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ABSTRACT 

 

Melia volkensii is a tree species endemic to the arid and semi-arid areas of Eastern Africa. 

Its natural range falls within areas which are characterized by dry bush land and wooded 

grassland. It is a fast growing species with the growth tremendously faster on farm than 

in the wild, suggesting remarkable potential gains through domestication. Despite the 

potential of the species, the tree is yet to be massively propagated for plantation 

establishment especially by farmers due to difficulties experienced in seed extraction, 

germination and propagation through cuttings when compared to other species. The 

objectives of the study were to construct an A-, D-, T- optimal four factor rotatable 

central composite design, to develop models for the germination of Melia volkensii and to 

determine optimal conditions for the germination of Melia volkensii. The experiments 

were conducted at Kenya Forestry Research Institute (KEFRI) laboratories in Muguga, 

Kiambu County. An A-, D-, T- optimal four factor rotatable central composite design was 

constructed from the general central composite design by determining the optimal 

weights satisfying the A-, D- and T- optimality criteria. Response surface methodology 

techniques were used to develop second order models for the germination of Melia 

volkensii as well as to analyze the associated response surfaces. The variables under 

investigation were soil pH, temperature, chemical concentration and length of time of 

seed pre-treatment. Comparisons were made on the use of four different chemicals for 

seed pre-treatment. These were Potassium Nitrate (KNO3), Hydrogen Peroxide (H2O2), 

Gibberellic Acid (GA3) and Sulphuric Acid (H2SO4). The experiment was performed by 

soaking 20 seeds of Melia volkensii in a chemical solution for a specified period of time. 

The seeds were then placed in a petri-dish containing soil of a particular pH. They were 

then placed in germination chambers of a defined temperature. The outcome was the 

number of seeds that germinated in a particular petri-dish. We established that in general, 

germination rates of Melia volkensii seeds were low. For the four chemicals used in the 

experiment the germination rates were found to be 31.67% for 𝐾𝑁𝑂3, 39.08% for 𝐻2𝑂2 , 

42.00% for 𝐺𝐴3 and 28.25% for 𝐻2𝑆𝑂4. The overall germination rate was found to be 

35%. However when the conditions were favorable and set correctly germination rate 

was optimized at between 57% and 76%. Temperature and soil pH were found to be the 

most significant factors across the models. The optimum temperature ranged between 

26.77
o
C and 31.13

o
C while the optimum soil pH was found to be between 3.95 and 5.52. 

To maximize germination rates, we recommend the soaking of Melia volkensii seeds for 

8 hours in a 0.03% solution of GA3 before planting them in soil of pH 5.5 at a constant 

temperature of 27
o
C. The results of the study will profoundly contribute towards large 

scale adoption and availability of seedlings for Melia volkensii thereby transforming the 

landscape in the arid and semi-arid lands and in the long term changing their climate. 
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CHAPTER ONE 

INTRODUCTION 

1.1 Background of the Study 

1.1.1 Central Composite Design 

The central composite design (CCD) was developed by (Box & Wilson, 1951). It is 

commonly used for fitting second order models. These designs are mixtures of three 

building blocks: cubes, stars and center points. Consider the case where an experiment 

consists of m factors 𝑥1, 𝑥2, … , 𝑥𝑚. The cube portion is a 2𝑚−ℎ fractional factorial design 

with ℎ describing the size of the fraction of the full factorial to be used. If it is replicated 

𝑛𝑐 times, then it is a design for sample size 2𝑚−ℎ𝑛𝑐. The star portion takes one 

observation at each of the vectors ±𝛼𝑒𝑖 for  𝑖 ≤  𝑚, for some star radius α > 0 with 𝑒𝑖 

being the i-th Euclidean unit vector. For 𝑛𝑠 replications, the star portion is a design for 

sample size 2𝑚𝑛𝑠. The center point portion is the one point design in 0 being replicated 

𝑛0 times (Pukelsheim, 2006). The centre runs contain information about the curvature of 

the surface, if the curvature is significant, the star points allow for the experimenter to 

obtain an efficient estimation of the quadratic terms.Therefore the central composite 

design is for sample size 

 𝑛 = 2𝑚−ℎ𝑛𝑐 + 2𝑚𝑛𝑠 + 𝑛𝑜.        (1.1) 

(Box & Hunter, 1957) developed the notion of design rotatability. A rotatable design is 

one for which the variance has the same value at any two locations that are the same 

distance from the design center. Hence a design is said to be rotatable when the variance 

is a function only of the distance from the center of the design and not a function of the 
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direction. Since a rotatable design provides equal accuracy of estimation of the response 

surface in all directions, it is well suited for locating unknown optimization. 

1.1.2 Response Surface Methodology 

Response surface methodology (RSM) is concerned with the modelling of one or more 

responses to the settings of several explanatory variables. The nature of the function 

relating the responses to the variables is assumed to be unknown and the function or 

surface is modelled empirically using a first- or a second- order polynomial model. The 

broad aims of RSM are to investigate the nature of the response surface over a region of 

interest and to identify operating conditions associated with maximum or minimum 

responses. RSM is generally conducted in three phases, as emphasized in (Myers & 

Montgomery, 2002). Phase 0 involves the screening of explanatory variables to identify 

those which have a significant effect on the responses, phase 1 is concerned with the 

location of optimum operating conditions by conducting a sequence of suitable 

experiments and phase 2 involves the fitting of an appropriate empirical model, usually a 

second-order polynomial model, in order to examine the nature of the response surface in 

the vicinity of the optimum. 

1.1.3 Melia volkensii 

Melia volkensii is deciduous, open crowned and laxly branched. Mature trees range 

between 6 m and 20 m tall. Trees with 25 cm diameter are common. The bark is grey, 

fairly smooth, furrowing with age. Leaves are light, bright green, bipinnate with 

(sub)opposite leaflets, 3-7 per pinna, up to 35 cm long, and are densely hairy when 

young. The leaflets are oval to lanceolate, tapering to the apex. The margins are entire or 

serrated, becoming almost glabrous when mature. Dimensions range between 4 cm and 
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7.5 cm long. Flowers are small, white and fragrant, in loose sprays. Male and female 

flowers are on the same tree (andromonoecious). Inflorescence is congested, up to 12 cm 

long, axillary and on older branchlets. Petals are tetra- to pentamerous, white, free and 

may curl backwards; stamens are the same number as the petals, sometimes twice as 

many, and united into a tube. The fruit is drupe-like and oval; colour changes from green 

to pale grey as the fruit matures. Fruit size is normally 4 cm long with a very thick, bony 

endocarp. Because of the divided leaves, the generic name is derived from the Greek 

melia (the ash). (Maundu & Tengnas, 2005). 

Melia volkensii is primarily a tree of semi-arid and arid climates with a wide range of 

diverse climate (Kidundo, 1997). Many trees Melia volkensii are found in Taita , Kitui, 

lower Embu, and lower Meru counties. In the driest climates it grows near the base of 

hills where runoff increases ground water supplies. Some trees survive near the rock hills 

of Takaba in Mandera county, but are endangered now because of increased building 

activities. It likes deeper, well-drained sandy soils that are not alkaline (salty) or too 

acidic. The tree does not do well on black cotton soils. The timber is quite durable and 

easy to work with. Many in the sub-humid and semi-arid regions use it for housing 

construction, poles, mortar and pestles, general purpose wood, and fuel. According to 

(Muok et al, 2010) Melia volkensii can be propagated through three methods; seed, 

wildlings and vegetatively by use of stem and root cuttings.  

The current emphasis of afforestation in arid and semi-arid lands is based on the planting 

of high value trees and shrubs. Such trees species provide the farmers with valuable 

products and services to meet their basic needs in terms of food, shelter and clothing. For 

the past three decades, research work has attempted to identify such tree and shrub 
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species, both indigenous and exotic. In most trials, Melia volkensii has outperformed 

most of the other dry land species (Kidundo, 1997). 

Melia volkensii is one of the most prized and important multipurpose tree species 

producing a range of useful products such as high quality timber, fodder, fuel wood and 

other environmental services. In areas where it naturally occurs it is common to find 

isolated trees left intact in croplands (Stewart & Blomley, 1994). Over exploitation of 

Melia volkensii for timber without replanting has resulted in rapid depletion of its natural 

supply. Attempts to propagate the species have proved to be both difficult and expensive 

mainly due to seed dormancy and seed extraction process. Currently there are no methods 

developed or reported on the application of either tissue culture or rejuvenated leafy stem 

cuttings for the propagation of Melia volkensii. The current available methods of 

propagation using seed or root and stem cuttings are problematic and hence not amenable 

to mass production of planting materials. The methods are labor intensive, difficult to 

optimize and have not been able to meet the growing demand for planting materials.  

The Kenya Vision 2030 is based on three pillars: the economic pillar, the social pillar, 

and the political pillar. The social pillar aims to achieve a just and cohesive society 

enjoying equitable social development in a clean and secure environment. Under the 

environment sub pillar, the vision targets to increase forest cover from less than three per 

cent to ten per cent (GOK, 2007). This will help sustain water catchments for 

hydropower, agriculture, human consumption, wildlife and tourism. Other benefits 

include prevention of soil erosion, increasing of biodiversity, sequestration of carbon and 

to provide timber for local people. Melia volkensii is among the tree species that can 

considerably contribute towards the achievement of this goal in the vision. 
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1.2 Statement of the Problem 

Seed germination for Melia volkensii is very difficult to achieve (Maundu & Tengnas, 

2005). A majority of farmers who have this species on their farm rely on natural 

regeneration of seedlings. However reliance on natural regeneration is a major constraint 

to the expansion of use of this species as the low germination rate obtained by farmers 

mean that it is only an option where trees are already abundant (Stewart & Blomley, 

1994). The use of alternative propagation methods may result in problems because trees 

originating from root cuttings are reported to be unstable (Stewart & Blomley, 1994). 

Instability problems due to shallow rooting, have also been identified in rubber 

plantations established from cuttings (Carron & Enjarlic, 1983), and studies of other tree 

species indicate that both propagation method and transplanting can have long term 

effects on root architecture which could alter the ways that trees compete with adjacent 

crops (Bell et al., 1993; Brutsch et al., 1977; Halter & Chanway, 1993; Khurana et al., 

1997; Riedacker & Belgrand, 1983). 

There was therefore need to investigate and provide conditions that optimize seed 

germination rates for Melia volkensii. The study investigated optimum conditions that are 

favorable for the germination of Melia volkensii. Four factors were identified for 

consideration. These were temperature, soil pH, chemical concentration and length of 

time of seed pre-treatment. Comparison was made on the use of four different chemicals 

for seed pre-treatment. The chemicals included Sulphuric Acid (H2SO4), Gibberellic Acid 

(GA3), Hydrogen Peroxide (H2O2) and Potassium Nitrate (KNO3). 
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1.3 Justification of the Study 

Kenya's arid and semi-arid lands (ASALs) represent 80% of total land area. The natural 

resources of ASALs are being degraded rapidly. The crisis has been aggravated over the 

last three decades by repeated drought and inappropriate land use practices as a result of 

rapid population increase of people and livestock. This has resulted in clearing of forests 

for agricultural production, settlement and cutting of trees for charcoal production for 

both home and commercial purposes. 

Afforestation in ASALs has been emphasized to ensure a sustainable management 

system, which will contribute towards poverty alleviation.  

One of the highly valued multipurpose trees in ASALs, which has been recommended for 

planting in Kenya, is Melia volkensii. Therefore to increase availability of seedlings for 

wide scale growing of the tree species, it was imperative to study conditions that are 

likely to increase the germination rate of Melia volkensii. 

 

1.4 Research Objectives 

The general objective of the study was to model the germination of Melia volkensii using 

an A-, D-, T- optimal four factor rotatable central composite design. The specific 

objectives were: 

1. To construct an A-, D-, T- optimal four factor rotatable central composite design. 

2. To develop models for the germination of Melia volkensii. 

3. To determine optimal conditions for the germination of Melia volkensii. 
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CHAPTER TWO 

LITERATURE REVIEW 

2.1 Central Composite Design 

The CCD has been widely studied since it was introduced by (Box & Wilson, 1951). The 

design is probably the most commonly used one in the construction of second order 

(quadratic) model for the response variable without needing to use a complete three-level 

factorial experiment. (Box & Draper, 1963) suggested several criteria which can be used 

in the selection of design. (Myers, 1976) suggested optimal CCDs under several design 

criteria. (Myers & Montgomery, 2002) discussed the efficiency of experimental designs, 

and compared the CCD with other designs under D-, A- and E -optimality criteria. 

Rotatable designs generate information about the response surface equally in all 

directions and are therefore useful when no or little prior knowledge is available about 

the nature of the response surface. This concept was introduced by (Box & Hunter, 

1957).  

(Draper, 1960c) provided a method of constructing second-order rotatable designs in k-

dimensions from the second-order rotatable designs in (k-1)-dimensions. (Herzberg, 

1967) provided an alternative method which always works and for which the results of 

the experiment according to the (k-1)-dimensional design need not be discarded. Many 

third order rotatable designs have been described in (Gardiner et al., 1959; Draper, 

1960a, 1960b, 1961; Thaker & Das, 1961; Herzberg, 1964; Tyagi, 1964 and Nigam, 

1967). (Mutiso & Koske, 2005) developed some third order rotatable designs in  five 

dimensions whereas (Koske et al., 2011) constructed a third order rotatable design in 5-
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dimensions with 320 points through balanced incomplete block designs. Third order 

rotatable designs usually require many more points than the available minimal point 

designs and hence may not always be desirable. (Koske & Patel, 1985) gave the 

necessary and sufficient conditions for a set of points to form a rotatable design of order 

four. (Koske, 1989) presented features of the variance function of the difference between 

two estimated responses for fourth order rotatable designs. (Njui, 1985) obtained the 

moment and non-singularity conditions for a set of experimental points to form a fifth 

order rotatable design while (Njui & Patel, 1988) gave conditions for a set of points to 

form a rotatable design of order five in three dimensions.  

