabeling. Thus a set,  of all treatment sequences, can be 

divided into Қclasses of equivalent sequences. The partial design 

matrices  and  of all sequences from one equivalence class 

are equal up to the permutations of the columns. For a sequence 

 the symmetric compliment 

 is defined by

. The pair is a symmetric  

pair. If , then  is symmetric. The symmetric complements 

of all sequences from one equivalence class U all lie in the same 

equivalence class . If U=  then class U is symmetric. 
 
In the case of our consideration that , the least number 

of possible treatment sequences per block is i.e when 

We  consider  the  following sequence  classes 

, , 

 and 
 

. We notice that 

 is the symmetric complement of . For the case that 

, the sequence classes of interest will be 

, , 

 and 

. The treatment effects, left effects 

and right effects incidence matrices for all designs falling in 

equivalence class  are given as; 
 
 
 

177  



10
th

 AIC Symposium 1: Peer Reviewed Papers 
 
 
 

, , 
 
 
 
 
 
 
 
 
 
 
 

 
where 
 
 
 
 

For every class  the  are given as follows; 
 

 
(4.1.1) 

 
 
 

(4.1.2) 
 
 
 

(4.1.3) 
 
 
 

(4.1.4) 
 
 
 

(4.1.5) 
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(4.1.6) 
 

where .  The  tables  below  shows  the  four  

equivalence classes of interest with , , and 

,with their corresponding . 
 

Table 4.1.2: The classes  of sequences and corresponding  

for the case  
 
 
 
 
 
 
 
 
 
 
 

 
In the general case, corresponding with the four equivalence classes 

of interest, we obtain the treatment effects incidence matrices 

alongside the left and right effect matrices as follows; 
 

Case I: A Sequence of treatments belonging to an 

equivalence class , 
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, , 
 
 
 
 
 
 
 
 
 

 
Case  II:  A  sequence  of  treatments  belonging  to  an  

equivalence class , 
 

, ’ 
 
 
 
 
 
 
 
 
 
 
 
 
 

Case III: A sequence of treatments belonging to an 

equivalence class  
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, , 
 
 
 
 
 
 
 
 
 
 
 

Case IV: A sequence of treatments belonging to an 

equivalence class 

 
 

 
, 

 
 
 
 
 
 
 
 
 
 
 
Universally Optimal Designs for models of blocks of size 

five with independently identically distributed error terms 
 

From 3.8.2 we note that a design  is universally Optimal in 

approximate design theory provided that such a design satisfies the 

linear equations 3.8.2.1 – 3.8.2.4. For the case of  we 

obtain the following linear equations; 
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Considering Models where error terms are identically and 

independently distributed within and among blocks then . 

The condition on the linear equations reduces to; 
 
 
 
 
 
 
 
 
 
 
 
 

 

Considering treatment sequences  which belong to universal 

classes    then  the  equations  above  yield  the  
following results; 
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4.3.10 
 
 
 
 

+ + + 
 
 
 

 
+ + 
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+ + 
 
 
 
 

 
= 

 
 

 
4.3.11 

 
On evaluating these equations, we obtain some of the solutions for 

the proportion of treatment sequences as; 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Other solutions are; 
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Thus a design composed of treatments that belong to the equivalence 

 and  in proportions of  and  

 respectively and such that are reasonably 

symmetric, is universally optimal. 
 
Construction of some optimal designs  
From the general results obtained we construct some universally 

optimal designs for the case of t=5, k=5 and b=5. Using results in 4.3 

and 4.2.16, we obtain the treatment proportions as follows; 
 

 . Thus we take any 

three treatment sequences belonging to equivalence class  and 

two treatment sequences belonging to equivalence class . The 

following are the possible competing designs; 
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, , 
 
 
 
 

, , 
 
 
 

 
, , 

 
 
 
 

 
, , 

 
 
 
 
 

, 
 
 
 
 

 

Results  
The construction of universally optimal designs in this paper 

involves the use of different treatment sequences that must  

necessarily belong to equivalence classes  assigned 

to the b blocks of the experimental layout. The allocation of these 

treatments according to proportions  In the case 

that t=k=b=5, three treatments sequences belonging to equivalence 

class , and two belonging to equivalence class  were used 
 

187  



10
th

 AIC Symposium 1: Peer Reviewed Papers 
 
resulting in ten competing designs. The information matrices of all 

the competing designs are symmetric. Designs  and  

 have unique information matrices whereas  and  have 

similar information matrices. Similarly  and  have same 

information matrix. In terms of optimality, a universally 

optimal design will attain a trace bound of 18.1. Both designs 

 have a trace of 16.96, with an efficiency of 0.937. 

Designs  and  have trace of 17.28 with an efficiency of 0.955 

while designs  and  have a trace of 17.8 with an 

efficiency of 0.955 as well. Though the off diagonal elements of 

design  are different from those of , presenting the 

information matrix of  to be different, the trace in still 17.28 with  
an efficiency of   0.955.   In the summative,   designs 

  are universally optimal though they do not 

attain the  trace bound . They  are  superior  to 

designs .   
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