Since rotatability is a highly desirable property, when considering designs for estimating 

slopes of a response surface it is preferable to look for designs having the property of 

rotatability in terms of the estimated slopes rather than the estimated response. (Hader & 

Park, 1978) were the first to realize this and introduced a concept of slope-rotatability, 

but for dealing with central composite designs in the context of second-order models 

only. Various possible concepts of slope-rotatability for a design of order one and above 

are discussed in (Huda & Chowdhury, 2004) and (Huda, 2006). Among these the ones 

likely to be most useful are the A- (slope)-rotatability and D- (slope)- rotatability. The 

concept of A- rotatability for second-order designs has also been known as slope 

rotatability over all directions (SROAD) (Park, 1987). While deriving minimax designs 

for estimating slopes (Mukerjee & Huda, 1985) observed some results concerning 

sufficient conditions for A-rotatability of second- and third-order designs. These 

sufficient conditions for second-order designs were more formally presented among the 

results in (Park, 1987). A- rotatability is relatively easier to deal with than D- rotatability 
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as can be seen from the work of (Ying et al, 1995a, b) concerning A-rotatability of 

second-order designs. This study formulated and applied an A-, D-, T- optimal four factor 

rotatable central composite design. 

2.2 Response Surface Methodology 

Response surface methodology (RSM) is a collection of mathematical and statistical 

techniques that is useful for the modeling and analysis of problems in which a response 

of interest is influenced by several variables and the objective is to optimize this response 

(Montgomery, 2005). RSM was initially developed and described by (Box & Wilson, 

1951). (Hill & Hunter, 1966) conducted an extensive review of the literature for RSM 

emphasizing especially on the practical applications of the method. (Mead & Pike, 1975) 

examined the state of RSM from the biometrician’s point of view and investigated the 

extent to which the methodology is used in applied research with particular emphasis on 

biometric applications.  (Myers et al., 1989) evaluated the use of RSM between 1966 - 

1988. Over the years RSM has been implemented in a wide variety of fields. Examples of 

the recent applications are (Madamba, 2002), (Hussain et al., 2011), (Pishgar-Komleh et 

al., 2012), (Anwar et al., 2012), (Hussain & Uddin, 2012), (Krishna et al., 2013) and 

(Zainal et al., 2013). This study applied RSM in fitting second order models as well as 

investigating optimal conditions for the germination of Melia volkensii. 

2.3 Germination of Melia volkensii 

Melia volkensii (Melia) is an indigenous tree species in the plant family Meliaceae. Melia 

has been heavily exploited because it is highly valued as a timber tree. This trend has 

been worsening over the last decade owing to shortage of alternative hardwood species. 

As a result the tree growers are now striving to grow Melia as a plantation species. 
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Propagation of Melia has, however, been a major bottle neck and hindered planting of the 

species on large scale. The seeds of Melia fail to germinate when placed under normal 

conditions of air, moisture and warm temperature. The seed dormancy therefore 

constitutes a problem for nursery management. Some research has been done on the 

germination of Melia. (Milimo, 1986) studied factors which maintain seed dormancy and 

conditions that lead to its release. The influence of temperature on germination of Melia 

volkensii seeds was examined by (Milimo & Hellum, 1990). The effect on germination of 

alternating day and night temperature and constant temperature between 22° and 42°C 

were studied. There were significant differences in total germination and germination 

rates between temperatures in both regimes. Most seeds failed to germinate at 

temperature above 37°C. (Mwamburi et al., 2005) researched on the traditional methods 

used by farmers to break seed dormancy of  Melia volkensii in Eastern and Coastal 

provinces of Kenya. The methods found include burning of nuts, use of troughs, cracking 

of nuts, long-term beds, sunken beds, direct sowing of seeds and sowing of nuts. These 

achieved germination of between 5% - 20% in 1-10 weeks depending on the method 

used. (Indieka & Odee, 2005) studied vegetative propagation of Melia volkensii. They 

concluded that Melia volkensii is amenable to propagation by rejuvenated leafy stem 

cuttings and tissue culture and proposed rooting experiments to develop an in vitro 

multiplication protocol for Melia volkensii. 

The study investigated the effect of temperature, soil pH, length of time of seed pre-

treatment and chemical concentration on the germination of Melia. 
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CHAPTER THREE 

METHODOLOGY 

3.1 Research Site 

The experiments were conducted at Kenya Forestry Research Institute (KEFRI) 

laboratories in Muguga, Kiambu County. The facilities will provided the required 

conditions for the accomplishment of the study objectives especially the use of 

temperature controlled germination chambers. 

 

3.2 Constructing an A-, D-, T- Optimal Four Factor Rotatable Central Composite 

Design 

3.2.1 Central Composite Design 

The central composite design (CCD) is made up of three parts; the cube portion that 

consists of a 2𝑚−ℎ fractional factorial design with m being the number of factors and h 

defines the fractional feature, the star or axial points are 2𝑚 points taking the values ±𝛼 

for a particular factor and zero for others and the centre point that has the value 0 for all 

the factors. The cubic, star and center point can each be replicated 𝑛𝑐, 𝑛𝑠 and 𝑛0 times 

respectively. Thus the sample size for the CCD is 

 𝑛 = 2𝑚−ℎ𝑛𝑐 + 2𝑚𝑛𝑠 + 𝑛𝑜 .        (3.1) 

The central composite design for two, three and four factors is given in table 3.1. 

The table shows the coded values of the explanatory factors. Given a natural variable X, 

the coded values C are obtained by using the transformation 

𝐶 =
𝑋−𝑋0

𝑑
          (3.2) 

for some suitably chosen values of the center point 𝑋0 and deviation 𝑑. 
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Table 3.1: Two, Three and Four Factor Central Composite Design 

Two Factor 

CCD 

Three Factor CCD Four Factor CCD 

𝒙𝟏 𝒙𝟐 𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝟒 

-1 -1 -1 -1 -1 -1 -1 -1 -1 

-1 1 1 -1 -1 1 -1 -1 -1 

1 -1 -1 1 -1 -1 1 -1 -1 

1 1 1 1 -1 1 1 -1 -1 

-𝛼 0 -1 -1 1 -1 -1 1 -1 

𝛼 0 1 -1 1 1 -1 1 -1 

0 -𝛼 -1 1 1 -1 1 1 -1 

0 𝛼 1 1 1 1 1 1 -1 

0 0 -𝛼 0 0 -1 -1 -1 1 

  𝛼 0 0 1 -1 -1 1 

  0 -𝛼 0 -1 1 -1 1 

  0 𝛼 0 1 1 -1 1 

  0 0 -𝛼 -1 -1 1 1 

  0 0 𝛼 1 -1 1 1 

  0 0 0 -1 1 1 1 

     1 1 1 1 

     -𝛼 0 0 0 

     𝛼 0 0 0 

     0 -𝛼 0 0 

     0 𝛼 0 0 

     0 0 -𝛼 0 

     0 0 𝛼 0 

     0 0 0 -𝛼 

     0 0 0 𝛼 

     0 0 0 0 
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The central composite design is commonly used to fit the second order response surface 

model of the form: 

𝑦𝑢 = 𝛽0 + ∑𝛽𝑖

𝑚

𝑖=1

𝑥𝑖𝑢 + ∑𝛽𝑖𝑖𝑥𝑖𝑢
2

𝑚

𝑖=1

+ ∑𝛽𝑖𝑗

𝑚

𝑖<𝑗

𝑥𝑖𝑢𝑥𝑗𝑢 + 𝜀𝑢 ,   (𝑢 = 1,2,… , 𝑛)                 (3.3)   

       

where 𝑥𝑖𝑢 is the value of the variable 𝑥𝑖 at the 𝑢 𝑡ℎ experimental point and 𝜀𝑢′s are 

uncorrelated random errors with mean zero and variance 𝜎𝜀
2. For a central composite 

design, the 𝑥𝑖𝑢′s satisfy the following conditions 

∑ {∏𝑥𝑖𝑢
𝜋𝑖

𝑚

𝑖=1

}

𝑛

𝑢=1

= 0 if any πi is odd, for πi = 0,1,2,3 and ∑πi < 4                             (3.4a) 

∑ 𝑥𝑖𝑢
2 = 𝑛𝑐2

𝑚−ℎ + 2𝑛𝑠𝛼
2

𝑁

𝑢=1

 , 𝑖 = 1,2,… ,𝑚                                                                        (3.4b) 

 ∑ 𝑥𝑖𝑢
4 = 𝑛𝑐2

𝑚−ℎ + 2𝑛𝑠𝛼
4

𝑁

𝑢=1

  , 𝑖 = 1,2,… ,𝑚                                                                      (3.4c) 

∑ 𝑥𝑖𝑢
2 𝑥𝑗𝑢

2 = 𝑛𝑐2
𝑚−ℎ

𝑁

𝑢=1

  , 𝑖 = 1,2,… ,𝑚                                                                                  (3.4d) 

(Box & Hunter, 1957) gave the condition that a CCD must satisfy to be rotatable as 

∑ 𝑥𝑖𝑢
4 = 3 ∑ 𝑥𝑖𝑢

2 𝑥𝑗𝑢
2

𝑁

𝑢=1

𝑁

𝑢=1

     , 𝑖 = 1,2,… ,𝑚                                                                                (3.5) 

this gives 

𝛼4 =
2𝑚−ℎ𝑛𝑐

𝑛𝑠
 .                                                                                                                            (3.6) 

The various values of 𝛼, m, h, n with 𝑛𝑠 = 𝑛𝑐 = 1 that constitute a rotatable CCD are 

given in table 3.2. 
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Table 3.2: Values of 𝜶 for Rotatable CCDs 

m h 𝟐𝒎−𝒉 2m 𝒏𝟎 n 𝜶 

2 0 4 4 1 9 1.4142 

2 1 2 4 1 7 1.1892 

3 0 8 6 1 15 1.6818 

3 1 4 6 1 11 1.4142 

3 2 2 6 1 9 1.1892 

4 0 16 8 1 25 2.0000 

4 1 8 8 1 17 1.6818 

4 2 4 8 1 13 1.4142 

4 3 2 8 1 11 1.1892 

5 0 32 10 1 43 2.3784 

5 1 16 10 1 27 2.0000 

5 2 8 10 1 19 1.6818 

5 3 4 10 1 15 1.4142 

5 4 2 10 1 13 1.1892 

 

3.2.2 Optimal Weights on Given Support Points 

For n regression vectors 𝑥1, 𝑥2, … , 𝑥𝑛 the detailed contents of the second order design 

matrix is given by the matrix X below made up with 𝑥1, 𝑥2, … , 𝑥𝑛 as the rows. 

𝑋 = [

𝑥1

𝑥2

⋮
𝑥𝑛

] =

[
 
 
 
1 𝑥11 … 𝑥𝑚1 𝑥11

2 𝑥11𝑥21
… 𝑥𝑚−1,1𝑥𝑚1

1 𝑥12 … 𝑥𝑚2 𝑥12
2 𝑥12𝑥22

… 𝑥𝑚−1,2𝑥𝑚2

⋮ ⋮ … ⋮ ⋮ ⋮ ⋱          ⋮           
1 𝑥1𝑛 … 𝑥𝑚𝑛 𝑥1𝑛

2 𝑥1𝑛𝑥2𝑛
⋯ 𝑥𝑚−1,𝑛𝑥𝑚𝑛]

 
 
 

   (3.7) 
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Any design including the central composite design can be made better by varying the 

proportion that a particular regression vector is run. In the simplest case all the regression 

vectors have uniform weights implying they are run an equal number of times. 

Let C be an 𝑠 × 𝑠 matrix and K the coefficient matrix of the parameter subsystem 𝐾′𝜃. 

Then C is referred to as the information matrix for 𝐾′𝜃 if  𝐶 = (𝐾′𝑀−𝐾)−1 . M is the 

moment matrix. The matrix means are defined by: 

𝜙𝑝(𝐶) = {
(

1

𝑠
𝑡𝑟𝑎𝑐𝑒 𝐶𝑝)

1/𝑝

for 𝑝 = ±1

(det 𝐶)1/𝑠           for p = 0    

𝜆𝑚𝑖𝑛(𝐶)              for p = −∞

      (3.8) 

The matrix means constitute the D-, A-, E- and T- criteria for design optimality with the 

value of p being respectively 0, -1, -∞ and 1. 𝜆𝑚𝑖𝑛(𝐶)  is the minimum eigenvalue of C. 

The A-, D- and T- optimal values are given by: 

𝑣(𝜙𝑝) = {
(

1

𝑠
𝑡𝑟𝑎𝑐𝑒 𝐶𝑝)

1/𝑝

   for 𝑝 = ±1

(det 𝐶)1/𝑠 for p = 0
      (3.9) 

(Pukelsheim, 2006) gave a method for finding optimal weights as follows; 

Assume that the design 𝜉 𝜖 Ξ is 𝜙-optimal for 𝐾′𝜃 in Ξ. Let 𝐸𝜖ℝ𝑠×𝑠 be a square root of 

the information matrix, 𝐶𝐾(𝑀(𝜉)) = 𝐶 = 𝐸𝐸′. Let 𝐷 𝜖 𝑁𝑁𝐷(𝑠) and 𝐺 𝜖 𝑀(𝜉)− satisfy 

the polarity equation 𝜙(𝐶𝐾(𝑀))𝜙∞(𝐷) = 𝑡𝑟𝑎𝑐𝑒 𝐶𝐾(𝑀)𝐷 = 1 and the normality 

inequality 𝑥′𝐺𝐾𝐶𝐷𝐶𝐾′𝐺′𝑥 ≤ 1 for all 𝑥 𝜖 𝜒. Let the support points 𝑥1, 𝑥2, … , 𝑥𝑛 of  𝜉  

form the rows of the matrix 𝑋 𝜖 ℝ𝑛×𝑘  and let the corresponding weights 𝑤𝑖 = 𝜉(𝑥𝑖) form 

the vector 𝑤 𝜖 ℝ𝑛. Then, with 𝐴 = 𝑋𝐺𝐾𝐸(𝐸′𝐷𝐸)
1

2𝐸′𝐾′𝐺′𝑋′𝜖 𝑁𝑁𝐷(𝑛), the weight 

vector w solves 

(𝐴 ⋆ 𝐴)𝑤 = 1𝑛 .         (3.10) 
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Here 𝑃 ⋆ 𝑄 = ((𝑝𝑖𝑗𝑞𝑖𝑗)) denotes the hadamard matrix product of P and Q 

For the matrix means 𝜙𝑝 with parameter 𝑝 𝜖 (−∞; 1] the solution of the polarity equation 

is 𝐷 =
𝐶𝑝−1

𝑡𝑟𝑎𝑐𝑒 𝐶𝑝. For full parameter 𝜃,  the information matrix C equals the moment matrix 

M. 𝐺 = 𝑀−1and 𝐴 ∝ 𝑋𝑀
𝑝

2
−1𝑋′ . Therefore to get the optimal weights, we first compute 

𝐴𝑡 = 𝑋𝑀
𝑝

2
−1𝑋′         (3.11) 

then obtain the intermediate weights from 

𝑢 = (𝐴𝑡 ⋆ 𝐴𝑡)
−11𝑛 .         (3.12) 

The final weights for the given support point are 

𝑤𝑖 =
𝑢𝑖

∑ 𝑢𝑖
𝑛
𝑖=1

 for all 𝑖 = 1,… , 𝑛.       (3.13) 

An A-, D-, T- optimal four factor rotatable central composite design was constructed 

using (3.13) with the corresponding optimal values given by (3.9). The specific design 

was achieved by setting 𝑛𝑐 = 2, 𝑛𝑠 = 2 and 𝑛0 = 12 . These would enable the 

achievement of the A- , D- and T- criteria as demonstrated in (Okango et al, 2014). The 

four factors are temperature, soil pH, chemical concentration and length of time of seed 

pre-treatment.  

All the computations were accomplished using R 3.1.1 (R Core Team, 2014) with the raw 

data managed using Microsoft Excel.  

3.3 Modelling the Germination of Melia volkensii 

Germination of Melia volkensii was modelled using second degree model of the form: 

𝑦̂ = 𝑏0 + 𝑏1𝑥1 + 𝑏2𝑥2 + 𝑏3𝑥3 + 𝑏4𝑥4 + 𝐵11𝑥1
2 + 𝐵12𝑥1𝑥2 + 𝐵13𝑥1𝑥3 + 𝐵14𝑥1𝑥4 +

𝐵22𝑥2
2 + 𝐵23𝑥2𝑥3 + 𝐵24𝑥2𝑥4 + 𝐵33𝑥3

2 + 𝐵34𝑥3𝑥4 + 𝐵44𝑥4
2.    (3.14) 
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Four models corresponding to each one of the chemicals used for seed pre-treatment were 

formulated.  

For all the models,  𝑥1 denoted temperature, 𝑥2 soil pH, 𝑥3 chemical concentration and  

𝑥4 length of time of seed pre-treatment. The estimated response 𝑦̂, was the number of 

seeds that germinate in a given petri dish that contains 20 seeds. 

For each fitted model we illustrated the estimated coefficients, their standard errors, t 

values and their corresponding p values. A parameter was deemed to be significant if the 

associated p value was less than 0.05. Analyses of variance were performed to check the 

adequacy of the models. The output included the multiple 𝑅2, adjusted  𝑅2, the F-statistic 

and the p value of this statistic. A model was classified as being significant if the p value 

of its F-statistic was less than 0.05. The complete data used for modelling is displayed in 

appendix 1. Modelling was done in R 3.1.1 (R Core Team, 2014) using the rsm package 

(Lenth, 2009). 

3.4 Determining Optimal Conditions for the Germination of Melia volkensii 

The fitted models were used to find the  set of operating conditions for temperature, soil 

pH, pre-treatment time and chemical concentrations that optimize germination of Melia 

volkensii. The fitted second order model (3.14) can be presented in matrix form as: 

𝑦̂ = 𝑏0 + 𝑥′𝒃̂ + 𝑥′𝑩̂𝑥         (3.15) 

where 𝑏0, 𝒃̂ and 𝑩̂ are estimates of the intercept, linear and second order coefficients 

respectively. 𝑥′ = (𝑥1, 𝑥2, … , 𝑥𝑝) , 𝒃̂′ = (𝑏1, 𝑏2, … , 𝑏𝑝) and 𝑩̂  is the 𝑝 ∗ 𝑝 symmetric 

matrix 



18 

 

 
 

 𝑩̂ =

[
 
 
 
 
 𝐵11

𝐵12

2
…

𝐵1𝑝

2
𝐵12

2
𝐵22 …

𝐵2𝑝

2

𝐵1𝑝

2

⋱
𝐵𝑝𝑝]

 
 
 
 
 

.        (3.16) 

The stationary point is the one in which the response has an optimum value (maximum or 

minimum). From differential calculus, this point is obtained by differentiating the 

dependent variable and equating to zero to obtain the corresponding values of the 

independent variable. 

Differentiating (3.15) with respect to 𝑥: 

𝜕𝑦̂

𝜕𝑥
= 𝒃̂ + 2𝑩̂𝑥.         (3.17) 

Setting the derivative equal to 0 and solving for the stationary point of the system: 

𝑥𝑠 = −
1

2
𝑩̂−𝟏𝒃̂.         (3.18) 

The predicted response at the stationary point is: 

𝑦̂𝑠 = 𝑏0 +
1

2
𝑥𝑠

′𝒃̂.         (3.19) 

There are several ways to examine the fitted second order response surface. Initially it is 

desirable to plot response contours. This is done by setting 𝑦̂ to some specified value 𝑦0 

and tracing out contours relating 𝑥1, 𝑥2, … , 𝑥𝑝. An alternative procedure is to reduce the 

equation to its canonical form. This is done by forming the equation: 

𝑦̂ = 𝑦̂𝑠 + ∑ 𝜆𝑖𝑤𝑖
2𝑝

𝑖=1          (3.20) 

where 𝑦̂𝑠 ,the estimated stationary point  is the centre of the contours  and 𝑤𝑖𝑠 are a new 

set of axes called the principal axes. The coefficients 𝜆𝑖𝑠  are the eigenvalues of  𝑩̂ and 

give the shape of the surface such that if  𝜆1, 𝜆2, … , 𝜆𝑝 are all negative, the stationary 

point is a point of maximum response, if  𝜆1, 𝜆2, … , 𝜆𝑝 are all positive, the stationary 
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point is a point of minimum response and if  𝜆1, 𝜆2, … , 𝜆𝑝 are mixed in sign, the 

stationary point is a saddle point. 

The relative sizes of the eigenvalues also tell a great deal. For example, if most of the 

eigenvalues are large positive numbers but a few are near zero, then there is a ridge in the 

graph of the response function. Moving along that ridge will make little difference in the 

value of the response but might make a big difference in some other aspect of the system, 

like cost, for example.  

The 𝑤𝑖𝑠 are obtained as follows: For a matrix M with columns equal to the normalized 

eigenvectors of 𝑩̂, then 𝑀′𝑩̂𝑀 = Λ where Λ is a diagonal matrix with diagonal elements 

equal to the eigenvalues of 𝑩̂. 

Let 𝑧 = 𝑥 − 𝑥𝑠,𝑤 = 𝑀′𝑧. Now,  𝑦̂ = 𝑏0 + 𝑥′𝒃̂ + 𝑥′𝑩̂𝑥 becomes 

𝑦̂ = 𝑏0 + (𝑧 + 𝑥𝑠)
′𝒃̂ + (𝑧 + 𝑥𝑠)

′𝑩̂(𝑧 + 𝑥𝑠)       (3.21) 

𝑦̂ = 𝑏0 + 𝑧′𝒃̂ + 𝑥𝑠′𝒃̂ + (𝑧′𝑩̂ + 𝑥𝑠′𝑩̂)(𝑧 + 𝑥𝑠)     (3.22) 

𝑦̂ = 𝑏0 + 𝑧′𝒃̂ + 𝑥𝑠′𝒃̂ + 𝑧′𝑩̂𝑧 + 𝑥𝑠′𝑩̂𝑧 + 𝑧′𝑩̂𝑥𝑠 + 𝑥𝑠′𝑩̂𝑥𝑠    (3.23) 

Since 𝑥𝑠′𝑩̂𝑧 = 𝑧′𝑩̂𝑥𝑠, 

𝑦̂ = [𝑏0 + 𝑥𝑠
′𝒃̂ + 𝑥𝑠

′𝑩̂𝑥𝑠] + 𝑧′𝒃̂ + 𝑧′𝑩̂𝑧 + 2𝑥𝑠
′𝑩̂𝑧     (3.24) 

But 𝑥𝑠 = −
1

2
𝑩̂−𝟏𝒃̂. This implies 2𝑥𝑠

′𝑩̂𝑧 =  −𝑧′𝑩̂𝑩̂−𝟏𝒃̂ = −𝑧′𝒃̂. Therefore: 

𝑦̂ = 𝑦̂𝑠 + 𝑧′𝑩̂𝑧.         (3.25) 

Changing the coordinate system: 

𝑦̂ = 𝑦̂𝑠 + 𝑤′𝑀′𝑩̂𝑀𝑤         (3.26) 

𝑦̂ = 𝑦̂𝑠 + 𝑤′Λ𝑤.         (3.27) 

For p = 4, 
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𝑦̂ = 𝑏0 + 𝑏1𝑥1 + 𝑏2𝑥2 + 𝑏3𝑥3 + 𝑏4𝑥4 + 𝐵11𝑥1
2 + 𝐵12𝑥1𝑥2 + 𝐵13𝑥1𝑥3 + 𝐵14𝑥1𝑥4 +

𝐵22𝑥2
2 + 𝐵23𝑥2𝑥3 + 𝐵24𝑥2𝑥4 + 𝐵33𝑥3

2 + 𝐵34𝑥3𝑥4 + 𝐵44𝑥4
2.    (3.28) 

Its canonical form equivalent is: 

𝑦̂ = 𝑦̂𝑠 + 𝜆1𝑤1
2 + 𝜆2𝑤2

2 + 𝜆3𝑤3
2 + 𝜆4𝑤4

2      (3.29) 

where 𝜆1, 𝜆2 , 𝜆3 and 𝜆4 are the eigenvalues of 𝑩̂ =

[
 
 
 
 
 𝐵11

𝐵12

2

𝐵13

2

𝐵14

2
𝐵12

2
𝐵22

𝐵23

2

𝐵24

2
𝐵13

2
𝐵14

2

𝐵32

2
𝐵24

2

𝐵33
𝐵34

2

𝐵34

2

𝐵44]
 
 
 
 
 

    

[

𝑤1

𝑤2
𝑤3

𝑤4

] = [

𝑚11 𝑚21
𝑚31 𝑚41

𝑚12 𝑚22 𝑚32 𝑚42

𝑚13

𝑚14

𝑚23

𝑚24

𝑚33 𝑚43

𝑚34 𝑚44

] [

𝑥1 − 𝑥1𝑠

𝑥2 − 𝑥2𝑠
𝑥3 − 𝑥3𝑠

𝑥4 − 𝑥4𝑠

]     (3.30) 

[

𝑚11 𝑚21
𝑚31 𝑚41

𝑚12 𝑚22 𝑚32 𝑚42

𝑚13

𝑚14

𝑚23

𝑚24

𝑚33 𝑚43

𝑚34 𝑚44

]

′

 is a matrix with columns equal to the normalized eigenvectors 

of  𝐵̂ . 

From (3.30) 

[

𝑥1 − 𝑥1𝑠
𝑥2 − 𝑥2𝑠
𝑥3 − 𝑥3𝑠

𝑥4 − 𝑥4𝑠

] = [

𝑚11 𝑚21
𝑚31 𝑚41

𝑚12 𝑚22 𝑚32 𝑚42

𝑚13

𝑚14

𝑚23

𝑚24

𝑚33 𝑚43

𝑚34 𝑚44

]

−1

[

𝑤1

𝑤2
𝑤3

𝑤4

]     (3.31) 

But 

 [

𝑚11 𝑚21
𝑚31 𝑚41

𝑚12 𝑚22 𝑚32 𝑚42

𝑚13

𝑚14

𝑚23

𝑚24

𝑚33 𝑚43

𝑚34 𝑚44

]

−1

= [

𝑚11 𝑚21
𝑚31 𝑚41

𝑚12 𝑚22 𝑚32 𝑚42

𝑚13

𝑚14

𝑚23

𝑚24

𝑚33 𝑚43

𝑚34 𝑚44

]     (3.32) 

hence 
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[

𝑥1
𝑥2
𝑥3

𝑥4

] = [

𝑥1𝑠
𝑥2𝑠
𝑥3𝑠

𝑥4𝑠

] + [

𝑚11 𝑚21
𝑚31 𝑚41

𝑚12 𝑚22 𝑚32 𝑚42

𝑚13

𝑚14

𝑚23

𝑚24

𝑚33 𝑚43

𝑚34 𝑚44

] [

𝑤1

𝑤2
𝑤3

𝑤4

].     (3.33) 

(3.33) gives the relationship between the original variables 𝑥1, 𝑥2, 𝑥3, 𝑥4 and the new set 

of variables 𝑤1, 𝑤2, 𝑤3, 𝑤4 used in the canonical model.  

Optimal conditions for germination of Melia volkensii were obtained using the rsm 

package (Lenth, 2009) in R 3.1.1 (R Core Team, 2014). 
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CHAPTER FOUR 

RESULTS AND DISCUSSIONS 

4.1 A-, D-, T- Optimal Four Factor Central Composite Design 

4.1.1 Four Factor Rotatable Central Composite Design 

Consider a central composite design with m = 4, h = 0, 𝑛𝑐 = 𝑛𝑠 = 𝑛0 = 1. From (3.1), 

the design consists of 25 regression vectors 𝑥1, 𝑥2, … , 𝑥25 . 

For the CCD to be rotatable the value of 𝛼  is computed using (3.6). This gives 𝛼 = 2.  

The four factor rotatable CCD design matrix X for the second order model is shown in 

(4.1). 

𝑋 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
𝑥0

1
𝑥1

−1
𝑥2

−1
𝑥3

−1
𝑥4

−1
   𝑥1

2

1
   
𝑥1𝑥2

1
   
𝑥1𝑥3

1
   
𝑥1𝑥4

1
   𝑥2

2

1
  
 𝑥2𝑥3

1
   
𝑥2𝑥4

1
   𝑥3

2

1
   
𝑥3𝑥4

1
   𝑥4

2

1
1    1 −1 −1 −1    1 −1 −1 −1    1    1    1    1    1    1
1 −1    1 −1 −1    1 −1    1    1    1 −1 −1    1    1    1
1    1    1 −1 −1    1    1 −1 −1    1 −1 −1    1    1    1
1 −1 −1    1 −1    1    1 −1    1    1 −1    1    1 −1    1
1    1 −1    1 −1    1 −1    1 −1    1 −1    1    1 −1    1
1 −1    1    1 −1    1 −1 −1    1    1    1 −1    1 −1    1
1    1    1    1 −1    1    1    1 −1    1    1 −1    1 −1    1
1 −1 −1 −1    1    1    1    1 −1    1    1 −1    1 −1    1
1    1 −1 −1    1    1 −1 −1    1    1    1 −1    1 −1    1
1 −1    1 −1    1    1 −1    1 −1    1 −1    1    1 −1    1
1    1    1 −1    1    1    1 −1    1    1 −1    1    1 −1    1
1 −1 −1    1    1    1    1 −1 −1    1 −1 −1    1    1    1
1    1 −1    1    1    1 −1    1    1    1 −1 −1    1    1    1
1 −1    1    1    1    1 −1 −1 −1    1    1    1    1    1    1
1    1    1    1    1    1    1    1    1    1    1    1    1    1    1
1 −2    0    0    0    4    0    0    0    0    0    0    0   0    0
1    2    0    0    0    4    0    0    0    0    0    0    0   0    0
1    0 −2    0    0    0    0    0    0    4    0    0    0   0    0
1    0    2    0    0    0    0    0    0    4    0    0    0   0    0
1    0    0 −2    0    0    0    0    0    0    0    0    4   0    0
1    0    0    2    0    0    0    0    0    0    0    0    4   0    0
1    0    0    0 −2    0    0    0    0    0    0    0    0   0    4
1    0    0    0    2    0    0    0    0    0    0    0    0   0    4
1    0    0    0    0    0    0    0    0    0    0    0    0   0    0 ]

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

           (4.1) 

The moment matrix for the general four factor central composite design defined by 

𝑀𝐺 =
𝑋′𝑋

𝑁
  is given in (4.2). 
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𝑀𝐺 =
1

25

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25 0 0 0 0 24 0 0 0 24 0 0 24 0 24
0 24 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 24 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 24 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 24 0 0 0 0 0 0 0 0 0 0
24 0 0 0 0 48 0 0 0 16 0 0 16 0 16
0 0 0 0 0 0 16 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 16 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 16 0 0 0 0 0 0
24 0 0 0 0 16 0 0 0 48 0 0 16 0 16
0 0 0 0 0 0 0 0 0 0 16 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 16 0 0 0
24 0 0 0 0 16 0 0 0 16 0 0 48 0 16
0 0 0 0 0 0 0 0 0 0 0 0 0 16 0
24 0 0 0 0 16 0 0 0 16 0 0 16 0 48]

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

           (4.2) 

The optimal values with respect to the A-, D- and T- criteria are computed using (3.9) 

with 𝐶 = 𝑀𝐺 and are given in table 4.1. 

Table 4.1: A-, D- and T- Optimal Values for the General Four Factor CCD 

A D T 

0.3164835 0.7672656 1.090667 

 

4.1.2 A-, D-, T- Optimal Four Factor Rotatable Central Composite Design 

We considered a design with 𝑛𝑐 = 2, 𝑛𝑠 = 2 and 𝑛0 = 12. The design consists of 60 

runs. The associated moment matrix defined by  𝑀𝐸𝑥𝑝 =
1

60
𝑋𝐸𝑥𝑝

′ 𝑋𝐸𝑥𝑝   where 𝑋𝐸𝑥𝑝 is the 

design matrix for the experiment is: 
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𝑀𝐸𝑥𝑝 =
1

60

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
60 0 0 0 0 48 0 0 0 48 0 0 48 0 48
0 48 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 48 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 48 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 48 0 0 0 0 0 0 0 0 0 0
48 0 0 0 0 96 0 0 0 32 0 0 32 0 32
0 0 0 0 0 0 32 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 32 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 32 0 0 0 0 0 0
48 0 0 0 0 32 0 0 0 96 0 0 32 0 32
0 0 0 0 0 0 0 0 0 0 32 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 32 0 0 0
48 0 0 0 0 32 0 0 0 32 0 0 96 0 32
0 0 0 0 0 0 0 0 0 0 0 0 0 32 0
48 0 0 0 0 32 0 0 0 32 0 0 32 0 96]

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

           (4.3) 

The optimal values with respect to the A-, D- and T- criteria are computed using (3.9) 

with 𝐶 = 𝑀𝐸𝑥𝑝 and are given in table 4.2. 

Table 4.2: A-, D- and T- Optimal Values for the Experimental Design 

A D T 

0.585366 0.720512 0.920000 

 

4.1.3 A- Optimal Four Factor Rotatable Central Composite Design 

The A- optimal four factor rotatable CCD was obtained by assigning A- optimal weights 

to the support points of the original experimental design. These weights were obtained 

using (3.11), (3.12) and (3.13) with p = -1.  

The A- optimal weights obtained in this way were found to be 0.0132519, 0.0265038 and 

0.01265653 for the cube, star and centre point parts respectively of the set experimental 

central composite design. The associated A- optimal moment matrix defined by 𝑀𝐴 =

𝑋𝐸𝑥𝑝
′ 𝑊𝐴𝑋𝐸𝑥𝑝  where 𝑊𝐴 is a diagonal matrix with elements equal to A- optimal weights is 

shown in (4.4). 
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𝑀𝐴 = 0.424

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2.36 0 0 0 0 2 0 0 0 2 0 0 2 0 2
0 2 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 2 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 2 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 2 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 5 0 0 0 1 0 0 1 0 1
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
2 0 0 0 0 1 0 0 0 5 0 0 1 0 1
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
2 0 0 0 0 1 0 0 0 1 0 0 5 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
2 0 0 0 0 1 0 0 0 1 0 0 1 0 5]

 
 
 
 
 
 
 
 
 
 
 
 
 
 

   

(4.4) 

The A- optimal value for 𝑀𝐴 is 0.5144232. The A- optimal value for the general 

experimental design was found to be 0.585366.  This represents an efficiency of 87.88% 

of the general design compared to the A- optimal one. 

4.1.4 D- Optimal Four Factor Rotatable Central Composite Design 

The D- optimal four factor rotatable CCD was obtained by assigning D- optimal weights 

to the support points of the original experimental design. The weights were obtained 

using (3.11), (3.12), (3.13) and letting p = 0.  

The D- optimal weights obtained in this way were found to be  0.01111111, 0.01111111 

and 0.03888889 for the cube, star and centre point parts respectively of the set 

experimental central composite design. The associated D- optimal moment matrix 

defined by 𝑀𝐷 = 𝑋𝐸𝑥𝑝
′ 𝑊𝐷𝑋𝐸𝑥𝑝  where 𝑊𝐷  is a diagonal matrix with elements equal to D- 

optimal weights is shown in (4.5). 
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𝑀𝐷 = 0.1778

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5.62 0 0 0 0 3 0 0 0 3 0 0 3 0 3
0 3 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 3 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 3 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 3 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 6 0 0 0 2 0 0 2 0 2
0 0 0 0 0 0 2 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 2 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 2 0 0 0 0 0 0
3 0 0 0 0 2 0 0 0 6 0 0 2 0 2
0 0 0 0 0 0 0 0 0 0 2 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 2 0 0 0
3 0 0 0 0 2 0 0 0 2 0 0 6 0 2
0 0 0 0 0 0 0 0 0 0 0 0 0 2 0
3 0 0 0 0 2 0 0 0 2 0 0 2 0 6]

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

           (4.5) 

The D-optimal value for 𝑀𝐷 is 0.5221811. The D-optimal value for the general design 

was found to be 0.720512.  This represents an efficiency of 72.47% of the general design 

compared to the D- optimal one. 

4.1.5 T- Optimal Four Factor Rotatable Central Composite Design 

The T- optimal four factor rotatable CCD was obtained by assigning T- optimal weights 

to the support points of the original experimental design. These weights are obtained 

using (3.11), (3.12), (3.13) and letting p = 1.  

The optimal weights obtained in this way were found to be  0.004279601, 0.002139800 

and 0.069067998 for the cube, star and centre point parts respectively of the set 

experimental central composite design. The associated T- optimal moment matrix defined 

by 𝑀𝑇 = 𝑋𝐸𝑥𝑝
′ 𝑊𝑇𝑋𝐸𝑥𝑝   where 𝑊𝑇 is a diagonal matrix with elements equal to T- optimal 

weights is shown in (4.6). 
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𝑀𝑇 = 0.0342

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
29.24 0 0 0 0 5 0 0 0 5 0 0 5 0 5

0 5 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 5 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 5 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 5 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 8 0 0 0 4 0 0 4 0 4
0 0 0 0 0 0 4 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 4 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 4 0 0 0 0 0 0
5 0 0 0 0 4 0 0 0 8 0 0 4 0 4
0 0 0 0 0 0 0 0 0 0 4 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 4 0 0 0
5 0 0 0 0 4 0 0 0 4 0 0 8 0 4
0 0 0 0 0 0 0 0 0 0 0 0 0 4 0
5 0 0 0 0 4 0 0 0 4 0 0 4 0 8]

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

           (4.6) 

The T-optimal value for 𝑀𝑇 is 0.2401331. The T-optimal value for the general design 

was found to be 0.920000.  This represents an efficiency of 26.10 % of the general design 

compared to the T-optimal one. 

4.1.6 Application of a Four Factor Rotatable Central Composite Design for the 

Germination of Melia volkensii Experiment 

A four factor rotatable central composite design for the germination of Melia volkensii 

experiment was formulated by setting 𝑛𝑐  =  2, 𝑛𝑠 = 2 and 𝑛0 = 12. The experiment 

therefore was of 60 runs. The factors under investigation were temperature, soil pH, 

chemical concentration and length of time of seed pre-treatment. Four different chemicals 

were used for seed treatment. These are Sulphuric Acid (H2SO4), Gibberellic Acid (GA3), 

Hydrogen Peroxide (H2O2) and Potassium Nitrate (KNO3). The chemical concentrations 

was unique to each chemical but was set as per the requirements of the design. However 

temperature, soil pH and length of seed pre-treatment were uniform among all the 
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chemicals. The coded values in conformity to the design and the corresponding raw 

actual value setting are summarized in table 4.3. 

Table 4.3: Coded Variable Setting and Corresponding Actual Values for the 

Germination of Melia volkensii Experimental Design 

Coded 

Value 

Temperature Soil pH Pre-treatment Chemical Concentration (%) 

Time (Hours) H2SO4 GA3 H2O2 KNO3 

-2 15.0 3.0 4.0 20.0 0.01 1.0 0.1 

-1 20.0 5.0 6.0 35.0 0.02 2.0 0.2 

0 25.0 7.0 8.0 50.0 0.03 3.0 0.3 

1 30.0 9.0 10.0 65.0 0.04 4.0 0.4 

2 35.0 11.0 12.0 80.0 0.05 5.0 0.5 

 

The experiment was performed by soaking 20 seeds of Melia volkensii in a chemical 

solution for a specified period of time. The seeds were then placed in a petri-dish 

containing soil of a particular pH. They were then placed in germination chambers of a 

defined temperature. The outcome was the number of seeds that germinate in a particular 

petri-dish. The objective was to find the temperature, soil pH, chemical concentration and 

pre-treatment time that maximize the germination of Melia volkensii seeds. The entire 

experiment consisted of 240 runs. 

 

4.2 Modelling the Germination of Melia volkensii 

4.2.1 Model for the Germination of Melia volkensii using Potassium Nitrate (𝑲𝑵𝑶𝟑) 

Treatment 

The coefficients, standard errors, t values and p values of the fitted models using 

𝐾𝑁𝑂3treatment are shown in table 4.4. 
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Table 4.4: The Fitted Germination of Melia volkensii Model using 𝑲𝑵𝑶𝟑Treatment 

 
Coefficient Standard Error t value p value 

 Intercept 10.500 0.8114 12.9410 0.0000 

𝒙𝟏 1.875 0.4057 4.6218 0.0000 

𝒙𝟐 -1.875 0.4057 -4.6218 0.0000 

𝒙𝟑 0.292 0.4057 0.7189 0.4759 

𝒙𝟒 0.208 0.4057 0.5135 0.6101 

𝒙𝟏
𝟐 -2.208 0.3795 -5.8193 0.0000 

𝒙𝟏𝒙𝟐 -1.938 0.4969 -3.8994 0.0003 

𝒙𝟏𝒙𝟑 0.813 0.4969 1.6353 0.1090 

𝒙𝟏𝒙𝟒 0.250 0.4969 0.5032 0.6173 

𝒙𝟐
𝟐 -1.396 0.3795 -3.6782 0.0006 

𝒙𝟐𝒙𝟑 0.000 0.4969 0.0000 1.0000 

𝒙𝟐𝒙𝟒 -0.063 0.4969 -0.1258 0.9005 

𝒙𝟑
𝟐 -0.896 0.3795 -2.3606 0.0226 

𝒙𝟑𝒙𝟒 -0.563 0.4969 -1.1321 0.2636 

𝒙𝟒
𝟐 -0.708 0.3795 -1.8666 0.0685 

 

The fitted model is therefore: 

𝑦̂ = 10.500 + 1.875𝑥1 − 1.875𝑥2 + 0.292𝑥3 + 0.208𝑥4 − 2.208𝑥1
2 − 1.938𝑥1𝑥2 +

0.813𝑥1𝑥3 + 0.250𝑥1𝑥4 − 1.396𝑥2
2 − 0.063𝑥2𝑥4 − 0.896𝑥3

2 − 0.563𝑥3𝑥4 − 0.708𝑥4
2. 

           (4.7) 
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The significant factors were 𝑥1, 𝑥2, 𝑥1
2, 𝑥1𝑥2, 𝑥2

2 and 𝑥3
2 as shown in table 4.4. 

Consequently the final model consisting of only the significant factors is: 

𝑦̂ =  9.691 + 1.875𝑥1 − 1.875𝑥2 − 2.107𝑥1
2 − 1.938𝑥1𝑥2 − 1.295𝑥2

2 − 0.795𝑥3
2. 

           (4.8) 

The analysis of variance for the model is shown in table 4.5. 

Table 4.5: Analysis of Variance Table for the Germination of Melia volkensii Model 

using 𝑲𝑵𝑶𝟑Treatment 

Source Sum of 

Squares 

Degrees of 

Freedom 

Mean 

Square 

F value P value 

Model 843.84 14 60.274 7.630 0.0000 

   First Order 343.67 4 85.917 10.876 0.0000 

   Two way interaction 153.50 6 25.583 3.238 0.0099 

   Pure Quadratic 346.67 4 86.667 10.971 0.0000 

Residuals 355.50 45 7.900   

   Lack of fit 130.50 10 13.050 2.030 0.0598 

   Pure error 225.00 35 6.429   

Total 1199.34 59    

Multiple 𝑹𝟐 0.7036     

Adjusted 𝑹𝟐 0.6114     

 

The F-statistic value was found to be 7.630 with a p value of 0.0000. This indicates that 

the model is significant. The adjusted 𝑅2 shows that 61.14% of the variation in the 
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response is explained by the model. The test of lack of fit has an F value of 2.030 with a p 

value of 0.0598. This shows that the model fits the data well. The results indicate that the 

second order model adequately represents the germination of Melia volkensii. However 

the reliability of the fitted model is 61.14%. 

4.2.2 Model for the Germination of Melia volkensii using Hydrogen Peroxide (𝑯𝟐𝑶𝟐) 

Treatment 

The coefficients, standard errors, t values and p values of the fitted models using𝐻2𝑂2  

treatment are shown in table 4.6. 

The fitted model is therefore: 

𝑦̂ = 11.667 + 1.229𝑥1 − 1.271𝑥2 + 0.063𝑥3 + 0.146𝑥4 − 1.766𝑥1
2 − 2.094𝑥1𝑥2 −

0.156𝑥1𝑥3 + 0.844𝑥1𝑥4 − 1.516𝑥2
2 + 0.219𝑥2𝑥3 + 0.719𝑥2𝑥4 − 1.203𝑥3

2 +

0.406𝑥3𝑥4 − 0.328𝑥4
2.        (4.9) 

The only significant factors were 𝑥1, 𝑥2, 𝑥1
2, 𝑥1𝑥2, 𝑥2

2 and 𝑥3
2 as displayed in table 4.6.  

Consequently the final model consisting of only the significant factors is: 

𝑦̂ = 11.292 + 1.229𝑥1 − 1.271𝑥2 − 1.719𝑥1
2 − 2.094𝑥1𝑥2 − 1.469𝑥2

2 − 1.156𝑥3
2. 

           (4.10) 
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Table 4.6: The Fitted Germination of Melia volkensii Model using 𝑯𝟐𝑶𝟐 Treatment 

 
Coefficient Standard Error t value p value 

 Intercept 11.667 0.8330 14.0054 0.0000 

𝒙𝟏 1.229 0.4165 2.9511 0.0050 

𝒙𝟐 -1.271 0.4165 -3.0512 0.0038 

𝒙𝟑 0.063 0.4165 0.1501 0.8814 

𝒙𝟒 0.146 0.4165 0.3501 0.7279 

𝒙𝟏
𝟐 -1.766 0.3896 -4.5318 0.0000 

𝒙𝟏𝒙𝟐 -2.094 0.5101 -4.1045 0.0002 

𝒙𝟏𝒙𝟑 -0.156 0.5101 -0.3063 0.7608 

𝒙𝟏𝒙𝟒 0.844 0.5101 1.6540 0.1051 

𝒙𝟐
𝟐 -1.516 0.3896 -3.8902 0.0003 

𝒙𝟐𝒙𝟑 0.219 0.5101 0.4288 0.6701 

𝒙𝟐𝒙𝟒 0.719 0.5101 1.4090 0.1657 

𝒙𝟑
𝟐 -1.203 0.3896 -3.0881 0.0034 

𝒙𝟑𝒙𝟒 0.406 0.5101 0.7964 0.4300 

𝒙𝟒
𝟐 -0.328 0.3896 -0.8422 0.4041 

 

The analysis of variance for the model is shown in table 4.7. 

The F-statistic value was found to be 5.458 with a p value of 0.0000. This indicates that 

the model is significant. The adjusted 𝑅2 shows that 51.41% of the variation in the 

response is explained by the model. The test of lack of fit has an F value of 0.728 with a p 
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value of 0.6929. This shows that the model fits the data well. The results indicate that the 

second order model adequately represents the germination of Melia volkensii. However 

the reliability of the fitted model is 51.41%. 

Table 4.7: Analysis of Variance Table for the Germination of Melia volkensii Model 

using 𝑯𝟐𝑶𝟐Treatment 

Source Sum of 

Squares 

Degrees of 

Freedom 

Mean 

Square 

F value P value 

Model 636.28 14 45.449 5.458 0.0000 

   First Order 151.25 4 37.812 4.541 0.0036 

   Two way interaction 187.19 6 31.198 3.747 0.0042 

   Pure Quadratic 297.84 4 74.459 8.942 0.0000 

Residuals 374.71 45 8.327   

   Lack of fit 64.54 10 6.454 0.728 0.6929 

   Pure error 310.17 35 8.862   

Total 1010.99 59    

Multiple 𝑹𝟐 0.6294     

Adjusted 𝑹𝟐 0.5141     
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4.2.3 Model for the Germination of Melia volkensii using Gibberellic Acid (𝑮𝑨𝟑) 

Treatment 

The coefficients, standard errors, t values and p values of the fitted models using 

𝐺𝐴3 treatment are shown in table 4.8. 

Table 4.8: The Fitted Germination of Melia volkensii Model using 𝑮𝑨𝟑Treatment 

 
Coefficient Standard Error t value p value 

 Intercept 14.250 0.7082 20.1215 0.0000 

𝒙𝟏 1.583 0.3541 4.4714 0.0001 

𝒙𝟐 -2.167 0.3541 -6.1188 0.0000 

𝒙𝟑 0.125 0.3541 0.3530 0.7257 

𝒙𝟒 0.375 0.3541 1.0590 0.2952 

𝒙𝟏
𝟐 -2.969 0.3312 -8.9628 0.0000 

𝒙𝟏𝒙𝟐 -0.813 0.4337 -1.8735 0.0675 

𝒙𝟏𝒙𝟑 1.313 0.4337 3.0264 0.0041 

𝒙𝟏𝒙𝟒 0.438 0.4337 1.0088 0.3185 

𝒙𝟐
𝟐 -1.781 0.3312 -5.3777 0.0000 

𝒙𝟐𝒙𝟑 0.875 0.4337 2.0176 0.0496 

𝒙𝟐𝒙𝟒 1.000 0.4337 2.3058 0.0258 

𝒙𝟑
𝟐 -1.969 0.3312 -5.9438 0.0000 

𝒙𝟑𝒙𝟒 -0.250 0.4337 -0.5765 0.5672 

𝒙𝟒
𝟐 -0.594 0.3312 -1.7926 0.0798 
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The fitted model is therefore: 

𝑦̂ = 14.250 + 1.583𝑥1 − 2.167𝑥2 + 0.125𝑥3 + 0.375𝑥4 − 2.969𝑥1
2 − 0.813𝑥1𝑥2 +

1.313𝑥1𝑥3 + 0.438𝑥1𝑥4 − 1.781𝑥2
2 + 0.875𝑥2𝑥3 + 𝑥2𝑥4 − 1.969𝑥3

2 − 0.250𝑥3𝑥4 −

0.594𝑥4
2.          (4.11) 

The non-significant factors were  𝑥3, 𝑥4, 𝑥1𝑥2, 𝑥1𝑥4, 𝑥3𝑥4 and 𝑥4
2 as indicated in table 4.8. 

Hence the final model consisting of only the significant factors is: 

𝑦̂ = 13.751 + 1.583𝑥1 − 2.167𝑥2 − 2.884𝑥1
2 + 1.313𝑥1𝑥3 − 1.696𝑥2

2 + 0.875𝑥2𝑥3 +

𝑥2𝑥4 − 1.884𝑥3
2.         (4.12) 

The analysis of variance for the model is shown in table 4.9. 

The F-statistic value was found to be 14.117 with a p value of 0.0000. This indicates that 

the model is significant. The adjusted 𝑅2 shows that 75.69% of the variation in the 

response is explained by the model. The test of lack of fit has an F value of 1.019 with a p 

value of 0.4476. This shows that the model fits the data well. The results indicate that the 

second order model adequately represents the germination of Melia volkensii. However 

the reliability of the fitted model is 75.69%. 

 

 

 

 



36 

 

 
 

Table 4.9: Analysis of Variance Table for the Germination of Melia volkensii Model 

using 𝑮𝑨𝟑 Treatment 

Source Sum of 

Squares 

Degrees of 

Freedom 

Mean 

Square 

F value P value 

Model 1189.57 14 84.969 14.117 0.0000 

   First Order 353.17 4 88.292 14.670 0.0000 

   Two way interaction 140.88 6 23.479 3.901 0.0032 

   Pure Quadratic 695.52 4 173.881 28.891 0.0000 

Residuals 270.83 45 6.019   

   Lack of fit 61.08 10 6.108 1.019 0.4476 

   Pure error 209.75 35 5.993   

Total 1460.40 59    

Multiple 𝑹𝟐 0.8145     

Adjusted 𝑹𝟐 0.7569     

 

4.2.4 Model for the Germination of Melia volkensii using Sulphuric Acid (𝑯𝟐𝑺𝑶𝟒) 

Treatment 

The coefficients, standard errors, t values and p values of the fitted models using 

𝐻2𝑆𝑂4 treatment are shown in table 4.10. 

The fitted model is therefore: 

𝑦̂ = 9.667 + 𝑥1 − 1.208𝑥2 − 0.375𝑥3 − 1.125𝑥4 − 2.115𝑥1
2 − 1.375𝑥1𝑥2 +

0.188𝑥1𝑥3 + 0.438𝑥1𝑥4 − 1.427𝑥2
2 + 0.938𝑥2𝑥3 + 0.563𝑥2𝑥4 − 0.865𝑥3

2 − 0.615𝑥4
2. 

           (4.13) 
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The significant factors were 𝑥1, 𝑥2, 𝑥4, 𝑥1
2, 𝑥1𝑥2, 𝑥2

2 and 𝑥3
2 as shown in table 4.10. 

Thus the final model is: 

𝑦̂ = 8.964 + 𝑥1 − 1.208𝑥2 − 1.125𝑥4 − 2.027𝑥1
2 − 1.375𝑥1𝑥2 − 1.339𝑥2

2 − 0.777𝑥3
2. 

           (4.14) 

Table 4.10: The Fitted Germination of Melia volkensii Model using 

𝑯𝟐𝑺𝑶𝟒 Treatment 

 
Coefficient Standard Error t value p value 

 Intercept 9.667 0.8595 11.2475 0.0000 

𝒙𝟏 1.000 0.4297 2.3271 0.0245 

𝒙𝟐 -1.208 0.4297 -2.8119 0.0073 

𝒙𝟑 -0.375 0.4297 -0.8726 0.3875 

𝒙𝟒 -1.125 0.4297 -2.6179 0.0120 

𝒙𝟏
𝟐 -2.115 0.4020 -5.2605 0.0000 

𝒙𝟏𝒙𝟐 -1.375 0.5263 -2.6126 0.0122 

𝒙𝟏𝒙𝟑 0.188 0.5263 0.3563 0.7233 

𝒙𝟏𝒙𝟒 0.438 0.5263 0.8313 0.4102 

𝒙𝟐
𝟐 -1.427 0.4020 -3.5502 0.0009 

𝒙𝟐𝒙𝟑 0.938 0.5263 1.7813 0.0816 

𝒙𝟐𝒙𝟒 0.563 0.5263 1.0688 0.2909 

𝒙𝟑
𝟐 -0.865 0.4020 -2.1509 0.0369 

𝒙𝟑𝒙𝟒 0.000 0.5263 0.0000 1.0000 

𝒙𝟒
𝟐 -0.615 0.4020 -1.5289 0.1333 
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The analysis of variance for the model is shown in table 4.11. 

Table 4.11: Analysis of Variance Table for the Germination of Melia volkensii 

Model using 𝑯𝟐𝑺𝑶𝟒 Treatment. 

Source Sum of 

Squares 

Degrees of 

Freedom 

Mean 

Square 

F value P value 

Model 618.77 14 44.198 4.986 0.0000 

   First Order 185.58 4 46.396 5.234 0.0015 

   Two way interaction 106.00 6 17.667 1.993 0.0865 

   Pure Quadratic 327.19 4 81.798 9.228 0.0000 

Residuals 398.88 45 8.864   

   Lack of fit 166.71 10 16.671 2.513 0.0214 

   Pure error 232.17 35 6.633   

Total 1017.65 59    

Multiple 𝑹𝟐 0.6080     

Adjusted 𝑹𝟐 0.4861 

 

    

 

The F-statistic value was found to be 4.986 with a p value of 0.0000. This indicates that 

the model is significant. The adjusted 𝑅2 shows that 48.61% of the variation in the 

response is explained by the model. The test of lack of fit has an F value of 2.513 with a p 

value of 0.0214. This shows that the model does not fit the data well. The results indicate 

that the second order model formulated does not adequately represent the germination of 

Melia volkensii. However, the model has a reliability of 48.61% and can provide some 

information regarding germination of Melia volkensii. 
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4.2.5 Comparison of the Models 

The 𝐺𝐴3 model was found to be the best one to represent germination of Melia volkensii 

having an adjusted 𝑅2 value of 0.7569 followed by the 𝐾𝑁𝑂3 model with an adjusted 𝑅2 

value of 0.6114 then the 𝐻2𝑂2 model with an adjusted 𝑅2 value of 0.5141. The 𝐻2𝑆𝑂4 

model had the lowest adjusted 𝑅2 value of 0.4861 and was the only one where the lack of 

fit test was significant. 

4.3 Optimal Conditions for the Germination of Melia volkensii 

4.3.1 Optimal Conditions for the Germination of Melia volkensii using Potassium 

Nitrate (𝑲𝑵𝑶𝟑) Treatment 

Figure 4.1 shows the response surface plot for the model whereas figure 4.2 shows the 

contour plot of the fitted model (4.8). 

 

Figure 4.1: Response Surface Plot for the Germination of Melia volkensii Model 

using 𝑲𝑵𝑶𝟑 Treatment 
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Figure 4.2: Contour Plot for the Germination of Melia volkensii Model using 𝑲𝑵𝑶𝟑 

Treatment 

The stationary point and eigenvalues of the model are shown in table 4.12. 

Table 4.12: Stationary point and Eigenvalues for the Germination of Melia volkensii 

Model using 𝑲𝑵𝑶𝟑 Treatment 

 Stationary Points Eigenvalues 

𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝟒  

1.2262 -1.5263 0.6667 0.1661 -0.4768 -0.6421 -1.1710 -2.9184 

 

Since all the eigenvalues are negative, the response surface is a maximum one. 

The canonical equivalent form of the fitted model is: 

𝑦̂ = 13.1951 − 0.4768𝑤1
2 − 0.6421𝑤2

2 − 1.1710𝑤3
2 − 2.9184𝑤4

2.  (4.15) 
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The stationary point for the model is (1.2262, -1.5263, 0.6667, 0.1661). In terms of the 

natural variable this is (31.13, 3.95, 0.37, 8.33). Thus the optimal temperature is 31.13
o
C, 

the optimal soil pH is 3.95, the optimal concentration of KNO3 is 0.37% and the optimal 

pre-treatment time is 8.33 hours. 

Suppose the investigator is interested in finding where to run the experiment to obtain a 

response that is close to 13 as possible. This can be obtained from the canonical 

equivalent model (4.15). 

The region is presented as a contour plot of the canonical model in figure 4.3. 

 

Figure 4.3: Contour Plot for Expected Response of 13 of the 𝑲𝑵𝑶𝟑 Model 

From (4.15) 
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𝑥2 = −1.5263 + 0.4871𝑤1 − 0.6494𝑤2 + 0.1562𝑤3 + 0.5627𝑤4  (4.17) 

𝑥3 = 0.6667 + 0.1316𝑤1 − 0.4982𝑤2 − 0.6999𝑤3 − 0.4946𝑤4   (4.18) 

𝑥4 = 0.1661 + 0.8296𝑤1 + 0.5266𝑤2 − 0.1752𝑤3 − 0.0618𝑤4   (4.19) 

W1

W
2

 12.65 

 12.65 

 12.65 

 12.65 

 12.7 

 12.7 

 12.7 

 12.7 

 12.75 

 12.75 

 12.75 

 12.75 

 12.8 

 12.8 

 12.85 

 12.85 

 12.9 

 12.9 

 12.95 

 12.95 
 13 

 13.05 

 13.1 

 13.15 

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

-0
.5

0
.0

0
.5

W1

W
3

 11.2 

 11.2 

 11.2 

 11.2 

 11.4 

 11.4 

 11.6 

 11.6 

 11.8 

 11.8 

 12 

 12 

 12.2 

 12.2 

 12.4 

 12.4 

 12.6 

 12.6 

 12.8 

 12.8 

 13 

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

-1
.0

-0
.5

0
.0

0
.5

1
.0

W1
W

4

 5 

 5 

 6 

 6 

 7 

 7 

 8 

 8 

 9 

 9 

 10 

 10 

 11 

 11 

 12 

 12 

 13 

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

-1
.5

-1
.0

-0
.5

0
.0

0
.5

1
.0

1
.5

W2

W
3

 11 

 11 

 11 

 11 

 11.2 

 11.2 

 11.2 

 11.2 

 11.4 

 11.4 

 11.6 

 11.6 

 11.8 

 11.8 

 12 

 12 

 12.2 

 12.2 

 12.4 

 12.4 

 12.6 

 12.6 

 12.8 

 13 

-0.5 0.0 0.5

-1
.0

-0
.5

0
.0

0
.5

1
.0

W2

W
4

 5 

 5 

 6 

 6 

 7 

 7 

 8 

 8 

 9 

 9 

 10 

 10 

 11 

 11 

 12 

 12 

 13 

-0.5 0.0 0.5

-1
.5

-1
.0

-0
.5

0
.0

0
.5

1
.0

1
.5

W3

W
4

 4 

 4 

 4 

 4 

 5 

 5 

 6 

 6 

 7 

 7 

 8 

 8 

 9 

 9 

 10 

 10 

 11 

 11 

 12 

 13 

-1.0 -0.5 0.0 0.5 1.0

-1
.5

-1
.0

-0
.5

0
.0

0
.5

1
.0

1
.5



42 

 

 
 

Table 4.13 gives values of 𝑤1,  𝑤2,  𝑤3,  𝑤4, 𝑥1, 𝑥2 ,  𝑥3 and 𝑥4 for which 

𝑦̂ = 13.1951 − 0.4768𝑤1
2 − 0.6421𝑤2

2 − 1.1710𝑤3
2 − 2.9184𝑤4

2. The table is obtained 

form (4.16), (4.17), (4.18) and (4.19). When the experiment is run at the given values of 

the temperature, soil pH, concentration of KNO3 and pre-treatment time the expected 

response is close to 13. 

Table 4.13: Operating Conditions for Expected Response of 13 of the 𝑲𝑵𝑶𝟑 Model 

𝒘𝟏 𝒘𝟐 𝒘𝟑 𝒘𝟒 𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝟒 𝒚̂ 

0.68 0.80 0.00 0.00 1.247 -1.715 0.358 0.023 12.5 

0.00 0.80 0.00 0.00 1.410 -2.046 0.268 0.587 12.4 

-0.68 0.00 0.00 0.00 1.389 -1.858 0.577 0.730 12.3 

0.00 0.00 0.00 0.00 1.226 -1.526 0.667 0.166 12.2 

-0.68 0.80 0.00 0.00 1.573 -2.377 0.179 1.151 12.1 

0.68 0.00 0.00 0.00 1.064 -1.195 0.756 -0.398 12.0 

-0.68 0.00 1.08 0.00 0.660 -1.689 -0.179 0.541 11.9 

-0.68 -0.80 1.08 0.00 0.477 -1.169 0.220 0.120 11.8 

0.00 0.00 1.08 0.00 0.498 -1.358 -0.089 -0.023 11.8 

-0.68 -0.80 0.00 0.00 1.205 -1.338 0.976 0.309 11.7 

0.68 0.80 1.08 0.00 0.519 -1.546 -0.398 -0.166 11.6 

0.68 0.00 1.08 0.00 0.335 -1.026 0.000 -0.587 11.6 

0.00 0.80 1.08 0.00 0.681 -1.877 -0.488 0.398 11.5 

0.00 -0.80 1.08 0.00 0.314 -0.838 0.309 -0.444 11.4 

0.00 -0.80 0.00 0.00 1.042 -1.007 1.065 -0.255 11.3 

-0.68 0.80 1.08 0.00 0.844 -2.208 -0.577 0.962 11.2 
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4.3.2 Optimal Conditions for the Germination of Melia volkensii using Hydrogen 

Peroxide (𝑯𝟐𝑶𝟐) Treatment 

Figure 4.4 shows the response surface plot for the model whereas figure 4.5 shows the 

contour plot of the fitted model (4.10). 

 

Figure 4.4: Response Surface Plot for the Germination of Melia volkensii Model 

using 𝑯𝟐𝑶𝟐 Treatment 
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Figure 4.5: Contour Plot for the Germination of Melia volkensii Model using 𝑯𝟐𝑶𝟐 

Treatment 

The stationary point and eigenvalues of the model are shown in table 4.14. 

Table 4.14: Stationary point and Eigenvalues for the Germination of Melia volkensii 

Model using 𝑯𝟐𝑶𝟐 Treatment 

 Stationary Points Eigenvalues 

𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝟒  

1.0857 -1.0843 -0.0786 0.3819 -0.1652 -0.5608 -1.2677 -2.8188 

 

Since all the eigenvalues are negative, the response surface is a maximum one. 

The canonical equivalent form of the fitted model is: 

𝑦̂ = 13.0486 − 0.1652𝑤1
2 − 0.5608𝑤2

2 − 1.2677𝑤3
2 − 2.8188𝑤4

2. . (4.20) 
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The stationary point for the model is (1.0857, -1.0843, -0.0786, 0.3819). In terms of the 

natural variable this is (30.43, 4.83, 2.92, 8.76). Thus the optimal temperature is 30.43
o
C, 

the optimal soil pH is 4.83, the optimal concentration of H2O2 is 2.92% and the optimal 

pre-treatment time is 8.76 hours. 

Suppose the investigator is interested in finding where to run the experiment to obtain a 

response that is close to 13 as possible. This can be obtained from the canonical 

equivalent model (4.20). 

The region is presented as a contour plot of the canonical model in figure 4.6. 

 

Figure 4.6: Contour Plot for Expected Response of 13 of the 𝑯𝟐𝑶𝟐 Model 

From (4.20) 

𝑥1 = 1.0857 + 0.1336𝑤1 + 0.1669𝑤2 + 0.1949𝑤3 + 0.9572𝑤4   (4.21) 

𝑥2 = −1.0843 + 0.6638𝑤1 − 0.7221𝑤2 − 0.1815𝑤3 + 0.0702𝑤4  (4.22) 

𝑥3 = −0.0786 + 0.0835𝑤1 − 0.1826𝑤2 + 0.9637𝑤3 − 0.1760𝑤4  (4.23) 

𝑥4 = 0.3819 + 0.7311𝑤1 + 0.6460𝑤2 + 0.0191𝑤3 − 0.2186𝑤4   (4.24) 
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Table 4.15 gives values of 𝑤1,  𝑤2,  𝑤3,  𝑤4, 𝑥1, 𝑥2 ,  𝑥3 and 𝑥4 for which 

𝑦̂ = 13.0486 − 0.1652𝑤1
2 − 0.5608𝑤2

2 − 1.2677𝑤3
2 − 2.8188𝑤4

2. The table is obtained 

form (4.21), (4.22), (4.23) and (4.24). When the experiment is run at the given values of 

the temperature, soil pH, concentration of H2O2 and pre-treatment time the expected 

response is close to 13. 

Table 4.15: Operating Conditions for Expected Response of 13 of the 𝑯𝟐𝑶𝟐 Model 

𝒘𝟏 𝒘𝟐 𝒘𝟑 𝒘𝟒 𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝟒 𝒚̂ 

0.00 0.00 0.00 0.00 1.086 -1.084 -0.079 0.382 12.7 

0.40 0.74 0.00 0.00 1.263 -1.353 -0.180 1.152 12.7 

-0.40 0.00 0.00 0.00 1.032 -1.350 -0.112 0.089 12.7 

-0.40 -0.74 0.00 0.00 0.909 -0.815 0.023 -0.389 12.6 

0.00 0.74 0.00 0.00 1.209 -1.619 -0.214 0.860 12.5 

0.40 0.00 0.00 0.00 1.139 -0.819 -0.045 0.674 12.5 

0.00 -0.74 0.00 0.00 0.962 -0.550 0.057 -0.096 12.2 

-0.40 0.74 0.00 0.00 1.156 -1.884 -0.247 0.568 12.1 

0.40 0.74 1.12 0.00 1.481 -1.556 0.899 1.174 11.7 

0.40 -0.74 0.00 0.00 1.016 -0.284 0.090 0.196 11.6 

0.00 0.74 1.12 0.00 1.427 -1.822 0.866 0.881 11.6 

-0.40 0.00 1.12 0.00 1.251 -1.553 0.967 0.111 11.6 

0.00 0.00 1.12 0.00 1.304 -1.288 1.001 0.403 11.5 

-0.40 -0.74 1.12 0.00 1.127 -1.019 1.102 -0.367 11.3 

0.40 0.00 1.12 0.00 1.357 -1.022 1.034 0.696 11.2 

-0.40 0.74 1.12 0.00 1.374 -2.087 0.832 0.589 11.2 
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4.3.3 Optimal Conditions for the Germination of Melia volkensii using Gibberellic 

Acid (𝑮𝑨𝟑) Treatment 

Figure 4.7 shows the response surface plot for the model whereas figure 4.8 shows the 

contour plot of the fitted model (4.12). 

 

Figure 4.7: Response Surface Plot for the Germination of Melia volkensii Model 

using 𝑮𝑨𝟑 Treatment 
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Figure 4.8: Contour Plot for the Germination of Melia volkensii Model using 𝑮𝑨𝟑 

Treatment 

The stationary point and eigenvalues of the model are shown in table 4.16. 

Table 4.16: Stationary point and Eigenvalues for the Germination of Melia volkensii 

Model using 𝑮𝑨𝟑 Treatment 

 Stationary Points Eigenvalues 

𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝟒  

0.3541 -0.7390 -0.0033 -0.1753 -0.4078 -1.4899 -1.8798 -3.5350 

 

Since all the eigenvalues are negative, the response surface is a maximum one. 

The canonical equivalent form of the fitted model is: 

𝑦̂ = 15.2979 − 0.4078𝑤1
2 − 1.4899𝑤2

2 − 1.8798𝑤3
2 − 3.5350𝑤4

2.  (4.25) 
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The stationary point for the model is (0.3541, -0.7390,- 0.0033, -0.1753). In terms of the 

natural variable this is (26.77, 5.52, 0.03, 7.65). Thus the optimal temperature is 26.77
o
C, 

the optimal soil pH is 5.52, the optimal concentration of GA3 is 0.03% and the optimal 

pre-treatment time is 7.65 hours. 

Suppose the investigator is interested in finding where to run the experiment to obtain a 

response that is close to 15 as possible. This can be obtained from the canonical 

equivalent model (4.25). 

The region is presented as a contour plot of the canonical model in figure 4.9. 

 

Figure 4.9: Contour Plot for Expected Response of 15 of the 𝑮𝑨𝟑 Model 

From (4.25) 

𝑥1 = 0.3541 − 0.0349𝑤1 − 0.3425𝑤2 − 0.0356𝑤3 − 0.9382𝑤4   (4.26) 

𝑥2 = −0.7390 − 0.1635𝑤1 − 0.5477𝑤2 − 0.7860𝑤3 + 0.2358𝑤4  (4.27) 

𝑥3 = −0.0033 + 0.5539𝑤1 − 0.6836𝑤2 + 0.4250𝑤3 + 0.2129𝑤4  (4.28) 

𝑥4 = −0.1753 + 0.8156𝑤1 + 0.3398𝑤2 − 0.4476𝑤3 − 0.1374𝑤4  (4.29) 
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Table 4.17 gives values of 𝑤1,  𝑤2,  𝑤3,  𝑤4, 𝑥1, 𝑥2 ,  𝑥3 and 𝑥4 for which 

𝑦̂ = 15.2979 − 0.4078𝑤1
2 − 1.4899𝑤2

2 − 1.8798𝑤3
2 − 3.5350𝑤4

2. The table is obtained 

form (4.26), (4.27), (4.28) and (4.29). When the experiment is run at the given values of 

the temperature, soil pH, concentration of GA3 and pre-treatment time the expected 

response is close to 15. 

Table 4.17: Operating Conditions for Expected Response of 15 of the 𝑮𝑨𝟑 Model 

𝒘𝟏 𝒘𝟐 𝒘𝟑 𝒘𝟒 𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝟒 𝒚̂ 

-0.63 0.00 0.00 0.00 0.376 -0.636 -0.352 -0.689 14.9 

0.00 0.00 0.00 0.00 0.354 -0.739 -0.003 -0.175 14.8 

-0.63 0.00 1.37 0.00 0.327 -1.713 0.230 -1.302 14.6 

0.63 0.00 0.00 0.00 0.332 -0.842 0.346 0.339 14.0 

-0.63 -1.22 1.37 0.00 0.745 -1.045 1.064 -1.717 13.5 

0.63 0.00 -1.37 0.00 0.381 0.235 -0.237 0.952 13.3 

-0.63 -1.22 0.00 0.00 0.794 0.032 0.482 -1.104 13.2 

0.00 -1.22 0.00 0.00 0.772 -0.071 0.831 -0.590 12.9 

0.00 1.22 0.00 0.00 -0.064 -1.407 -0.837 0.239 12.8 

-0.63 1.22 0.00 0.00 -0.042 -1.304 -1.186 -0.275 12.7 

0.00 0.00 1.37 0.00 0.305 -1.816 0.579 -0.789 12.4 

0.63 1.22 0.00 0.00 -0.086 -1.510 -0.488 0.753 12.1 

0.63 1.22 -1.37 0.00 -0.037 -0.433 -1.071 1.366 12.0 

0.63 -1.22 0.00 0.00 0.750 -0.174 1.180 -0.076 12.0 

0.00 0.00 -1.37 0.00 0.403 0.338 -0.586 0.438 12.0 

-0.63 1.22 1.37 0.00 -0.091 -2.381 -0.604 -0.888 11.9 
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4.3.4 Optimal Conditions for the Germination of Melia volkensii using Sulphuric 

Acid (𝑯𝟐𝑺𝑶𝟒) Treatment 

Figure 4.10 shows the response surface plot for the model whereas figure 4.11 shows the 

contour plot of the fitted model (4.12). 

 

Figure 4.10: Response Surface Plot for the Germination of Melia volkensii Model 

using 𝑯𝟐𝑺𝑶𝟒 Treatment 
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Figure 4.11: Contour Plot for the Germination of Melia volkensii Model using 

𝑯𝟐𝑺𝑶𝟒 Treatment 

The stationary point and eigenvalues of the model are shown in table 5.7. 

Table 4.18: Stationary point and Eigenvalues for the Germination of Melia volkensii 

Model using 𝑯𝟐𝑺𝑶𝟒 Treatment 

 Stationary Points Eigenvalues 

𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝟒  

0.4423 -1.1497 -0.7922 -1.2840 -0.4345 -0.6668 -1.2618 -2.6578 

 

Since all the eigenvalues are negative, the response surface is a maximum one. 

The canonical equivalent form of the fitted model is: 

𝑦̂ = 11.4534 − 0.4345𝑤1
2 − 0.6668𝑤2

2 − 1.2618𝑤3
2 − 2.6578𝑤4

2.  (4.30) 
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The stationary point for the model is (0.4423, -1.1497, -0.7922, -1.2840). In terms of the 

natural variable this is (27.21, 4.70, 38.12, 5.43). Thus the optimal temperature is 

27.21
o
C, the optimal soil pH is 4.70, the optimal concentration of H2SO4 is 38.12% and 

the optimal pre-treatment time is 5.43 hours. 

Suppose the investigator is interested in finding where to run the experiment to obtain a 

response that is close to 11 as possible. This can be obtained from the canonical 

equivalent model (4.30). 

The region is presented as a contour plot of the canonical model in figure 5.12. 

 

Figure 4.12: Contour Plot for Expected Response of 11 of the 𝑯𝟐𝑺𝑶𝟒 Model 
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𝑥2 = −1.1497 + 0.2091𝑤1 − 0.2950𝑤2 − 0.6001𝑤3 + 0.7136𝑤4  (4.32) 

𝑥3 = −0.7922 − 0.5608𝑤1 + 0.5958𝑤2 − 0.5708𝑤3 − 0.0694𝑤4  (4.33) 

𝑥4 = −1.2840 + 0.7963𝑤1 + 0.5525𝑤2 − 0.1861𝑤3 − 0.1613𝑤4  (4.34) 
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Table 4.19 gives values of 𝑤1,  𝑤2,  𝑤3,  𝑤4, 𝑥1, 𝑥2 ,  𝑥3 and 𝑥4 for which 

𝑦̂ = 11.4534 − 0.4345𝑤1
2 − 0.6668𝑤2

2 − 1.2618𝑤3
2 − 2.6578𝑤4

2. The table is obtained 

form (4.31), (4.32), (4.33) and (4.34). When the experiment is run at the given values of 

the temperature, soil pH, concentration of H2SO4 and pre-treatment time the expected 

response is close to 11. 

Table 4.19: Operating Conditions for Expected Response of 11 of the 𝑯𝟐𝑺𝑶𝟒 Model 

𝒘𝟏 𝒘𝟐 𝒘𝟑 𝒘𝟒 𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝟒 𝒚̂ 

-0.65 0.00 0.00 0.00 0.499 -1.286 -0.428 -1.802 11.1 

-0.65 -0.81 0.00 0.00 0.092 -1.047 -0.910 -2.249 10.9 

-0.65 0.00 -1.12 0.00 -0.093 -0.614 0.212 -1.593 10.8 

-0.65 0.81 -1.12 0.00 0.314 -0.852 0.694 -1.146 10.4 

-0.65 0.81 0.00 0.00 0.907 -1.525 0.055 -1.354 10.4 

0.00 0.00 0.00 0.00 0.442 -1.150 -0.792 -1.284 10.3 

-0.65 -0.81 -1.12 0.00 -0.500 -0.375 -0.271 -2.041 10.2 

0.00 0.81 -1.12 0.00 0.257 -0.717 0.330 -0.628 10.1 

0.00 0.00 -1.12 0.00 -0.150 -0.478 -0.153 -1.076 10.1 

0.00 0.81 0.00 0.00 0.849 -1.389 -0.310 -0.836 9.9 

0.00 -0.81 0.00 0.00 0.035 -0.911 -1.275 -1.732 9.7 

0.65 0.81 -1.12 0.00 0.200 -0.581 -0.035 -0.110 9.6 

-0.65 -0.81 1.12 0.00 0.684 -1.719 -1.550 -2.458 9.3 

0.65 0.81 0.00 0.00 0.792 -1.253 -0.674 -0.319 9.3 

0.65 0.00 0.00 0.00 0.385 -1.014 -1.157 -0.766 9.3 

0.65 0.00 -1.12 0.00 -0.207 -0.342 -0.517 -0.558 9.2 
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4.3.5 Comparison of the Optimal Conditions for the Germination of Melia volkensii. 

We established that in general, germination rates of Melia seeds are low. For the four 

chemicals used in the experiment the germination rates were found to be 31.67% 

for 𝐾𝑁𝑂3, 39.08% for 𝐻2𝑂2 , 42.00% for 𝐺𝐴3 and 28.25% for 𝐻2𝑆𝑂4. The overall 

germination rate was found to be 35%. 

The germination rate was optimized at 76.49% for 𝐺𝐴3 whereby the soil pH was 5.52, the 

temperature was 26.77
 o
C, the  𝐺𝐴3  concentration was 0.03% and the seed treatment time 

was 7.65 hours. The germination rate was optimized at 65.98% for 𝐾𝑁𝑂3 whereby the 

soil pH was 3.95, the temperature was 31.13
 o

C, the 𝐾𝑁𝑂3 concentration was 0.37% and 

the seed treatment time was 8.33 hours. For 𝐻2𝑂2, germination rate was optimized at 

65.24 %  whereby the soil pH was 4.83, the temperature was 30.43
 o

C, the  𝐻2𝑂2  

concentration was 2.92% and the seed treatment time was 8.76 hours. For 𝐻2𝑆𝑂4, 

germination rate was optimized at 57.26 %  whereby the soil pH was 4.70, the 

temperature was 27.21
 o

C, the  𝐻2𝑆𝑂4  concentration was 38.13% and the seed treatment 

time was 5.43 hours. 
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CHAPTER FIVE 

CONCLUSIONS AND RECOMMENDATIONS 

5.1 Conclusions 

The study formulated an A-, D-, T- optimal four factor rotatable central composite design 

and proceeded to implement this design in a germination of Melia volkensii experiment. 

This design can be directly used by researchers investigating the influence of four factors 

on some outcome. With some adjustments, the design can be extended to any number of 

factors. Further it was found the A- optimal, D- optimal and T- optimal designs were 

more efficient than the basic design on the A-, D- and T- criteria respectively. 

Second order models were found to be sufficient in representing germination of Melia 

volkensii. For all the models developed, their corresponding p values were found to be 

less than 0.05. However, the adjusted 𝑅2 values were found to be 0.6114 for the 𝐾𝑁𝑂3, 

0.5141 for the 𝐻2𝑂2 model, 0.7569 for the 𝐺𝐴3 and 0.4861 for the 𝐻2𝑆𝑂4 model. This 

showed that the percentage of variations which could be explained by the models ranged 

from 75.69% for the 𝐺𝐴3 model to 48.61% for the 𝐻2𝑆𝑂4 model. Except for the 

𝐻2𝑆𝑂4 model, adequacy of fit tests showed that the models fitted the data well. 

We established that in general, germination rates of Melia seeds are low. For the four 

chemicals used in the experiment, the germination rates were found to be 31.67% 

for 𝐾𝑁𝑂3, 39.08% for 𝐻2𝑂2 , 42.00% for 𝐺𝐴3 and 28.25% for 𝐻2𝑆𝑂4. The overall 

germination rate was found to be 35%. However when the conditions are favorable and 

set correctly germination rates can be optimized at 57% for 𝐻2𝑆𝑂4, 65% for 𝐻2𝑂2, 66% 

for 𝐾𝑁𝑂3and 76% for 𝐺𝐴3. 
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5.2 Recommendations 

The study recommends the use of A-, D- or T- optimal four factor rotatable central 

composite design for researchers investigating the effect of four numerical explanatory 

variables on some dependent variable. With some minor modifications the design used in 

the study can be extended to any number of numerical independent variables. 

Germination of Melia volkensii can be adequately modeled using second order models 

with the independent variables being temperature, soil pH, chemical concentration and 

seed pre-treatment time. It is recommended to use 𝐺𝐴3 for seed pre-treatment. To 

increase the reliability of the second order model, further research should be done such as 

adding more independent variables or varying the conditions at which the experiment is 

run. 

The study recommends the use of response surface methodology to find optimal settings 

of explanatory factors in second order models. To maximize germination of Melia 

volkensii, it is recommended to use soil of pH was 5.5, temperature of 26.8
 o

C, 𝐺𝐴3  

concentration of 0.03% and the seed pre-treatment time of 8 hours. 

5.3 Suggestions for Further Research 

The study considered A-, D- and T- optimal central composite design for modeling 

second order models. Further research can be done on other optimality criteria such as C-, 

E-, G-, I- and V-. 

More research can be done to increase the reliability of the models for the germination of 

Melia volkensii. This may include investigating models of higher order and studying 

other explanatory that may influence germination of Melia volkensii. 
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APPENDIX 1: Germination of Melia volkensii Experiment Data 

Coded Values Raw Values Response (Outcome) 

𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝟒 Temperature Soil pH Time 𝑲𝑵𝑶𝟑 𝑯𝟐𝑶𝟐 𝑮𝑨𝟑 𝑯𝟐𝑺𝑶𝟒 

-1 -1 -1 -1 20 5 6 3 6 12 3 

-1 -1 -1 -1 20 5 6 1 3 6 9 

1 -1 -1 -1 30 5 6 6 11 9 11 

1 -1 -1 -1 30 5 6 9 14 11 10 

-1 1 -1 -1 20 9 6 3 7 2 0 

-1 1 -1 -1 20 9 6 0 8 1 1 

1 1 -1 -1 30 9 6 4 3 2 0 

1 1 -1 -1 30 9 6 1 2 5 1 

-1 -1 1 -1 20 5 6 3 7 6 3 

-1 -1 1 -1 20 5 6 4 7 5 2 

1 -1 1 -1 30 5 6 12 10 11 6 

1 -1 1 -1 30 5 6 16 7 16 11 

-1 1 1 -1 20 9 6 3 2 2 3 

-1 1 1 -1 20 9 6 2 7 5 9 

1 1 1 -1 30 9 6 3 4 2 5 

1 1 1 -1 30 9 6 3 2 8 0 

-1 -1 -1 1 20 5 10 0 3 9 6 

-1 -1 -1 1 20 5 10 8 4 7 0 

1 -1 -1 1 30 5 10 13 14 12 8 

1 -1 -1 1 30 5 10 10 12 9 5 

-1 1 -1 1 20 9 10 0 7 5 1 

-1 1 -1 1 20 9 10 4 7 4 2 

1 1 -1 1 30 9 10 2 8 2 4 

1 1 -1 1 30 9 10 0 3 7 1 

-1 -1 1 1 20 5 10 0 3 2 1 

-1 -1 1 1 20 5 10 1 5 0 1 

1 -1 1 1 30 5 10 14 7 12 10 

1 -1 1 1 30 5 10 10 16 12 7 

-1 1 1 1 20 9 10 1 9 6 3 

-1 1 1 1 20 9 10 2 6 2 1 

1 1 1 1 30 9 10 4 13 10 1 

1 1 1 1 30 9 10 6 4 10 7 

-2 0 0 0 15 7 8 2 1 1 1 

-2 0 0 0 15 7 8 1 3 2 2 

2 0 0 0 35 7 8 5 8 7 0 

2 0 0 0 35 7 8 4 6 2 6 

0 -2 0 0 25 3 8 13 7 11 3 

0 -2 0 0 25 3 8 4 10 14 8 

0 2 0 0 25 11 8 6 3 2 4 
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Coded Values Raw Values Response (Outcome) 

𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝟒 Temperature Soil pH Time 𝑲𝑵𝑶𝟑 𝑯𝟐𝑶𝟐 𝑮𝑨𝟑 𝑯𝟐𝑺𝑶𝟒 

0 2 0 0 25 11 8 2 2 4 5 

0 0 -2 0 25 7 8 7 5 4 12 

0 0 -2 0 25 7 8 11 7 10 9 

0 0 2 0 25 7 8 7 6 4 5 

0 0 2 0 25 7 8 8 9 10 3 

0 0 0 -2 25 7 4 10 12 9 16 

0 0 0 -2 25 7 4 6 12 13 10 

0 0 0 2 25 7 12 9 11 14 4 

0 0 0 2 25 7 12 11 6 14 3 

0 0 0 0 25 7 8 10 8 15 8 

0 0 0 0 25 7 8 10 11 15 7 

0 0 0 0 25 7 8 14 5 10 10 

0 0 0 0 25 7 8 11 17 15 6 

0 0 0 0 25 7 8 12 9 13 11 

0 0 0 0 25 7 8 9 11 12 13 

0 0 0 0 25 7 8 11 15 15 7 

0 0 0 0 25 7 8 7 14 16 11 

0 0 0 0 25 7 8 10 16 15 8 

0 0 0 0 25 7 8 7 15 17 12 

0 0 0 0 25 7 8 16 9 11 12 

0 0 0 0 25 7 8 9 10 17 11 
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APPENDIX 2: R Code  

#Importing the data 

data<-

read.csv("C:\\Psn\\Education\\MU\\Thesis\\2015\\Data\\data.csv") 

names(data) 

attach(data) 

 

#Call required packages 

library(MASS) 

library(expm) 

library(rsm) 

 

#Format the data as a matrix 

X<-

matrix(cbind(x0,x1,x2,x3,x4,x11,x12,x13,x14,x22,x23,x24,x33,x34,x

44),60,15) 

 

#Computing the experimental moment matrix 

M<-t(X)%*%X/60 

 

#Computing the experimental moment matrix A-, D- and T optimal 

values 

a_opt_exp<-(sum(diag(solve(M)))/15)^-1 

d_opt_exp 

d_opt_exp<-det(M)^(1/15) 

d_opt_exp 

t_opt_exp<-sum(diag(M))/15 

t_opt_exp 

 

#Creating a 60 by 1 matrix 0f 1s 

One_60<-matrix(cbind(x0)) 

One_60 

 

#Creating a 60 by 60 matrix 0f 0s 

Xero_60<-One_60-1 

Xero_60_mt<-Xero_60%*%t(Xero_60) 

 

#Computing A- optimal weights 

M_3<-solve(M)%*%solve(M)%*%solve(M) 

A_A<-X%*%sqrtm(M_3)%*%t(X) 

w_a_1<-ginv(A_A*A_A)%*%One_60 

w_a_1 

w_a<-w_a_1/sum(w_a_1) 

w_a 

 

#Computing A- optimal moment matrix 

W_A<-Xero_60_mt 

for(i in 1:60)W_A[i,i]<-w_a[i,1] 

M_A<-t(X)%*%W_A%*%X 

round(M_A/0.424,3) 
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#Computing A- optimal value for A -optimal design  

a_opt_a<-(sum(diag(solve(M_A)))/15)^-1 

a_opt_a 

 

#Computing D- optimal weights 

A_D<-X%*%solve(M)%*%t(X) 

w_d_1<-ginv(A_D*A_D)%*%One_60 

w_d<-w_d_1/sum(w_d_1) 

w_d 

 

#Computing D- optimal moment matrix 

W_D<-Xero_60_mt 

for(i in 1:60)W_D[i,i]<-w_d[i,1] 

M_D<-t(X)%*%W_D%*%X 

round(M_D/0.1778,2) 

 

#Computing D- optimal value for D -optimal design  

d_opt_d<-det(M_D)^(1/15) 

d_opt_d 

 

#Computing T- optimal weights 

M_1<-solve(M) 

A_T<-X%*%sqrtm(M_1)%*%t(X) 

w_t_1<-ginv(A_T*A_T)%*%One_60 

w_t_1 

w_t<-w_t_1/sum(w_t_1) 

w_t 

 

#Computing T- optimal moment matrix 

W_T<-Xero_60_mt 

for(i in 1:60)W_T[i,i]<-w_t[i,1] 

M_T<-t(X)%*%W_T%*%X 

round(M_T,6) 

round(M_T/0.0342,2) 

 

#Computing T- optimal value for T -optimal design  

t_opt_t<-sum(diag(M_T))/15 

t_opt_t 

 

 

#Modeling the second order KNO3 model with coded values 

model_KNO3<- rsm(KNO3 ~ SO(x1,x2,x3,x4), data=data) 

 

#Displaying the summary for the KNO3 model 

summary(model_KNO3) 

 

#Modeling the second order KNO3 model with only the significant 

factors 

final_KNO3<-lm(KNO3 ~ 1+x1+x2+x11+x12+x22+x33) 

summary(final_KNO3) 
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#Modeling the second order KNO3 model with raw values 

model_KNO3_1<- rsm(KNO3 ~ SO(Temperature,Soil_pH,KNO3_Conc,Time), 

data=data) 

summary(model_KNO3_1) 

 

#Displaying the response surface plot for the KNO3 model 

par(mfrow = c(2,3)) 

persp(model_KNO3_1, ~Temperature+Soil_pH+KNO3_Conc+Time, 

col=rainbow(100) , at=canonical(model_KNO3_1)$xs, 

contour=("colors")) 

 

#Displaying the contour plot for the KNO3 model 

par(mfrow = c(2,3)) 

contour(model_KNO3_1, ~Temperature+Soil_pH+KNO3_Conc+Time, 

col="purple", at=canonical(model_KNO3_1)$xs) 

 

#Modeling the second order H2O2 model with coded values 

model_H2O2<- rsm(H2O2 ~ SO(x1,x2,x3,x4), data=data) 

 

#Displaying the summary for the H2O2 model 

summary(model_H2O2) 

 

#Modeling the second order H2O2 model with only the significant 

factors 

final_H2O2<-lm(H2O2 ~ 1+x1+x2+x11+x12+x22+x33) 

summary(final_H2O2) 

 

#Modeling the second order H2O2 model with raw values 

model_H2O2_1<- rsm(H2O2 ~ SO(Temperature,Soil_pH,H2O2_Conc,Time), 

data=data) 

summary(model_H2O2_1) 

 

#Displaying the response surface plot for the H2O2 model 

par(mfrow = c(2,3)) 

persp(model_H2O2_1, ~Temperature+Soil_pH+H2O2_Conc+Time, 

col=rainbow(100), at=canonical(model_H2O2_1)$xs, 

contour=("colors")) 

 

#Displaying the contour plot for the H2O2 model 

par(mfrow = c(2,3)) 

contour(model_H2O2_1, ~Temperature+Soil_pH+H2O2_Conc+Time, 

col="purple",at=canonical(model_H2O2_1)$xs) 

 

#Modeling the second order GA3 model with coded values 

model_GA3<- rsm(GA3 ~ SO(x1,x2,x3,x4), data=data) 

 

#Displaying the summary for the GA3 model 

summary(model_GA3) 

 

#Modeling the second order GA3 model with only the significant 

factors 

final_GA3<-lm(GA3 ~ 1+x1+x2+x11+x13+x22+x23+x24+x33) 
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summary(final_GA3) 

 

#Modeling the second order GA model with raw values 

model_GA3_1<- rsm(GA3 ~ SO(Temperature,Soil_pH,GA3_Conc,Time), 

data=data) 

summary(model_GA3_1) 

 

#Displaying the response surface plot for the GA3 model 

par(mfrow = c(2,3)) 

persp(model_GA3_1, ~Temperature+Soil_pH+GA3_Conc+Time, 

col=rainbow(100), at=canonical(model_GA3_1)$xs, 

contour=("colors")) 

 

#Displaying the contour plot for the GA3 model 

par(mfrow = c(2,3)) 

contour(model_GA3_1, ~Temperature+Soil_pH+GA3_Conc+Time, 

col="purple",at=canonical(model_GA3_1)$xs) 

 

#Modeling the second order H2SO4 model with coded values 

model_H2SO4<- rsm(H2SO4 ~ SO(x1,x2,x3,x4), data=data) 

 

#Displaying the summary for the H2SO4 model 

summary(model_H2SO4) 

 

#Modeling the second order H2SO4 model with only the significant 

factors 

final_H2SO4<-lm(H2SO4 ~ 1+x1+x2+x4+x11+x12+x22+x33) 

summary(final_H2SO4) 

 

#Modeling the second order H2SO4 model with raw values 

model_H2SO4_1<- rsm(H2SO4 ~ 

SO(Temperature,Soil_pH,H2SO4_Conc,Time), data=data) 

summary(model_H2SO4_1) 

 

#Displaying the response surface plot for the H2SO4 model 

par(mfrow = c(2,3)) 

persp(model_H2SO4_1, ~Temperature+Soil_pH+H2SO4_Conc+Time, 

col=rainbow(100), at=canonical(model_H2SO4_1)$xs, 

contour=("colors")) 

 

#Displaying the contour surface plot for the H2SO4 model 

par(mfrow = c(2,3)) 

contour(model_H2SO4_1, ~Temperature+Soil_pH+H2SO4_Conc+Time, 

col="purple",at=canonical(model_H2SO4_1)$xs) 


